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SUMMARY

Calculations by a method that is believed to be reasonably accurate
have been made to demonstrate how perturbations decay, in zero pressure
gradient, until all that remains i1s a change in boundary layer thickness.
Initial perturbations an typical aerofoil pressure gradients can usually
be represented by an equivalent change 1n initial boundary layer thackness,
which produces percentage changes of the same order of magnitude in distance
to separation,

1. Introduction

Because of the widely differing responses of boundary-layer calcula-
tion methods to changes in the initial cond1t10ns1, there 1s uncertainty
and controversy about the sensitivity of real boundary layers to initial
conditions. The question 1s of scme practical importance apart from its
bearing on the accuracy of calculation methods, because conditions existing
Just after transition are not known with any accuracy and i1t i1s often
dafficult to estimate the location of transition on an aerofoil: af boundary
layers are really as sensitive to 1nitial conditions as some of the calcula-
tion methods indicate, the determination of aerofoil drag is practically an
ill-posed problem. It 1s clear, however, that the older calculation methods2,
which 1mplicitly relate the local shear stress profile to the local mean
velocity profile, cannot reproduce the behaviour of a real boundary layer:
the sensitivaty to a change of the velocity profile parameter H depends
on the particular empirical relation between H and the shear-stress profile
or entrainment function. The attempt by McDonald and Stoddartl to introduce
a separate parameter describing the shear-stress integral is not different
in principle from the above methods, because their empirical relation for
this parameter implzes that 1t is a function of H , the exact function
depending (permanently) on the inatial conditions, and in practice this may
result 1n a gross overestimate of the influence of initial conditions.

More realistic attempts to represent the shear stress Broflle independ-
ently of the mean velocity profile are now being made Js110 but the
resounding failure .of the older methods, which neglected "history" effects on
the turbulent shear stress, and which McDonald therefore calls the "pre-hastoric"
methods, has led to the feeling that, since history is obviously important, the
1nitial conditions must exercise a large .influence on the development of the bound-
ary layer. It has been suggested that a definitive set of measurements should
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be made 1n a typical pressure gradient with a range of initial condataioms,
but we do not know which parameters we should attempt to vary, nor andeed
how to vary one without the others: certainly, the traditional parameters
such as & , Co and H do not uniquely specify a turbulent boundary layer.

One 1s therefore reduced to studying the response of boundary layers to reel
perturbaticns, such as might be caused by a region of transpairation or
roughness, rather than to attempt to generate boundary layers artificially,
for instance by vortex generators or graded grids.

As a first contribution to this study, and as a guide to any future
experiments, some calculations of this sort have been done by the method
of ref. 5, which 1s believed to be reliable over a wide range of different
boundary layers and which represents the physical situation rather more
closely than the integral methods. This method satisfies the mean-motion
equation, the continuity equation and an empirically-modified version of the
turbulent kinetic energy equation at each point in the boundary layer,
enabling complete velocity and shear stress profiles to be calculated.
Evidence of the accuracy of the calculations is given in ref. 5 and in
fig. 13 below: 1in the present paper 1t will be assumed, unless otherwise
stated, that the calculations are accurate enough for the comparative
purposes for which they will be used. They should be useful as test cases
for simpler methods, and full details are available from the authors. This
paper does not treat the equally important problem of what initial conditions
occur in practice - say, Just after transition - because that problem must be
studied experimentally.

In Section 2 the types of perturbation to be used are outlined, and
their qualaitative effect on the velocity and shear stress profiles is
discussed . In Section 3 the distance required for recovery from typical
perturbations in zero pressure gradient is discussed: 1t is concluded, not
unexpectedly, that there is no universal decay law, and 1%t appears that
considerable disturbances may remain within the layer even after the surface
shear stress has returned nearly to the unperturbed value for the appropriate
Reynolds number. However, even large disturbances decay to neglaigible level
in, say, 80 boundary-layer thicknesses, and the greater part of the disturbance
disappears in less than half this distance. In Section 4, details are given
of the response to a sudden small change in surface roughness, whicg is
academically interesting because the disturbance i1s self-preserving®: it is
also of great practical interest in meteorclogy. A good measure of the
flexibility of a calculation method would be how soon after the change in
roughness 1t could be used successfully.

In Section 5, the response to perturbations in arbitrary pressure
gradient 1s discussed. It is pointed out that in many practical cases of
aerofoil design the boundary layer waill have largely recovered from a
perturbation at the transition point (say) before being markedly affected by
the adverse pressure gradient, so that the final effect of the perturbation
is the same as that of an increase in inatial boundary layer thickness, Jjust
as in zero pressure gradient. It 1s found that, usually, a given (small)
percentage change in initial boundary layer thickmess produces percentage
changes of no greater order of magnitude in the properties at the trailing edge
or in the pressure rase to separation.

The conclusion of this work is that turbulent boundary layers are less
sensitive to initial conditions than has sometimes been supposed. This is
quite compatible with the argument that the past history of the boundary layer
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must be taken into account in calculations - to use the language of linear
systems, boundary layers have a very long periodic time, but they are heavily
damped.

2. Choice of Perturbations

In the context of aerofoil design, the only real perturbing influences
that can usefully be studied are changes of surface conditions or of pressure
gradient. The response to the introduction of large obstacles into the flow
is not relevant and cannot be calculated by any known method. We have chosen
three methods of introducing types of disturbances, whose region of application
extends over a streamwise distance of not more than a few boundary layer thick-
nesses: they can thus be treated as fairly weak point disturbances followed by
& long region of response. By "perturbation"™ we mean the difference between the
boundary layer immediately after the disturbance and the undisturbed boundary
layer at the same Reynolds number (taken as TUy8g /).

In the discussion we shall make frequent use of the concept that the tur-
bulent boundary layer is approximately hyperbolic in behaviour, as shown by the
model equations of ref. 5 and assumed implicitly by several authors, so that the
effect of a disturbance in velocity or shear stress introduced near the surface
(say) propagates outward at a finite rate (at an angle of the order of 2 deg.).
Also, we shall base the discussion on the behaviour of the shear stress rather
than the mean velocity. Since the dimensionless eddy viscosity is of the same
order of magnitude in all boundary layers, the shear stress mirrors the behaviour
of the velocity gradient and is therefore a more sensitive parameter than the
velocity itself.

Figs. 1 and 2 show the variation of ¢, and H in the perturbed boundary
layers. The "region of disturbance" in which the perturbation is applied is
shown by dotted lines and the "region of recovery™ by full lines. The bold
line without points shows the behaviour of the unperturbed boundary layer. The
perturbations all start at the point P , except for the case of roughness change.
Before discussing the region of recovery, we discuss the way in which each type
of disturbance affects the boundary layer.

(1) Short region of suction or injection. Here, V rises linearly to

0.005 in & distance of two boundary layer thicknesses and remains at that value
for 4 boundary layer thicknesses before returnming quickly to zero.  This produces
a change of shear stress and mean velocity only near the surface: the change

then decays, spreading into the outer layer. The outer layer, although not
darectly affected by the application of the disturbance, 13 perturbed from ats
equilibrium state later in the region of response, and gradually returns to
equilibrium as the perturbation dies away altogether. The effect is thus similar
to that of a band of roughness, but the perturbation can conveniently be made
larger.

(i1i) Change of surface roughness. For convenience, we simulated this by running
a boundary layer with a decreased value of 1.5 for the additive constant A
in the logarithmic law for a smooth surface

i
.-—[—I__ - 1 I:log QIWZE)E_X + A] :
YT ?p K v

and then, after the layer reached equilibrium, restoring the additive constant to
its proper valus of 2. Therefore, the boundary layer does not start frog the
same poaint as the others in figs. 1 and 2. The shear stress in the 1natial
*rough wall® boundary layer is everywhere higher than in the equailibrium boundary

layer on a smooth surface but T/Tw 1s about the same at gaven y/8

/& restoring
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a restoring change in shear stress and mean velocity propagates outward from

the surface and finally reduces the shear stress to the equilibrium value
everywhere,

(iii)Short region of adverse pressure gradient. The free-stream velocity
varies as c+(i-c) cos x/28 from x =o to x = 2%x& , for ¢ = 0.975

and 0.95 (5 percent and 10 percent reduction in free stream velocity
respectively). The velocity profile changes as if the flow were inviscld,
except close to the surface; the absclute shear stress is unaltered,

except again near the surface, so that 7/ph® 21s either 10 or 20 per-
cent higher at the end of the dasturbance region than in an equilibrium
boundary layer with the same free stream velocity. Near the surface the
shear stress falls considerably, as is the ususl response to adverse pressure
gradient: 1t rises ggain rapidly after the region of disturbance. It is
interesting to see, from figs. 3 and L, that in the early stages the surface
shear stress and the shape parameter H are functions of the pressure rase,
nearly the same for both pressure gradients. In the case of the shape
parameter this follows from the concept of quasi-inviscid response. In

the case of the surface shear stress it follows if the logarithmic law is
satisfied at the inner boundary of the quasi-inviscid region: this will be
a fair approxamation if the shear stress responds much more quickly than the
mean velocity, which it will do at points well within the inner layer;
therefore the approximation works only for x/8 not too large.

The only disturbances to produce unexpected results were the short
regions of suction or injection, for which the shear stress and velocity
profiles are plotted in figs. 5 and 6 against y-8: : this scale was
chosen as a rough approximation to the stream function, so that the undis-
turbed outer layer can be distinguished from the perturbed inner layer.

On the application of injection, the shear stress at the wall decreases
rapidly as expected (fig. 5(a)),but the shear stress in the inner layer rises
to about twice the wall value. The reason 1s that in the calculation method
1t is assumed that the dissipation length parameter (& typicsl eddy size) 1s
proportional to the distance from the surface, so that eddies which are
suddenly displaced away from the surface by injection of fluid at the surface
are supposed to undergo a sudden increase in length scale and a corresponding
decrease in dissipation: since the velocity gradient, shear stress and
(therefore) turbulence production on a given streamline are initially
unaltered, the turbulent intensity and shear stress start to grow rapidly.
The same phenomenon occurs in practice in the_inner layer of a boundary
layer just after separation from a sharp edgeY, so that the present calcu-
lations should be qualitatively correct. Both the dissipation length
parameter and the diffusion parsmeter G used in the method of ref. 5 will
be altered by such a large perturbation so the results are certainly not
accurate - the "shock wave" at the outer edge of the perturbation would be
diffused 1n real life - and for present purposes the perturbations resulting
at the end of the region of transpiration should be regarded merely as
perturbations of unspecified origin.

3. Decay of Perturbations in Zero Pressure Gradient

We now proceed to discuss the full-line portions of the curves in
figs. 1 and 2, representing the region of recovery from the disturbances.
Some of the curves from fig. 1(a) are reproduced in figs. 1(b) and 1(c)
for clarity. The first thing to notice from the miscellany of curves in
f1g. 1(a) and fig. 2 1s that there is no simple decay law for ¢, or H,
even when the perturbation 1s small. Thas is contrary to the assumptions
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basic to the older integral methods”, which use a shape parameter equation

a,gﬁ = fi(H s EL§L) in zero pressure gradient together with a "Ludwieg-
dx v
Tillman" type of skin function law, Cp = fa<H s —U"-Q’—>= 2dég /ax ,
v
so that & dep = fa<H’ E-k—é&): in figs. 1 and 2 we see that at a given
dx v

Reynolds number there is no unique relation between op {or H) d 1ts
gradient, and therefore no equataon like & dcf/ﬂx = f cf—qfe mir which
would yield a generalized "time constant" for the boundary lay%r. As a
demonstration of the non-linearity of the problem, it may be noted that the
response to a short region of suction (fig. 1(b)) is much less violent and
decays much more quickly than the response to a similar region of injection,

and that the response to a short region of adverse pressure gradient (fig. 1(c))
is more than doubled when the change of pressure is doubled. The effect of

a 10 percent reduction in free stream velocity over a distance of six

boundary layer thicknesses takes about 80 boundary layer thicknesses to die
away, so that some perfurbations, at least, are very slow to decay completely.
However, all the perturbations have decayed to a low level after 40 boundary
layer thicknesses.

The surface shear stress or H alone is not an adequate measure of the
decay of a perturbation. In figs. 7(a) - (f) are shown the shear stress
profiles for each disturbed boundary layer at e point where the perturbation
in c¢, has decreased to approximately 1 percent of the undisturbed Cp at
the same Reynolds number,

The profiles vary widely. The same behaviour was noted in ref. 8,
where it was shown that the surface shear stress in a strongly-perturbed
boundary layer approached the unperturbed value while the shear stress
profile as a whole was quite unlike the unperturbed profile. The properties
of these profiles could not be represented by any function of H and Cp
elone.

4. Self-preserving Response of the Inner Layer to a Change in Wall Roughness

A numeracally exact solution for +this problem, discussed by Townsends,
could be obtained by substituting self-preserving forms for the velocity and
shear stress profiles in the three equations of ref. 5 to give two simultan-
eous ordinary differential equations, simulating a change in roughness by
changing the roughness length scale 2 1in the logarithmic law

1
U = LIWZE).E log y/zO
K

which 18 used as the boundary condition in the calculations. We have not
yet done this, and the results shown in figs. 8-11 were obtained by solving
the partial dafferential equations for a boundary layer with a sudden change
in the additive constant A in the logarathmic law for a smooth surface,

U= Szﬂéﬂ? |:log (ra/P )% y/v o+ A.:l .

L
The "roughness length" is v/(r_/p)? exp A and therefore changes slightly

/with
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with 7_ . For the calculation shown here, A was maintained at 1.5
for long enough for the boundary layer to reach equilibrium, and then
returned to the usual value of 2, giving a decrease of 40 percent an
m -
Urde
The length scale Vo » plotted in fag, 10 as ---=, where u,
1 v

is an average value of ('rw/p)2 » 18 the distance from the surface of the
outgoing characteristic starting from the point at which the "“oughness™
changes, calculated from

dy Y e

]

-—— = tan y = 23.11‘ u
dx w/

The shear-stress scale A Tw(flg.11) is the difference between the surface

shear stress in the perturbed and unperturbed boundary layers, assumed small.
According to Townsend's analysis A T, Should be proportional to

1/1og ¥, for not too small x . Very roughly, therefore, A T~ 1/1og x

which is an extremely slow rate of decay. (Note that this expression is

not valid for very large x because it is conditional on the disturbance
being confined to the inner layer)., AU is the total difference in
velocity: +the part of A U attributeble to streamline displacement rather
then stress gradients has not been subtracted: +this alters the self-
preserving velocity function (slightly) but not the fact of self-preservation.
The departures from self-preservation of the profiles are partly the result
of failure to represent a fully-rough wall, partly the fault of the numerical
method (the first profile in figs. 8 and 9 extends over only 8 mesh points)
but chiefly the fact that yc/B is as large as 0.5 at the largest value

of x whereas the inner-layer extends only to y/8 = 0.2.

The results of figs. 8-11 are directly applicable to changes of terrain
under the Earth'a boundary layer.

e Response to Perturbations in an Adverse Pressure Gradient

The chief conclusion to be drawn from the miscellaneity of the responses
to various perturbations in zero pressure gradient is that there is no hope
at all of deriving any general wrules for arbitrary pressure gradieni: in
particular, it is not realiastic to correlate the responses or even the initial
perturbations in terms of H and W& /v alone so that no judgement can be
made of the accuracy of the integrel methods.

Since the effect of a simple increase in thickness of the initaal
boundary layer on the subsequent development in a pressure gradient is easy
to understand, we can also understand the cases in which a perturbed boundary
layer (or a gaven part of it) recovers from the perturbaticn before being
greatly altered by the pressure gradient: the parenthesis 1s useful because
the effects of pressure gradient are first felt near the surface, where the
effects of a perturbation die out most quickly. If the pressure gradient
or the perturbation are so strong that this sort of superpesition 1s not
applicable, the effect of the perturbation may be greater than the effect
of the equivalent increase in thickness, but a1t is daffacult to think of
circumstances 1n which 1t could be an order of magnitude greater unless
it provokes almost immediate separation.

/In
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In fig. 12 are shown calculations for a free-stream velocity
proportional to (x+24) °*%8% | the initial boundary layer approximating
to zero pressure gradient. For an initial value of & of 0.28 in.
the boundary layer jJust avoids separation and reaches equilibrium an the
power-law pressure gradient far downstream, but for larger values it
separates. Figs. 12(ae)-(c) show the results of calculations with initial
momentum thicknesses of 41.11 and 1.18 times this critical value (but with
the same Reynolds number for computational convenience): the pressure rise
to separation is respectively 0.59 and 0.55 times the initial dynamic
pressure. Therefore, even for a boundary lsyer which only just separates,
the percentage change in pressure rise or distance to separation is of the
same order of magnitude as the percentage change in initial boundary layer
thickness, and the ratio of momentum- thickness to the initial momentum
thickness 1s virtually unaltered. This last conclusion can be reached by
ignoring the ¢, term in the momentum integral equation and setting
H = constant, “but it 1s surprising to see it confirmed in houndary layers
that only Jjust separate.

It is a2lso interesting to note the effect of small changes in the
initial velocity profile (representing two attempts at reading the very
small published graphs) in a boundary layer which just avoids separation,
because this 1s alsc about the most sensitive case one could imagine.*

A 3 percent increase in momentum thickness at almost constant displacement
thickness (gaving a 3 percent increase in H) causes practically no change
in momentum thickness at the end of the run and only sbout a 2 percent
increase in the final displacement thiclkness. However, the minimum value
of cp decreases by 30 percent, an order of magnitude greater than the
percentage change 1n 1nitial conditions.

10

It seems fair to conclude from these two particularly sensitive examples
that the effect of a change 1n initial condaitions 1s rarely of greater order
of magnitude than the change itself: the only obvious exception is a
boundary layer which just separates (or nearly separates) in the unperturbed
State .

6. Conclusions

(1) The response of a boundary layer to simple perturbations is too
complicated for any genergl rules about decay rate to be formulated, even in
zerc pressure gradient. Caloulation methods employing only one or two
antegral parameters of the velocity profile cannot represent these processes
accurately, even in principle, so that it is not meaningful to compare their
sensitivity to perturbations with that of a real boundary layer.

(2) Since most of the effect of a perturbation in gzero pressure gradient
disappears in 30 or 40 boundary-layer thicknesses, perturbations arising
in the transition region on an aerofoil may die out before the pressure
gradient becomes strong: if the perturbation does not interact with the
pressure gradient, its final effect is the same as a simple change in
boundary layer thickness.

(3) In an adverse pressure gradient, changes in initial conditions usually
produce changes of no greater order of magnitude at the end of the run.

The only obvious exception is a boundary layer which just separates, or just
avoids separation, in the unperturbed state.

/Notation
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Notation
A addative constant in logarithmic law for &
smooth surface, Section 2
H velocity-profile shape parameter, & /Og
K factor in logarithmic law, Sections 2,4
u,v mean velocities in x,y directions
1
u, average value of (7 w/p)2 , Section 4
x streanwise distance from start of perturbation
v distance normal to surface
¥, length scale of perturbation, Section 4
Zo roughness length scale, Section 4
o total boundary layer thickness at start of
perturbation, 1.10 &9s at that position
61 displacement thickmess
Oq momentum thickness
v kinematic viscosaty
p density
T shear stress
Suffixes:
° start of perturbation
1 free stream
w wall
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FIG 1(b)

0-0032

0-0030

0-0028

0-0026

0 0024

0-0022

3
Suction
P
Unperturbed
boundary
layer \q\
\
e K e
/ T ‘\
X
/ Injection
i/ 6000 8000 10000 12000 y, 52 14000 16000

¥

Response of c, to short regions of suction or injection




FIG 1(g)
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FIG 5(b)
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FIG.7(b)
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FIG-7(c)
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FIG.7(d)
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