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SUMMARY 

Calculations by a method that is believed to be reasonably accurate 
have been made to demonstrate how perturbations decay, zn zero pressure 
grabed, until all that remains 1s a change m boundary layer thxkness. 
Inltlal perturbations m typzosl aerofod pressure gradients can usually 
be represented by an equivalent change l~1 lnltlal boundary layer thxkness, 
whxh produces percentage changes of the same order of magnrtude in distance 
to separation. 

1. Introduction 

Because of the wdely tiferng responses of boundary-layer Cal&la- 
tion methods to changes in the initial con&tlons', there 1s uncerta;Lnty 
and. controversy about the sensltlvlty of real boundary layers to lnxtls,J. 
conditions. The questzon 1s of some practUx.l lmportanoe apart from Its 
bearing on the accuracy of calculatzon methods, because codltlons exlsting 
Just after transltlon are not known with any accuracy and It. 1s often 
tiflcult to estimate the locatxon of transltlon on an aerofoil: If boundary 
layers are redly as sensltlve to 1nltls.l conditxons as some of the calcula- 
tion methods mdioate, the determlnatlon of aerofoil drag 1s practxally an 
ill-posed problem. It IS clear, however, that the older calculation methods2, 
which lmplxxtly relate the local shear stress profile to the local mean 
velocity profile, cannot reproduce the behaviour of a red boundary layer: 
the sensltlvlty to a change of the velocltx profde parameter H depends 
on the partxxiLs.r empirical relation between H and the w-stress profiLe 
or entrainment function. The attempt by McDonald and Stoddart~troduce 
a separate parameter descrzbing the shear-stress integral is not different 
in principle from the above methods, because their empxioal relatxon for 
this parameter implies that It is a finction of H , the exact function 
depentig (permanently) on the 5nltis.l conditions, and u praotloe thxs may 
result in a gross overestimate of the influence of lnitld conditions. 

More realistlo attempts to represent the shear stress 
ently of the mean velocity profde are now being made 3,&a' 8 

rofde m&spend- 
but the 

resounding failure.of the older methods, whxh neglected "histojr" effects on 
the turbulent shear stress, and whxh McDonald therefore calls the "pre-hxstonc" 
methods, has led to the feeling that,, since hlstory is obviously important, the 
initial conditions muit exercxe a largeinfluence on the development of the bound- 
ary layer. It has been suggested that a defmltive set of measurements should 
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be made m a typzcal pressure gradxnt with a range of rnitxal condltlons, 
but we do not know which parameters we should attempt to vary, nor deea 
how to vary one wIthout the others: certainly, the traditIona parameters 
such as &a , cf and H do not uniquely specify a turbulent boundary layer. 

One 1s therefore reduced to studying the response of boundary layers to red. 
perturbations, such as rmght be caused by a region of transplratlon or 
roughness, rather than to attempt to generate boundary layers arttilcKUy, 
for instance by vortex generators or graded grids. 

As a frrst oontnbution to this study, and as a gude to any future 
experments, some cdculatlons of this sort have been done by the method 
of ref. 5, which 1s believed to be reliable over a mde range of different 
boundary layers and whxh represents the physxal situation rather more 
closely than the xntegral methods. This method satxfzes the mean-motion 
equation, the continuity equatxon and an emplrxally-modified version of the 
turbulent kinetic energy equation at each point UI the boundary layer, 
enabling complete velocity and shear stress profiles to be calculated. 
Evidence of the accuracy of the calculations is given in ref. 5 andin 
fig. 13 below: in the present paper It will be assumed, unless otherwise 
stated, that the calculations are accurate enough for the comparative 
purposes for wlch they will be used. They shouldbe useful as test cases 
for simpler methods, and full detslls are avaiLable from the authors. This 
paper does not treat the equally important problem of what initial condltlons 
occur in practxe - say, Just after transition - because that pmblem must be 
stubed experimentally. 

In Section 2 the types of perturbation to be used are outlined, and 
their qualitative effect on the velocity and shear stress profiles is 
discussed . In Section 3 the distance required for recovery from typical. 
perturbations in zero pressure gradient 1s discussed: It is concluded, not 
unexpectedly, that there is no uruversd decay law, ad It appears that 
oonsderable bsturbances may remain within the layer even after the surface 
shear stress has returned nearly to the unperturbed value for the appropriate 
Reynolds number. However, even large disturbances decay to ne&;llgxble level 
in, say, 80 boundary-layer thxknesses, and the greater part of the disturbance 
disappears in less than half this distance. In Section 4, details are given 
of the response to a sudden small change XI surface roughness, *ic!zj is it is academically interest- because the disturbance 1s self-preserving : 
also of great practical interest in meteorology. A good measure of the 
flexibility of a calculation method would be how soon after the change in 
roughness It could be used successfully. 

In Section 5, the response to perturbations in arbitrary pressure 
gradient 1s dxdcussed. It is pointed out that in many practical cases of 
aerofoii design the boundary layer wiil. have largely recovered from a 
perturbation at the transition point (say) before being markedly affected by 
the adverse pressure satient, so that the final effect of the perturbation 
is the same as that of an increase zn initial boundary layer.thickuess, just 
as in zero pressure gradient. It IS found that, usually, a given (small) 
percentage change in initial boundary layer thickness produces percentage 
changes of no greater order of magnitude in the properties at the tra*g edge 
or in the pressure rise to separation. 

The conclusion of this work is that turbulent boundary layers are less 
sensitive to initial conditions than has sometimes been SUppOSed. This 3.8 

quite compatible with the argument that the past history of the bombW laJ'er 

/must 
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must be taken into account m calculations - to use the language of linear 
systems, boundary layers have a very long periodz time, but they are heavily 
damped. 

2. Choice of Perturbations 

In the context of aerofod design, the only red perturbing influences 
that can usefully be studied are changes of surface conditions or of pressure 
gradient. The response to the introduction of large obstacles into the flow 
is not relevant and cannot be calculated by any known method. We have chosen 
three methods of idroduclng types of disturbances, whose region of application 
extends OVer a StremmiSe dutance of not more than a few boundary layer th-&&- 
nesses: they 0s.n thus pe treated as fairly weak point tisturbsnces followed by 
a long region of response. By "perturbation" we mean the difference between the 
boundary layer immediately after the tisturbsnce and the undisturbed boundary 
layer at the same Reynolds number (taken as Q&/V). 

In the d~~uss~on we shall make frequent use of the concept that the tur- 
bulent boundary layer is approximately hyperbolic m behaviour, as shown by the 
model equations of ref. 5 and assumed implxltly by several authors, so that the 
effect of a disturbance in velocity or shear stress introduced near the surface 
(say) propagates outward at a finite rate (at an angle of the order of 2 deg.). 
Also, we shall base the discussion on the behaviour of the shear stress rather 
than the mean velocity. Slnoe the dimensionless eddy viscosity is of the same 
order of nagnltude in all boundary layers, the shear stress mirrors the behaviour 
of the veloc~tygradient and is therefore a more sensltlve parameter than the 
velocity itself. 

Figs. 1 and 2 show the variation of cf and H in the perturbed boundary 
layers. The "region of disturbance" in whxh the perturbation is applied. is 
shown by dotted lines and the "region of recovery" by full lines. The bold 

i line without points shows the behaviour of the unperturbed boundary ls~er. The 
perturbations all start at the point P , except for the ease of roughness change. 
Before discussing the region of recovery, we discuss the wsy xn which each type 
of dxturbance affects the boundary layer. 

(I) Short region of suction or inJectlon. Here, Vfi rises linearly to 
0.005 in a distance of two boundary layer thicknesses and remms at that vslue 
for 4 boundary layer tkuoknesses before returrung quickly to zero. This produces 
a change of shear stress and mean velocity only near the surfacer the change 
then decays, spreading into the outer layer. The outer layer, although not 
hrectly affected by the application of the bsturbanoe, 1s perturbed from Its 
equilibrium state later in the region of response, and gradually returns to 
equilibrium as the perturbation dies away altogether. The effect is thus similar 
to that of a band of roughness, but the perturbation can conveniently be made 
larger. 

(ii) Change of surface roughness. For convenience, we simulated this by running 
a boundary layer wzth a decreased value of 1.5 for the aaktlve constant A 
in the logarithmic law for a smooth surface 

1 - ---- = - 

&K [ 
log kWkh + A 1 : IJ , 

and then, after the layer reached equlllbrium, restormg the additive constant to 
its proper value of 2. Therefore, the boundary layer does not start from the 
same point as the others in figs. 1 and 2. The shear stress 111 the lnxtial 
"rough wall" bountiry layer is everywhere higher than m the equll3.brzm boundary 
layer on a smooth surface but r/rw 1s about the same at @ven y/6 : 

/a restoring 
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a restoring change in shear stress and mean veloczty propagates Outward from 
the surface and finally reduces the shear stress to the equillbrlum value 
everywhere. 

(iii)Short region of adverse pressure madied. The free-stream velocity 
varies as c+ l-c ) ccs x/26 from x = c to x = 2x6 ) fcr c = 0.975 
and 0.95 (5 percent and 10 percent reduction in free stream velocity 
respectively). The velocity profile changes as if the flow were inviscid, 
except close to the surface; the absolute shear stress IS unaltered, 
except again near the surface, so that T/Pa* 1s either 10 or 20 per- 
cent higher at the end of the disturbance reglcn than in an equilibrium 
boundary layer with the same free stream velocity. Near the surface the 
shear stress falls consderably, as is the usual response to adverse pressure 
grabent : It rues again rapidly after the region of disturbance. It is 
interesting to see, from figs. 3 and 4, that in the early stages the surface 
shear stress and the shape parameter H are functions of the pressure x, 
nearly the same for both pressure grad;Lents. In the case of the shape 
parameter this follows from the concept of quasi-invlscld response. In 
the case of the surface shear stress it follows If the logarlthnuc law is 
satlsfled at the inner boundary of the quasi-urviscld region: this will be 
a fair approxlmaticn if the shear stress responds much mere quickly than the 
mean velocity, whxh it will do at points well within the leer layer; 
therefore the approxunatlcn works only for x/6 not too large. 

The only dzsturbances to produce unexpected results were the short 
regions of suction or ejection, for whxh the shear stress and velocity 
profiles are plotted m figs. 5 and 6 against yJ& : this scale was 
chosen as a rough approximation to the stream function, so that the undis- 
turbed outer layer Can be distinguished from the perturbed inner layer. 
On the application of i.nJectlon, the shear stress at the wall decreases 
rapdly as expected (fig. 5(a)),butthe shear stress in the 1~er layer rises 
to about twxe the wall value. The reason 1s that III the calculation method 
It is assumed that the dlsslpatlon length parameter (a typical eddy size) 1s 
proportxxal to the &stance from the surface, so that eddies which are 
suddenly rlxplaced away from the surface by lnjectlon of fluid at the surface 
are supposed to undergo a sudden increase in length scsle and a corresponding 
decrease in dx+sipatlon: sl~lce the velocity gradient, shear stress and 
(therefore) turbulence production on a given streamline are rnit1all.v 
unaltered, the turbulent intensity and shear stress start to grow rapidly. 
The same phenomenon cc~urs 111 practice in the inner layer of a boundary 
layer Just after separation from a sharp edgeT, so that the present CdCU- 

latlons should be quslltatlvely correct. Both the dissipation length 
parameter and the cliffuslon parameter G used in the method of ref. 5 will 
be altered by such a large perturbation so the results sre certainly net 
accurate - the "shock wave" at the outer edge of the perturbation would be 
bffused zn real life - and for present purposes the perturbations resulting 
at the end of the region of transpiration should be regarded merely as 
perturbations of unspecified cn@n. 

3. Decay of Perturbations 111 Zero Pressure Gratient 

We now proceed to discuss the full-lme portions of the curves in 
figs. 1 and 2, representing the reacn of recovery from the dxiturbances. 
Some of the Curves from fig. l(a) are reproduced in figs. l(b) snd l(c) 
for clarity. The first thing to notxe from the m~cellany of Curves in 
fig. l(a) and fig. 2 IS that there is no simple decay law for Cf or H , 
even when the perturbation 1s small. Thus is contrary to the assumptions 

/b asic 
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basx to the older integral methods4, 

t&f = fi(H) q 

whxh use a shape parameter equatmn 

in zero pressure gradient together mth a "Ludwleg- 

TIllman" type of skin function law, 

so that 6n 5 1 fs(Ii, 5:) 

Cf = fs(K, ,3+ 2 d&p /dx ) 

: in figs. 1 and 2 we see that at a aven 

Reynolds number there is no unique relation between 

gratient, and therefore no equation like & dcf/dx = f c -o 

would yield a generdu5ed 

cf(; ;;qmyaw:::h 

"time constant" for the boundary layer. As a 
demonstration of the non-linearity of the problem, it my be noted that the 
response to a short regmn of suction (fig. l(b)) is much less vmlent and 
decays much more quickly than the response to a similar region of mjectxon, 
and that the response to a short region of adverse pressure gradient (fig. l(c)) 
is more than doubled when the change of pressure is doubled. The effect of 
a 10 percent reduction in free stream velocity over a distance of six 
boundary layer thcknesses takes about 80 boundary layer thxknesses to die 
away, so that some perturbations , at least, are very slow to decay completely. 
However, all the perturbations have decayed to a low level after 40 boundary 
layer thiclmesses. 

The surface shear stress or H alone is not an adequate measumz of the 
decay of a perturbation. In figs. 7(a) - (f) are shown the shear stress 
profiles for each disturbed boundary lwer at a point where the perturbation 
m cf has decreased to approximately 1 percent of the undisturbed cf at 
the same Reynolds number. 

The profdes vary widely. The ssme behaviour was noted in ref. 8, 
where it was shown that the surface shear stress in a strongly-perturbed 

i boundary layer approached the unperturbed value while the shear stress 
profile as a whole was quite unlike the unperturbed profile. The properties 
of these profiles could not be represented by any function of H and cf 
alone. 

4. Self-preserving Response of the Inner Layer to a Change XI Wall Roughness 

A numerxally exact solution for t2us problem, discussed by Townsend6, 
could be obtained by substituting self-preserving forms for the veloolty and 
shear stress profdes in the three equatmns of ref. 5 to give two simultm- 
eous ordinary tiferential equatmns, smulatmg a change in roughness by 
changing the roughness length scale lo in the logarithmic law 

which 1s used as the boundary condition in the calculations. We have not 
yet done thxs, and the results shown in figs. 8-11 were obtained by solving 
the partial deferential. equations for a boundary layer with a sudden change 
in the additive constant A in the logamthmic law for a smooth surface, 

u = Me2 (r,/& y/v + A . 
K 1 

The '+oughness length" is dT,/p)’ exp A and therefore changes slightly 

/with 
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with vw . For the calculation shown here, A was maintamed at 1.5 
for long enough for the boundary layer to reach equilibrium, and then 
returned to the usual value of 2, givmg a decrease of 40 percent ln 
5.3 . 

The length scale yo , plotted III fig. 10 as ----, where u 
T 

is an average value of (m/pp , 
V 

1s the distance from the surface of the 
outgoing oharacterx3.x starting from the point at which the'boughness" 
changes,oalculated from 

dye --- = 
dx 

tany=qr~" 

The shear-stress scale 4 rw(flg.11) is the difference between the surface 

shear stress in the perturbed and unperturbed boundary layers, assumed small. 
According to Townsend's analysis 4 rw should be proportional to 

v-h Y. for not too small x . Very roughly, therefore, 4r*-l/logx 

which is an extremely slow rate of decay. (Note that this expression is 
not valid for very large x because it is conditional on the disturbance 
being confined to the xmer layer). AU is the total dafferenoe in 
velocity: the part of A U attributable to streamline &splacement rather 
than stress gradients has not been subtracted: this alters the self- 
preserving velooxty functir(slightly) but not the fact of self-preservation. 
The departures from self-preservation of the profiles are partly the result 
of failure to represent a fully-rough wall, partly the fault of the numer~oal 
method (the first profile in figs. 8 and 9 extends over only 8 mesh pornts) 
but chiefly the fact that yo/6 is as large as 0.5 at the largest value 

of x whereas the mner-layer extends only to y/s c 0.2. 

The results of figs. 8-11 are tirectly applicable to changes of terrain 
under the Earth's boundary layer. 

5. Response to Perturbations s.n an Adverse Pressure Gradient 

The chief conclusion to be drawn from the rmscellaneity of the responses 
t0 various perturbations 1x1 zero pressure gradient is that there is no hope 
at all of deriving any general rules for arbitrary pressure gradient: III 
psrtlcular, it is not reallstlc to correlate the responses or even the initial 
perturbations in terms of H and lJr&/v al one so that no Judgement can be 
made of the accuracy of the lntegrsl methods. 

Slnoe the effect of a simple znorease I.II thickness of the ino.tlal 
boundary layer on the subsequent development z.n a pressure gradJ.ent is easy 
to understand, we can also understand the oases in which a perturbed boundary 
layer (or a @ven part of it) recovers from the perturbation before berng 
greatly altered by the pressure gradient: the psrenthesls 1s useful because 
the effects of pressure gradient are frrst felt near the surface, where the 
effects of a perturbation tie out most quickly. If the pressure gradient 
or the perturbation are so strong that this sort of superposition 1s not 
applxable, the effect of the perturbation may be greater than the effect 
of the equvalent increase XI thxkness, but It is tiffloult to thti of 
circumstances 11) which It could be an order of magnitude greater unless 
it provokes almost immehate separation. 



-7- 

In fig. 12 are shown calculations for a free-stream velcc~ty 
proportional to (~+2&)-'*~~ , the lnltx?iL boundary layer apprcximatlng 
to zero pressure gratient. For an initul value of & of 0.28 in. 
the boundary layer Just avcds separatlcn and reaches equllibrlum 111 the 
power-law pressure gradimar downstream, but for larger values it 
separates. Figs. 12(a)-(c) show the results of calculations slth initial 
momentum thxknesses of 1.11 and 1.18 times this crltxal value (but with 
the same Reynolds number for ccmputatlcnal convenience):the pressure rise 
to separatlcn is respectively 0.59 and 0.55 times the lnltial dynamic 
pressure. Therefore, even for a boundary layer which only just separates, 
the percentage change in pressure rise or dxkance to separatlcn is of the 
same order of magn1tud.e as the percentage change in inztlal boundary layer 
thickness, and the ratlo of momentum-thxkness to the irutlsl momentum 
thxkness 1s virtually unaltered. This last ccnclus~~n can be reached by 
ignormg the 
H = constant, 

cf term in the momentum integral equation and setting 
but it 1s surprising to see it confirmed in boundary layers 

that only just separate. 

It is also interesting to note the effect of small changes in the 
initial velcclty profile (representing two attempts at reading the very 
small pubkshed graphs) in 8 boundary layer which Just avoids separation, 10 

because this IS also about the most sensltlve case one could imagine.* 
A 3 percent increase in momentum thxkness at almost constant displacement 
thxkness (gxvmg a 3 percent increase 111 H) causes practically no change 
111 momentum thickness at the end of the run and only about a 2 percent 
3ncrease in the final tisplacement thxkness. However, the mznzmum value 
of Cf decreases by 30 percent, an order of magnitude greater than the 
percentage change 111 lnitxit ccnditlcns. 

It seems fair to conclude from these two particularly sensitive examples 
that the effect of a change m lnxtlal ccndlticns 1s rarely of greater order 
of magnitude than the change itself: the only cbvlcus exception is a 
boundary layer which Just separates (or nearly separates) in the unperturbed 
state. 

6. Conclusions 

(1) The response of a boundary layer to simple perturbatlcns is too 
complicated for any general rules about decay rate to be formulated, even in 
eerc pressure gratient. Calculation methods emplcylng only one or two 
integral parameters of the velcclty profiLe cannot represent these processes 
accurately, even 111 principle, so that it is not meaningful to compare thex 
sensitivzty to perturbatlcns with that of a real boundary layer. 

(2) Since most of the effect of a perturbation in zero pressure gradient 
disappears in 30 or 40 boundary-layer thicknesses, perturbations arising 
XI the transitIon region on an aercfcil may die cut before the pressure 
gradient becomes strong: if the perturbatlcn does not interact with the 
pressure gradient, its flnal effect is the same as a simple change in 
boundary layer thickness. 

(3) In an adverse pressure gradient, changes in initial ccntiticns usually 
produce changes of no greater order of magnitude at the end of the run. 
The only obvious exception is a boundary layer whxh just separates, or just 
avoids separation, in the unperturbed state. 

/Notation 

* It is also a very severe test of the calculatlcn method. 
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Notation 

A ad&tlv.e constant 1I1 logarithmic law for a 
smooth surface, SectIon 2 

Cf 7 IPulP / 

H velocity-profile shape parameter, s1/6p 

K factor in logarithmic law, Sections 2.4 

u,v 

% 

x 

Y 

90 

lo 

mean velocities in x,y directions 

average value of (rl/p)& , Section 4 

streamwlse &stance from start of perturbation 

distance normal to surface 

length scale of perturbation, Section 4 

roughness length scale, Section 4 

so total boundary layer thzcltness at start of 
perturbation, 1.10 6~~s at that position 

6r displacement thxkness 

6s momentum thickness 

" kinematx viscosity 

P density 

T shear stress 

Suffixes: 

0 start of perturbation 

i free stream 

w wall 

References/ 
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