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The blade flapping equation has bden solved on an analogue COmPUter 

taking into acoount the reversed flow region but neglecting stall. The fully 
articulated blade becomes unstable at about p = 2.3, Whilst a see-saw rotor is 
stable up to p = 5 at least and the trends suggest that it may be stable for 
all values of G. However, the response to a gust , or the equivalent change of no- 

feathering axis angle, 1s almost the same fcrr boti rotors up to about p = 0.75. 
For a 35 ft/sec gust at a forwLard speed of 200 ft/sec, and typical rotor/fuselage 
clearance, this represents the limiting tip-speed ratio for either rotor. The 
better response of the see-saw rotor, however, makes it possible to increase 

the limiting tipxxpeed ratio by some form of flapping restraint. This has been 

investigated by considering the effects of springs and dampers, and offset and 
63-hinges. 

Replaces R.A.E. Technical Report 65068 - A.R.C. 27375 
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1 INTRODUCTIO~~ 

Rotorcraft have established themselves as flight vehicles of great 
utility but with low top speed. This utility would be improved if the top 

speed could be increased and considerable attention has already been devoted 
to basic performance assessments. This work has indicated that significant 
improvements are possible but more detailed consideration of rotor character- 
istics, such as blade fla>>ing amplitudes and stability, is essential before 
the improvement can be completely determined, 

In order to reduce compressibility losses and noise, it will be necessary 
to reduce the speed oi" the rotor as the forward speed increases. This means 

that the tip speed ratio, 11, will become high and might even exceed unity. 
Little is known about blade flapping stability at these high values of p as 
the f'lapFing quation has periodic coefficients and is extremely difficult to 
solve analytically. Several attempts to obtain solutions have been made, the 
most recent being those of Shutler and Jones' 2 and Lowis . In all these attempts 

the aerodynamic flapping motier,t from tiie region of reversed f'luw was not merely 
ignored but had to appear with the wrong sign in order that the flapping moment 
should be correct in the more important advancing region*. This would not be 

important at low values of p but ;;rould result in serious error at the very 
values of p for which the investigation was rquired. 

Kith the aid of an analcLue comi>uter, the reversed flow region has nc3w 
been included in an investigation of blade flapping behaviour and the results 
are described 3~1 this paper. Both freely flapping and see-saw rotors have 

been analysed and the cff~cts of sizings, daqers and 6 - and offset hinges 
5 

have been considered. 

2.1 Analysis of the fully articulated rotor 

The rotor divides itself into three regions as shown in Ii'ig.1. They are:- 

(1) The tradvancingtt region where the airflow over the whole blade is 
from loading edge to trailiq edge, 0 IC $ 6 n* 

* Whi_le the work described in this Report was in progress another paper by 
titvis3 appeared in which the reversed flow region was approximately taken 
into account. His results largely confirm some of the findings of this 

Report. 
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(2) The "partial reverse" region where the airflow is from leading to 
trailing edge over the outboard part of the blade, but from trailing to 
leading edge over the inboard part. 1‘Jhen /.J<I this re@cn extents from $t = 71 to 
$ = a. -When L.J > 1 the region is in two parts given by - i < sin $ $ 0, ' 

(3) The "total reversed" region which exists when p B 1 and the flow is 
from trailing edge to leading edge over the whole span. In this region 
sin$< -;. 

The aerodynamic moment will be determined in each of these regions subject to 
the following assumptions. \ 

(I) The lift slope is constant and has the same value for both advancing 
and reversed flow. 

(2) The effects of stalling and compressibility are ignored. Compres- 
sibility would be avoided in practice and so the latter assumption is not 
unreasonable. The assumption of no stalling leads to great simplifications 
and since many of the cases of interest involve lightly loaded rotors, this 

assumption would appear to be justified. 

(3) The effect of spanwise flow is neglected. . 

(4) Unsteady aerodynamic effects are ignored. 

The system of axes is shown in Fig.2. 
The velocity at a blade section distance r from the root, in a plane 

perpendicular to the no-feathering axis has a chordwise component, UT, 

given by 

uT = Rr + V cos anf.sin $ 

or 

where p = 
v cos anr 

RR 

uT = m (x -t p sin $) 

The velocity at a blade section , parallel to the no-feathering axis, is 

U 
P 

z v sin anf - vi - vg cos cLnf cos Q - r; 

0) 

= QR (h - pfi cos $ - xb/fl> (2) 

where h = 
V sin anf - vi 

a? 
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If the collective pitch is eo, and the airflow is frarn leading to trail- 
ing edge, then the incidence of the element is 

-1 4 =eottan g 
el 

uP 

T 
dots 

T 

Asszing Q = aa, the lift on an element of blade length dr is 

(3) 

The elementary lift moment is 

Substituting equations (1) and (2) into (4) and integrating from x = 0 to x = 1 

gives for the advancing region, 

where ti AR denotes the blade flapping moment in the advancing region. 

When the flow is from trailing edge to leading edge the expression for 
a in equation (3) changes sign, i.e. 

( 

up! 
a = 9 

e. + q) 

In the l'partial reverse" region, therefore, we use expression (6) between 
x=Oandxz- p sin $ and expression (3) from x = - p sin $ to x = 1. Thus 

ir% is the flapping mamcnt in the partial reverse region, 



But equation (7) can be rewritten as 

=I M YIQ2 3 -up sin3$ ( 
d AR pea sin*+ 2h-2p.Pcoslir t O Sin* 1 03 

Finally, if % is the flapping moment in the "total reverse" region, we have, 
since equation (6) applies along the entire blade, 

The equation of the flapping motion is 

pII * p = M 
IR2 

where the dashes denote differentiation with respect to $ and M stands for 
either IfIm, Sk, Mi according to which region the blade is in, as described 

above. 

Equation (IO) is very difficult to solve analytically because some of the 
coefficients are periodic and because the forms of M depend on the values of the 

independent variable $. However, these difficulties are easily overcome in an 

analogue computer since the periodic coefficients can be handled by multiplier 
units whilst electronic relays can be arranged to switch in the correct moment 

terms at the appropriate values of \ir. The program used is given in Appendix A. 
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2.2 The analysis of the see--sciv7 rotor 

The flapping motions of the blades of a see-saw rotor are no longer 
independent, since the blades are structurally integral but jointly free to 
flap. The flapping equation may be found by the same methods as before but 
this time the rotor Uist is divided into iour' regions as shown in Pig.3. 
These regions are:- 

(1) Where the airflo?r,r over the reference blade is from leading to 
trailing edge but over the other blade it is partially reversed. In this 

1 region 0 < sin $i < -. 
IJ 

(2) >?here the airf'lci over the reference blade is from leading to 
trailing edge but over tile otl.e- r blade it is totally reversed. TiliS OCCUTS 

1 only if ~1 > 1 and when - < sin $. 
CL 

(3) 'ir'here tlle airflo;Y over the reference blade is partially reversed 

but over the other blade it is from lending to trailing edge. For this case 
I1 i sin $I < c\. 

I-r 

(4) Where the airflow; over the reference blade is totally reversed but 
over the other blade it is from lending to trailing edge. Again, this occurs 
only if &I > 1 and Aen sin $ < - :. 

If the built-in coning angle is ao, then the flapping of the rel"erecce 
blade will be ao + P and of the other blade a - 0. 

0 
The flapping moments for 

the complete see-saw rotor I’OL’ the four re:,ions then becume:- 

when % < sin $ , 



when 

when 

MA* -- 
IQ2 

y L3 =540 c + +p200sin2j,+Jj-h--$ p2ao sin * cos $ 
3 

I 
--< 

P 
sin $ < 0 , 

*A 
3 

- = MA1 xl* 
-+i4sin3~ eosin*- 

( 
*a0 cos q 

> 

sin $ -c -5, 

- i h 
A4 

= - MA 
2 

03) 

04) 

3 ANALOGUE Coi\- ?&?JSuLTS 

3.1 The fully articulated rotor 

The computed response to a disturbance of the fully articulated rotor is 
given in Fig.&. It can be seen that the flapping motion is stable for values 

of p up to about 2.25, (depending slightly on Lock's inertia number y) and 
becomes unstable at higher values of & This is in contrast to the result 
given by simple theory, which neglects the reversed flow region, and which 
predicts flapping instability at p = fl2. 

The steady blade flapping angles have been computed for a number of 
values of 1 ti and for values of p of 0.35, 0.5, 0.7, 1.0. 1.5 and 2,O. It may 
be noted that since the differential equation for flapping is linear and the 
right hand side of the equation is linear in a ti, there must be a linear relation- 
ship between /3 and a,f~ 

For the freely flapping rotor, the total flapping smplitude, at various 

values of tiF-speed ratio, is plotted against ati in Fig.5. The coefficients 

of the first harmonics of flapping, a, and b, are shown in Fig.6. 

In Fig.5 there are shown three curves which give the flapping resulting 
from a 35 ft/sec gust, under different conditions of flight the collective pitch 

being assumed to be zero. In one case the gust occurs at a speed of 200 ft/sec 
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which is assumed to be the speed at which rotor retraction might take place. 

It can be seen +&at the flapping exceeds the assumed geoinetric limit of 
9 degrees for p greater tila 0.7. ?or the otnar two cases it is assumed that 

the blade ti?iJach nu&er is constant at either 0.35 or 0.95. These assumptions 
define relationships between anf and p which have also been plotted. From these 

curves it can be seen that the geometric limit is not exceeded for a gust of 

35 ft/sec unless u is greater than about 1, being maze or less than 1 according 
to the tip Mach number. Along each curve there is also a definite variation of 
forward speed and it appears that the geometric limit is reached at 465 ft/sec 
when t!le tip Xach number is 0.85 and 525 fti'soc y;L;iiitin it is 0.95. 

3-2 ThC SC?e-SCLW rotor - 

The variation of the flap<&ng angle wZth six&t angle, anfs for the see- 
saw rotor is shown in Pig. 7. C~urvcs are given for two values of built-in coning 
angle, 0 kgree and L!+ dcgrccs. It can bc setin that the curves for the 
4. degrees coning angle arr: no-l; linear with znf* This is to be expected as the 
coning angle itself will product fla_oLAng, even when CL 

I-3 is zero. The curves of 
IFig. should be compared with those of sig.5 for tile fully artioulated rotor. 
Up to a tip soeed ratio of about C.73 tint: rcsponscs of both rotors are very 

sli-nilsr but chewers the fra~lq fiapping rotor bcccmos unstable at about 
1-1 = 2.3, the stie-saw rotor is stable up to i.r = 5 at lcast. The slope of the 
curve cf flapping with ati, as a function of p, is shcwn in Fig.8 where it can 
be seen that d@/danr becomes rou&ly linear above about p = I. For the 

unrestrained see--saw rotor this is not of great use since the factor limiting 
its use is tiio rtisponsc to a 35 ft/sec gust at about p = 0.7 which is similar 

to that of' the freely f'lap;kg rotor. EIcwevcr, the suppression cf flapping at 
higher values of p encblos values of p to be r oachcd of between 1.5 and 2, 
dopending on the ocning angle, with ccrrespcnding forward s&peeds of at least 
600 ft/sec. This latter speed must be acccxnpnied by a very low rotor speed, 
of course, in crder that the ti? Liach number should remain at 0.85, or at some 
value close to this figure. 

It has been assumed in the analysis that the blades are ;?erfectly rigid 
and that tine coning angle rer;ljins fixed. It is rcaliscd,that in tactics, the 
coning angle may differ from the esswned CLue,due to blade flcxi'oility, by an 
amoat which dqends upon the flagpin~:. It is thought, however, that unless the 
flapping is excessively large,tlle range oi‘ coning angles of Fig. 7 will cover 
most cases of practicul interest. 
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4 RESTRAII~T OF FLAPPING XOTION BY SPRmGS AND DMiiS 

Since the amplitude of flapping motion appears to impose operating limits, 
consideration has been given to various means of restricting it. Springs do 

not dissipate energy but merely act as stores and consequently will redistribute 
the flapping. This may be useful, however, in converting backward flapping into 

sideways flapping since the main obstructions to flapping are in the fore and 
aft plane. Dampers, on the other hand, actively dissipate energy and so reduce 

the amount of flapping. It is recognised that such devices may well cause 

stressing problems but such considerations are beyond tne scope of the present 
investigation. 

4.q Analysis of snring, and damper restraint 

The spring-damper arrangement considered is shown in Fig.16. As the see- 
saw rotor appears to have the better stability, only this type of rotor has 
been considered. Ii&ever, the method given below is applicable to the freely 

flapping rotor. 

The flapping equation, with spring and damper restraint, can be written 

2ig 4. IQ2 (a0 + 13) - IQ2 (a0 - B) = Ii, - X2 - 2 ks Rt2 p - 2 kd RL2b (15) 

where ks is the spring constant, lb wt/ft 

kd is the damping constant, lb nt/ft/sec 

and Rt is th2 distance from the root of the point of attachment. 

This equation reduces to 

where 
ks = 

ksR12 

IQ2 

kdRt2 
'd = IQ 07) 



11 

Equation (16) implies that the two final terms should be added to equations 

00, WL (13 and (11~) to include the effects of spring and damper. 

1;. 2 Computed results 

The effects of spring and dami";:r restraint were considered separately. 
The magnitudes of the spring alid damper coefficients ;Jcre chosen quite 
arbitrarily merely to illustrate their effects. Owing to the ability of the 
damper to dissipate energy, a greater range of damper coefficients was con- 
sider&, so that kd ranged from 0 to 1.4, while zs ranged between 0 and 0.6. 

Collective pitch and built-in coning angle -ti~re kept constant at 0' and 2', 
respectively, and tip-speed ratios between 0 and 2.0 were considered. In each 
case, only a single value of anr was taken, selected to give convenient scaling 

on the analogue computer, so that a nf was 0 ""for~~<lanci~ofo~~~>l. The 
results of the computation are shown in Figs. 3-12. 

The trends expected in tie discussion of Section 4 are confirmed by the 
results. As indicated above, the rangc:s of zd and x8 were not taken to extreme 
values but it is not expcctod t1:at tilt: trends ShOWl -,vould bc changed if Ed 
and Es wore furthor increased. 

Rough calculations for a t;@.csl c ast: Sh.0~~ tliat there: may be very large 

concentrated loads at the points of attachment of spring or damper possibly 
resulting in unacceptable stresses. However, it is outside the scope of this 

note to discuss the full structural implications of attaching springs and dampers 
in the manner shc~rm in Fig.16 or by any other means such as semi-rigid rotors 
which provide the same restraining moments. The object of the above calculations 
is merely to show what moments are necessary to reduce the otherwise free flapp- 

ing to within acceptable limits. 

3.1 The flappin c;quation 

Let Io be the mcment oi' inertia of the blade about the flapping-hinge when 
bJ = 0 and let I be the moment of inzrtia for a given value of 6 3 . 

Then 
I = IO co2 6 3 

and the flapping equation is 

P+P = 
IiJ 

IO cm2 6 
3 
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With a b3-hinge, the incidence of a blade element is 

a e. 
% = 

-@ tans3+rj;; 

and we get for the flapping moment in the advancing region 

As in Section 2.1, when the flow is from trailing edge to leading edge the 
incidence is reversed and 

(19) 

a 
( 

OO 
"P 

= - - @tan6 + - 
> 3 UT 

The flapping moment for the partially reversed region becomes 

( 20) 

If& 3 -e 
%a =- % 12 CC fj - ptmlj 

0 3 > p4sin4$ - 2y sin3* (A -I-IP-*) 

4 +F’p sin 4J’ 3 
(21) 

. . 

and for the totally reversed region 

as before. 

The computer program was the same as for the case discussed in 2.1 except 
for the additional terms in 6 3’ 

592 Computed results 

The rate of change of flapping with incidence for a range of p and b3- 

hinge angles is shown in Fig.15 It can be seen that the effect of the b3-hinge 
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is roughly to reduce the flapping linearly by about 35-40~ per IO0 of hinge 
angle over the whole range of p. Thus, for a JC" hinge, the flapping is 
reduced to nearly 3 of the flapping when a 6,- hinge is absent. Fig.14 shows 
the change in flapping with incidence when 6; t 30' and is to be compared 
with Fig.4. It can be seen that the operating limit is raised from about p = 1 
to p = 1.5, The rise in dP/aa, is so vapid above p = 1.5 hosvever, that 
little improvement of operating limit can bc expected by increasing the h3 
angle further. 

c Fl&i?PEK$ RES'mII'IT DY BWS 01. AiT OFFSET ?X.&?PmG HINGE 

6.1 The flapping equation 

The equaticn of motion of the blade with an offset flapping hinge is 

I fit! + 19 4. KG R2 F = ii1 A ( 23) 

where I iu the momen1; GP inertia about tile oi'fset flapping hinge 
Ibi is the blade mass 

eR is the distance of the flapyling hinge from the hub 
?R is the distance CC the ct'ntre oi' gravity of the blade from the 

flappkg hinge. 

For a uniform blade of mass m per unit length, 

I = $mR'(l-e) 3 1 
I\1 = n,R (I - e) 

xx = IR (1 - e) 2 

and equation (23) reduces to 

( 24) 

( 25) 

The chordwise velocity iti the s:me as in equation (1) but the velocity 
peYpendiCUh.T? to the blade is now 
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To simplify the calculation of the aercdynamic flapping moment we can 

put e. = 0, since B. merely adds a constant to the flapping angle and there- 
fore does not affect the flapping stability or the way in which it varies 
with the shaft incidence. 

Thus I Id& = $pao i12R4 s[ h- p fl cos $ - (x - e) pt 
l( 

x+psin$ dx 1 ( 27) -I / e 

expanding equation (27) gives‘ 

I -ac n2d+ IAm = ‘z p (‘-e) 
31 l++eh I 

c 

I +;ye 
3 1-e -3 l-e p P cos 4 

+’ 1 I 
2 l-e 

pAsin$-47 _ e p2 PsinJIcos~ 

-; (1 c -& e) PI - 3 p (3' stn$ 
3 

. . . (28) 

therefore 

I I 
'? l-e 

p2PsinI;rcosI[r-A I+ 4( -$e) P' -5 ,I p' sin 9 
3 

l *e (29) 

where y, is Lock's inertia number for the blade when e = rj. 

Calculating IdIm in the manner of the previous sections gives 

3 
IVIm = IVIAR - (cl sin$+ e) 

12 c 
2x- 2p+Pt (psi-r-he) 

1 

and we also have, as before 

( 30) 

(31) 
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It will be seen that equations (29), (30) and (31) are of the same form as 
equations ($I, (8) and (9) of Section 2.4, except for the modification of the 

coefficients. 

&.2 Computed results 

No computed results are given in the figures as over the whole range Of 

p the effect of hinge offset on flapping amplitude was found to be very smalL 
Bs a check on the results frCm1 the computer, the values of a4 and b, were 
calculated for 10~ Ii, .frcm the equations of Section 6.4. The results of this 

calculation are shown in T&.15 where it can be seen that the total flapping, 
: tnk5n a3 (a,2 + ?J,~):, varies only slightly over a large range of hinge offset. 

Thus, it appears that ~1 offset hinge has practically no effect on blade 
flapping amplitude, and if qy'lihkg, tends to increase it. It should be 
emphasised that i&e mass per unit ler;&h o? the blade has been kept constant 

in the above analysis. 

7 STCI?i-‘~G X 2OTC2 IH FLIG~ 

?erformance calculation3 show that a rotor must be off-loaded to achieve 

high forward speed wrAch leads one to thin!: about the possibilities of stopping 

the rotor in forward flight and even of retracting it. One of the main problems 
of slowing down or stopsing a rotor in Plip&t is the loss of centrifugal stiff- 

ness which helps to restrain flapping. A1tiloug!-i it is possible to reduce the 

aercdynamic forces on the blade to zero in still air, they may bcccme quite 
large when thwt: are any atmospheric disturbances. 

It is assumed that the speed at which rotor stopping and retraction will 

occur is about 203 ft/sec. B 35 f't/soc gust at this speed will cause an 
effective change or" disc incidence of IO cie&rccs and from Pigs. 5 and 7 it can 
be seen that the asz~~ecTi geometric limit of 5' degrees is reached at about 
p = cl.7 for both fully articulated and unrostraincd see-saw rotors. Fran 
Figs. 7 and 12 it appears hat a diimpcr having i; d z 1.2 xi.11 just bring the 
flapsing at p = 2.(3, and coning angle C? dtigreeo, to mithjn the flapping limit. 

This means that t?ie rotational speed of a rotor having a 35 foot radius can be 
reduced to 27 r-pu before exceeding p z 2.0 at 200 ft/scc, 

The flapping behaviour of articuiated rotors has been investigated up 
to high values of tip speed ratio, taking into account the region of reversed 
flow. The conclusions ere:- 
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(I) The motion of a freely fla?pin g rotor becomes unstable at about 

P= 2,25, depending a little on Lock's inertia number. The see-saw rotor is 
stable up to p = 5 at least and the trend shovm by Fig,8 suggests that it may 

be stable for all p. 

(2) The flaTping amplitude in response to a change of disc incidence be- 
comes increasingly great as the tip speed ratio increases. A see-saw rotor has 
the same tendency but above about p = 1 5t is less than the fully articulated 

rotor. 

( 3 The response to a 35 ft/sec ,+xst at 200 I"t~'scc (assunlcd speed for 
rotor retraction) would c ause fully articulated blades to strike the fuselage 
of a typical helicopter confi&uration at about 11 = 0.7. At a cruising speed of 
475 ft/szec, corresponding to a ti.:2 XrIsCil number Of 0.9, 3 35 f t/SW2 @St WOUld 

cause the blades to strike: the fuselags at abwt @ = I. 

(4 The fig-urcs for 'ihe see-s&~ rotor corresponding to (3) above, are 
)l = 0.7 at a forward speed of 200 ft/sec and ii = 1.5 to 2.0, (depending on the 
built-in oGning angle) when the tip i&l& mmber is 0.9 and the cruising speed 
is tim-i abo~~t 630 ft/sec. 

(51 The effect of a b--hinge on a fully iarticulat<d blade 5 
hal-Ja the fia;clsino -- L, over the whole range of p, vhcn ths 6 

3 
-angle 

raises ttl;; limiting value oi' p to about 1 for the 35 ft,%x gust 

200 ft/sec. At cruising speed the limiting value of 11 is raised 

is roughly to 
0 is j0 . This 

case at 
from 1 to -i..5, 

the latter val;le cGrrespondin& to a forward speed of <about 600 ft/sec. 

( 6) An offset hjnge has very little effect on the amplitude of blade 
flap++ 

(7) Viscous dznpers arc quite eF'i'cctivc in restraining blade flapping 
and it ap;;ccirs that lit",le is gs:tiled b,,~ using s?ri.ngs as vrsll. The structural 
conscqucnces of using these devices, hd>;;evcr, have not beon examincd. 
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FIG.1 DIAGRAM SHOWING REVERSED FLOW REGION 
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FIG.3 POSITIONS OF DESIGNATED REGIONS FOR SEE-SAW ROTOR 

(p = l-5) 



FLAPPING 
ANGLE 

fi 

TIME 

FIG. 4. BLADE FLAPPING STABILITY (a’ = 6) 



3c 

25 

20 
FLAPPING 
ANGLE 
fi deg 

IS 

I 
p= 2.0 35fthec GUST 

AT V* tOOft/Sec 

I 
33ft/sec 
GUST . / p I-5 

TYPICAL CEOM&TRfC LIMIT I-- -m -- -- -w- 

2 4 6 8 IO 
&f deg 
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