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SUMMARY

Five methods of predicting the incompressible, twqfaimensional
turbulent boundary layer have been applied to flow conditions considered
to occur over the suction surface of turbo machine blades and the measure
of agreement between the separation criteria and boundary layer charac-
teristics assessed., The methods considered were those due to Buri,
Truckenbrodt, Stratford, Maskell and Spence.

All of the criteria could be brought into tolerable agreement pro-
vided that a value of ~0.04 was used for Buri's criteria, and that for
Truckenbrodt and Spence's methods the position of separation was determined
by the condition that local skin friction coefficient is zero. It was
additionally necessary in the methods of Maskéll, Truckenbrodt and Spence
for the calculation of the shape parameter to be started with a value of
1ede

A1l of the criteria except Spence's were sensitive to Reynolds num-
ber and showed that an increase in Reynolds number delays separation.

Stratford's method was extremely easy to apply, was the simplest of
the five and predicted the lowest pressure rise to separation.

To assist in the design of blade profiles, envelopes of suction
surface velocity distribution have been constructed to give separation at

the trailing edge; these are considered to be conservatively based.
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1.0 Introduction

The design of a turbine blade profile has conventionally followed a
rather arbitrary pattern whereby certain geometrical parameters such as
trailing edge thickness, maximum taickness/chord ratio and leading edge
radius, have been selected in the light of earlier experience. The sec~
tion profile has then been constructed, either by using a number of circu-
lar arcs or by laying out an arbitrary thickness distribution along a sim~
ple camber line (usually parabolic). The position of adjacent blade sec~—
tions is chosen to conform to some simple aerodynamic loading criterion
such as that of ZWeifel1 the passage geometry at the outlet being adjus-
ted to satisfy the gss outlet requirements by for instance the rules of
Ainley and Mathieson®, At the jinlet the blade geometry is chosen to
satisfy an incidence requirement™.

In the case of compressors it is usual to use standard aerofoil
sections on circular or parabolic arc camber lines, the amount of camber
being determined by the air deflection and by current incidence and devia-
tion rules”. The pitch/chord ratio is chosen to satisfy a loading crite-~
rion (e.g., that of Howell3) for the required deflection.

It is clear, however, that these methods are not necessarily ideal
as they possess no means for differentiating between the effects of many
possible variations in blade shape., In practice, empirical restrictions
havg been placed on such features as the form of the blade channel shape,
and, in the case of turbines, blade back curvature, but design rules of
thls type cannot command.a very high degree of confldence in their
application,

In many instances, it has been possible to obtain a good turbine
efficiency using such very elementary design rules, due to the predomi-
nantly accelerating nature of the flow in a reaction blade design. There
are, however, regions, such as rotor blade roots, where considerable zareas
of diffusing flow occur and where past empirical design practices may not
have avoided separation of the boundary layer and therefore resulting in
less than optimum efficiency.

It seems possible that a more fundamental approach to blade profile
design might enable the aerodynamic loading of compressor blade sections
to be increased above conventionsl values without incurring losses due to
separation of the boundary layer. Also it would provide the distribution
of heat transfer over the blade surfaces which is particularly important
in the case of high temperature turbines.

There is also a requirement to minimise the number of blades in a
turbo machine, to reduce blade cooling requirements in a hot turbine, to
reduce engine costs and to optimise efficiency.

During recent years, the quest for higher efficiency and f or more
economical use of blading has encouraged an increasing amount of interest
in the problem of blade profile design. This means that a much more pre-
cise assessment of permissible aerodynamic blade loading is required and
this is only attainable by detailed consideration of the flow conditions
over the blade surface. As a first step towards this, various methods
for relating blade shapg to surface pressure distribution have been and
are being developed 59 However, the question then arises as to what
is the optimum pressure dlstrlbution which should be aimed at in desigu,.
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For the present it will be assumed that attention is restrioted to
blade rows in which the exit Mach number is low enough for the peak sur-
face velocity on the suction surface of the blade to be below a Mach num-
ber of 1.0. With the peak velocity restricted, any attempt to increase
aerodynamic loading may require that the diffusion gradient near the
trailing edge on the suction surface should increase, a condition which
may cause separation of the boundary layer and increased loss.

It is commonly assumed that optimum two-dimensional performance
will correspund to a blade for which thg boundary layer is just stable,
i.e.,, near to separation, and Stratford® has demonstrated a diffusing flow
in which the turbulent boundary layer is critical at all points. In a
turbo machine however, the precise flow conditions at all blade sections
can only be defined approximately and it is thought that a safer basis for
blade design would be to ensure that if separation is encountered it will
be progressive from the trailing edge.

Both Swainston9 and Allan1o have given consideration to the use of
pressure gradient as a design limitation, following the reasoning that
optimum performance is likely to be achieved when the gradient is Jjust
insufficient to cause separation of the boundary layer., This approach is
of course highly sensitive to the state assumed for the boundary layer, in
particular the position of transition, and for this Swainston and Allan
assumed an incompressible, two-dimensional fully turbulent boundary layer
with the aim of ensuring that design is conservatively based. Allan also
considered the case of a mixed laminar turbulent boundary layer.

There remains, however, the problem of predicting separation of the
turbulent boundary layer and for this a number of empirical method?1af§
available. The method used by Swainston was that of Truckenbrodt' '’
which has a very complex derivation and involves calculating the variation
of the shape parameter, H, (ratio of displacement thickness to momentum
thickness) separation occurring when H = 1.8 to 2.l Using a value of
H = 1.8, Swainston deduced the envelope of pressure distribution having a
constant pressure over the forward portion of the blade and a linear pres-
sure gradient over the rear portion for separation to occur at the trail-
ing edge, the Reynolds number based on blade surface length and outlet
velocity Re being 3.5 x 10°, Allan made use of a simpler analysis due to
Buril1,13 and deduced the envelope of velocity distributions having a
linear velocity gradient, instead of a linear pressure gradient, for a
Reynolds number of 2 x 105,

It was thought desirgble that the various quite distinct methods of
predicting the behaviour of the incompressible, two-dimensional turbulent
boundary layer should be examined with a view to assessing the measure of
agreement between the various criteria for separation and boundary layer
characteristics, and this Memorandum presents a comparison of five methods.

Also considered is the application of turbulent boundary layer
theory in assessing the pressure distributions over the suction surfaces
of turbo machine blades which would give separation at the trailing edges.

The paper may be read without reference to the appendix, which
contains a detailed summary of the five methods investigated.



2.0 Flow models

The flow within a turbo machine is complex in nature and at the
present time the characteristics of the precise nature of the flow over
the surfaces of the blades is a matter for speculation. However, to pro-
vide a common basis for analysis three flow models, whose surface velocity
distributions could be considered to give a simplified representation of
distributions associated with the suction surfaces of turbo machine blades,
were selected., The models are shown diagrammatically in Figure 1.

2.1 Surface velocity distributions

To compute the incompressible boundary layer characteristics and
position of separation the velocity distribution at the outer edge of the
boundary layer is required. Therefore, simple velocity distributions, in
the sense that the computations vere made easier as will become evident on
reading Section 3.0, were chosen,

The distributions are shown non-dimensionally in Figure 1(a) as
velocity ratio V plotted against distance x where V is the ratio of velo-
city_at outer edge of boundary layer to the velocity at the trailing edge
and x is the ratio of surface distance, measured from the leading edge
stagnation point, to total surface length. For all three distributions
it wes assumed that the velocity rose from zero at the leading edge stag-
nation point to a definite value over an infinitely small distance, The
distributions are referred to as type 4, B and C.

Type A - the velocity decreases linearly with surface length from
V = V5 at the leading edge to V = 1.0 at the trailing edge.

Type B - the velocity is constant, V= V;, over the first 60 per
cent of the blade surface follewed by a linear decrease to
trailing edge.

Type C - the velocity increases_linearly over the first 60 per cent
of blade surface from V = 0,5 at the leading edge to V =
Vo, at the 60 per cent station, followed by a linear
decrease to the trailing edge.

2.2 State of boundary layer

In order to vredict the behaviour of the turbulent boundary layer
the position of transition must bs known.

The flow in the boundary layer as it develops from the leading edge
stagnation point is initially laminar., The laminar boundary layer is
very sensitive to disturbances in the presence of a positive pressure gra-
dient i.e., pressure increases in the direction of flow, and will readily
separate or become turbulent,

It is frequently assumed that design will be conservatively based
if the boundary layer is taken as being fully turbulegt (momentum thick-
ness zero at leading edge). However, J. H. Preston'® has shown that for
a circular pipe and a flat plate the minimum Reynolds number, based on
momentum thickness 0, for turbulent flow is Rg = 320 and suggests that in
the case of flow with a favourable pressure gradient the minimum value
will decrease and for flow with an adverse gradient will increase.
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In view of this it was assumed in the present analysis that the
boundary layer was fully turbulent, having a momentum Reynolds number
Rg of 500 (Figure 1(b)) at the leading edge. This approach although not
strictly correct should help to ensure that design is conservatively based,
since a laminar boundary layer grows at a slower rate than a turbulent
layer. Thus, if in practice a length of laminar layer occurs and is fol=-
lowed by transition to turbulent flow, it is believed that the momentum
thickness at the position of the start of the turbulent layer would be
less than if the flow had been fully turbulent.

2.3 Reynolds number

The present methods of analysis for the turbulent boundary layer
are based on data from experiments conducted at Reynolds numbers which
were very much higher than is associated with the flow within a turbo
machine. In the present study it was assumed that these methods could be
applied to flows where the Reynolds number, Re, is low and representative
of turbo machines. The Reynolds number, based on outlet velocity and
blade surface len%th, range examined for all three flow models was Re =
2 x 10° to 1 x 10 s the aim being to assess the effect of Reynolds number
not only on the position of separation but also the measure of agreement
between the various methods of analysis.

3.0 Methods of analysis

There are in existence several semi-empirical methods of predicting
the characteristics of the incoupressible, two-dimensional turbulent bound-
ary and the methods considered were thosg due to Burill,13,
Truckenbrodt!?»12, Stratroral’, Maske11'® and Spence!?:

3,1 Buri

For flow along a flat plate in the absence of a pressure gradient
the 1/7th power law for the velocity profile in a turbulent boundary layer
may be considered an approximate empirical relation. To specify the
velocity profile in the presence of a pressure gradient Buri chose, in
anslogy to K. Pchlhausen's approximate method for laminar boundary layers,

i
a. form parameter T =-% Rg* %% and assumed that the shearing stress at the
wall 7, and the shape parameter H are functions of I' alone.

Ty * -
Thus, v Rg* = £, (')

displacement thickness _ 0* _
and H momentum thickness G £ (F)

Experimental data were used to confirm the analogy, and the results were
moderately satisfactory,

The position of separation involves the calculation of T' over the
surface and using the momentum integral equation Buri was able to show
that

S o EY - o4 -
dx(eRe)..A R
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where A and B are empirical constants. ‘

A unique critical value of T is‘then assigned to the point of
separation which corresponds to the condition of local skin f;igtion
coefficient Cp = %zza = 0, According to the curve Buri drew through the
experimental points the value of T'gpitieg1 is -0,06.

The main advantage of this method is that it is fairly straight-
forward to compute and does not involve further arbitrary assumptions
regarding the value of the shape parameter at transition which can grossly
affect the conclusions in some other methods. However, this method

involves a knowledge of the velocity gradient, %%, which may prove to be

difficult to assess from measured pressure distributions.

Both the empirical relationship and T' were derived from

critical
very limited early experiments of Nikaradse and puri?s13, . The experi-
ments of Nikaradse were for flow in converging and diverging channels hav-
ing flat walls and of rectangular cross section, Buri's experiments were
for flow in converging channels and of circular cross section. In the
case with an adverse pressure gradient (divergent channel) the boundary
layer was very thick and extended as far as the centre of the channel, the
Reynolds number based on momentum thickness Rg ranging from 3000 to 9000,
For the flow with a constant and favourable pressure gradient (convergent)
the range of Rg was 500 to 3000.

Howarth1u has applied Buri's criterion using a value of I'sritical =
-0.06, to a measured pressure distribution over a circular cylinder at a
Reynolds number based on diameter of 2.12 x 105, In view of the assump-
tions in the calculation (i.e., position of transition, conditions at
transition), and the experimental difficulty in locating the separation
point the result may be considered satisfactory.

It is worth mentioning here that Howell15 has made use of Buri's
parameter in analysing compressor cascade results. By assuming the
velocity distribution in the boundary layer on a cascade blade is linear
at separation Howell found fairly good correlation between diffuser and
cascade test results,

It was found necessary, in the present analysis, to adopt a more
conservative value of T' .iti041 fOor types A and C flow models than had
been suggested previously in order to yield results which compare faveur-
ably with predictions by more recent methods. The validity of such pro-
cedure is obviously open to suspicion. On the other hand, the original
experiments defining Topitical (With adverse pressure gradient) involved
boundary layers extending as far as the centre of the channel. This could
have produced secondary flows and thus destroyed the two-dimensionality
of the flow assumed in von Kdrmén's classical derivation of the momentum
equation which in conjunction with the measured velocity profiles, Buri
used to calculate the wall shear stress t..

3.2 Truckenbrodt

This method has a very much more complex derivation than that pro-
posed by Buri,
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Location of the position of separation involves the calculation of
momentum thickness 6 and shape parameter H. Unlike the other investi-.
gators who used the momentum integral equation for 6, Truckenbrodt used
the energy integral equation. For calculating H both the momentum and
energy integral equations were used.

The calculation hinges upon semi-empirical relationships between
(1) energy dissipation in the boundary layer D and Reynolds num-

ber based on momentum thickness Rg

D 0.56 x 107"
pv Rg"

(ii)  wall shear stress t,, shape parameter H and Ry

w?

Tw 0,246

¢ = T8 = 0«678H 0,268
£ zpV 10

(iii) a unique relationship between H and a parameter H

= 1,269H = _ _energy thickness
H = H - 0,379 '’ where H = momentum thickness

The momentum thickness 1s given by

(eRg) = A - R

4
dx
n

OR :
where T' = —vg— %% and the constants A and B depend on the empirical

relationship for the energy dissipation. In arriving at this equation
it was assumed that the shape parameter has little effect on the growth
of the momentum thickness and was taken as being constant and equal to

1olo

Using the above relationships and the momentum and energy integral
equations it can be shown that

= £ (AT + £, (H)
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Truckenbrodt succeeded in transforming this equation by introducing
a shape factor L, which is related %o the shape parameter H (see nota-
tion), so that 1t could be integrated and thus obtained an equation for
the variation of shape parameter.

The final separation criterion is to ascribe a critical value to H.
Unfortunately this is not known with any certainty but difficulty can be
avoided by calculating the variation of local skin friction coefficient Cp
and applying the condition Cp = O at separation as in Maskell's method
(Section 3.4).

The advantages of this method are firstly that the calculation of
shape parameter H is not grossly affected by the value of H at transition
and secondly that no derivatives of the velocity distribution with respect
to distauce along surface are needed, in contrast to the Buri, Maskell and
Stratford methods. The calculation, however, is long and laborious when
carried out by hand using an electrical desk machine, particularly if com-
mencing from a measured pressure distribution.

The equation for the energy dissipation (Rotta) has a very complex
derivation; for details see References 12 and 20,

The relationship for the shear stress 1y was obtained by Ludweig
and Tillman?! for flow under the influence of both adverse and favourable
pressure gradients by means of a simple instrument developed by Ludweig22
This instrument enables the wall shearing stress to be determined by a heat
transfer measurement. The experimental apparatus consisted of a channel
of rectangular cross section, one wall being used as the flat test plate
on which the boundary layer measurements were performed, and the other wall
adjustable to give the desired pressure distribution. The instrument was
calibrated by setting the apparatus for flow with uniform static pressure,
the calibration shearing stress being determined by the Schultz-Grunow
friction law for plate flow

4 0,0
Cr = 33itese
(10810 RG)

This law, which is in close agreement with others for plate flow, was
chosen because it was obtained from measurements in the same experimental
configuration. Four different test series were carried out, constant
pressure, moderate pressure rise, strong pressure rise and pressure drop,
the range of Reynolds number Rg being 10% to 4 x 10%°.  The formula was
also checked for disturbance in the boundary layer by carrying out twe
tests at constant pressure:-

(1) with a turbulence grid consisting of metal strips upstream
of the measuring section to increase the free stream turbu-
lence

(ii) with a continuous square section strip placed just downstream
of the leading edge of the test plate, crosswise to the
direction of flow.

The relationship between H and H was determined by Weighardt23 from

the velocity profile law (%) =<;6[>n » the numerical constants being
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adjusted to give agreement with experiment. These experiments were for
flow with constant, favourable and adverse pressure rises at high values
of Rg and the experimental configuration was similar to that of Ludweig
and Tillman,

There appears to be only one independent experimental pressure
distribution to which this method has been applied, this belng for the
flow over the suction surface of an N.A.C.A. isclated aerofoill?s»12,2 o
which separation of the turbulent boundary layer occurred. The test was
carried out in a low turbulence two-dimensional wind tunnel, the pressure
distribution being similar in shape to type A flow model of the present
analysis, at a Reynolds number based on the blade chord of 2.64 X 1P .

The agreement between the experimental and calculated boundary layer
momentum thickness and shape parameter was very good, separation occurr-
ing when H =~ 2, 2

3.3 Stratford

Stratford's criterion for separation of the turbulent boundary
layer results from an approximate solution to the equations of motion and
requires a single empirical factor,

The method assumes that the boundary layer in a pressure rise may
be divided into two distinct regions, namely the inner and outer regions.

~ In the inner region, the inertia forces are small so that the velo-
city profile is distorted by the pressure gradient until the latter is
largely balanced by the transverse gradient of shear stress.

In the outer region the pressure rige just causes a lowering of the
dynamic head.profile, and the losses due to the shear stress are almost
the same as for the flow along a flat plate,

A parameter B is incorporated in the first term of a series expan-
sion representing the whole inner layer profile obtained by mixing length
theory, with the higher terms omitted; B is assumed to represent the
effect- on the separation criteria of the higher terms. It is also used
to represent any effects which the pressure rise might have on the mixing
length. -

The final equation contains a parameter 'n' which is the flat plate
comparison profile at the position of separation, the relevant Reynolds
number Rg being that based on the peak velocity and the distance to the
point of separatlon. Stratford found using the data of Schubauer and
Klebanoff? agd the results of his own experiment with continuously zero
skin friction® that n = legy Rg but suggests that the criterion is not
sensitive to the value of n. .

The criterion, which is obtained as a simple formula applying
directly to the separation point, was developed for pressure distributions
in which a sharp pressure rise starts abruptly after constant pressure for
a distance x5, The distance x is measured from a pseudo origin which is
the point where the turbulent boundary layer would have zero thickness,

After simplification the criterion, at a Reynolds number of the
order of 10°%, is given by a simple formula
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) 10
cp(x EB) = 0.53 B(107°R)
Vox
where R = v

However, as in the case of Buri, the method involves the calculation of a '

derivative %%E which may not be easily or accurately obtained for some

experimental distributions.

The parameter B was obtained from an experiment described in
Reference 8, In this experiment the turbulent flow was maintained Jjust
at the separation condition (TW O) throughout the pressure rise and it
was found that B was independent of Cp and had a value of 0.66. The
condition 7, = O is added because Stratford found that analys%s of further

experiments showed that B varied somewhat with the value of %fg immedi-
ately prior to separation; p is the static pressure. *

Reference 24 (von Doenhoff and Tetervin) contains data for three
experiments on N.A.C.A. isolated aerofoils tested in a low turbulence,
two-dimensional wind tunnel at a Reynolds number based on blade chord of
the order of 2 x 10°, The pressure distributions were of the same form
as the type A flow model used in the present analysis. One of these
three tests was that used as a test case by Truckenbrodt which, it will be
recalled, showed good agreement between the experimental and calculateg
separation point. A fourth test was that of Schubauer and Klebanoff?
conducted in the same wind tunnel, in which the flow passed over an aero-
foil-like section at an angle of attack of 0°, The pressure distribution
over approximately the first 60 per cent of the surface was favourable,
and was followed by a pressure rise leading to separation; the Reynolds
number based on surface length has the extremely high value of 2.8 x 107,

Stratford points out that the pressure distributions allowed some

range of interpretation as regards %E and the effect on the theoretical

prediction of the position of separation could be as much as *5 per cent.
However, it was found that the criterion, using B = 0.66, resulted in the
calculated separation points being upstream of those experimentally obser-
ved for all test cases, From a close examlnatlon of the results Stratford

found that the error in B increased as E~R increased, ranging from zero
x*
when —~E maximum negative to 20 per cent when large and positive and sug-

dx®
gested a modification that would halve the error:-

lo=]
i

2
0.66; when %;g <

K

B = 0,73; vwhen ——%-? 0
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The advantage of Stratford's method is that it is extremely simple to
apply since it does not involve graphical integration as do the other
methods or a step-by-step solution for the shape parameter as does
Maskell's methode 1In fact it was found, using an electrical desk machine
that whereas the methods of Maskell, Truckenbrodt and Spence took the
author at least half a day to apply and Buri about one hour, Stratford's
method took only half an hour. This, of course, does not apply neces-
sarily to all types of flow since for the models used in the present analy-
sis the boundary layer was assumed to be turbulent over the entire sur-
face. However, the method demands the calculation of a derivative

dx
distributions, Also if one is interested in other boundary layer
characteristics, such as local skin friction coefficient, then an alter-
native method would have to be used,

<QER), which may not be easily obtained for some experimental pressure

It was found that of the methods considered in this Memorandum
Stratford's criterion predicted the lowest pressure rise to separation;

%%? was known exactly in the present analysis. A possible reason for this

is that the factor B was determined from test distributions at Reynolds
number Re ranging from 2 x 10% to 2 x 107 whereas for the flow models the
Reynolds number was very much lower and it may be that B varies somewhat
when Re < 10°%,

3e4 Maskell

Maskell's method is based upon a large amount of experimental data
not only for flat plate and channel Tlow but also for flow over isolated
aerofoils.

The position of separation involves the calculation of the momentum
thickness and shape parameter, the equations for which have been made more
general than before by making them fit flat plate data very closely and by
the use of some limited data for favourable pressure gradients.

The equation for the momentum thickness was derived from the momen-
tum integral equation, in a manner similar to that of Buri, making use of
the Ludweig and Tillman relationship for skin friction:-

d n
E;E(GRG) = A-~H
n
where I' = EEQ av
-V dx

and A, B and n are empirical constants, n being determined to make the
solution correct for zero pressure gradient.

The approach used to find an equation for the shape parameter H
was that of selecting the probable parameters affecting the variation of
H, and using experimental data to find an equation comnecting them. This
approach, which has been used by other investigatorsz4, was well suited to
the nature of the available data. The form of the equation is:
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for zero and favourable pressure gradients

H = f(Rg)

for unfavourable pressure gradient

m dH  _ *
Ry . = & (T*H)
n
OR
0 qH 4v
. T, ayv
where T = 7 e °* 3x

and m and q are empirical constants. The form of the function @(PﬁH) was
determined by plotting experimental values of GRg %% (which were themselves

determined by differentiating curves of H to obtain-ag) against ['* for

particular values of H, Maskell found that the points could be approxi-
mated by two straight lines and plotted the slopes, intercepts on the axis
I'* = 0, and intersections against H and found that

@(er)

3(0,H) + r(H)I'* for I'* > %

3}

s(H) + t(H)I'™* for D* < It

s(H) -~ &(0,H)
r(H) - t(H)

ft

where I'%
i

where r, s and t are linear functions of H and for H < 1.4 the function
8(0,H) satisfies the flat plate equation H = f(Re)o

The position of separation is d%termined by the condition that the
local skin friction coefficient Cp = 7—35 = 0, the distribution of C, being
2

calculated using the Ludweig and Tillman law, described in Section 3.2 and
which is a function of €6 and H. This law cannot, in fact, give Cp = O
explicitly and so the procedure adopted is to extrapolate to zero the curve
of Cp against surface length x by assuming that once the rapid fall in Cp
has started the gradient %%g does not decrease in magnitude.

If transition to turbulent flow occurs in an adverse pressure gradi-
ent a value has to be chosen for the shape parameter H at transition, Hy,
and it was found that the degree to which the growth of H and therefore
position of separation were affected by Hy depended on the Reynolds number,

The calculation of momentum thickness involves no more computation
than other methods. However, the calculation of shape parameter in an
adverse pressure gradient is a step-by-step process which is both long and
laborious, the interval between the points dictating the accuracy. Once
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again the method depends on the calculation of a velocity gradient, and
when experimentally determined pressure distributions are employed it
becomes susceptible to the same sources of error as the methods of Buri
and Stratford.

The empirical relationships for momentum thickness and shape para-
meter were derived from experiments conducted at a Reynolds number of the
order 2 x 10%°. Four of these experiments were in fact used by Stratford
and one by Truckenbrodt as test cases.

Unfortunately all of the available experimental data was used in
deriving the empirical relations so that no independent comparisons with
experiment are presented., However, the comparisons with the data show
that the boundary layer characteristics and position of separation can be
predicted with reasonable accuracy for practical purposes.

The result of applying this criterion to the flow models of the
present analysis was that the pressure rise to separation was much higher
than that according to Stratford's criterion. This was surprising in
view of the number of common test cases for which these two methods have
been demonstrated to be in agreement with experiment. However, it must
be remembered that the velocity distributions for all of these cases were
similar to those of the type A flow model only, except one which was simi~
lar to that of type C, and the Reynolds numbers were very much higher than
the range considered in the present study.

3.5 Spence

This method involves the calculation of the momentum thickness 0
and shape parameter H,

The equation for momentum thickness was derived from the momentum
integral equation as in the methods of Buri and Maskell, the difference in
the solution being the assumption of the 1/5th pewer law for the skin
friction coefficient,

In determining an equation for the variation of shape parameter,
Spence made use of the momentum and energy equations as did Truckenbrodt.
Using theseeguations it can be shown that

n dH
ORy 3. = 8 (H)' - ¥ (H)

OR

n
‘where I' = - —VQ

£l

In arriving at this expression assumptions were made regarding
(1) distribution of shear stress within the boundary layer
(ii) velocity profile in a variable pressure

(iii) wall skin friction coefficient.
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The above equation is of the same form as that used by Truckenbrodt
and Maskell, the solution of which varies in the choice made for functions
@(H) and 1’;(H)° Spence chose relationships such that the equation could
be integrated directly and so avoided the calculation, as did Truckenbrodt,
of the velocity gradient %%o

To ensure that gocd results are given for a flat plate with zero

pressure gradient, i.e., I' = O, the function ¥ (H) was determined from the
momentum equation assuming

(i) one~fifth power law for the wall skin friction coefficient
C - 0,0176
£ i
R§
(ii) Cole's relationship for the shape parameter
Y U
c
H=1{1- EJ% where g = 7% = log, Ry + constant
1

Cz, 0y, are constants'and Uy is the friction velocity.
For the function @(H) a quadratic was chosen.

For the case of a thick boundary layer and using a value of Hy =
14 where V = V,, Spence shows this to be in good agreement with the func-
tions used by Maskell.

The final separation criterion is to ascribe a critical value to H,
which as Spence points out, is not known with any certainty. To overcome
this the position of separation can be determined by the condition Cg = O,
the distribution of Cf being again calculated using the Ludweig and
Tillman law.

There appears to be only cne case for which this method has been
demonstrated to be in agreement with exgeriment and that is for the flow
over an isolated aerofoil-like section®? at a Reynolds number of 2.8 x
107, It is in fact one of the distribuiions that was used by Stratford
and Maskell as a test case. The pressure distribution was favourable )
over the first 60 per cent of the surface followed by an adverse pressure
rise leading to separation, transition to turbulent flow occurring near the
leading edge. The comparison between the calculated and experimental
distributions of momentum thickness and shape parameter was good, separa-
tion occurring when H = 2.6, In the calculation of H a value of 1.4 was
assumed at the position of the peak velocity.

The advantage of this method over those of Maskell and Truckenbrodt,
which also involve the calculation of H, is that the distribution of H over
the surface is more rapidly calculated. Another advantage over Maskell's
method, which is however shared by Truckenbrodt's method, is that the solu-
tion does not involve the calculation of the first derivative of velocity
with respect to surface distance %%o

The result of applying this method to the flow models was that the
velocity gradient to separation was grossly affected by the value assumed
for H at transition whereas Truckenbrodt's method is not; a change from
13 to 1.4 grossly affects the conclusions. Also the growth of shape
parameter was very little affected by a change in Reynolds number, Re
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resulting in the pressure rise to separation being constant with Re,.the
other methods showing that an increase in.Re delays separation.

L.,0 Results of comparlson

4 1 Momentum thickness, -

. All of the methods except Stratford's involve the calculatlon of
the. momcntum thlckness, the equations for which ‘are all of the same form.,

s 3 o - —51
- _ — ) T
X
‘6 — —1-— -A'— bf vo d;{ + constant 0090(1)
=a Re
V : ¢ -
R ‘. Xt

— —

1
where constant =(t6 \7? at transition and A, a, b and ¢ are empirical
constants, The ‘tablé below gives the values of the constants according -
to the various methods and Figure 2 shows the variation-of momentum thick-
ness for the type A flow model at a Reynolds number of 2 x 10% and a velo-
olty gradlent of. ~0.5. . . -

* Buri Sl 3T 0025 0 400 0,016 i
| Truckembrodt | 3.0 .7 0.1667 | 3.335 | 0.0076
© Maskell - ! 3.632. 0.2155°) 4.2 0.0M173

./ Spence ! . 3.5 ; 0.20 4O . 0.,0106

It may be seen that three of the methods show good agreement but
Truckenbrodt's gives somewhat smaller values of O especially towards the
trailing edge.. This measure of agreement was found for all Reynolds
numbers investigated (i.e., -Re = 2 x 10° to 1-x 10%) .and also for types
B and C flow models. - '

‘

4.2 Shape narameter, skin frlctlon coefflclent and position
- of separatlon

The methods of. Truckenbrodt, Maskell and Spence also involve the
calculation of the shape parameter (ratio of displacement thickness to
momentum thickness) and in.order to solve these equations:a:knowledge is
requlred of the initial (transition) shape parameter. -For types B and C
flow models transition occurs.in a constant pressure and favourable pres-
sure gradient respectively and for such flow conditions Maskell's method
uniquely determines the shape parameter as a function of the momentum
Reynolds number., However, for type A flow model transition occurs in an
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adverse pressure gradient and so a value for the transition shape para-
meter, Hi, has to be assumed in this method. To solve the equations of
Truckenbrodt and Spence a value for Hy has to be assumed for all flow con-
ditions,.

The local coefficient of skin friction is particularly important
for two reasons. Firstly it is a measure of the velocity gradient at the
surface and therefore, the stability of the boundary layer, and secondly
to investigate blade temperature distributions which may be required in
the stress analysis of turbine blades the distribution of heat transfer
coefficient is required which, using Reynolds analogy, is related to the
skin friction coefficient. According to Ludweig and Tillman the skin
friction coefficient is given by

Cp = -1——‘-‘7;-5- = 0.246 ¢

~16561H _ ~0e288
BN Re 0000(2)
2p

On examining this equation it may be seen that if the initial value of H
affects the distribution of shape parameter it will also influence the
local value of Cp and hence the position of separation (given by Ce = 0)
and local heat transfer coefficient. In view of this results are presen-
ted (Figures 3 to 9) showing the distributions of shape parameter and skin
friction coefficient for a range of Hy = 1.3 to 1.7 at Reynolds number of
2 x 10% and 1 x 10®. It is seen that the velocity gradient is varied as
well as the Reynolds number and the reason for this is that it is consi-
dered desirable to assess the effect of Hy on the position of separation.
Therefore, the gradients were selected such that separation occurs at the
trailing edge for Hy = 1.4 which is the commonly assumed value.

Figures 3, 4 and 5 show the distributions according to
Truckenbrodt's method of analysis for types A, B and C flow models res-
pectively. The shape parameter (and therefore the displacement thickness)
and skin friction coefficient are not grossly affected by the value of Hy,
only in a region close to the transition point are the differences in H
and Cp significant, particularly when transition occurs in constant pres-
sure or pressure rise regions at low Reynolds number.

The characteristics H and Cp using Spence's method are shown in
Figures 6, 7 and 8. It was found that the calculation of H was very lit-
tle affected by a change in Reynolds number or in cther words to a change
in the distribution of momentum thickness and so the shape parameter is
shown for the low Reynolds number only. For types A and B flow models,
Figures 6 and 7 respectively, the distribution of H and Cp are grossly
affected by the value of Hy in particular the range of 1.3 to 1.4, over
the entire surface for both Reynolds number, In applying this method to
type C model, Figure 8, it was found that the shape parameter dropped off
repidly to a value of approximately 1.2 at the start of the pressure rise
and thereafter remained approximately constant., This resulted in very
high values for C¢ and thus indicated no separation point. By assuming a
value for H of 1.4 at the start of the pressure and continuing the computa-
tion of H in the normal way beyond this point the method predicted separa-
tion., However, as in the case of A and B flow models the pressure rise to
separation is especially sensitive to the initial value of H.
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As mentioned earlier Maskell's method required a knowledge of the
transition shape parameter for type A flow model only and Figure 9 shows
the variatisn of H and Cp for three values of Hye At the low Reynolds
number of 2 x 10° the characteristics H and Cp are grossly affected by all
values of Ht whereas for the higher Reynolds number of 1 x 10® the change
of H and Cs between Ht{ = 1.4 and 1.7 is relatively much smaller.

The equations for the shape parameter, H, are of the form

N+l n
G (TR,) & = £, () + £5(H)  ...Spence and Maskell (38)
dx L -
= £, (H)T + f3(H,Rg)e.. Truckenbrodt voe(3b)
N+1 5 n -
whereI' = © SX¥$2~ . Q:
\ dx

The table below gives the form of the functions f, (H), f,(H) and f; (H,Re)
and the values of the exponent n

Function fl(H) A : Eunctions fp (H) and fg(H,Re)E n
PRI ...&HMA» T R AT S A i
,mruckenbrodt L2, 6385 H(H 1) (8-0,379) [o 32456 ~1es1 Rg OO /g
i P i
é i ' : H(H-O.379i] -0,02329 ;
] (H—o 379)"‘ f
Iiaskell KO-BZTO.BH)el’Eelii i (0. 01485 - 0. O1399H) 1-561I{; 2
% for large I é for H< 1.4 .
! P.15 (1-2H)e* 88 H . 0,079 - 0,054H : :

[ ‘for small T { for H> 1.6 ‘0. 268
L ; : : !
" tabulated for H = 1.4

" 4o 1.6 (see Appendix) % ;

= f(Rg) for constant pressure and pressure ) {
drop : '

t
1
1

+~9.52% (H-1.21) (H-1) § -0.00307 (H-1)? P/

»§ R : I3

iSpence

o oeem e s s P W e e Cie s e e tes 0o 4 sees el b wemmemeh b e m
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It is worth mentioning here that Truckenbrodt was able to integrate
the above equation for H by introducing a shape factor, which is related
to the shape parameter (see Appendix), and thus avoided the calculation of

the derivative %% + Spence also integrated the differential equation for
H.

In the present study the integrated equations were used. Figure 10
shows a plot of the above functions for a range of H = 1.3 to 1.7. The
value of Truckenbrodt's function f; (H,Rg); is shown for Rg = 150, 500 and
6000 these values being found in the present study for the type C model
just downstream of transition, at the leading edge for all three flow
modals and the maximum value respectively. It is to be noted that in
Maskell's method the above equation for H only holds for flow with pres-
sure rise. For the other flow conditions, i.e., constant pressure and
pressure drop, the shape parameter is a function of the momentum Reynolds
number .

Considering Spence's function f, (H) it may be seen that its value
is very small and negative and remains approximately constant with H.
The reason for this is that Spence made use of the one-fifth power law for
skin friction to deduce the form of ﬁy(H) and this law shows that the skin
friction is independent of H. Therefore, as a first approximation,
Spence's equation shows that for flow with pressure rise and pressure drop
H is given by the first term of Equation (3a).

o = f;.@.).i‘z . (4)
ds.c v d_-)_c L] o

The value of fl(H) changes rapidly with H and as a result the calculation
of H was grossly affected by the initial value of shape parameter (Hy) for
the above flow conditions. Also on examining the above approximate equa-
tion it may be seen that for a given velocity distribution the calculation
of H is not affected by a change in Reynolds number, Re, as was found in
the present study.

The value of Maskell's function f, (H) and Truckenbrodt's function
fs (H,Rp) varies rapidly with H and as a result the distribution of H is
sensitive to a change in Reynolds number as will be seen later.
Truckenbrodt's function varies from positive when H < 1.4 to negative and
large when H = 1.7 resulting in the distribution of H not being grossly
affected by a change in the value of Hy. Maskell's function for large T
is small, negative and approximately constant and equal to the value of
Spence's when H < 1.4 and for H > 1.4 drops off rapidly to large and nega~
tive values when H = 1.7. Therefore, it is to be expected that the cal-
culation of H for cases where IT' is large will be particularly sensitive to
values of Hy in the range 1.3 to 1.4. However, for small I' the function
varies rapidly for all values of H and so it is not obvious that the
growth of H will be independent of the initial value for this case.

As mentioned earlier Spence's method when applied to type C flow
model did not predict a rapid rise in the region of pressure rise. For
this model the first term of Equation (3a) was large and negative over the
first part of the surface due to the velocity, V, being small and a posi-
tive velocity gradient in this region.  Therefore, H dropped rapidly to a
value of approximately 1.2 at the start of the pressure rise (x = 0.6) and
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for this value of H the function fy (H) is very small resulting in a const-
ant value for H of approximately 1.2 in the region of pressure rise.
However, Truckenbrodt's methed also showed a drop in H to 1.2 just down-
stream of the transition point at the low Reynolds number but downstream
of this region the calculation showed a rise in H to 1.4 at the start of
pressure rise and in the region of pressure rise H rose rapidly (Figure 5)
The reason for this was that in the region where H = 1.2, the mcmentum
Reynolds number was small (Re = 150) resulting in the second term
(Eqpation 3b) being sufficiently large and positive in comparison to the

first term for the calculation to give positive g% and, consequently, a
rise in the shape parameter, dx

In the case of constant pressure H is given by, according to the
methods of Spence and Truckenbrodt

= £&£§2 oos Spence . e0o(5a)

8 Re"

Bile:

fa (H,RS)

=L h
5] Re.

it

«oo Truckenbrodt voo(50)

It is easily seen from the plot of f (H) and fy (H,Re) why the former of-
these methods is very sensitive to the value of Hy for such flow condi-
tions and the latter approximately independent of Hy.

It is not cbvious from plet of the functions fl(H), fg(H) and
fs3 (H,Rg) that the above three methods will be in agreement regarding the
calculation of H for any particular value of Hy. The generally accepted
value for the transition shape parameter for flow at high Reynolds number
is 1.4, which is the flat plate or constant pressure value fer H, although
there is experimental evidence?™ that Ht can be as high as 1.8 in some
cases. A comparison of the distributions of H and Cg¢ using the methods
of Truckenbrodt, Maskell and Spence is shown in Figures 11, 12 and 13 fer
types A, B and C flow models respectively at a Reynolds number, Re, of
2 x 10° and 10° and a value of 1.4 for Hiyo The velocity gradient £ is
~0.5, =0.75 and -1.0 for A, B and C models respectively.

Truckenbrodt's criterion for separation is that the shape parameter
H, takes the value of 1,8 to 2.4 and it may be seen that this results in a
wide range for the position of separation., Maskell's criterion is that
the skin friction coefficient, Cp, is zero at separation and in view of
the good measure of agreement Maskell found between experimental and
theoretical positions of separation it was decided to adopt this critericn
for comparing the above three methods.

Considering type A flow model, Figure 11, it may be seen that at
Re = 2 x 10° the methods of Truckenbrodt and Spence are in reasonable
agreement regarding H but Maskell's deviates greatly from these methods
giving very much lower values over the last 4O per cent of the surface.
As regards the distribution of Cp significant differences occur over_the
last part of the surface and the position of separation varies from x =
0.84 according to Spence to x = 1.0 according to Maskell, However, at
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the Reynolds number of 1(f the methods of Maskell and Truckenbrodt are in
good agreement but Spence deviates greatly from these methods, predicting
the same values for H as at the lower Reynolds number for the reason men-
tioned earlier.

Turning to type B flow model, Figure 12, at the high Reynolds num-
ber all three methods are in tolerable agreement regarding both H and C¢
but at the lower Reynolds number whereas Maskell and Spence are in good
agreement Truckenbrodt shows very much higher values of H and consequently
lower values for Cg in the region of pressure rise.

For type C model, Figure 13, all three methods are in tolerable
agreement in the region of pressure rise, However, in the region of
pressure drop (x = O to 0.6) there are significant differences in the dis-
tribution of H and Cp, at Re = 2 x 10%,  Truckenbrodt's method shows very
low values of H in this region compared to Maskell's and the reason for
this is that the value of Truckenbrodt's function fg(H,Re) is strongly
dependent on the momentum Reynolds number, Rg, which drops rapidly from
500 at the leading edge to 150 at X = 0,2,

Various methcds for relating blade shape to surface velocity dis-
tribution are currently being examined and the guestion arises as to what
iz the optimum velocity gradient which should be aimed at in design.
FPigure 14 shows, for the flow models considered in this study, the varia-
tion of adverse velocity gradient, [, with Reynolds number, Re, for sepa-
ration at the trailing edge (X = 1.05 using, the criterion Cp = O and a
value of Hy = 1.4, in the above three methods. Also shown are the gradi-
ents using the separation criterion of Buri and Stratford. Buri's cri-

terion for separation is that a parameter I' = v 3z - -0.,06 at separa-

tion but in view of the limited experimental data from which this value
was derived the velocity gradients were also calculated for I' = -0.04.

Stratford's criterion predicted the lowest pfessure rise to separa-
tion for all flow models except type A at high Reynolds number, However,
it must be pointed out that the pressure rise to separation accgrding to

Stratford is likely to be from O to 10 per cent too low since Q}g is small
and negative. d

Spence's method showed that the critical velocity gradient was
independent of Reynolds number and had the same value for types B and C
flow models for the reasons mentioned earlier. However, the other methods
of analysis showed that the effect of increasing Reynolds number is to
delay separation.

L3 Application to turbomachinery design

The Mach number over the suction surface of a blade may be as high
as unity and so the applicatiog of incompressible boundary layer theory is
questionable, Van Driest!1:20 has shown that for flat plate flow i.e.,
zero pressure gradient, the effect of Mach number on the local coefficient
of skin friction is small up to M = 1,0 and can be neglected, the ratio
C
CfM“l being 0.93, but there appears to be no evidence available for flow

M= 0
under the influence of pressure rise.
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Without reliable experimental measurements of the boundary layer
development and separation relating to flows typical of those within turbo
machinery it is not possible to comment confidently on the particular vali-
dity of any of the methods considered in this Memorandum in such an appli-
cation. In a typical turbo machine both Reynolds number and turbulence
differ substantially from those appertaining to experimental data on which
each of the five methods has been based, and against which each has been
tested in varying degree.

Under these circumstances preference leans naturally to the use, as
a guide, of the method which is simplest to compute or which yields the
most conservative solution, particulerly in the lower range of Reyrolds
number. Stratford's method would seem to combine both these attributes
commerndably, so far as provision of a convenient criterion for separation
is concerned,

However, if the boundary layer characteristics such as displacement
thickness and skin friction coefficient are required then it is suggested
that Truckenbrodt's method be used since it does not involve the calcula-
tion of local velocity gradients %% as does Maskell's and is not so sensi-
tive to the shape parameter at transition as the methods of Maskell and
Spence. )

From the results showm in Figure 14 it was considered possible to
construct two envelopes of velocity distributions for separation at the
trailing edge

(a) distributions of type B having a constant velocity over the
forward portion of the blade followed by a linear decrease
to trailing edge and,

(b) distributions of type C having a favourable velocity gradient
over the forward portion followed by a linear decrease to the
trailing edge.

Figures 15 and 16 show the critical envelopes for types B and C according
to Stratford's criterion and it is suggested that until definite experi-
mental data become available for the flow conditions over the surfaces of
turbo machine blades the envelopes for a Reynolds number of 2 x 10° should
be used as a limiting criterion in design.

5.0 Conclusions

Five methods of predicting the behaviour of the incompressible,
two-dimensional turbulent boundary layer have been applied to three basic
types of velocity distribution, selected to represent the family of dis-
tributions associated with turbo machine blades, and the measure of agree-
msent between the separation criteria and boundary layer characteristics
assessed., The methods considered were those due to Buri, Truckenbrodt,
Stratford, Maskell and Spence.

The velocity distributions that were analysed were type A - lirear
decrease of velocity from leading to trailing edges of the blade, type B -
constant velocity over the first 60 per cent of the blade surface fcllowed
by a linear decrease to the trailing edge and type C - linear increase of
velocity over the first 60 per cent of the surface followed by a linear
decrease to trailing edge,
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The precise flow conditions over the surfaces of a blade in a turbo
machine is a matter for speculation, but for the present study it was
assumed that the boundary layer flow was fully turbulent with a momentum
Reynolds number of Rg = 500 at the leading edge.

The methods of Truckenbrodt, Maskell and Spence provide the growth
of the shape parameter and to solve these equations an assumption has to
be made with regard to the transition (i.e., initial) value Hio Spence's
method was extremely sensitive to the value of Hy. Even a small change
from 1.3 to 1.4 grossly affects the distribution of H and, therefore, the
position of separation. Truckenbrodt's method was very little affected
by Hy. Maskell's method only requires the initial value of H when transi-
tion occurs in an adverse pressure gradient and it was found that the
extent to which the growth of H and pressure rise to separation were
affected by Ht depended on the Reymolds number,

The equations for the momentum thickness were of thé same form and
all of the methods were in good agreement except Truckenbrodt which showed
smaller values. :

Spence's method showed that the pressure rise to separation was
independent of Reynolds number whereas the other methods showed that the

effect of increasing Reynolds numbsr is to delay separation.

A1l the methods could be brought into tolerable agreement regarding
the position of separation provided that

(1) Buri's criterion was taken as I'opitical = =0.Ok.

(ii) In epplying Spence's method the calculaticn of shape para-
meter started at the position of maximum velocity, if transi-
tion occurred upstream of this point.

(1ii) Por the methods of Truckenbrodt and Spence the Ludweig and
Tillman law was used to calculate the variation of local skin
friction coefficient Cp and the position of separation was
given by the condition Cp = O and not by a predetermined
value of shape parameter Ho Since this law cannot yield
explicitly Cp = O, the point of separation was obtained by
linear extrapolation from the steepest negative gradient of
the Cp curve,

(iv) For the methods of Truckenbrodt, Maskell and Spence the vari-~
ation of shape parameter was calculated using an initial
value of H = 1.4,

On reviewing the methods, all of which derive from experimental con-
ditions somewhat removed from the environment within a turbo machine,
Stretford's was simplest to apply, predicted the lowest pressure rise to
separation, and is therefore preferred as a conservative design criterion.

On this basis envelopes of critical suction surface velocity dis-
tributions (i.e., distributions which yield separation conditions at the
trailing edge) were constructed which, it is believed, are conservatively
gased and might be used as a limiting criterion for turbo machine blade

eslghe
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If the boundary layer characteristics such as displacement thick-
ness and skin friction coefficient are required then it is suggested that
the method of Truckenbrodt be used as it does not involve the calculation

of local velocity gradients %% and is not grossly affected by the value
of the shape parameter at transition.
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NOTATTION

energy which is converted into heat in the laminar boundary layer

boundary layer shape parameter

_ displacement thickness
~ momentum thickness

energy thickness
momentum thickness

parameter = which is related to H

parameter which is related to H by

it
B -
L = f m—ﬁ- where Hp = 1,753
Hp

Mach number

Reynolds number based on velocity at outer edge of boundary
layer and momentum thickness

_
Y

Reynolds number based on velocity at trailing edge and blade sur-~
face length

Reynolds number based on maximum surface velocity and surface
distance

velocity within the boundary layer

T
- friction velocity = [7¥
N

velocity at outer edge of boundary layer

ratio of velocity at outer edge of boundary layer to velncity at -
trailing edge

an equivalent distance defined by Equation (21)

ratio of distance measured along blade surface (from leading edge
stagnation point) to total blade surface length
2 -
incompressible pressure coefficient = 1 - <$L> =1 -<:¥;)
o A
T

local coefficient of skin friction = 5
2P

VQ
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2 blade surface length

P static pressure

t energy of the turbu%ent motion per unit time for a turbulent bound-
ary layer

X distance measured along surface of blade from leading edge stagna-

tion point

¥y distance normal to surface of blade
vO - 1
B velocity gradient = ~ -
1 - xy
) boundary layer thickmess
S} momentum thickness of boundary layer
) ratio of momentum thickness to blade surface length
o* displacement thickness .of boundary layer

ox* energy thickness of beundary layer

p density
v kinematic viscosity
Tw shearing stresses at the blade surface
© ,n 4v
T parameter = 7 Re =
© mH _n dv
% - = oy
T parameter = v e Re =
ry parameter defined by Equation (360) in Appendix
Subscripts
t conditions at the transition point
0 maximum conditions and position of maximum conditions

2 conditions at the trailing edge of the blade
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APPENDIX T

The prediction of the characteristics of the turbulent boundary layer

This Appendix presents a summary of the five methods used to pre-
dict the behaviour of the incompressible, two-dimensional turbulent bound-
ary layer,

The working equations have been made non-dimensional by dividing
the velocity at the outer edge of the boundary layer V by the velocity at
the trailing edge V; and the distance measured along the blade surface x,
from the leading edge stagnation point, by the surface length £.

Buri method

In a manner analogous to K. Pohlhausen's approximate method for the
laminar boundary layer, Buri 11,13 chose a parameter I' for predicting the
behaviour of the turbulent boundary layer. It is assumed that the shear-
ing stresses at the wall Ty and the shape parameter H are function I' alene.

Thus
w3
;;3 Ry = fH{T) = & eoos(1)
%*
H = %- = £, ()
where 1
BOR%
_w o% av e
R6 = 5 and I' = ™
or in non-dimensional terms s 1
13
- - 4 a5
r = 2V pr & caso(3)
v dx

Nikuradse and Buri“’13 have carried out a series of experiments on the
flow in convergent and divergent channels and using these results Buri was
able to show that the above assumptions are reasonable.

Using Equations (1) and (2) and the momentum equation for steady
motion we get

1a0 %% av 5*)
£ =Re€)~:+vaz+-6—
ra
OR%
_ohd ety Teav(y §_>
= T I (eRe) + " ax 3 +5
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hence
d % 5 9 &%
—-——d (SRG) = “‘! E_, -T <_5 + ‘—'e )} °°°°(ll-)

Buri found that the right hand side of Equation (L), which on the above
assumptions is a function of I' only, was, approximately, a linear function
A - B'e Equation then becomes

1

8R*
& (opF —o v
EE(QRS)-bB o = A

1
This is a linear equation of the first order for eRg whose integral is

x
A
VBGRS = A‘/$ Vde + constant
Xy

or in non-dimensional terms

51 fF
L . —ér Pax + constant cosol(5)
oV B -z J
= Re
T -
g

where the constant is evaluated from the momentum thickness at the transi-
tion point.

The values of A and B from Nikuradse's measurements which were for
decelerated flow, are A = 0,0175 and B = 4.15; the values from Buri's,
which were for accelerated flov, were A = 0,01475 and B = 3.9%. To
include both cases Schli.c:lrt:a’.ng1‘1 suggests that A = 0,016 and B = 4.0,
This value of B implies that H is constant and equal to 1.4 in
Equation (4).

Separation of the boundary layer occurs when the local coefficient
of skin friction is zero, i.e., when & = O. The curve that Buri drew
through the experimental points gave a value of I'gpitical = —0.060.

From Egquations (3) and (5) we get, substituting the values for A
and B

5

<ﬂ|;

x
. av .
0,016 ‘/" V4 dx + constant p == = -0,06 at separation
> dx 0000(6)
="

It is interesting to note that if separation occurs for any fixed value of
I', then for a fully turbulent boundary layer, i.e., momentum thickness
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® = 0 at x = 0, the condition of separation is independent of Reynolds
number Rez if the velocity distribution does not vary with Rej.

Truckenbrodt method

E. Truckenbrodt!!s12 made use of the momentum and energy integral
equations for predicting the position of separation of the turbulent
boundary layer.

The equation for the variation of momentum thickness was obtained
from the energy equation which may be written in the form

¢

)
V‘l!! _a%a}.c_ (V3‘6:l¢:k) = ;\g/:_é é/‘ T(g-;—) dx = 2 EE%}-QE 0900(7)

The quantity on the right hand side of Equation (7) represents the dimen-
sionless work done by the shearing stresses t. In the case of the lami-
nar boundary layer the work dcne by the shearing stresses is equal to the
energy which is converted into heat D (dissipation). For the turbulent
boundary layer there is a further contribution to the work done which is
the energy of the turbulent motion per unit time, t. This is usually
small compared to D and may be neglected.

Truckenbrodt shows, using the results of Ro‘cta,21 that —%3 can be

expressed, approximately, as a function of Reynolds number Rg only.

Thus
-3
D _ 0.5 x 10 8
pVa = % oooo( )
Re

Assuming that all velocity profiles form a one-parametery family then
Weighardtzh shows, using the velocity law (w/V) = (y/8)R

_ _1.269H
= FTo039 ).

Tt

- e
where H = é—— and the numerical constants were adjusted to give agreement

)
with experiment.

Combining Equations (8) and (7)

-3
oHV?) = 111%4;¥ﬁ2—— where n = 6

Ry

14
Ve dax

assuming H is constant and equal to a mean value then we get
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i
z oR> -3
2 4 8 dv 1412 % 10
0 dx OV & ° P
or s
i or> -3
n_ 4 (632) n + 21776 dv 1,12 x 10
n+1dx S n+1 )V dx ~ -
or .
2 n
= OR -2
4 n 2y 06 av _ 1412 x 10 n + 1
o (OB + B+ 0) v & = a ° Tn
1

This is a linear eqpatioﬁ of first order for BRE whose integral 1is

i 8+2 -2 X 342
eRn V n i = 1.12 X 10 . n + 1 f V n dX +
(¢] I-_-I n
Xt
constant

Truckenbrodt assumed a mean value of H = 1.72, which corresponds to H =
1.4 giving, putting n = 6

4 10
s 10
8V Ry = C J v® dx + constant
%

where the constant is evaluated from the momentum thickness at the transi-
tion point and C = 0,0076, or in non-dimensienal terms the momentum thick-
ness is given by

8
7
X 1
= 1 40,0076 -8
6 = = 0.0076 jﬁ V dx + constant
g" hpd 0090(10)
Re Xt

The equation for the shape parameter H was obtained from the momentum and
energy integral equations,

The momentum equation may be written in the form

%% + (H + 2)

6 dav *
va‘x = ";‘%‘é— ono.o(11)
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Replacing 8%** in the energy Equation (7)_by HO and from this equation
subtracting Equation (11) multiplied by H we obtain, multiplying through
1

)

by R6
1 _
. 6 4 - -
eRe —d_}z = fl (H)P + f2 (H) 0905(12)
where
D+t T 5
£,(B) = (H-1)E, f£@H = L
1( ) ( 1) ’ 2(1) 2 PVS H pVg RB
1
[:)
and I' = EEQ W
TV dx

The shearing stresses at the wall t_, using the results of Ludweig and
Tillmanzz, can be expressed as a function of Rg and H.

Thus

T ~0e¢878 -~0e268 .
;gg = 0.123 10°°*°"°H Ry voea(13)

Truckenbrodt transformed Equation (12) inte such a form that it could be
integrated, by introducing a shape factor L. This factor is related to
the shape parameter H thus

i
£, ()

L(I-"I) = = L(H)

H=

=T
T iy

where the lower limit of integration was chosen to make L = O correspond
to the case of zero pressure gradient, i.e.,, flow over a flat plate, giv-
ing Hp = 1.73 andH = 10)4-0

Introducing this relationship into Equation (12) we get

eRg &1 -x@) veeo(14)
where x(L) - iigg; = K(H)

The function K(L) can be represented with a satisfactory degree of
accuracy by the linear relation ‘

K(L) = a(l -b) | eses(15)
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The numerical values are

a = 000304 and b = 0907 10g1°R - 0023

§)

Combining Equations (14) and (15) we obtain a linear differential equation
for L which Truckenbrodt integrated giving

g
13
L = £ 1L, + log Yﬁél+lf b(E) - log. | LEL)| a
' gt 9000(16)
a -4
where b'd o
E = 9—’99-3-6— f\"f" dx + constant
B -
Re X
b = 0.07 logp (Re V8) - 0,23

- V) | TE)

Ve Ty

It is to be noted that the new variable £ occurs in the equation for momen-
tum thickness (10).

According to work of Ludweig and Tillman the shear stress at the
wall 1ty decreases as the shape parameter increases but never vanishes com-—
pletely. Truckenbrodt assumes that seperation occurs when H = 1.8 to 2.4
which corresponds to L = -0.13 to -0,18.

Stratford method

The separation criterion due to Stratford!’ results from an appro-
ximate solution to the equations of motion. The method assumes that the
turbulent boundary layer in a pressure rise may be divided into two dis-
tinct regilons, namely the inner and outer regions.

In the inner region, the inertia forces are small so that the velo-
city profile is distorted by the pressure gradient until the latter is
largely balanced by the transverse gradient of shear stress.

In the outer region the pressure rise Just causes a lowering of the
dynamic head profile, and the losses due to the shear stresses are almost
the same as for the flow along a flat plate.

The criterion is developed initially for pressure distributions in
which a sharp pressure rise starts abruptly at the position x = Xy after
constant pressure for a distance xye
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A parameter B is incorporated in the first term of a series expan-
sion representing the whole imner layer profile, obtained by mixing length
theory, and the higher terms omitted; the factor B was assumed to repre-
sent the effect on the separation criterion of the higher terms. It is
also used to represent any effects which the pressure rise might have on
the mixing length, The velocity profile has therefore been over ideali-
zed as regards to shape and good agreement with experimental profiles
would not be expected.

The oriterion for separation is, applying directly to the separa-
tion point ’

1

Il 2
C]p‘;(n 2) (x g?ff)

' 4
1 i) = -
3% x 0.1 B (n - 2)4(n 2) g° (17)
(n + 1){:(1“1) (n + 2)_.2t e

For Cp < %—1’—%

where the Reynolds number R is based on the local value of distance x and
' + 2
+ 1
of the inner layer with the outer layer reaching the edge of the boundary
layer when using the idealized velocity profiles.

the peak velocity V. The limitation Cp < 2 results from the join

Stratford simplifies Equation (17) by replacing the quantity

(n + 1)%;(n+1) (g + 2)‘12~
(n - 2)%(11‘9)

-
by 10.7 x (2.0)4(n 2) which is within 1 per cent of the former quantity
when 6 < n < 8,

This results in.

1

(ZCp)%'(n-a) (x 992>2 = 1.06 B (10'611)’7’ eoeo(18)

dx

The quantity 'n' is the flat plate (zero pressure gradient) comparison
profile at the point x = xj where suffix s denotes separation

i

(¥
% - ()
X3 Vﬁ
the relevant Reynolds number being Rg = " o Stratford found from

experimental data that a good approximation is
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n = 10g10 RS

The parameter B was found from an experiment by Stratford. In this experi-
ment the flow was maintained just at the separation condition throughout
the pressure rise and it was found that B was independent of Cp and has

the value

B = 0,66

: 2
However, in this experiment the value of Q;% immediately prior to separa-
dx

tion had its greatest possibié negative value and B will vary somewhat with

&p
ax? °
a2 . .
To determine the effect of 5;% Stratford applied the criterion to

four experiments in which separation of the turbulent boundary layer was
observed and found that, using a value of B = 0.66, the pressure rise to
separation was always too low. A clcse examination of the results showed

2 -

that the discrepagcy in B increased with an increase in~%J% vgrying from
X

O per cent when %;% was maximum negative to 20 per cent when a;% was

large and positive.

In view of the insufficient data Stratford suggests that a crude
modification that would halve the error would be to take

o
L]

2
0.66 when %;% <0

co0e(19)

2
0.73 when ££ > 0
dx

o
|

Combining Equations (18) and (19), using a value for n of 6, the criterion
for separation is, at Reynolds numbers of the order of 10°

1
cp (= 22§

or in non-dimensional terms

1
0,30 (107% R)"

i

L i
0p<§c @}’-)2 = 0.39 (10°° Re T,%)"° coas(20)
ax
a’p 4 : :
when 5 2 0 and Cp < 7 s the coefficient 0.39 is replaced by 0.35 when
2

The pressure coefficient for incompressible flow is given by

p = 1 -

Vs
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It will be recalled that this criterion was developed for pressure distri-
butions having an initial region of constant pressure followed by a sharp
pressure rise, the distance x being measured from a point where the tur-
bulent boundary layer would have zero momentum thickness.

If transition occurs in the region of constant pressure then the
value of x to be used in Equation (20) has to be

X = (i-;{t) +5-(t 0000(21)

where the distances X and X are the distances from the point of zero
momentum thickness (pseudo origin) and the actual leading edge respect-
ively. The value of Xt is determined by the condition that the boundary
layer thickness for a fully turbulent boundary layer at X, is equal to
that at X{ for the laminar boundary layer.

This results in

N

i

o3 | 8

- = 6
) 6, T, Re

0.0 0000(22)

ct
i}

1
where _\Z
0.470 Xy

Vo Re

<D
ct
1]

For pressure distributions having an initial region of favourable pressure
gradient the distribution has to be converted to an equivalent one having

an initial region of constant pressure with a mainstream velocity equal to
the value at the transition point or the point of maximum velocity which-

ever is later.

The growth of a turbulent boundary layer is given by, in non~
dimensional terms 1
1+b

X

1A 7° 4% + constant voos(23)
- g b
v Re™ 2

Xt

Dy
fl

The parameters a, b etc, according to various workers vary a little but
representative values are a = %}, b=2%,c=4, A= 0,016, The constant
is evaluated from the momentum thickness of the laminar boundary at
transition and is given, in non-dimensional terms, by

constant ¢ = (84 vga) 0ooo(2h)
%
where X4
8, =4 2 / ¥ ax b coe0(25)
V® Re
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From Equations (22), (23), (24) and (25) we get

— _ 17 _ )
-1 1 *o -\ s [ Xt
V4Re§ 4
Xy = —2— _11_, O"Ojléf F4ax | +f =% 0;264_5_ fv5 dx
0.036¢ | 7,7 | Re™ - s v, 7 e \ 4
oaso(26)

where suffix o now refers to conditions at the position of peak veloclty
or at transition whlchever is later and from (21)

o= (x-%)+ % ceea(27)

=}
7 2£=1 ° b'e
v"s‘ Xg 5 O4
o= 22(2) 5y [ () (2] [
o 3 = t 5 - v,
th + o O Xt Xt

coeo(28)

where
Vi Xy - =

This equatlon dlffers from Stratford's slightly in which the exponents 4
and -g are 3 and s respectively, The reason for this is that. the para-
meters m, n etc. in Equation (23) have been chosen as the mean values
according to various workers, which Stratford agrees is a better approxi-
mation.

Maskell method

Maskell18 made use of the Ludweig-Tillman skin friction law for
predicting the position of separation of the turbulent boundary layer.
This involves calculating the distribution of the shape parameter H and the
momentum thickness 8, the equations for which have been made more general
than before by maklng them fit flat plate datd very closely and by the use
¢f some limited data for favourable gradients.

The equation for the variation of momentum thickness was derived
from the momentum equation, in a manner similar to Buri, and making use ~f
the Ludweig-Tillman law,

The momentum equation may be written

® + (H + 2)

C
f
dx - 0094(29)

<|@
=
!
l
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The Ludweig-~Tillman law gives

n

G(H)Rg eeee(30)

Cp

where ~mH

G(H) ae

Combining Equations (29) and (30) wé get

n dé eRg av
RGE+(H+2)'—V—'&; = G(H)

Re~-arranging we get

d 0r%) = (1 + n) jéiﬁl - (n * 2) +H|T

n+ 1

050(31)
where SRS

Maskell found that using experimental data the right hand side of
Equation (31) may be represented by a linear functicn of ', reducing the
equation to the form

(eRg) = A - H vooe(32)

4
dx
It can be seen that Equations (31) and (32) can only agree exactly for
' =0i.e., constant pressure, if H is constant in plate flow, Ludweig
and Tillman found that the shape parameter H was a function of Rg and so
Equation (32) is necessarily in error for constant pressure.

Te overcome this Maskell makes the substitution

q
. ORy v
TV dx
£ = _C_QRQ _ & "mHRq-n
= T hg = 3° Q)

into the momentum Equation (29). This results in
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a(6r%) B
- el (32|l o)

Maskell determined the value of q such that when T = O, & = constant and
using experimental data found that the right hand side of Equation (33)
could be represented by

d(eRg)
= g - fI' where e = 0,01173, £ = L.2
dx
q
or 6R
4 (g9 _9dv _ . -
= (eRe) +f—7 3= = e vwhere g = 0.,2155

The value of f = 4.2 implies that H is constant and equal to 1.635 in
Equation (33). This is a linear equation of the first order for GRg
whose integral is

X

GRg Vf = e /~ Vf dx + constant

Xy

In non-dimensional terms, the momentum thickness is given by

1

x 15155
. ., " 42
6 = _4,2155 Oj{ﬁf}; j ¥ dx + constant cose(5h)
v Re _

ct

where the constant is evaluated from the momentum thickness of the laminar
boundary layer at transition.

The approach used in finding an equation for the shape parameter H
was that of selecting the probable parameters affecting the variction of H,
Experimental results were then used to confirm that this choice of para-
meters was reasonable and to find an equation connecting them. The main

reason for adopting this approach was because the available data was best
suited to it.

For constant pressure and favourable pressure gradient, the vari-
ation of the shape parameter is given by

2

H = 1.754 - 0.149 logg l:\'? ) Re] + 0.01015 Llogm (\7 ) Re>
voee(35)
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For unfavourable pressure gradient i.e., pressure rises in the direction
of flow, it is given by a step-by-step solution of

1.268 _0.288 Qekd68
5 Re E _ g(r,n)
- dx

where

g(r+*,H) = &(0,H) + r(H)I* when I* > 14 eeoo(36a)

= s(H) + t(H)'* when I™ < Pg eoee(36b)
and
.r(H) = 0.32 - 0.3H
s(H) = 0.15 (1.2 - H)

t(H) = 0.15 (4 - 2H)

- R - gl e

_1.268 2.,581H 04268 00268 -
% - 0 e Re vV . gg
T ax .

The function & (0,H) is given by

3(0,H) = 10 °"°"°H (0,01485 - 0,01399H) for H < 1.4
0000(376.)
8(0,H) = 0,0796 - 0,054H, for H> 1.6 eoee (370)

For the range 1.4 < H< 1.6 8(0,H) is defined numerically to give a smocth
transition from Equations (37a) to~(37b) and the values are given below,



H : &(0,H) : H : 8(0,H) ,
Tk -0,000533 | 1.50 % -0,00232
142 | -0.000645 ? 1,52 1 -0,00302 |
1.4, | -0,00086 1 | —o.0381
1.46 1 =0,00120 g 1.56 f -0,00470
148 ¢ -0.00170 18 -0.0057

1 060 ' —000068

The solution for the shape parameter H proceeds from the value of H
at transition. Maskell proposed a tentative procedure for predicting the
value of Hie  Briefly the procedure is

(i) H= f(Rg)
for Rgt > 2500 and for all pressure gradients,

(i1) H = £(Rg)

for all Rpt and zero and favourable pressure gradients.

(iii) H is defined by an approxima*te envelope. for Rgi < 2500 and
unf'avourable pressure gradient.

In (i) and (ii) H is given by Equation (35).

The local coefficient of skin friction Cp is given by the Ludweig
and Tillman law, in non-dimensional terms

~10561 H (— v Re)_OoBSB

0021.}.6 e 0

Cp

-«-00878 H -00288

0.246 10 (6 V Re) 0oo0e(38)

1l

The position of separation is determined by the condition Cp = O, Since
the Ludweig-Tillman law cannot in fact give Cp = O the computation of Cep

is terminated after a rapid decrease in C, has started, the position of
separation being determined by linear extrapolation from the steepest nega-
tive gradient of the curve of Cp against surface length X.

Spence method

Spence19 increased the usefulness of methods like those of
Truckenbrodt and Maskell by developing a method whereby the shape para-
meter H may be more rapidly calculated.

For the variation of momentum thickness Spence made use of
Equation (31) in Maskell's method. The assumption made was that in
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determining 0 there is no advantage in allowing for the dependence of Ce
on the shape parameter and so the one-fifth power law for skin friction
was assumed, i.e.,

D ol

Cp = 0.0176 R 0000 (39)

Combining Equations (31) and (39) we get

i

& (gp® 2,2
3z (6Rg) = 1.2< 0.0088 —(1—.—2+ H)I‘

where

@
P
T e

av

—

* dx

2

The effect of H on the term H + %1% is small and taking H = constant =
1.5 then °

4
d 6
I (eRe) = 0,0106 + 4T

This equation can be integrated to give

X
i

eRgv" = 0,0106 l V4 dx + constant

In non-dimensional terms, the momentum thickness is given by

1
3

D
i

i

0,0106
241 1
ve Re®

X
‘/‘ V4 a% + constant 000 (40)
it :

where the constant is evaluated from the momentum thickness for the lami-~
nar boundary layer at the transition point.

Using the energy and momentum integral equations Spence shows,
assuming

(i) power law for the velocity profile

. X%(H-i)
v ~ b
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(ii) relationship for the shear stress distribution in the turbu-
lent boundary layer

T Y ). o davw N
T T f1<6’H> def2<6’H)

(iii) the local skin friction coefficient is

’ -n
Cp = G(H)Rg
that
n df . .
—— = ' 000
ORg T & (H)T + ¥ (H) (1)
where eRn
I - - 24V
- V dx

To ensure that good results are given for a flat plate with zero pressure
gradient Spence determined the form of ¥(H) assuming the one-fifth power
law for skin friction and Cole's relationship for the shape parameter.
Using these assumptions and the momentum equation for steady motion then
it can be shown that

y(H) = -0.00307 (H - 1) ooo(42)

To enable the calculation of H to be rapid the form of the function & (H)
was chosen such that Equation (41) could be integrated directly to give
the shape parameter Ho For this purpose a quadratic was chosen

8(H) = 9.524 (H-1.21) (H-1) ~ vooo(43)

For the case when GRg is large i.e., the beundary layer is thick, the
right hand side of (41) is dominated by the first term. Assuming ¥ (H) is
small compared to & (H)I' then

dx 1 dv

& = v ax i@
thus H
\ dH
log— = - 6000 lf-z-i-)
A ARIC) (
o]

Combining Equations (43) and (44) then Spence shows that for Hy = 1.4 the
function  (H) is in reasonable agreement with the functions used by
Maskell,
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Substituting Equations (42) and (43) into Equation (41) and inte-
grating we get

&

X
2 P K
V2 4.762 - '}T’-"T) = oconstant - 0,00307

1
Y 6R,®

0

where the constant is evaluated from the shape parameter for the turbulent
boundary layer at transition.

In non-dimensional terms the shape parameter is given by
-1

r ~— - ‘ﬁ\
x 8
1 7°
H = 1 +44.762 - = K - 0,00307 / — dx | ¢
v %, B°Re®
L g - S
o000 (L5)

where

K = T (4.762 T

Spence points out that the value of H at separation seems always to be
between 2 and 3 and suggests that the range 2.4 to 2.6 be taken.

D 76913/1/125875 K3 10/66 R
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TURBULENT BOUNDARY LAYER THEORY AND ITS
APPLICATION TO BLADE PROFILE DESIGN

Five methods of predicting the Incompressible, two-dimensional
turbnlent boundary layer have been applied to flow conditions consicered
to occur over the suctisn surface of turbo machine blades and the mezsure
of agreement between the deparation criteria and boundary layer charac-
teristics assessed, The methods considered were those due to Buri,
Truckenbrodt, Stratford, Maskell and Spence.

All of the criteria could be brought into tolerable agreement
provided that a value of -0 N was used for Buri?s criteria and that
for Truckenbrodt and Spence's methods the positi’n of separati-n was
detexuined by the conditinn that local skin fr ction coefficient is zero.
It wes additionally necessary in the methods of Maskell, Truckenbrodt
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and Spence for the calculation of the shape parameter to be started with a
value of 1°l.

Al11 of the criteria except Spence's were sensitive to Reynolds
number and showed that an Increase in Reynolds number delays separation.

Stratford!s method vwias extremely e-sy to apply, was the
simplest of the five and predicted the lowest pressure rise to separation,

To assist In the design of blade profiles, envelopes of
suction surface velocity distribution have been constructed to give .
separation at the trailing edge; these are considered to be
conservatively based,

and Spence for the calculation of the shape parameter to be started with a
value of 1-4.

All of the criteria except Spence!s were sensitive to Reynolds
number and showed that an increase in Reynolds number delays separation.

Stratford's method was extremely easy to apply, was the
simplest of the five and predicted the lowest pressure rise to separation.

To assist in the design of blade profiles, envelopes of
suction surface velocity distribution have been constructed to give
separation at the trailing edge; these are considered to be
conservatively based.
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