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1. Introduction 

At high supersonic speed the initial normal-force curve slope 
of a simple wedge section may be many times greater than that of 
the equivalent flat plate. This fact obviously has great signifi- 
cance in the design of isolated controls. In connection with this 
interest Edwards1 has pointed out that existing tables and charts 
for the properties of oblique shock waves are inconvenient for the 
rapid evaluation of the aerodynamic derivatives of these sectionso 
To overcome this difficulty he has tabulated the surface pressures 
on a series of wedges for the Nach number range M = 2.0 to l!i = 15. 
These pressures were obtained from the exact oblique shock relations 
assuming inviscid flow and neglecting real gas effects. From these 
pressures Edwards has calculated (by numerical differentiation) 
normal-force curve slopes and lift curve slopes of wedges for a 
series of leading-edge angles over a wide Nach number range. The 
incidence is, however, limited to angles less than the wedge semi- 
angle since the theory only includes compression surfaces0 

Cook2 
At the same time as Edwards' paper was published Bertram & 

published a report concerned with the correlation of the flow 
properties across oblique shock waves and expansion waves for a range 
of specific-heat ratios. In the present paper these correlations 
are used to derive approximate formulae for the aerodynamic deriva- 
tives of wedge aerofoils. As the correlation includes equilibrium 
real gas effects the formulae presented here cover a very wide range 
of flight conditions. However, the results still ignore viscous 
effects and these become increasingly important at the higher Piach 
number. The approximate results are found to be in close agreement 
with the numerical results of Edwards. 

In addition to their interest in connection with the design of 
isolated controls the results for wedge aerofoils may be of value in 
two other fields of current interest. One of these arises from the 
fact that in the upper part of the speed range for air-breathing 
engines the exit area of the jet nozzle tends to be much greater 
than the intake stream-tube. This means that integration of these 
engines with the aircraft usable volume resul s in overall cross- 
sectional area distributions with bluff bases 2 . (These bluff bases 
are, of course, filled by the jet in the cruise condition). A 
study of the properties of wedge aerofoil sections may provide some 
data on the influence of finite bases on the non-linear aerodynamic 
characteristics of this type of integrated aircraft. The second 
field concerns the design of three-dimensional lifting shapes from 
the two-dimensional flow field through an oblique shock wave4. For 
such shapes the aerodynamic derivatives close to design presumably 
will be the same as on the corresponding wedge, 
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2. The Correlation of Bertram & Cook 

Compression Surface 

The normal hypersonic approximation for the pressure p at 
a point on the surface of a plate inclined to a stream at an angle 
Q may be written - 

where E = MQ, and p , Y and M are the static pressure, the 
ratio of specific heats, and Mach number, respectively, in the 
free stream. Following Ivey & Cline', Bertram & Cook replace 

'if = MQ in Eqn. (1) by M2 sine/p, [=(M2 sinQ/(M2 - l)*] so that 

Eqn. (1) joins up with linear theory, and also has the right form 
if it is assumed that sine + tanQ. Nith this modification to the 
hypersonic similarity parameter Eqn. (1) may be written 

where P = 

P = x2 +x1+x , J--- 

Y+l 
4y 11, X = Y+l 

4 
M2 P sine 

(2) 

. 

To the same approximation the relationship between shock angle 
('2) and deflection angle (Q) is 

Msin? = % =x+ 1+x . 7 (3) 

Bertram & Cook plot the equivalent of P against X* for a large 
number of exact solutions covering the range 1.14 M 4 40 and 
14 y4g 513. These exact solutions are in excellent agreement wit'n 
Eqn. (2) for a wide range of X. At given Mach number the exact 
solutions diverge from Eqn. (2) above a certain value of X, this 
value of X being higher at lower values of Y. The incidences 
above which the approximate formula differs from the exact results 
by more than 5% are plotted in Pig. 1. This figure also includes 
the shock detachment angle. As can be seen the approximate formula 
is adequate to within a few degrees of the shock detachment for all 
Mach numbers and values of Y. 

* Actually KP ( = 4P) against KY ( = 4X). 
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Expansion Surfaces 

For sudden expansions (i.e. centred Prandtl-Meyer waves) 
Bertram & Cook have again plotted exact results in the form of 
P against X. Again there is good correlation, particularly 
at higher Mach numbers, but now the best agreement is obtained at 
the higher specific heat ratios. Above Mach numbers of 2.0 the 
results lie close to the line given by 

2Y 
P -= 
PO0 

(l+Y;lK)Y-l, (4) 

or in the present notation 

.In general the collapse of the expansion results is less 
satisfactory than that of the compression results. However, in 
calculating aerodynamic characteristics this is not important since 
the contributions of suction surfaces become very small at high 
supersonic speeds. 

Real Gas Effects 

z o include real gas effects Bertram & Cook follow Trimpi & 
Jones in defining an effective value of the isentropic exponent 
'e to describe the density changes across an oblique shock wave so 
that the above correlation can be applied to a real gas in 
equilibrium. Ye is defined by 

Ye = 2 
l/MN2 - 1 [ 1 k.cl 

-1 P 
-- 
P 1 

(5) 

where MN is Mach number normal to the shock and p the density 
behind the shock. Values of Ye as a function of MN for various 
altitudes in the atmosphere are plotted in Fig. 12 of Ref. 2. 

Then, using a similar analysis to that used to derive Eqns. 
(2) and (3), it is found that 

MN = xe +Gq v 

and 

‘e y Pe = xe2 + x, d-9 

(6) 

(7) 
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where Ye+1 P 
pe= 4v 

i ) 
--1 

'e + l ~,i2 

e P, 
anti Xe = 4 - sin 6. P 

3. Aerodynamic Derivatives 

For the wedge aerofoil of unit chord shown in Fig. 2 the 
normal-force coefficient is given by 

cN =$ (PI - PL Pu pv)=-$(g--pool P 

and the axial-force coefficient by 

cA =--$(~+~-~) tan*. 
go oe 60 

03) 

(9) 

Here pL and go are the pressures on the lower and upper surfaces 
respectively, pB is the base pressure and 6 the wedge semi-angle, 
At incidence a, the lift and drag coefficients are related to 
CN and CA in the usual manner, and the normal-force-curve slope 
and lift-curve slope are given by 

1 ? 
L a 

and % 2 

xi-= YN2cos6 [ 
cos(a + S> $g (%I 

(10) 

where pB is assumed independent of a. 
- 

P Values of - 
PO0 

and k (&) can be found from Eqns. (2), (4) or 

(7) depending on the relative values of a and 6, and on the 
physical conditions. The results for the different cases are as 
follows, 

3d Perfect gases 

If a<6, both surfaces of the wing are compression 
surfaces and Eqn. (2) gives 
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p= %cl l+is[ x2 + x(1 + x2$ 1 9 02) 

$&-) =T$[ 2 X + (1 + 2 X2)/(1 + X2)* cos (6 ‘i a) (13) 1 
2 

where X =vf sin(6Ta), and the negative sign refers to 

the upper surface (6 - a), 
surface (6 + a). 

and the positive sign to the lower 

When a > 6 we can still use E ns. 
lower surface, but must now use Eqn. ? 4) 

(12) and (13) for the 

surface to get 
for the upper, suction, 

2Y 

pu= 
PO0 

(1 + 2(y x)y - 1 
Y+l 9 (14) 

Y+l 
WI2 g-y = p cos(6 - a)(1 + 2(Y - 1) x)y - 1 , 

Y+l 

2 
where X = v M sin(6 - a). 

P 
acN For the flat plate at incidence a the formula for r 

reduces to the simple form 

(15) 

acN -=Q 
aa r Y+l 

2x + (1 + 2 x2)/(1 + X2)* + (1 + q+ x)y 
-1 

1 
cosa 

L 

Y+l M2 
?16) 

(X = -if-- p sin a), 

and for the wedge of semi-angle 6 at zero incidence 

acN 
zi-= 4 [2 x + (1 + 2 x2)/(1 + X2)+] COSB 

(X=Y+lF 
4 sin6 ). 

to 

(17) 

l?or fixed Mach number X+ 0 as a+ 0, or 6+ 0 sothatin 
acN both cases r tends to 4/p, the linear theory value. 
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362 Real gas effects 

Where real gas effects are present Eqn. (7) can be used for 
the surface pressure, provided the effective value of Ye can be 
found. For flight in the atmosphere Ye is given as a function 
of MN and height in Fig. 12 of Ref. 2. Thus, for a given wedge 
angle at given Mach number and height, Ye can be found from this 
figure in conjunction with the relationship between MN and X, 
(Eqn. (6)) and the definition of Xe , (Eqn. (7)). 

The derivative x poo , a &-) % required to find aa % and aa 9 

can be found by direct differentiation of Eqn. (7), provided it is 
assumed that the relaxation time of the gas is small, i.e. that a 
change in incidence results in an instantaneous change in 
equilibrium state. Thus for a < 6, 

T&+-)=T$ cos (8 '3 a) i 2X, + 1-k 2xe2 

J1+1[82 1 

4r ( X3 

+ 0 ) 

aye 
e+1)2 e x2+{* acr’ (18) 

where, again, the negative sign refers to the upper surface and the 
positive sign to the lower surface. Using the fact that Ye is a 
function only of MN at fixed height (and so by Eqn. (6) a function 
of x, only) we 0 

aye aye 
zii-= ax, 

or 

stain 

‘e . aye 
l+Y, aa: 7 X, cot (6 7 a) 

ay 

aye 
$ Xe cot(6 T a) 

?r e 
z-= 

1 aYe ‘e l 

-ax;5* 1 + Ye 

I 9 (19) 

(20) 
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After substitution for aY,/aa from (20), Eqn. (18) reduces to 

$$--)=T $ cos(8 T a) 

i 
2X, + 

1+ 2xe2 
Jl+xe2 (l+fs, (21) 

) 

where 

(22) 

The function E which defines the effects of changes in 
the equilibrium conditions, is plotted in Fig. 3. As can be seen 
the effects are small. 
the effective value of E. 

Por finite relaxation times we may expect 
to be initially smaller than that given 

by (22), and to approach this value after the incidence change. 
However, since f 
effect. 

is small this is not likely to be an important 

(b) 
In the case where ot ) 6 we may use Eqn. (4) directly to find 

for the upper surface since real gas effects are likely to be 
less important, also, as pointed out earlier, the suction force on 
this surface makes only a small contribution to the overall force. 

4. Discussion of Results 

4.1 Comparison with Edwards' numerical solution 

In his paper Edwards has tabulated the ratio 

(2) /(~)6z~~-o for wedge angles up to 20' and Mach 

numbers between 2.0 and 15*0. 
paper this ratio is given by 

In the approximate theory of this 

Y+lM 
2 

co9 6, where X = 4 p sin 6 . (23) 
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Sample comparisons covering the range computed by Edwards are shown 
in the following Table. 

I I 6 = 6O I 6 = 12O I 6 = 2o" I 
I 

M Ref. 1 Eqn. 23 Ref. 1 Eqn. 23 Ref. 1 ' Eqn. 23 

2 le30 1.31 1,69 1.66 2.83 2,12 

5 lo76 1.77 2e70 2.73 4.03 4.04 
--~ 

10 2.75 2.76 4.97 4.98 7.84 7.87 

15 3e88 3089 7.38 7.37 11072 11.70 

As can be seen the agreement is excellent, as of course might 
be expected from the success of the basic correlation as indicated 
in Fig. 1, 

4.2 Comparison of various types of aerofoil section 

The results tabulated above show that the initial normal-force 
curve slope of a simple wedge aerofoil increases rapidly with 
increase in wedge angle, particularly at higher Mach numbers, This 
increase in normal force is accompanied by an increased axial, or 
chordwise force. However, it should be noted that the normal-force- 
curve slope increases less rapidly with incidence at larger wedge 
angles than it does for the flat plate. Thus at given incidence 
the ratio of normal force, or lift, on wedges of different leading 
edge angles may be much smaller than indicated by the ratio of 
initial normal-force-curve slopes. These effects are illustrated 
in Figs. 4 and 5, where lifts of wedges of semi-angles of O", 5" and 
loo are compared at Mach numbers of ,5 and 10. The lift-curve of 
the 10" wedge is almost straight, in fact at M = 5 there is a 
slight fall in slope with increasing incidence. On the other hand 
the lift-curve of the flat plate is highly non-linear so that at 
ct = 20" its lift-curve slope is the same as that of the 10" wedge, 
although its actual lift is only about half that of the wedge. The 
corresponding drag results are also presented'in Figs. 4 and 5. 
(In calculating the drag the skin friction has been ignored and the 
base pressure has been taken as 0.5 of free stream static 
pressure). At low lift the drag increases with wedge angle, but at 
higher lifts the larger value of CL/o: for the thicker wedges 
results in a lower lift-dependent drag so that above a particular 
%' which depends on Mach number, the drag is virtually independent 
of wedge angle. Looked at from another point of view, above a 
particular CL the main contribution to the lift and drag comes 
from the lower surface; the pressure on this surface depends only 
on the local incidence, but is independent of the actual wedge angle. 
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Fig. 4 also includes some results * for a symmetrical double 
wedge aerofoil with a leading-edge semi-angle of loo; that is it 
has approximately the same cross-sectional area as the simple wedge 
of 5” semi-angle. As can be seen the double wedge has a lower 
lift-curve slope and a higher drag than the corresponding wedge. 
The lower lift arises from the fact that whereas the front of the 
double wedge produces much more lift than the front of the single 
wedge, the rear of the double wedge produces very little lift. 
lower drag of the single wedge is due to its effective smaller 

The 

thickness-chord ratio. 
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