LIBRARY

C.P. No 71 (8548) A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL

Approximate Two-dimensional Aerofoil Theory Part IV. The Design of Centre Lines

> By . S GOLDSTEIN, F.R.S

LONDON HER MAJESTY'S STATIONERY OFFICE

, 1952

Price 10 6d' net

NATIONAL AERONAUTICAL ESTABLISHMENT

Summary

Centre lines may be designed from a knowledge of the quantity g_i introduced in Part II², eqn.(54). $4g_i$ may be loosely said to give the approximate chordwise distribution of the normal force coefficient $(p_{\ell} - p_u)/(\frac{1}{2}\rho U^2)$ (but loadings should, in fact, be calculated by Approximation III).

In terms of g_i , the centre line ordinate y_c is given by

$$y_{c} = \frac{x(1-x)}{\pi} \int_{0}^{1} \frac{G_{1}(\xi) - \xi G_{1}(1)}{\xi(1-\xi)(\xi-x)} d\xi - \frac{1}{4} A_{1} \{x \ln x + (1-x) \ln (1-x)\},^{*}$$

where the principal value of the integral is to be taken,

$$G_{i}(x) = \int_{0}^{x} g_{i} dx,$$

and

$$A_{1} = \frac{4}{\pi} G_{1}(1).$$

With

$$A_{0} = \frac{1}{\pi} \int_{0}^{1} \frac{G_{i}(\xi) - \xi G_{i}(1)}{\xi(1 - \xi)} d\xi,$$
$$\frac{dy_{0}}{dx} - A_{0} = \frac{1}{\pi} \int_{0}^{1} \frac{g_{i}(\xi)}{\xi - x} d\xi,$$

where again the principal value of the integral is to be taken. Also

$$\left(\frac{\pi}{a_0}+\frac{1}{2}\right) = \frac{1}{a_1} = \frac{1}{a_2} = \frac{1}{a_1} = \frac{1}{a_2} = \frac{1}{a_1} = \frac{1}{a_2} = \frac{1}$$

يهم الدانية المراجع الم

*In is used for log.

$$\alpha_{\text{opt}} = A_0 \div \frac{1}{2} \left(\frac{2\pi - A_0}{2\pi + A_0} \right) A_1,$$

$$C_{M_0} = -\int_0^1 (4x - 1) g_1(x) dx,$$

54

$$\beta = \frac{1}{2} A_1 - A_0,$$

$$\varepsilon_0(\theta) = 2 \left[G_1(\mathbf{x}) - \frac{1}{4} A_1 \theta \right] \operatorname{cosec} \theta - A_0,$$

$$\dot{\varepsilon}_{c}(0) = - \frac{1}{2} A_{1} - A_{0},$$

α

$$c_{c}(\theta) = g_{1} - (A_{0} + \varepsilon_{c}) \cot \theta - \frac{1}{2} A_{1} \operatorname{cosec} \theta.$$

It is shown how explicit formulae may be easily built up when g_i is a polynomial in x in each of any number of segments of the chord. Explicit formulae are set out for the following cases (with occasional remarks on their use and suggestions for experi-ment): g_i quadratic in each of three segments, or in each of two segments, or over the whole chord; g_i linear in each of three segments (Figs, 1, 2, 3, 4) or in each of two segments (Fig. 5) or over the whole chord (Fig. 6); g_i constant over the whole chord (Fig. 7); g_i constant for $0 \leq x \leq X$ and decreasing linearly to zero for $X \leq x \leq 1$ (Fig. 8); g_i constant for $0 \leq x \leq X$ and parabolic for $X \leq x \leq 1$, with $g_{i}(1) = g_{i}(1)$ Ξ 0 (Fig. 10); (Fig. 11). discontinuous and constant in each of two segments g,

It is shown how, when the graph of g_i against x is composed of straight lines, the solution may always be built up from certain 'basic' solutions, of which the most important are those of Figs. 7 and 8, and, when g, is discontinuous, of Fig. 14.

We have occasion to mention a few trite and obvious principles underlying the choice of a particular design of centre line in connection with Figs. 8 and 10 and (for 'suction' aerofoils) Fig. 11.

Extensive tables are given for the centre lines designed according to Figs. 7 and S.

Introduction/

1. Introduction

In Part III we remarked that if we know Approximation I to the velocity q on both the upper and lower surfaces of an aerofoil in a uniform unlimited stream U, then we know g_s and $g_c + g_L$ separately, and that we can design the fairing from o knowledge of g_s and the centre line from a knowledge of $g_c + g_L$; the ability to design the aerofoil shape from Approximation I to the velocity is sufficient for many purposes. In Part III we also considered briefly the problem of obtaining values of g_s and $g_c + g_L$ when the exact pressure or velocity distribution is specified, and we then considered in detail the design of the fairing from a knowledge of g_s . In this report we shall be concerned with the design of the centre line; this design is actually worked out from a knowledge of the quantity g_i introduced in Part II, eqn. (54),

and related to
$$g_{a} + g_{r}$$
 by the equation

$$g_{c} + g_{L} = g_{1} + \frac{1}{2} \left(\frac{1}{a_{0}} + \frac{1}{2\pi} \right) \left(C_{L} - C_{Lopt} \right) \quad \cot \frac{1}{2\theta} \\ - \frac{1}{2} \left(\frac{1}{a_{0}} - \frac{1}{2\pi} \right) C_{L} \tan \frac{1}{2\theta}, \qquad \dots (1)$$

...(2)

where

 $\theta_{\rm L} = a_0(\alpha + \beta)$

and

 $x = \frac{1}{2}(1 - \cos \theta) = \sin^2 \frac{1}{2} \theta^+.$

It is therefore advisable to consider, by way of preface, the determination of g_1 . Since the pressure distribution is specified, C_L is known; we require also C_{Lopt} and a_0 . A rounded trailing edge is a stagnation point when $a_0 = 2\pi$ (more accurately $2\pi e^{C_0}$), and/

*We use the same notation as in Parts I, II and III.^{1,2,3} *More generally, if the (C_{L}, α) curve is not a straight line, we replace $(C_{L} - C_{Lopt})/\alpha_{0}$ in (1) by $\alpha - \alpha_{opt}$, and C_{L}/α_{0} by $\alpha + \beta$, where C_{Lopt} and α_{opt} are to be found as the coordinates of the point on the (C_{L}, α) curve where

$$\alpha_{\text{opt}} + \beta + C_{\text{Lopt}}/2\pi = A_{1},$$

A₁ being the coefficient of $\cos \theta$ in the cosine Fourier series for dy (as a function of θ) in the range $0 \le \theta \le \pi$.

and the leading edge is a stagnation point when $C_{L} = C_{Lopt}$ approximately. When the trailing and leading edges are not stagnation points the values of the velocity at those points determine a and C_{Lopt}. (We must suppose either that a is specified, or that we are given the correct theoretical pressure for the relevant a_0 right up to, and including, the trailing edge.) If C_{T_1} is small we may consider the given velocity distribution as Approximation II; for large values of CT, it is necessary, and in any case it is more accurate, to use Approximation III. (Part II, eqn.(67)). The velocities at the leading and trailing edges are briefly considered in Appendix I, where it is shown that they may be expressed in terms of C_L , g_s , a_o and C_{Lopt} , so an estimate of Approximation I carries with it knowledge not only of and of gg $g_{c} + g_{L}$, but also of a_{o} and C_{Lopt} , and therefore of gi.

It should be noted that the final value of g, must be free from singularities at the leading and trailing edges. In fact

 ∞

g.

dx

$$g_{1} = \sum_{n=1}^{\infty} A_{n} \sin n\theta$$

$$\frac{dy_{c}}{dx} = \sum_{n=0}^{\infty} A_{n} \cos n\theta,$$

where

so g, is zero at the leading and trailing edges if dy /dx is free from singularities.

On the linear theory the non-dimensional normal force distribution is given by

$$\frac{p_{\ell} - p_{U}}{\frac{1}{2}\rho U^{2}} \approx \left(\frac{q_{U}}{U}\right)^{2} - \left(\frac{q_{\ell}}{U}\right)^{2} = 4(g_{C} + g_{J}), \quad \dots (4)$$

where the suffixes u and ℓ refer to the upper and lower surfaces, respectively. For $C_L = C_{Lopt}$ and $q_{\ell} = 2\pi$, this normal force distribution is therefore given by

$$\frac{p_{\ell} - p_{u}}{\frac{1}{2}\rho U^{2}} = 4g_{1}, \qquad \dots (5)$$

so 4g, may be locsely stid to give the approximate chordwise loading distribution at the optimum or design CT. But loadings should, in fact, be calculated by Approximation III.

The Quantities to be Calculated 2.

From a knowledge of g_i we now wish to calculate the centre-line ordinate y_c , also the no-lift angle $-\beta$ and the moment coefficient C_{M_O} at zero lift. In terms of the coefficients A_n , β (which is the vilue of ε_c at $0 = \pi$) and $\varepsilon_c(0)$ 019 given by

...(3)

$$\beta = \frac{1}{2} A_1 - A_0, \quad \varepsilon_0(0) = -\frac{1}{2} A_1 - A_0, \quad \dots (6)$$

and C_{Mo} by

$$C_{M_0} = \frac{1}{4} \pi (A_2 - A_1), \qquad \dots (7)$$

so we shall calculate A_0 , A_1 , A_2 . The 'optimum' lift coefficient is given by

$$\left(\frac{\pi}{a_0} + \frac{1}{2}\right) C_{\text{Lopt}} = \pi A_1, \qquad \dots (8)$$

and the 'optimum' incidence by

$$\alpha_{\text{opt}} = A_0 + \frac{1}{2} \left(\frac{2\pi - n_0}{2\pi + n_0} \right) A_1.$$
 (9)

When we have completed our approximate design of a cambered aerofoil, we shall probably wish to calculate the velocity distribution for several values of $C_{\rm L}$ on Approximation III. In some cases, for rough guidance, Approximation II or even Approximation I may be useful. We therefore repeat here the relevant formulae, in suitable forms.

Approximation I:

Approximation II:

$$\frac{q}{U} = 1 + g_{g} + g_{0} + g_{L}, \qquad \dots (10)$$

where g_s was settled in designing the fairing and

$$g_{0} + g_{L} = g_{1} + \frac{1}{2} \left[\left(\frac{1}{a_{0}} + \frac{1}{2\pi} \right) C_{L} - A_{1} \right] \operatorname{cot} \frac{1}{2\theta} - \frac{1}{2} \left(\frac{1}{a_{0}} - \frac{1}{2\pi} \right) C_{L} \tan \frac{1}{2\theta}$$
...(11)

$$\frac{Q}{U} = \frac{\left(1 + \frac{1}{2}C_{0}^{2}\right)|\sin \theta|}{\left(\psi^{2} + \sin^{2} \theta\right)^{\frac{1}{2}}} \left(1 + g_{s} + g_{c} + g_{L}\right)$$

$$= \frac{\left(1 + \frac{1}{2}C_{0}^{2}\right)|\sin \theta|}{\left(\psi^{2} + \sin^{2} \theta\right)^{\frac{1}{2}}} \left(1 + g_{s} + g_{1}\right)$$

$$\pm \frac{1 + \frac{1}{2}C_{0}^{2}}{\left(\psi^{2} + \sin^{2} \theta\right)^{\frac{1}{2}}} \left[\frac{C_{L}}{2\pi} + \frac{C_{L}}{a_{0}} \cos \theta - \frac{1}{2}A_{1}(1 + \cos \theta)\right] \dots (12)$$

Approximation/

- Approximation III:

$$\frac{q}{U} = \frac{\theta^{C_0} (1 + \varepsilon^{\dagger})}{(\psi^2 + \sin^2 \theta)^{\frac{1}{2}}} \left[\left(1 - \frac{C_L^2}{a_0^2} \right)^{\frac{1}{2}} \sin (\theta + \varepsilon - \beta) + \frac{C_L}{a_0} \cos (\theta + \varepsilon - \beta) +$$

If the suffix u refers to the upper surface and ℓ to the lower surface, then

$$\psi_{u} = \psi_{s} + \psi_{c}, \quad \psi_{\ell} = \psi_{s} - \psi_{c}, \qquad \dots (14)$$

$$\varepsilon_{u} = \varepsilon_{c} + \varepsilon_{s}, \quad \varepsilon_{\ell} = \varepsilon_{c} - \varepsilon_{s}, \qquad \dots (15)$$

$$\varepsilon_{u}^{i} = \varepsilon_{s}^{i} + \varepsilon_{c}^{i}, \quad \varepsilon_{\ell}^{i} = \varepsilon_{s}^{i} - \varepsilon_{c}^{i}, \qquad \dots (16)$$

and it must be remembered that θ is positive on the upper and negative on the lower surface. We showed how to calculate C_0 , ψ_s , ε_s , ε'_s in Part III; we must here consider the calculation of ψ_c , ε_c , ε'_c . We find ψ_c at once from y_c , since

$$\psi_{\rm C} = 2y_{\rm C} \cos \theta; \qquad \dots (17)$$

but it is more convenient to find ϵ_c , ϵ_c' from g_i by means of the equation

$$\varepsilon_{c}^{\prime} + (\varepsilon_{c} - \beta) \cot \theta = g_{c} = g_{1} - \frac{1}{2} A_{1} \cot \frac{1}{2} \theta \dots (18)$$

3. General Formulae

The analysis is most conveniently carried out, in the main, in terms of x, as in Part I, and not in terms of Θ , as in Parts II and III. Consequently it is most convenient to regard g_i as a function of x, and to consider that $g_i(x)$ is given; when we wish to write g_i as a function of Θ we must write $g_i(\sin^2 \frac{1}{2}\Theta)$ and not $g_1(\Theta)$. When it is clear what is intended we shall merely write g_i .

From (3) we see that the Fourier cosine series for $(dy_c/dx) - A_0$, considered as a function of θ , is conjugate to the Fourier sine series for $g_1(\sin^2 \frac{1}{2}\theta)$ in (0, π), so [from Lemma (6) of Part I (Appendix)]

$$\frac{dy_{c}}{dx} - A_{0} = \frac{1}{\pi} P \int_{0}^{\pi} \frac{g_{i}(\sin^{3} \frac{1}{2}t) \sin t}{\cos \theta - \cos t} dt$$
$$= \frac{1}{\pi} P \int_{0}^{1} \frac{g_{i}(\xi)}{\xi - x} d\xi \qquad \dots (19)$$

cf. Ref. 4/

- 6 -

[cf. Ref. 4 and Ref. 8], where P denotes, as usual, that the principal value of the integral is to be taken, and we have made the substitution

$$\xi = \frac{1}{2}(1 - \cos t) = \sin^2 \frac{1}{2}t. \qquad \dots (20)$$

The Fourier series in (3) terminate if, and only if, g_i is equal to $x^{\frac{1}{2}}(1-x)^{\frac{1}{2}}$ multiplied by a polynomial in x over the whole range $0 \le x \le 1$. The Fourier series may be used with advantage if they terminate; numerical methods may be used to evaluate the integral in (19), or use may be made of the analytical results of the following sections. The last method is recommended if it is applicable and the Fourier series do not terminate.

When $(dy_c/dx) - A_0$ has been found, the value of $y_c - A_0x$ at x may be obtained by direct integration between the limits 0 and x; and since $y_c = 0$ at x = 1, $-A_0$ is the value of $y_c - A_0x$ at x = 1.

In actual examples y_c and A_o may be calculated in this way, but it is desirable to have available explicit formulae for them. We shall find such formulae after considering the calculation of A_1 , A_2 , ε_c , ε_c^i .

We write

$$G_{i}(\mathbf{x}) = G_{i}(\frac{1}{2}\sin^{2}\theta) = \frac{1}{2} \int_{0}^{\theta} g_{i} \sin\theta \, d\theta = \int_{0}^{\mathbf{x}} g_{i} \, d\mathbf{x}.$$

It follows immediately from (3) that

$$A_{1} = \frac{2}{\pi} \int_{0}^{\pi} g_{1} \sin \theta \, d\theta = \frac{4}{\pi} G_{1}(1), \qquad \dots (22)$$

and

Ν.

$$A_{2} = \frac{2}{\pi} \int_{0}^{\pi} g_{1} \sin 2\theta \ d\theta = \frac{8}{\pi} \int_{0}^{1} g_{1}(1-2x) dx, \dots (23)$$

so from (7) and (8)

$$\left(\frac{\pi}{a_{0}} + \frac{1}{2}\right)C_{\text{Lopt}} = 4 \int_{0}^{1} g_{i} dx,$$

$$C_{M_{0}} = -\int_{0}^{1} g_{i}(x)(4x - 1) dx. \dots (24)$$

From/

١

- 8 -

From (18) and (6) the equation for ε_{c} is

$$\frac{d}{d\theta} = g_{i} \sin \theta + \beta \cos \theta - \frac{1}{2}A_{1}(1 + \cos \theta)$$

$$= g_{1} \sin \theta - A_{0} \cos \theta - \frac{1}{2} A_{1}. \qquad \dots (25)$$

Hence

$$\varepsilon_{\rm c} \sin \theta = 2G_{\rm i} - \frac{1}{2}A_1 \theta - A_0 \sin \theta, \qquad \dots (26)$$

and

$$\varepsilon_{\rm c} = 2 \left[G_{\rm i}({\rm x}) - \frac{1}{4} A_{\rm i} \theta \right] \operatorname{cosec} \theta - A_{\rm o}. \dots (27)$$

The limits of this expression for ε_c as $x \rightarrow s$ and $x \rightarrow 1$ yield the values of $\varepsilon_c(0)$ and β given by eqn.(6).

From (18), or by differentiation of (27), we find that $\varepsilon_{c}'(\theta) = g_{i} - (A_{0} + \varepsilon_{c}) \cot \theta - \frac{1}{2}A_{1} \operatorname{cosec} \theta$

$$= g_{1} - 2 \operatorname{cosec}^{2} \Theta \begin{bmatrix} G_{1}(x) \cos \theta - \frac{1}{4} A_{1} \theta \cos \theta + \frac{1}{4} A_{1} \sin \theta \\ 4 \end{bmatrix} \dots (28)$$

The limits of (28) as $\theta \rightarrow 0$ and $\theta \rightarrow \pi$ are given by

$$\varepsilon_{c}^{i}(0) = \frac{1}{2}g_{i}(0), \quad \varepsilon_{c}^{i}(\pi) = \frac{1}{2}g_{i}(1). \quad \dots (29)^{-1}$$

These results refer to $0 \le \theta \le \pi$; ε_c is even and ε_c^i is odd; ε_c^i is discontinuous at $\theta = c$ if $g_1(0)$ is not zero and at $\theta = \pi$ if $g_1(1)$ is not zero. In practice it is probably best to fair off $\varepsilon_c^i(\theta)$ to 0 at $\theta = 0$ and $\theta = \pi$.

We now return to the calculation of A_0 and y_c . From Part II, eqns. (18) and (19), if

$$\psi_{c} = \sum_{n=1}^{\infty} D_{n} \sin n\theta \qquad \dots (30)$$

then

$$E_{c} = -\sum_{n=1}^{\infty} D_{n} \cos n\theta.$$
 ...(31)

Hence, in the first place

$$\int_{0}^{\pi} \varepsilon_{c}(\theta) \, d\theta = 0, \qquad \dots (32)$$

- 9 -

so from (27),

$$A_{0} = \frac{2}{\pi} \int_{0}^{\pi} \frac{G_{i}(\sin^{2} \frac{1}{2}t) - \frac{1}{2}A_{1}t}{\sin t} dt. \qquad \dots (33)$$

From Lemma 1, Appendix II,

$$\int_{0}^{\pi} \frac{\frac{1}{2\pi} A_{1}(1 - \cos t) - A_{1} t}{\sin t} dt = 0, \qquad \dots (34)$$

\$0

$$A_{0} = \frac{2}{\pi} \int_{0}^{\pi} \frac{G_{1}(\sin^{2} \frac{1}{2}t) - \frac{1}{8}\pi A_{1}(1 - \cos t)}{\sin t} dt$$

$$= \frac{1}{\pi} \int_{0}^{1} \frac{G_{1}(\xi) - \zeta G_{1}(1)}{\xi(1-\xi)} d\xi. \qquad \dots (35)$$

.

.

Secondly, it follows from (30) and (31) (by Lemma 6 of Part I) that

$$\psi_{c}(\theta) = \frac{\sin \theta}{\pi} P \int_{0}^{\pi} \frac{\varepsilon_{c}(t)}{\cos \theta - \cos t} dt.$$

Hence, from (27),

$$\psi_{c}(\theta) = \frac{2 \sin \theta}{\pi} P \int_{0}^{\pi} \frac{G_{i}(\sin^{2} \frac{1}{2}t) - \frac{1}{4}A_{i}t}{\sin t(\cos \theta - \cos t)} dt,$$
...(36)

since

,

•

$$P \int_{0}^{\pi} \frac{dt}{\cos \theta - \cos t} = 0. \qquad \dots (37)$$

Therefore

$$y_{c} = \frac{1}{2}\psi_{c} \sin \theta = \frac{\sin^{2}\theta}{\pi} P \int_{y}^{\pi} \frac{G_{i}(\sin^{2}\frac{1}{2}t) - \frac{1}{4}A_{i}t}{\sin t(\cos \theta - \cos t)} dt.$$
(39)

From Lemma 2, Appendix II,

$$\frac{\sin^2\theta}{\pi} P \int_0^{\pi} \frac{\frac{1}{8\pi} A_1(1-\cos t) - \frac{1}{4} A_1 t}{\sin t(\cos \theta - \cos t)} = -\frac{1}{3} A_1 \left\{ (1-\cos \theta) \ln \frac{1}{2} (1-\cos \theta) + (1+\cos \theta) \ln \frac{1}{2} (1+\cos \theta) \right\}^* \dots (39)$$

$$+ (1+\cos \theta) \ln \frac{1}{2} (1+\cos \theta) \left\{ \ln \frac{1}{2} (1+\cos \theta) \right\}^* \dots (39)$$
Hence/

*In is used for log,

Hence

$$y_{c} = \frac{\sin^{2} \theta}{\pi} P \int_{0}^{\pi} \frac{G_{1}(\sin^{2}\frac{1}{2}t) - \frac{1}{8}\pi A_{1}(1 - \cos t)}{\sin t(\cos \theta - \cos t)} dt$$

$$- \frac{1}{8} A_{1} \left\{ (1 - \cos \theta) \ln \frac{1}{2}(1 - \cos \theta) + (1 + \cos \theta) \ln \frac{1}{2}(1 + \cos \theta) \right\}$$

$$= \frac{x(1-x)}{\pi} P \int_{0}^{1} \frac{G_{1}(\xi) - \xi C_{1}(1)}{\xi(1 - \xi)(\xi - x)} d\xi - \frac{1}{4} A_{1} \left\{ x \ln x + (1-x) \ln (1 - x) \right\}.$$

Equations (35) and (40) are in a suitable form for the direct computation of A_0 and y_c .

4. <u>Basis for Explicit Formulae when gins a Polynomial in x in</u> Each of any Number of Segments.

We have completed our investigation of the general equations, and proceed to show how the various quantities required may be calculated analytically in special examples. It is clear from the form of our general equations that the whole mathematical apparatus of the Appendix to Part I is at our disposal, so results may be obtained analytically for a wide variety of algebraical formulations of g_i ; it is probably sufficient for the present, however, to consider that, with the chord divided into any number of segments, in each segment g_i is represented by a polynomial in x. Then we can build up the complete expressions for any such case from appropriate multiples of the contributions corresponding to a term in x^n in the expression for g_i in the interval $x_{r-1} \leq x \leq x_r$. For such a term the contribution to

$$G_{1}(x) = 0 \text{ for } 0 \leq x \leq x_{r-1}$$

$$= \frac{1}{n+1} \left(x^{n+1} - x^{n+1}_{r-1} \right) \text{ for } x_{r-1} \leq x \leq x_{r}$$

$$= \frac{1}{n+1} \left(x^{n+1}_{r} - x^{n+1}_{r-1} \right) \text{ for } x_{r} \leq x \leq 1$$

$$(41)$$

The contribution to

$$A_{1} = \frac{4}{\pi(n+1)} \left(x_{2}^{n+1} - x_{r-1}^{n+1} \right) \cdot \dots (42)$$

It follows from (41) and Lemma 12 of Part I (Appendix) that the contribution to

 $A_0/$

$$A_{0} = \frac{1}{\pi(n+1)} \left\{ \left(1 - x_{r-1}^{n+1} \right) \quad \ell n \left(1 - x_{r-1} \right) - \left(1 - x_{r}^{n+1} \right) \ell n \left(1 - x_{r} \right) \right. \\ \left. - x_{r}^{n+1} \quad \ell n \quad x_{r} + x_{r-1}^{n+1} \quad \ell n \quad x_{r-1} - \sum_{m=1}^{n} \frac{x_{r}^{m} - x_{r-1}^{m}}{m} \right\}, \qquad \dots (43)$$

the last term being omitted if n = 0. The contribution to β then follows from (6), and to C_{Lopt} and α_{opt} from (8) and (9); the contribution to

$$-C_{M_0} = \frac{4}{n+2} \left(x_r^{n+2} - x_{r-1}^{n+2} \right) - \frac{1}{n+1} \left(x_r^{n+1} - x_{r-1}^{n+1} \right) \dots (44)$$

From (40) and Lemma (9) Part I (Appendix) we find that the contribution to

$$y_{c} = \frac{1}{\pi(n+1)} \left\{ \left(x^{n+1} - x_{r}^{n+1} \right) \ln \left| x - x_{r} \right| - \left(x^{n+1} - x_{r-1}^{n+1} \right) \ln \left| x - x_{r-1} \right| - x_{r} \left[\left(1 - x_{r}^{n+1} \right) \ln \left(1 - x_{r} \right) - \left(1 - x_{r-1}^{n+1} \right) \ln \left(1 - x_{r-1} \right) \right] + (1 - x) \left[x_{r}^{n+1} \ln x_{r} - x_{r-1}^{n+1} \ln x_{r-1} \right] - x(1 - x) \sum_{s=0}^{n-2} x^{s} \sum_{m=1}^{n-s-1} \frac{x_{r}^{m} - x_{r-1}^{m}}{m} \right\} \dots (45)$$

For n = 0 and n = 1 the last term inside the $\{\}$ is to be omitted; for other values of n it may be expressed in the alternative form

$$\begin{array}{c} n \\ \Sigma \\ s=2 \end{array} x^{6} \frac{x_{r}^{n-s+1} - x_{r-1}^{n-s+1}}{n-s+1} & n-1 \\ n-1 \\ x \\ \Sigma \\ r-1 \\ m-s-1 \\ m-s-$$

The contribution to $\varepsilon_{c}(\theta)$ is given by (27) and to $\varepsilon_{c}(\theta)$ by (6); the contribution to $\varepsilon_{c}'(\theta)$ is similarly given by (28) with the contribution to

$$g_{1} = 0 \quad \text{for} \quad 0 \leq x \leq x_{r-1}$$

$$= x^{n} \quad \text{for} \quad x_{r-1} \leq x \leq x_{r}$$

$$= 0 \quad \text{for} \quad x_{r} \leq x \leq 1.$$

$$(47)$$

We may note that, from (19) and Lemma 12 of Part I (Appendix), the contribution to

$$\frac{dy_{c}}{dx} - A_{0} = \frac{1}{\pi} \left\{ x^{n} \ln \left| \frac{x - x_{r}}{x - x_{r-1}} \right| + \frac{n-1}{\sum x^{n}} \frac{x^{n-m} - x^{n-m}_{r-1}}{n - m} \right\}, \dots (48)$$

the last term being omitted if n = c, and this result may be verified by direct differentiation of (45).

٢

5. Explicit Results when g is Quadratic in x in Each of Three Segments.

We now set out explicit results when, with the chord divided into three segments, g_i is expressible as a quadratic in x in each of them, viz.

$$g_{1} = e_{0} + a_{1} x + a_{2} x^{2} \text{ for } 0 \leq x \leq X_{1}$$

= $b_{0} + b_{1} x + b_{2} x^{2} \text{ for } X_{1} \leq x \leq X_{2}$
= $c_{0} + c_{1} x + c_{2} x^{2} \text{ for } X_{2} \leq x \leq 1$ (49)

Write

1

$$a_r - b_r = k_r, \quad b_r - c_r = \ell_r \quad (r = 0, 1, 2).$$

...(50)

1

Then

$$G_{1}(x) = a_{0}x + \frac{1}{2}a_{1}x^{2} + \frac{1}{3}a_{2}x^{3} \text{ for } 0 \leq x \leq X_{1}$$

$$= b_{0}x + \frac{1}{2}b_{1}x^{2} + \frac{1}{3}b_{2}x^{3} + k_{0}X_{1} + \frac{1}{2}k_{1}X_{1}^{2} + \frac{1}{3}k_{2}X_{1}^{3} \text{ for } X_{1} \leq x \leq X_{2}$$

$$= c_{0}x + \frac{1}{2}c_{1}x^{2} + \frac{1}{3}c_{2}x^{3} + k_{0}X_{1} + \frac{1}{2}k_{1}X_{1}^{2} + \frac{1}{3}k_{2}X_{1}^{3} + \ell_{0}X_{2} + \frac{1}{2}\ell_{1}X_{2}^{2}$$

$$+ \frac{1}{3}\ell_{2}X_{2}^{3} \text{ for } X_{2} \leq x \leq 1.$$

$$\dots (51)$$

$$A_{1} = \frac{4}{\pi} G_{1}(1) = \frac{4}{\pi} \left\{ c_{0} + \frac{1}{2}c_{1} + \frac{1}{3}c_{2} + k_{0}X_{1} + \frac{1}{2}k_{1}X_{1}^{3} + \frac{1}{3}k_{0}X_{1}^{3} \right\}$$

$$+ \ell_{0}X_{2} + \frac{1}{2}\ell_{1}X_{2}^{2} + \frac{1}{3}\ell_{2}X_{3}^{2} \}; \qquad \dots (52)$$

$$A_{9} = -\frac{1}{\pi} \left\{ \left[k_{0}(1 - X_{1}) + \frac{k_{1}}{2} (1 - X_{1}^{2}) + \frac{k_{2}}{3} (1 - X_{1}^{3}) \right] \ell n (1 - X_{1}) + \left[\ell_{0}(1 - X_{2}) + \frac{\ell_{1}}{2} (1 - X_{2}^{3}) + \frac{\ell_{2}}{3} (1 - X_{2}^{3}) \right] \ell n (1 - X_{2}) + \left[k_{0}X_{1} + \frac{k_{1}}{2} X_{1}^{2} + \frac{k_{2}}{3} X_{1}^{3} \right] \ell n X_{1} + \left[\ell_{0}X_{2} + \frac{\ell_{1}}{2} X_{2}^{2} + \frac{\ell_{2}}{3} X_{1}^{3} \right] \ell n X_{2} + \left[\ell_{0}X_{2} + \frac{\ell_{1}}{2} X_{2}^{2} + \frac{\ell_{2}}{3} X_{3}^{3} \right] \ell n X_{2} + \left[k_{0}X_{2} + \frac{\ell_{1}}{2} X_{2}^{2} + \frac{\ell_{2}}{3} X_{3}^{3} \right] \ell n X_{2} + \left[k_{0}X_{2} + \frac{\ell_{1}}{2} X_{2}^{2} + \frac{\ell_{2}}{3} X_{3}^{3} \right] \ell n X_{2} + \left[\ell_{0}X_{2} + \frac{\ell_{1}}{2} X_{2}^{2} + \frac{\ell_{2}}{3} X_{3}^{3} \right] \ell n X_{3} + \left(\frac{k_{1}}{2} + \frac{k_{2}}{3} \right) X_{2} + \frac{\ell_{2}}{6} X_{3}^{2} + \frac{c_{1}+c_{2}}{2} \right\}; \qquad \dots (53)$$

$$\begin{aligned} y_{c} &= \frac{1}{\pi} \left\{ \left[k_{0}(x - X_{1}) + \frac{1}{2}k_{1}(x^{2} - X_{1}^{2}) + \frac{1}{3}k_{3}(x^{3} - X_{1}^{2}) \right] \ell_{n} | x - X_{1} \right] \\ &+ \left[\ell_{0}(x - X_{2}) + \frac{1}{2}\ell_{1}(x^{2} - X_{2}^{2}) + \frac{1}{3}\ell_{3}(x^{3} - X_{3}^{2}) \right] \ell_{n} | x - X_{2} | \\ &- \left[k_{0}x + \frac{1}{2}k_{1}x^{2} + \frac{1}{3}k_{2}x^{3} \right] \ell_{n} x \\ &- \left[c_{0}(1 - x) + \frac{1}{2}c_{1}(1 - x^{2}) + \frac{1}{3}c_{3}(1 - x^{3}) \right] \ell_{n} (1 - x) \\ &+ \frac{1}{3} \left[k_{0}X_{1} + \ell_{0}X_{2} + c_{0} \right] x^{2} \\ &+ \left[\pi A_{0} + \frac{k_{1}}{2} X_{1} + \frac{k_{2}}{6} X_{1}^{2} + \frac{\ell_{1}}{2} X_{2} + \frac{\ell_{2}}{6} X_{1}^{2} + \frac{c_{1}}{2} + \frac{c_{2}}{6} \right] x \\ &+ (k_{0}X_{1} + \frac{1}{2}k_{1}X_{1}^{2} + \frac{1}{3}k_{2} X_{2}^{2}) \ell_{n} X_{1} \\ &+ (\ell_{0}X_{2} + \frac{1}{2}\ell_{1}X_{2}^{2} + \frac{1}{3}\ell_{2}X_{3}^{2}) \ell_{n} X_{2} \\ &+ (\ell_{0}X_{2} + \frac{1}{2}\ell_{1}X_{2}^{2} + \frac{1}{3}\ell_{2}X_{3}^{2}) \ell_{n} x + (c_{0} + c_{1}x + c_{2}x^{2}) \ell_{n} | x - X_{2} | \\ &- (a_{0} + a_{1}x + a_{2}x^{2}) \ell_{n} x + (c_{0} + c_{1}x + c_{2}x^{2}) \ell_{n} | x - X_{2} | \\ &+ \frac{1}{2}\ell_{2}X_{2}^{2} + c_{1} + \frac{1}{2}c_{3} \\ &+ \frac{1}{2}\ell_{2}X_{3}^{2} + c_{1} + \frac{1}{2}c_{3} \\ &+ \frac{1}{2}\ell_{2}X_{2}^{2} + c_{1} + \frac{1}{2}c_{3} \\ &+ \frac{1}{2}\ell_{2}X_{2}^{2} + c_{1} + \frac{1}{2}c_{3} \\ &+ c_{0} + \frac{1}{2}c_{1} + k_{2}X_{2} + c_{3} \\ &+ 2c_{0} - \frac{1}{2}k_{1} + k_{2}X_{2} + c_{1} + \frac{1}{2}c_{3} \\ &+ c_{0} + \frac{1}{2}c_{1} + \frac{1}{2}c_{2} \\ &+ c_{0} +$$

,

y_c is zero at x = 0 and x = 1, but dy_c/dx is logarithmically infinite at x = 0 if $g(0) \neq 0$, and at x = 1 if $g(1) \neq 0$; as we have already remarked, $\varepsilon_{c}^{\dagger}(\theta)$ is discontinuous at $\theta = c$ if $g(0) \neq 0$, and at $\theta = \pi$ if $g(1) \neq 0$, though in practice it is probably best to fair off $\varepsilon_{c}^{\dagger}(\theta)$ to 0 at $\theta = 0$ and $\theta = \pi$.

At/

At X₁ and X₂, G₁, y_c, ε_c are continuous whether g_i is continuous or not; but if g_i is not continuous, dy_c/dx is logarithmically infinite and ε'_c finitely discontinuous (so that the velocity q is finitely discontinuous on Approximation III); similarly, if g_i is continuous but g_i^t discontinuous, d^2y_c/dx^2 and the curvature of the aerofoil centre line are logarithmically infinite, with $\varepsilon''_c(\theta)$, and therefore the velocity gradient along the aerofoil surface, finitely discontinuous.

The results for many special cases may be written down at once from the results of this section.

6. g. <u>Quadratic in Each of Two Segments</u>, or Quadratic over the <u>Whole Chord</u>

 $g_{1} = a_{0} + a_{1}x + a_{2}x^{3} \text{ for } 0 \leq x \leq X_{1}$ = $b_{0} + b_{1}x + b_{2}x^{3} \text{ for } X_{1} \leq x \leq 1,$...(57)

we put

$$c_r = b_r, \ \ell_r = 0 \ (r = 0, 1, 2)$$

in eqns, (49) - (56) above.

If

$$g_i = a_0 + a_1 x + a_2 x^2$$
 for $0 \le x \le 1$, ...(58)

we put

$$c_r = b_r = a_r, \ \ell_r = k_r = 0 \ (r = 0, 1, 2)$$

in eqns. (49) - (56).

7. g. Linear in Each of Three Segments, or Linear in Each of Two Segments

Explicit results have been worked out when g_i is linear in each of three segments (with or without discontinuities: Figs. 1, 2, 3, 4) or in each of two segments (Fig. 5). Since the algebra is complicated, it has been thought worth while to put the results on record; but since they are likely to be used only rarely they have been relegated to Appendix III.

Figures/

8. gi Linear Over the Whole Chord

If g_i is linear throughout $0 \le x \le 1$, $g_i(0) = a_i$, $g_i(1) = b$ (Fig. 6),

.

then

;

$$g_{1}(x) = a(1 - x) + bx \qquad (0 \le x \le 1);$$

$$G_{1}(x) = a\left(x - \frac{x^{2}}{2}\right) + \frac{bx^{2}}{2} \qquad (0 < x \le 1);$$

$$A_{1} = \frac{2}{\pi}(a + b);$$

$$A_{0} = \frac{1}{2\pi}(a - b);$$

.

$$y_{c} = -\frac{a}{2\pi} \left\{ (1-x)^{2} \ln(1-x) + (2x-x^{2}) \ln x \right\} \\ -\frac{b}{2\pi} \left\{ (1-x^{2}) \ln((1-x) + x^{2} \ln x) \right\}; \\ \frac{dy_{c}}{dx} - A_{0} = \frac{a}{\pi} \left\{ (1-x) \ln \frac{1-x}{x} - 1 \right\} + \frac{b}{\pi} \left\{ x \ln \frac{1-x}{x} + 1 \right\}; \\ -C_{M_{0}} = \frac{1}{6} \left\{ a + 5b \right\}; \\ \beta = \frac{1}{2\pi} (a + 3b); \\ \frac{\pi}{a_{0}} \right\}$$

8 5 4 B MGS. 1- 5. - --

2

$$\left(\frac{\pi}{a_{0}} + \frac{1}{2}\right) C_{\text{Lopt}} = 2(a + b);$$

$$\alpha_{\text{opt}} = \frac{a - b}{2\pi} + \left(\frac{2\pi - a_{0}}{2\pi + a_{0}}\right) \left(\frac{a + b}{\pi}\right);$$

$$\varepsilon_{\rm C}(0) = -\frac{1}{2\pi} (3a + b).$$

For $\varepsilon_c(\theta)$ and $\varepsilon_c^{\dagger}(\theta)$ see (27) and (28).

9. gi Constant Over the Whole Chord

١

If in the last section we put a = b = k (Fig. 7), we obtain

the results for a constant approximate distribution of normal load; these results have been given by a number of authors^{5,6,7,8}

$$y_{c} = -\frac{k}{\pi} \left\{ (1 - x) \ln (1 - x) + x \ln x \right\}$$

= -0.73293560 k $\left\{ (1 - x) \log_{10}(1 - x) + x \log_{10} x \right\}$;
$$\frac{dy_{c}}{dx} = \frac{k}{\pi} \ln \frac{1 - x}{x};$$

$$-C_{M_{0}} = k = \frac{1}{4} \left(\frac{\pi}{a_{0}} + \frac{1}{2} \right) C_{Lopt},$$

so if $a_0 = 2\pi$,

$$-\frac{C_{\rm H_0}}{C_{\rm Lopt}} = \frac{1}{4}$$

A180/

Also

$$\beta = \frac{2k}{\pi} \left(= \frac{C_{\text{Lopt}}}{2\pi} \text{ for } n_0 = 2\pi \right),$$

 α_{opt} is zero for $a_0 = 2\pi$, $\varepsilon_c(0) = -2k/\pi$, and $\varepsilon_c(0)$, $\varepsilon_c^{\dagger}(0)$ are given by (27) and (28) with $g_i = k$, $G_i = kx$, $A_1 = 4k/\pi$, $A_0 = c$, i.e.

$$\varepsilon_{c}(\theta) = 2k \left[x - \frac{\theta}{\pi} \right] \operatorname{cosec} \theta,$$

$$\varepsilon_{c}^{\dagger}(\theta) = k - \varepsilon_{c} \operatorname{cot} \theta - \frac{2k}{\pi} \operatorname{cosec} \theta.$$

10. g. Constant for $0 \le x \le X$, and Decreasing Linearly to Zero for $X \le x \le 1$

For low-drag aerofoils it is customary to use centre lines such that g_i is constant from the leading edge to some value X of x, usually chosen to coincide with the design position of maximum suction on the fairing. It may be shown that such centre lines lead to larger C_L -ranges than any others. An important set of such centre lines is obtained⁸,⁹ if g_i decreases linearly to zero between x = X and x = 1; but over the rear portion of the aerofoil it is probable that g_i may sometimes be varied with advantage, particularly with regard to the resultant value of C_{M_0} , and other shapes of the graph of g_i between X and 1 will be considered later.

For the shape of graph here to be considered (Fig. 8)

.

 $g_i = k \quad (o \leq x \leq X),$

$$= k \frac{1-x}{1-x} \quad (X \leqslant x \leqslant 1).$$

•

We put a = b = k, b - c = 0, d = 0 in the formulae of the second section of Appendix III, and we find that

$$G_{1}(\mathbf{x}) = \mathbf{k}\mathbf{x} \qquad (0 \le \mathbf{x} \le \mathbf{X}),$$

$$= -\mathbf{k} \frac{(\mathbf{X}^{2} - 2\mathbf{x} + \mathbf{x}^{8})}{2(1 - \mathbf{X}),} \qquad (\mathbf{X} \le \mathbf{x} \le 1);$$

$$A_{1} = \frac{2\mathbf{k}}{\pi} (1 + \mathbf{X});$$

$$A_{0} = \frac{\mathbf{k}}{\pi} \left\{ \frac{1}{2} + \frac{\mathbf{X}^{2}}{2(1 - \mathbf{X})} \ln \mathbf{X} - \frac{1 - \mathbf{X}}{2} \ln (1 - \mathbf{X}) \right\};$$

$$\mathbf{y}_{0} = \frac{\mathbf{k}}{2\pi} \left\{ \frac{(\mathbf{x} - \mathbf{X})^{2}}{1 - \mathbf{X}} \ln |\mathbf{x} - \mathbf{X}| - \frac{(1 - \mathbf{x})^{2}}{1 - \mathbf{X}} \ln (1 - \mathbf{x}) - 2\mathbf{x} \ln \mathbf{x} \right\}$$

$$- \mathbf{x}(1 - \mathbf{X}) \ln (1 - \mathbf{X}) - (1 - \mathbf{x}) \frac{\mathbf{X}^{2}}{1 - \mathbf{X}} \ln \mathbf{X} \right\}$$

$$\frac{d\mathbf{y}_{0}}{d\mathbf{x}} = \frac{\mathbf{k}}{\pi} \left\{ \frac{\mathbf{x} - \mathbf{X}}{1 - \mathbf{X}} \ln |\mathbf{x} - \mathbf{X}| + \frac{1 - \mathbf{x}}{1 - \mathbf{X}} \ln (1 - \mathbf{x}) - \ln \mathbf{x} - \frac{1}{2}$$

$$+ \frac{\mathbf{X}^{2}}{2(1 - \mathbf{X})} \ln \mathbf{X} - \frac{1 - \mathbf{X}}{2} \ln (1 - \mathbf{X}) \right\}$$

where

•

$$\left(\frac{\pi}{a_0} + \frac{1}{2}\right) C_{\text{Lopt}} = 2k(1 + X).$$

Alao

1

$$-C_{M_{O}} = \frac{k}{6} (4X^{2} + X + 1),$$

so that, for $a_0 = 2\pi$,

.

$$-\frac{C_{M_0}}{C_{Lopt}} = \frac{4X^2 + X + 1}{12(1 + X)},$$

while

$$\beta = \frac{k}{\pi} \left\{ \frac{1}{2} + X - \frac{X^2}{2(1-X)} \quad \ln X + \frac{1-X}{2} \ln (1-X) \right\}.$$

With/

With the values of A_1 , A_0 , g_i , G_i above, ' α_{opt} is then given by (9), $\epsilon_c(0)$ by (6), $\epsilon_c(0)$, $\epsilon_c'(0)$ by (27) and (28) respectively.

For the purposes of computation the equation for y_c is written in the form

$$y_{c} = K_{0} \left\{ (x - X)^{2} \log_{10} |x - X| - (1 - x)^{2} \log_{10} (1 - x) \right\}$$
$$- K_{1} x \log_{10} x + K_{2} x + K_{3}.$$

For a fixed X, the quantities k, A_0 , A_1 , β , C_{M_0} , α_{opt} (if a_0 is fixed), y_c , g_i , G_i , ψ_c , ε_c , ε_c^* are all proportional to $\left(\frac{\pi}{a_0} + \frac{1}{2}\right) C_{Lopt}$.

In Table I, the coefficients K_0 , K_1 , K_2 , K_3 in the expression for y_c , together with k, A_0 , β , C_{M_0} and $\varepsilon_c(0)$ are tabulated for $\left(\frac{\pi}{A_0} + \frac{1}{2}\right) C_{\text{Lopt}} = 1$ and various values of X; for $\left(\frac{\pi}{A_0} + \frac{1}{2}\right) C_{\text{Lopt}} = 1$, $A_1 = \frac{1}{\pi}$.

Table II contains values of the ordinates y_c for X = 0.35(0.05)1.0 and a fairly long list of values of x; Table III contains values of ψ_c , ε_c , ε'_c , required for the calculation of q/U on Approximation III, for the same values of X and a shorter set of values of x.

We shall show later how these Tables may be used to build up values for more complicated forms of g;.

The Tables were prepared at the National Physical Laboratory, under the supervision of Mrs. Moore, while I was working there.

Some numerical values of the no-lift angle and comparisons with experiment have been given by Jacobs and Abbott¹⁰. Further comparisons of theory and experiment are to be found in Ref. 11. It should be noted that some disagreement between the measured and calculated values of, say, β and C_{M_0} is to be expected because of the singularity in the theoretical solution at $\mathbf{x} = 0$ (and at $\mathbf{x} = 1$ if X = 1); the exact manner in which the smoothing-away of the singularity in practice will affect the results is difficult to predict, and will probably vary to some extent from model to model. These uncertainties do not seem to be objectionably large in practice.

From the values given in Table I, it appears that, for a given design C_L (i.e. C_{Lopt}), $-C_{M_0}$ may be inconveniently large, especially if X is the position of maximum suction on the fairing and this position is required to be fairly far back along the chord. The ratio of $-C_{M_0}$ to C_{Lopt} may be decreased by reflexing the centre line towards the trailing edge; it is always preferable to

re-design/

$$\frac{dy_{c}}{dx} = \frac{k}{\pi} \left\{ \frac{(x-X)(2-X-x)}{(1-X)^{2}} \ln |x-X| - \ln x + \left(\frac{1-x}{1-X}\right)^{2} \ln (1-x) + \frac{x}{1-X} - \frac{2}{3} (1-X) \ln (1-X) + \frac{(3-2X)X^{2}}{3(1-X)^{2}} \ln x - \frac{3-X}{3(1-X)} \right\};$$

$$-C_{M_{c}} = kX^{2};$$

- 22 -

$$\left(\frac{\pi}{a_0} + \frac{1}{2}\right)^{C} \text{Lopt} = \frac{4k}{3} (1 + 2X)$$

Hence, for $a_0 = 2\pi$,

$$\frac{C_{M_0}}{C_{Lopt}} = \frac{3X^2}{4(1+2X)}$$

and

$$\frac{k}{C_{Lopt}} = \frac{3}{4(1+2X)}$$

For example, for X = 0.5, $k/C_{Lopt} = 0.375$, compared with when g_i -C_{Mo}/C_{Lopt} 0•333 is given by Fig. 8, while 0.094 compared with 0.139; for X = 0.6, k/C_{Lopt} = 0.341 and -C_{Mo}/C_{Lopt} = 0.123 compared with 0.3125 and 0.158, respectively. There is therefore a fair reduction in $-C_{M_0}$ at the expense of a Quite small increase in k; however, the increased negative pressure gradient just aft of x = X in these designs will certainly lead to a somewhat thicker boundary layer over the rear of the aerofoil, and, in spite of the decrease of the gradient towards the trailing edge, freedom from danger of turbulent boundary-layer separation may require a somewhat thinner aerofoil for the same value of X; it is also possible that separation at the stall may not start at the trailing edge, so the effect on stalling characteristics would have to be investigated. It may, however, be worth while to test an aerofoil with a centre line designed as here described.

12. g; Discontinuous and Constant in Each of Two Segments

On an zerofoil specially designed for suction, there would appear to be no objection to having g_i discontinuous, so long as the position of the discontinuity is the same as that in the velocity distribution over the fairing (uncambered aerofoil). With such a discontinuity we may, within quite wide limits, obtain any specified value of $-C_{M_0}/C_{Lopt}$ by adjusting the ratio of the loading in front of and behind the discontinuity. Negative loading over the rear portion of the chord will usually be necessary to obtain values of $-C_{M_0}/C_{Lopt}$, but the danger of turbulent boundary layer separation certainly does not arise, since the whole point of the design of such aerofoils is to concentrate the pressure recovery (fall in velocity) at one chordwise station on each surface, where a slot is cut and boundary-layer suction applied. There will, however, be a rise in the maximum value of g_i , with a consequent rise in the maximum value of the velocity on the surface and decrease in the theoretical critical speed for compressibility effects. Since the most important application of the suction principle is likely, for some time to come at any rate, to be to thick aerofoils for aeroplanes not moving at very high speeds, this effect is not likely to be a serious drawback.

The simplest of such centre lines to design are those in which g_i is constant in each of the two segments $c \leq x \leq X, X \leq x \leq 1$, with a discontinuity at x = X (Fig.11). Moreover, these are the designs which, for various reasons, are most likely to be employed in such cases as we are considering, where it is required to reduce $-C_{M_0}$ for a suction aerofoil to be used at speeds where compressibility effects will not be important. Experimental information should, however, be obtained for aerofoils with such centre lines as soon as

With the graph of gi as in Fig. 11,

convenient.

$$g_{i} = k \quad (0 < x < X),$$

$$= -k^{i} \quad (X < x < 1);$$

$$G_{i} = kx \quad (0 < x < X)$$

$$= (k + k^{i}) X - k^{i}x \quad (X < x < 1);$$

$$A_{1} = \frac{4}{\pi} \left\{ kX - k^{i}(1 - X) \right\};$$

$$A_{0} = \frac{4}{\pi} \left\{ kX - k^{i}(1 - X) \right\};$$

$$\begin{split} \mathbf{k}_{0} &= -\frac{\mathbf{k} + \mathbf{k}^{*}}{\pi} \left\{ \mathbf{X} \ln \mathbf{X} + (\mathbf{1} - \mathbf{X}) \ln (\mathbf{1} - \mathbf{X}) \right\}; \\ \mathbf{y}_{0} &= \frac{\mathbf{k} + \mathbf{k}^{*}}{\pi} \left\{ (\mathbf{x} - \mathbf{X}) \ln |\mathbf{x} - \mathbf{X}| - [(\mathbf{1} - \mathbf{X}) \ln (\mathbf{1} - \mathbf{X})] \mathbf{x} + [\mathbf{X} \ln \mathbf{X}](\mathbf{1} - \mathbf{x}) \right\} \\ &- \frac{\mathbf{k}}{\pi} \mathbf{x} \ln \mathbf{x} + \frac{\mathbf{k}^{*}}{\pi} (\mathbf{1} - \mathbf{x}) \ln (\mathbf{1} - \mathbf{x}); \\ \frac{\mathbf{d}\mathbf{y}_{0}}{\mathbf{d}\mathbf{x}} - \mathbf{A}_{0} &= \frac{\mathbf{k} + \mathbf{k}^{*}}{\pi} \ln |\mathbf{x} - \mathbf{X}| - \frac{\mathbf{k}}{\pi} \ln \mathbf{x} - \frac{\mathbf{k}^{*}}{\pi} \ln (\mathbf{1} - \mathbf{x}); \\ - \mathbf{C}_{\mathrm{M}_{0}} &= \mathbf{k}(2\mathbf{X}^{2} - \mathbf{X}) - \mathbf{k}^{*}(\mathbf{1} + \mathbf{X} - 2\mathbf{X}^{2}); \\ \left(\frac{\pi}{\mathbf{a}_{0}} + \frac{1}{2}\right)\mathbf{C}_{\mathrm{Lopt}} &= \pi \mathbf{A}_{1} &= 4\mathbf{k}\mathbf{X} - 4\mathbf{k}^{*}(\mathbf{1} - \mathbf{X}). \\ \mathbf{\beta}, \mathbf{c}_{0}(\mathbf{0}), \ \alpha_{\mathrm{opt}}, \ \mathbf{c}_{0}(\mathbf{0}), \ \mathbf{c}_{0}^{*}(\mathbf{0}) \text{ are, as usual, to be found from eqns. (6), (9), (27) end (28). \\ \\ \text{When the value of } \mathbf{X} \text{ has been selected, appropriate values of } \mathbf{C}_{\mathrm{Lopt}} \text{ and } - \mathbf{C}_{\mathrm{M}_{0}}. \\ \text{For example, with } \mathbf{X} &= 0.75, \text{ if the desired values of } \mathbf{C}_{\mathrm{Lopt}} \text{ and } - \mathbf{C}_{\mathrm{M}_{0}}. \\ \text{are } 0.2 \text{ and } 0.015, \text{ respectively, we have, assuming } \mathbf{a}_{0} &= 2\pi, \\ \\ \mathbf{X} \mathbf{k} - \mathbf{k}^{*} &= 0.2, \{0.375} \ \mathbf{k} - 0.625 \ \mathbf{k}^{*} = 0.015, \\ \end{aligned}$$

- 24 -

If the graph of g_i is composed of streight lines, then g_i may be expressed as the sum of a number of certain 'basic' values, and all those quantities which depend linearly on $g_i(G_i, A_1, A_0, C_{Lopt})$ and α_{opt} (for a given a_o), β , C_{M_o} , y_c , ψ_c , dy_c/dx , $\varepsilon_c(\theta)$ $\varepsilon_c'(\theta)$) may be found as the sum of the corresponding values for the 'basic' g_i . Once the values for the 'basic' g_i are all tabulated, we have a convenient numerical process for finding these values in other cases.

Let the values of g_i be given at $\mathbf{x} = 0$, $X_1, X_2, \dots, X_n, 1$, ($0 < X_1 < X_2, \dots < X_n < 1$) and let the graph of g_i against \mathbf{x} between any two of "these values of \mathbf{x} which are consecutive be a straight line. We first assume that g_i is continuous; we shall remove this restriction later. Let the values of g_i at the specified values of \mathbf{x} be $V_0, V_1, V_2, \dots, V_n, V_{n+1}$, respectively (Fig. 12).

The simplest case is that in which $V_0 = V_1$ and $V_{n+1} = 0$. The 'basic' values of g_i are then those of \$10, Fig. 8, with $X = X_1$, X_2, \ldots, X_n in turn. Denote the value of g_i whose graph is shown in Fig. 8 by $g_i(k; X)$. Then if $V_0 = V_1$ and $V_{n+1} = 0$, the value of g_i whose graph is shown in Fig. 12 is given by

$$g_{i} = \sum_{r=1}^{n} g_{i}(\mathbf{a}_{r}; X_{r}) \cdot \dots (59)$$

if we make the values of the two sides of this equation agree at $x = X_r(r = 1, 2, ..., n)$, since they then necessarily agree at x = 0, are both zero at x = 1, and both vary linearly with x between 0 and X_1 , X_1 and X_2 , and so on. We have therefore exactly n linear equations from which to determine the n unknowns a_r . The simplest method of solution is to equate the changes of slope at $x = X_1$, $x = X_2$ and so on. Proceeding in this way we find that

$$a_{1} = (V_{1} - V_{2}) \frac{1 - X_{1}}{X_{2} - X_{1}},$$

$$a_{r} = (V_{r} - V_{r+1}) \frac{1 - X_{r}}{X_{r+1} - X_{r}} - (V_{r-1} - V_{r}) \frac{1 - X_{r}}{X_{r} - X_{r-1}},$$

$$(r = 2, 3, ..., n-1; n > 2),$$

$$a_{n} = V_{n} - (V_{n-1} - V_{n}) \frac{1 - X_{n}}{X_{n} - X_{n-1}} = V_{n} \frac{1 - X_{n-1}}{X_{n} - X_{n-1}} - V_{n-1} \frac{1 - X_{n}}{X_{n} - X_{n-1}}$$

$$\dots (6e)$$

and/

- 25 -

and we may easily verify algebraically that with these values the sum on the right in eqn. (59) has the values V_1 at x = 0 and $x = X_1$, V_2 at $x = X_2$, and so on.

The values of β , C_{M_0} , y_c , ψ_c , ε_c , ε_c' for all such cases may therefore be found from Tables I, II and III. In those tables values are given for $\left(\frac{\pi}{z} + \frac{1}{2}\right)C_{Lopt} = 1$. Since the value of $\left(\frac{\pi}{z} + \frac{1}{2}\right)C_{Lopt}$ corresponding to a_r is $2a_r(1 + X_r)$, the values in these tables must be multiplied by $2a_r(1 + X_r)$, where the a_r have the value found above, and then added together.

The simplest composite case occurs when n = 2. (Fig. 9 and Ref. 12). If, following the notation of Ref. 12, we put $V_1 = k$, $V_2 = ks$, then

$$a_1 = k(1-s) \frac{1-X_1}{X_2-X_1}, a_2 = k \frac{s(1-X_1)-(1-X_2)}{X_2-X_1}.$$

If $V_{n+1} \neq 0$, we must introduce, as another 'basic' g_i , the constant V_{n+1} , which we may also denote by $g_i(V_{n+1}; 1)$ [Fig. 7 with $k = V_{n+1}$]. Then

$$g_{i} = \sum_{r=1}^{n} g_{i}(a_{r}; X_{r}) + V_{n+1},$$

where the values of a are given by the same formulae (60) as before with $V_r - V_{n+1}$ in place of V_r , i.e. a_r is given by exactly the same formula for r = 1, 2, ..., n-1 and

$$a_n = V_n - V_{n+1} - (V_{n-1} - V_n) \frac{1 - X_n}{X_n - X_{n-1}}$$

The formulae for g_i constant are contained in §9, and numerical values are shown in Tables I, II, and III under X = 1for $C_{\text{Lopt}}\left(\frac{\pi}{a} + \frac{1}{2}\right) = 1$; these values must be multiplied by $4V_{n+1}$ and added to the others.

Finally if $V_0 \neq V_1$, we add to the sum on the right in (59) another 'basic' g_i , shown in Fig. 13, for which $g_i = 0$ for $x \gg X_1$, $g_i(0) = V_0 - V_1$, and g_i varies linearly with x for $e \leq x \leq X_1$.

- 26 -

The formulae for this 'basic' g_i are contained in the second section of Appendix III if we put b = c = d = 0, $a = V_0 - V_1$ (see Fig. 5). No tables have been prepared since it is not clear what useful purpose would be served by designing centre lines with $V_0 \neq V_1$.

We turn next to the case in which g_i has one or more discontinuities. The additional 'basic' g_i 'required may be taken as that in Fig. 14, and denoted by $g_i(k; X; e)$; it is

equal to k for $0 \le x \le X$, and to 0 for $X \le x \le 1$. Let us suppose first that g_i has only one discontinuity, at $x = X_g$, and that as $x \to X_g = 0$, $g_i \to V_g$, but that as $x \to X_g + 0$, $g_i \to W_g$. It will be sufficient to write out the formulae with $V_0 = V_1$; then

$$g_{1} = g_{1}(V_{3} - W_{3}; X_{3}; 0) + \sum_{r=1}^{n} g_{1}(a_{r}; X_{r}) + V_{n+1},$$

and the values of a_r are the same as before, with $V_r - (V_s - W_s)$ substituted for V_r for r = 1, 2, 3, ... s. Hence the a_r are given by the same expression as before, namely

$$a_1 = (V_1 - V_2) \frac{1 - X_1}{X_2 - X_1},$$

$$a_{r} = (V_{r} - V_{r+1}) \frac{1 - X_{r}}{X_{r+1} - X_{r}} - (V_{r-1} - V_{r}) \frac{1 - X_{r}}{X_{r} - X_{r-1}} (r > 1, n > 2)$$

for $r \leqslant s-1$ and for $s+2 \leqslant r \leqslant n-1$, while

$$a_{s} = (W_{s} - V_{s+1}) \frac{1 - X_{s}}{X_{s+1} - X_{s}} - (V_{s-1} - V_{s}) \frac{1 - X_{s}}{X_{s} - X_{s-1}},$$

$$\mathbf{a}_{s+1} = (\mathbf{V}_{s+1} - \mathbf{V}_{s+2}) \frac{1 - \mathbf{X}_{s+1}}{\mathbf{X}_{s+2} - \mathbf{X}_{s+1}} - (\mathbf{W}_s - \mathbf{V}_{s+1}) \frac{1 - \mathbf{X}_s}{\mathbf{X}_{s+1} - \mathbf{X}_s}$$

and

$$\mathbf{a}_n = \mathbf{v}_n - (\mathbf{v}_{n-1} - \mathbf{v}_n) \frac{\mathbf{1} - \mathbf{x}_n}{\mathbf{x}_n - \mathbf{x}_{n-1}}$$

as before, if s < n-1.

If there are two discontinuities, one at $\mathbf{x} = X_s$ and one at $\mathbf{x} = X_t$, the discontinuity at X_s being as before and that at X_t being given by a change in g_i from V_t to W_t , then

$$g_{i} - g_{i}(V_{s} - W_{s}; X_{s}; \circ) - g_{i}(V_{t} - W_{t}; X_{t}; \circ) - V_{n+1}$$

is continuous, has zero slope for $0 \le x \le X_1$, and is zero at x = 1; hence it can be expressed as

$$\sum_{r=1}^{n} g_{i}(a_{r}; X_{r}).$$

The values of the expression at $x = X_r$ are

$$\begin{split} v_{r} &- (v_{s} - w_{s}) - (v_{t} - w_{t}) - v_{n+1} & (r < s), \\ v_{r} &- (v_{t} - w_{t}) - v_{n+1} & (s < r < t), \\ v_{r} &- v_{n+1} & (t < r < n); \end{split}$$

and the a_r are given by the same expressions (60) as before, if these values be substituted for V_r ,

In the simplest composite case, n = 2, (Fig.1), $V_0 = a$, $V_1 = b$, $W_1 = c$, $V_2 = d$, $W_2 = e$, $V_3 = f$, $g_1 = g_1(a_1; X_1) + g_1(a_2; X_2) + g_1(a-b; 0; X_1; 0) + g_1(b-c; X_1; 0)$ $+ g_1(d-e; X_2; 0) + f$,

where the third term on the right denotes the function whose graphis shown in Fig. 13, and

 $a_1/$

-- 29 ---

ż

$$a_1 = (c-d) \frac{1-X_1}{X_2-X_1}$$
, $a_3 = e-f-(c-d) \frac{1-X_2}{X_2-X_1}$

The solution when g_i has the form depicted in Fig. 14 is contained in §12, by putting $k^1 = 0$ in the formulae there given. (See Fig. 11). Systematic tabulation for various values of X has not yet been undertaken, but it is recommended that such tables be prepared as soon as suction aerofoils are likely to come into general use.

References

- 1. Goldstein, S.: Approximate Two-Dimensional Aerofoil Theory, Part I. Velocity Distributions for Symmetrical Aerofoils, Gurrent Peper No. 68.
- 2. Goldstein, S.: Approximate Two-Dimensional Aerofoil Theory, Part II. Velocity Distributions for Cambered Aerofoils. Current Paper No. 69.
- Goldstein, S. and Richards, E. J.: Approximate Two-Dimensional Aerofoil Theory. Port III. Approximate Design of Symmetrical Aerofoils for Specified Pressure Distributions. Gurrent Paper No. 70.
- 4. Allen, H. J.: General Theory of Airfoil Sections having Arbitrary Shape or Pressure Distribution. N.A.J.&. Report 824. 1945.
- 5. Taylor, J. Lockwood; Theoretically-Derived Profiles of Thin Sections Suitable for High Speeds. Aircraft Engineering, 11 (1939), 441.
- 6. Tani, I. and Mituisi, S.: Contributions to the Design of Aercfcils Suitable for High Speeds. Tokyo Report No. 198. September, 1940. Author's Abstract - A.R.C. 6260.
- 7. Jacobs, E. N. and von Doenhoff, A. E.: see "Preliminary Report on Laminar-Flow Airfoils and New Methods Adopted for Airfoil and Boundery-Layor Investigations" by E. N. Jacobs, N.A.C.A. 1.C.R. Jun 1939.
- 8. Squire, H. B.: Review of Calculations on Low-Drag Wing Sections. A.R.C. 5865.
- 9. Pinkerton, R. M. and Allen, H. J.; see "Preliminary Report on Laminar-Flow Airfoils and New Methods Adopted for Airfoil and Boundary-Loyer Investigations" by E. N. Jacobs. N.A.C.A. A.C.R. June 1939.
- Jacobs, E. N. and Abbott, I. H.: Angles of Zero Lift for some N.A.C.A. Low-Drag Airfoils. N.A.C.A Tech. R. part 669. February 1942.

11/

- Davidson, M. and Turner, H. R. Jr.: Effects of Mean Line Loading on the Aerodynamic Characteristics of some Low-Drog Airfoils. N.A.C.A. A.C.R. 3127, 1943.
- 12. Richards, E. J.: A Family of Camber Lines for Low Drag Aerofoils giving on Arbitrary Pitching Moment Coefficient. A.R.C. 8277.
- 13. Richards, E. J.: Note on the Limiting Thickness Chord Ratios Allowable on Low Drag Wings. A.R.C. 7813.

ť

Addendum to above - A.R.C. 8139.

Table 1/

Table 1

Values for
$$\begin{pmatrix} \frac{1}{a} + \frac{1}{2} \\ a_0 & 2 \end{pmatrix}$$
 C_{Lopt} = 1

Some Constants

Xı	k	к _о	K ₁	к ₂	K ₃	A _o	β	-C _{hío}	- E _c (0)
0.25 0.3 0.35 0.4 0.45 0.55 0.55 0.65 0.65 0.7 0.75	0.4000 0000 0.3846 15385 0.3703 7037 0.3571 4285 0.3125 2759 0.3333 3333 0.3225 80645 0.3125 0000 0.3030 3030 0.2941 1765 0.2857 1429	0.1954 4949 0.2013 5593 0.2088 1356 0.2181 35595 0.2297 6038 0.2443 1187 0.2627 0093 0.2863 0297 C.3172 8814 0.3592 8216 C.4188 2034		2 0.0063 8129 0.0058 0768 0.0048 4290 0.0035 3274 +0.0019 1065 0 -0.0021 8457 -0.0046 3672 -0.0073 5869 -0.0103 6273 -0.0136 7419			p 0.0891 1 0.0921 3 0.0953 7 0.0987.8 0.1023 6 0.1061 0 0.1100 0 0.1140 6 0.1182 8 0.1227 1 0.1273 6		0.2292 0 0.2261 8 0.229 4 0.2195 3 0.2159 5 0.2122 1 0.2083 1 0.2042 5 0.2000 25 0.1956 0 C.1909 5
08 085 09 095 1	0.2777 7778 0.2702 7027 0.2631 57895 0.2564 1026 0.25	C•5089 83055 C•6603 0234 C•9643 8895 1•8793 2205	0.2035 9322 0.1980 9070 0.1928 7779 0.1879 32205 89	-0.0173 3780 -0.0214 3135 -0.0260 9981 -0.0316 7009	0.0315 68355 0.0336 7200 0.0357 43695 0.0357 8273	0.0268 7191 0.0215 8350 0.0157 8307 0.0091 3887	0.1322 8 0.1375 7 0.1433 7 0.1500 2 0.1591 5	0.2018 5 0.2135 1 0.2254 4 0.2376 1 0.25	0.1860 3 0.1807 4 0.1749 4 0.1682 9 0.1591 5

A.....

•

.

Table 2//

-

			Centre	Lines wit	h g _i Co	onstant fo	or 0 < x	≤X, end	l Decreasi	ng Lanear	ly to Zer	o for X a	≤ x ≤ 1		
			Values fo	or $\begin{pmatrix} \pi & 1 \\+ \\ a_0 & 2 \end{pmatrix}$	c_{Lopt}	= 1	1		Centre Lj	ine Ordina	ates				
x	0•3	, ∙0•35 ⊧	0.4	0.45	0•5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	1.0
0	ò	0	L0	0	0	10	,0	0	0	0	0	0	0	0	0
0.001	0.000976	0.000945	0.000915	0.000887	0.000859	0.00833	808000.0	0.000734	0.000761	0.000738	0.000717	0.000695	0.000674	0.000652	0.000629
0.002	0.001782	0.001726	0.001672	0.001621	0.001572	0.001524	0.001479	0.001435	0.001392	0.001351	0.001310	0.001271	0.001231	0.001192	0.001148
0.003	0.002523	0-002445	0.002370	0.002298	0.002228	0.002161	0.002097	0.002035	0.001974	0.001915	0.001858	0.001801	0.001745	0.001688	0.001625
0.004	0.003223	0.003124	0-003029	0.002937	0.002849	0,002763	0.002718	0.002602	0.002524	0.002449	0.002375	0.002303	0.002230	0.002157	0.002075
0.005	0.003892	0.003773	0.003659	0.003548	0.003442	0.003339	0.003240	0.003144	0.003051	0.002959	0.002870	0.002782	0.002694	0.002605	0.002505
0.006	0.004535	0.004398	0.004265	0.00137	C.004014	0.003895	0.005779	0.003667	0.003558	0.003452	0.003347	் 0.005244	0.003141	0.003036	0.002919
0.007	0.005158	0_005003	0.004853	0.004708	0.004568	0.004432	0.004301	0.004174	0.004050	0.003928	0.003809	0.003691	0,003574	0.003454	C-003319
0.0075	C-005463	0.005299	0.005140	0.004987	0.004839	0.004696	0.004557	0.004422	0.004290	0.004162	0.004035	C+003910	0.003786	0.003658	0.003515
0.008	0.005764	0.005591	0.005424	; J.005263	0.005106	0.004955	0.004809	0.004666	0.004.528	0.004392	0.004259	0.004127	C.C.3994	0.003859	0.003708
0.009	0.006353	0.006164	0.005981	0.005303	0.005632	0.005465	0.005304	0.005147	0.004994	0.04344	0.004697	0.004551	0.004405	0.004255	0.004087
0.010	0.006929	C. 336724	0.006525	0.006332	0-006145	0.005964	0.005788	0.005616	0.005449	0.005286	0.005125	0.004965	0.004805	0.004641	C.CO4456
0-012	0.008045	0.007830	0.007579	0.007356	0.007140	0.006930	0.006726	0.006527	0.006333	0.006143	0.005955	0.005769	0.005582	J-005390	0.005173
0.0125	0.008317	0.008073	0.007836	0.0076061	0.007383	0.007166	0.006955	0.006750	0.006549	0.006352	0.006158	C.C05965	C.005772	0.005573	0.005347
0.014	0.009118	0.0.08853	0.08594	0.008343	0.008099	0.007861	0.007631	0.007405	3.007185	0.006969	0.006755	0.006543	0.006330	0.006111	0.005062
0.016	0.010156	0.009862	6.09576	0.009298	0.009027	0.008763	008506	0.008255	0.008010	C+007768	0,007530	0.007293	0.007054	0.006808	0.006528
0.018	0.011162	0.010842	0.010529	0.010224	3.009927	0.009638	0.009356	0.009080	0.008810	0.008545	0.008282		0.007757	C-007485	0.007174
0.020	0.012140	0.011794	0.011456	0.011126	0-010804	0.010490	0.010183	0.009884	0.009590	0.009300	0.009014	0.003/28		0.008143	
0.025	0.014478	C.C14C73	0.013674	0.013285	0.012903	0.012531	0.012166	0.011809	0.011458	0.011111	0.010768	0.010425	0.010078	0.009718	0.009303
0.030	0.016688	0.015226	0.015774	C-015329	0.014892	0.014465	0.014046	0.013634	0.013229	0.012828		0.012032	0.0174.05	0.011208	0.010722
0.035	0.018790	0.018279	0.01//4	0.01/2//	0.016/89	0.016309	0.015839	0.015375	0.014910	0.014466		0.013505	0.015108	0.012629	b = 0.072075
0.04	0.020798	0.020240	0.019688	0.019142	0.018605	0.0180//		0.017044		0.016036		0.0179034	0.017105	0.015900	
0.05	0.024575	0.023935	0.023296	0.022661	0.022034	0.021415	0.020003	0.020190	0.019599	0.019005	0.021.021	0,017000	0.010601	0.010000	0.019797
0.05	0.028083	0.02/3/1	0.026656	0.025942	0.025234	0.024531	0.023036	0.025146	0.022460	0.021775	0.021091	0.020599	0.019091	0.00444	$p_{0} = 0.00002$
0.07	0.031362		0.029006	029022	0.020240	0.027401	0.026600	0.025910	0.025152	0.024500	0.02.010	13.022051	0.022000	0.02.190	0.020104
0.075	0.032925	0.0772124	0.031312	0.030495		0.020004	0.020034	0.009510	0.027608	0.02000	0-02600	0.024004	0.021.252	0.027514	h 020181
	0.034441		0.032114	0.051 920		0.030229	0.023305	0.020940	0.03011	0.020094	0-028269	0.027327	0.026353	0.025319	0.021075
0.09	0.05/341	0.0504/2	0.079079	0.077097	0.076747	0.075716	0 021 274	0.07770	0.032143	0.0211.05	0.0301.26	0.029106	0.028351	0.027228	0.025869
0.10	0.040080	0.039175	0.030258	0.057203	0.014064	0.070006	0 028000		0.036704	0.035583	0.0311.7	0.033284	0.032074	0.030779	0.029199
0.12	10.045120	0.044166	101ر40•04	0.042122	0.041001	0.039900	0.020200	10.021002	0.000101		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10000000			

;

Table Continued/

ł 32

Table 2

Table 2 Continued

÷

~

											. *	<u></u>			
x	0•3	0.35	0.1-	0.45	° .5	i0 . 55	0.6	0.65	0.7	¹ 0 . 75	0.8	0.85	0.9	0.95	1.0
0.14	0.049640	0.048666	0.047616	.0.046515	0.045379	0.044217	0.043036	0.041838	0.040623	0.039388	0.038127	0.036830	0.035476	0.034018	0.032226
0.15	0.051721	0.050748	0.049685	0.048560	0.047393	0.046195	0.044971	0.043726	0.042461	0.041171	0.039852	0.038492	0.037069	0-035534	0.033538
0.16	0.053690	0.052725	0.051654	0.050512	0.049318	0.048086	0.046824	0-045536	0.044223	0.042882	0.041507	0.040086	0.038596	10.036985	_D_0 349 88
0.18	0.057309	0.056381	0.055313	0.054149	0.052915	0.051628	0.050299	0.048933	0.047533	0.046096	ാ.ഗു.617	0.043081	0.041464	0.039707	0.037512
0.20	0.060520	0.059659	0.058619	0.057453	U ₊056195	0.054868	0.053435	0.052051+	0.050578	'0 . 049055	0.047480	0.045838	0.044102	0.042206	0.039821
0.22	0.063340	0.062581	0.061592	0.060444	0.359180	0.057828	0.056404	0.054918	0.053377	0.051778	0.050116	0.048375	0.046527	0.044499	0.041930
0.24	0.065778	0.065157	0.064246	0.063137	0.061884	0.060521	0.059069	0.057541	0.055944	0.054278	0.052538	0.050707	0.048753	0.046600	0.043854
0.25	0.066853	0.066319	0.065453	0-064376	J.063136	0.061773	0.060311	0.058766	0.057145	0.055449	0.053672	0.051 799	0.049796	0.047583	0.01,4749
0.26	0.067853	0.067396	0.066593	0.065545	0.064321	3.062962	0.061494	0.059935	0.058293	0.056569	0.054758	0.052844	0.050793	0.048521	0.045602
0.28	0.069494	0.069301	0.068638	0.067675	0.0664.98	0.065159	0.063689	0.062110	0.060432	0.058660	0.056707	0.054797	°0•052655	10.050271	0.047186
0.30	0.070721	0.070867	0.070385	0.069533	0.068423	J.C67119	0.065661	0.064071	0.062371	0.060558	0.058631	0.056574	0.054347	JJ-051856	0.048611
0.32	U-071431	0.072084	0.071833	0.071121	0.070100	J-068848	0.067416	0,065832	0.064115	0.062271	<u></u> ა-060299	0.058180	0.055875	0.053285	0.049885
0.34	0.071733	0.072924	0.072975	0.072440	0.071531	J.070350	0.063958	c.067390	0.065669	C.063804	0.061794	0.059622	0.057246	0.054561	0.051012
0.35	C.071754	0.073181	0.073429	0.072998	C.C72155	0.071017	0.069650	0.068095	0.066376	'0 . 064 5 04	0.062478	0.060282	.0.057873	0.055144	¦0₀051522
0.36	0.071694	0.073302	C+073802	0.073487	0.072717	0.071627	¦ ∪₊070290 ¦	0.068751	0.067037	10.065160	0.063121	0.060903	0.053463	0.055690	C.051997
0.38	0.071352	0.073228	0-074290	0.074254	0.073656	0.072679	0.071414	0.069917	0.068222	·0.066343	0+064263	0.062027	0.059530	0.056675	0.052845
0.40	0.070758	0.072807	0.074390	0.074731	0.074344	0.073504	0.072330	0.070891	0.069225	ຸວ . 06 7 355	0.065283	0.062997	0.060449	0.057520	0.053557
0.42	0.069875	0.072087	C+074004	10.074899	0.074773	0.074099	0.073037	0.071671	0 .07 0049	;0 . 068197	0.C66124	0.063815	0.061224	10.058225	0.054136
C.44	0.068786	0.071101	0.073247	0.074723	0.074932	0.074461	0.073533	0.072257	0.070692	J0+068871	0.066805	0.064482	¦ C ₊061∂55	0.058794	0.054585
0.45	0.068162	C-070516	0.072751	0.074481	0.074906	0.074551	0.073701	0.072477	0.070946	.0.069 145	0.067086	0.064759	0.062118	0.059028	ს-05476 მ
0.46	ು₀06 7 489	0.069874	0.072184	0.074104	C-C74805	0.074580	0.073814	0.072648	C-071155	0.069376	0.067328	0.364999	0.062345	10.059228	0.054904
C.48	0.065999	0.068430	0.070855	0.073051	0.074362	0.074446	0.073874	0.072839	JJ-0 7 1435	0.069712	0.067691	0.065367	່ J J J J J J J J J J J J J J J J J J J	10.059528	0-055095
C.50	0-064333	C•C66766	0.069239	0.071675	0.073545	0.074042	0.073705	0.072826	0.071529	0.069876	0.067896	L. J65586	,0 . 06289 9	0.059693	0.055159
C•52	0.062505	0.064961	0.067510	0,070026	0.C72243	0.073346	0.073296	0.072604	0.071434	0.069866	೭-067939	0.065653)	0.059724	0.055095
0.54	0.060529	0.062970	0.065539	C.068138	0.070579	0.072313	0.072632	C.072163	0.071144	0.069680	0.067819	0.065568	0.062386	0.059621	0.054904
0.55	J.059483	0.061915	J.U64486	0.067114	0.069636	0.071642	0.072197	0.071857	0.070924	0.069519	0.067696	0.065468	0.062793	0.059518	0.054760
0.56	ି ୦.୦ 58416	0.060827	0.063392	0.066039	0.068627	0.070831	0.071690	0.071492	0.070653	0.069312	0.067532	0.065329	0.062564	10.059382	0.054585
0.58	0.056178	0.058546	0.061088	0.063750	0.066430	0.068905	0.070437	0.070578	0.059952	0.068756	0.067075	0.064933	0.062235	0.059005	0.054136
0.60	0.053828	0=056140	0.053641	0.061292	0.064019	0.066665	0.063850	0.069398	0.069030	0_068006	0.066442	0.064375	0.051777	0.058490	iC.053557
0.62	0.051376	0.053621	0.056066	0.058683	0.061419	0.064165	0.066651	0.067924	0.067872	0.067053	0.065628	0.063654	0.051.108	0.057833	0.052845
0.64	0.046834	0.051001	0.053376	0.055938	0.058652	0.061443	0.064133	C.066102	0.066458	0.065884	0.064625	0.062761	0.060281	0.057031	0.051997
0.65	0.02.7531	0.01,9657	0.051992	0.054520	0.057212	0.060009	0.06276	0.065027	0.065647	0.065215	0.064049	0.062248	0.059808	0.056575	0.051522

-4

.

•

Table 2 Continued

,

.

.

Т

1

ı.

x	0.3	0•35	0•4	0•45	0.5	0.55	0.6	0.65	ó . 7	0•75	0.8	0.85	0.9	0.95	1.0
0.66	0.046210	0.048292	0.050584	0.053073	0.055739	0.058531	0-061332	0.063797	0.064761	0.064486	0.063422	0.061690	0.059294	0.056081	0.051012
0.68	0.043516	0.045505	0.047703	0.050104	0.052697	0.055453	0.058297	¦0.061015	0.062737	0.062839	0.062009	0.060434	0.058138	0.054977	0.049885
0.70	0.040763	0.042651	0.044745	0.047044	0.049544	0.052232	0.055066	0.057911	0.060298	0.060916	0.060370	0.058982	0.056808	0.053714	0.043611
0.72	0.037959	0.039741	0.041722	0.043906	0.046296	0.048890	0.051668	0.054553	0.057281	0.058678	0.058486	0.057321	0.055294	0.052285	0.047186
0.74	0.035116	0.036785	0.038646	0.040704	0.042968	0.045444	0.048130	0.050987	0.053867	0.056059	0.056330	0.055436	0.053585	0.050683	0.045602
0.75	0.033683	0.035294	0.037091	0.039083	0.041279	0.043689	0.046316	0.049139	0.052049	0.054560	0.055139	0.054404	0.052653	0.049813	0.044749
0.76	0.032244	0.033795	0.035528	0-037452	0.039576	0.041915	0.042477	0.047252	0.050167	0.052878	0.053866	0.053307	0.051668	0.048896	0.043854
0.78	0,029352	0.030782	0.032382	0.034162	0.036136	0.038319	0-040731	0.043380	0.046243	0.049149	0.051034	0.050907	0.049525	0.046914	0.041930
0.80	0.026453	0.027757	0.029219	0.030849	0.032661	0.034675	0.036914	0.039401	0.042145	0.045077	0.047713	0.048198	0.047137	0.044721	0.039821
0-82	0.023556	0.024732	0.026051	0.027525	0.029168	0.030999	0.033047	0.035342	0.037913	0.040756	0.043675	0.045125	0.044473	0.042300	0.037512
0.84	0.020674	0.021719	0.022893	0.024206	0.025671	0.027311	0.029152	0.031229	0.033584	0.036253	0.039186	0.041591	10.041495	0.039625	0.034988
0.85	0.019243	0+020221	0.021321	0.022552	0.023927	0.025468	0.027200	0.029161	0.031395	0.033950	0.036826	0.039580	0.039871	0.038183	0.033638
0.86	0.017819	0.018731	0.019757	0.020905	0.022189	0.023628	0.025249) ು. 02 7 089	0.029194	0.031622	0.034406	0.037318	JU+038146	0.036666	0.032226
ଧ ₊88	0.015004	0.015782	0.016658	0.017639	0.018737	0.019970	0.021362	0.022949	0.024778	0.026913	0.029434	0.032341	0.034331	0.033379	0.029199 +
J . 90	0.012244	0.012888	0.013613	0.014425	0.015335	0.016358	0-017515	0.018837	0.020369	0.022175	0.024349	0.026997	0.029841	0.029700	0.025869
0•92	0.009555	C.010065	0.010640	0.011283	0.012004	0.012815	0.013733	0.014784	0.016006	0.017456	0.019224	0.021453	0.024272	0.025525	0.022184
0.925	0.008896	0.009373	0.009910	0.010511	0.011185	0.011943	0.012801	0.013784	C-014927	0.016285	0.017946	0.020052	0.022779	0.024384	0.021198
0.94	0.006956	0.007334	0.007759	0.008235	0.008768	0.009367	0.010046	0.010823	0.011729	0.012807	0.014134	0.015842	0.018167	0.020651	0.018062
0.95	0.005698	0.006010	0.006362	0.006755	0.007195	0.007689	0.008249	0.008890	0.009637	0.010528	0.011626	0.013049	0.015031	0.01785	0.015797
0,96	0.004471	0.004719	0.004997	0.005309	C.005657	0.006047	0.006490	0.006996	0.007586	0.008289	0.009157	0.010287	D.C11886	0.014406	0.013365
J₀975	0.002702	0.002854	0.003025	C.003216	0.003429	0.003667	0.003937	0.004245	0.004604	0.005030	0.005557	0.006244	0.007227	008919	0.009303
0.98	0.002133	0.002254	0.002390	0.002541	0.002710	0.002900	0.003113	0.003357	0.003640	0.003977	C-004392	0.004934	0.005709	0.007063	0.007802
0.9875	0.001304	0.001379	0.001463	10-001556	001660	0.001776	0.001907	0.002057	C+002230	0.002435	0.002667	0.003016	0.003486	0.004313	0.0534/
1.0	0	0	0	0	ю	0	0	0	0	0	0	0	0	0	μ

Table 3/ ,

Table .3 Continued

	X ₁	= 0.7		{ 	$X_{\eta} = 0$	75 $X_1 = 0.8$				$X_1 = 0.85$		
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ψc	۶o	<u> </u>	Ψe	² و	εċ	Yc	° C	, 2 <mark>1</mark>	Ψc	⁵ c	- ٤¦
0	0	-0-1956	*	0	-0.1909 ₅	*	0	-0.1860	*	0	-0.1807	
0.005	0.04326	-0.1753	0.1402	0.04195	-3.1712	0.1360	0.04069	-0.1669	0.1320	0.03944	-0.1621	0.1283
0.0075	0.04972	-0.1708	0.1389	0.04824	-0.1669	0.1347	0.04677	-0.1627	0.1307	0.04532	-0.1580	0.1269
0.0125	0.05895	,-0.1639	0.1369	0.05717	-0.16015	0.1326	0.05543	-0-1561	0.1286	0.05369	-0.1517	0.1248
0.025	0.07339	-0.1512	0.1336	0.07117	-0.1479	0.1293	0.06897	-0.1443	0.1252	0.06677	-0.1402	0.1213-
0.05	0.08993	-0-1337	0.1297	0.08719	-0.1309	0.1253	0.08446	-0.1278	0.1211	0.08171	-0.124.3	0.1171
0.075	0.1004	-0.1203	0.1273	0.0973	-0.1181	0.1228	0.0943	-0.1154	0.1185	0.0911	-0.1122=	0.111
0.10	0.1080	-0.1091	0.1257	0.10475	-0.1072 ₅	0.1211	0+1014	-0.1050	0.1167	0.0980	-0.1022	0.1125
0•15	0.1189	-0.0902	0.1239	0.1153	-0.0890	0.1190	0.1116	-0.0874	0.1143	0.1078	-0.0853	0.1099
0.20	0.1264	-0.0739	0.1232	0.1226	-0.0734	0.1180	0•1187	-0.0725	0.1130	0.1146	-0.0709	0.1083
0.25	0.1320	-0.0591	0.1234	C.12805	-0.0593	0.1178	0.1240	-0.0589	0.1125	0.1196	-0.0580	0.1075
0•30	0.1361	-0.0452	0.1243	0.13215	-0.0461	0.1183	0.1279	-0.0463	0.1126	0.12345	-0.0460	0.1073
0.35	0.1392	-0,0319	0.1258	0.1352	-J.0334	0.1194	0•1310	-0.0343	0.1133	0.1264	-0.0345	0.1075
0.40	0.1413	-0.0187	0.1281	0.1375	-0.0210	0.1211	0.1333	-0.0225	0.1145	0.1286	-0.0234	0.1082
0•45	0•1426	-0.0056	0.1311	0•1390	⊸0.0086	0.1234	0•1348	-0.01085	0•1162	0.1302	-0.01235	0.1094
0.50	0.1431	+0.0077	0.1350	0•1397 ₅	+0.0040	0.1266	0.1358	+0.0009	0.1186	0.1312	-0.0013	0.1111
0•55	0.1426	0.0214	0.1400	0.1397	0.0168	0.1306	0•1361	0.0129	0.1218	0.1316	+0.0099	0.1135
0.60	0.1409	0.0359	0.1464	0.1388	0.0303	C•1359	0 .1356	0.0255	0.1260	0•1314	0.0216	.0 .1 166
0.65	0.1376	0.0515	0.1549	0.1367	0.044.7	0.1429	0•1343	0.0388	0•1316	0.1305	0.0338	0.1209
0.70	0.1316	0.0686	0.1663	0.1329	∂.06 04	0.1523	0.1317	0.0532	0•1391	0.1287	0.0470	⊍ ∎1266
0.75	C.1202	J-0852	.0.1316	C . 1260	0+0782	0.1654	0.1273	0.0694	0.1496	0.1256	0.0616	∂ •1345
0.80	0.1054	0.0990	0.0987	0.1127	0.0955	0.1251	0.1193	0.0882	0.1651	0•1205	0.0784	0•1463
0.85	0.0879	0.1099	0.0677	0.0951	0.1095	0.0870	0•1031	0-1066	0.1163	0.11085	0.0989	0.1655
0.90	0. ∪679	0.1179	0.0386	0.0739	0•1198 ₅	0.0512	0.0812	0.1207	0.0704	0.0900	0.1191	0.1025
0•925	0.0567	0.1207	0.0250	0.0618	0.1236	0.0344	0.0681	0.1259	0.0486	0.0761	J•1268	0.0724
C∘95	0.04422	0.1226	0.0123	0.04831	0.1263	0.0185	0,05334	0.1298	0.0279	0.05987	0.1328	0.04365
0•975	0.02949	0.1235	0.0013	0.03222	0.1278	+0.0044	0.03559	0-1322	0.0090	0.03999	0.1367-	- 0.0168
0.9875	0.02007	0.1234	-0,0028	0.02192	0.1279	-0.0018	0,024,005	0.1320	0.0010	0.02715	0•1376	0.03 49
1.000	0	0 . 122 7	0	0	0•1274	0	0	0.1323	0	0	0•1376	0

*See eqn.(29) and the remarks following that equation.

•

,

-

- - -

- 37 -

.

٠

Table 3 Continued

	Xı	= 0.9		X ₁	= 0.95		$X_1 = 1.0$			
x	Ya	٤c	£;	Ψc	٤ _c	٤;	Ψc	٤c	ʻ. 53	
0	0	-0.1749	*	0	-0.1683	* .	o	-0.15915	*	
0.005	0.038195	-0.1568	0.1247	0.03695	-0 . 15065	0.1213	0.035515	-0.1420	0.1181	
0.0075	0.04388	-0.1529	0.1233	0.04240	-0.1468	0.1199	0.04074	-0.1382	0. 1167	
0.0125	0.05195	-0.1467	0.1212	0.05016	-0.1408	0 .117 8	0.04813	-0.1324	0.1146	
0.025	0.06455	-0.1355	0.1177	0.062245	-0.1299	0.1142	0.05959	-C.1218	0.11095	
0.05	0.07890	-0.1201	0•1134	0.07595	-0.1150	0 .1 0985	0.07248	-0.1073	0.1065	
0.075	0.0879	-0.1085	0.1106	0.0845	-0.10375	0.1069	0.0805	-0.0964	0•1035	
0.10	0.0945	J •0988	0.1085	0.0908	-0.0944	0.1048	0.0862	-0.0874	0.1012	
0.15	0.1038	-0.0825	0.1057	0.0995	-0.0787	0.1017	0.0942	-0.0722	0.09795	
0.20	0.1103	-0.0687	0.1039	0.1055	-0.0654	0.0997	0.09955	-0-0595	0.0957	
J.25	0.1150	-0.0563	0.1028	0.1099	-0.05355	0.0983	0.10335	-0.0481	0.0940	
J.30	0.1186	-0.0448	0.1022	0.1132	-0.0426	0.0974	0.1061	-0.0376 ₅	0.0928	
0.35	0.1213	-0.0339	0.1020	0.1156	-0.0322	0.0968	0.1080	-0.0278	0.0919	
j.40	0.1234	-0.0234	0.1023	0 . 1174	-0-0222	0.0966	0.1093	-0.0183	0.0913	
0-45	0.1249	-0.0130	0.1029	0.11865	-0.0124	0.0968	0.1101	-0.0091	0.0910	
0.50	0.1258	-0.0026	0.1040	0.1194	-0.0027	0.09725	0•1103	0	0.0908	
3.55	0.1262	+0+0079	0.1056	0.1196	+0.00705	0.0981	0.1101	+0.0091	0.0910	
0.60	0.1261	0.0187	0.1078	0.1194	0.0170	0.0993	0.1093	0.0183	0.0913	
0.65	0.1254	0.0299	0.1107	0.1186	0.0274	0.1011	0.1080	0.0278	0.0919	
0.70	0 -1240	0.0420	0•1147	0.1172	0.0383	0.1035	0.1061	0.03765	0.0928	
0.75	0.1216	0.0551	0.1203	0.1150	0.0501	0.1068	0.10335	0.0481	0.0940	
0.80	0.1178	0.0700	0•1286	0.1118	0.0632	0.1117	0.09955	0.0595	0.0957	
0.85	0.1117	0.0878	0.1418	J•1069	0.0784	0.1193	0.0942	0.0722	0.09795	
0.90	0.0995	0.1111	0.1670	0.0990	0.09745	0.1133	0.0862	0.0874	0.1012	
0.925	0.0865	0.1237	0.1204	0.0926	0.1098	0•1462	0.0805	0.0964	0.1035	
0.95	0.06897	0.1338	0.0753	0.08161	0.1261	0.1706	0.07248	0.1073	0.1065	
0.975	0.04629	0.408	0.0325	0.05713	0.1425	0.0797	0.05959	0.1218	0.11095	
J.9875	0.03138	0.1429	0.0127	C•03882	0•14775	0.03625	0.04813	0.1324	0.1146	
1.000	0	0.1434	0	0	0.1500	0	0	0•1591 ₅	0	

ĩ

*See eqn.(29) and the remarks following that equation.

Appendix I/

.

- 58 -

- 39 -

Appendix I

The Relation of the Velocities at the Leading and Trailing Edges to a and C_{Lopt}

From Part II, eqn.(67), the velocity at the leading edge is given by

$$\frac{\mathbf{q}}{\mathbf{u}} = \frac{\mathbf{e}^{\mathbf{C}_{\mathbf{0}}} \left[1 + \mathbf{\epsilon}^{\prime}(\mathbf{0})\right]}{\psi_{\mathrm{L}}} \left\{ \left(1 - \frac{\mathbf{C}_{\mathrm{L}}^{2}}{\mathbf{a}_{0}^{2}}\right)^{\frac{1}{2}} \left[\mathbf{\epsilon}(\mathbf{0}) - \beta\right] + C_{\mathrm{L}} \left[\frac{1}{\mathbf{a}_{0}} + \frac{\mathbf{e}^{-\mathbf{C}_{0}}}{2\pi}\right] \right\},$$

and at the trailing edge by

$$\frac{\mathbf{q}}{\mathbf{U}} = -\frac{\mathbf{e}^{\mathbf{C}_{0}}\left[1 + \varepsilon^{\dagger}(\pi)\right]}{\psi_{\mathrm{T}}} \left[\frac{1}{\mathbf{a}_{0}} - \frac{\mathbf{e}^{-\mathbf{C}_{0}}}{2\pi}\right] C_{\mathrm{L}}.$$

 $C_{\rm L}$ is known. $\psi_{\rm L}$, $\psi_{\rm T}$ are equal to $(2\rho_{\rm L})^{\frac{1}{2}}$, $(2\rho_{\rm T})^{\frac{1}{2}}$, respectively, where $\rho_{\rm L}$ and $\rho_{\rm T}$ are the radii of curvature at the leading and trailing edges; hence $\psi_{\rm L}$ and $\psi_{\rm T}$ are given in terms of $g_{\rm S}$ by eqns. (13) and (14) of Part III; C_0 is given in terms of $g_{\rm S}$ by eqns. (18) and (29) of Part III; $\varepsilon_{\rm C}^{\rm i}(0) = \varepsilon_{\rm C}^{\rm i}(\pi) = 0$, so from eqn. (33) of Part III

$$\epsilon'(0) = \frac{1}{2}g_{s}(0) - \frac{1}{2}C_{0}, \quad \epsilon'(\pi) = \frac{1}{2}g_{s}(\pi) - \frac{1}{2}C_{0},$$

and $\varepsilon'(0)$, $\varepsilon'(\pi)$ are also given in terms of g_s .

Finally $\varepsilon_s(0) = 0$, so

$$\varepsilon(0) - \beta = \varepsilon_0(0) - \beta;$$

from Part II, eqn. (39),

$$\beta = \varepsilon_0(\pi) = \frac{1}{2}A_1 - A_0,$$

and similarly it may be shown that

$$\varepsilon_{0}(0) = -\frac{1}{2}A_{1} - A_{0},$$

80

$$\varepsilon(0) - \beta = -A_1 = -\left(\frac{1}{a_0} + \frac{1}{2\pi}\right) C_{\text{Lopt}}$$

(from eqn. 50, Part II). Hence the velocities at the leading and trailing edges may be expressed in terms of C_{L} , g_{s} , C_{Lopt} and a_{o} .

Appendix II/

- 40 -

<u>Appendix II</u>

Lemma 1

.

.

$$\int_{0}^{\pi} \frac{1-\cos t-\frac{2t}{\pi}}{\sin t} dt = 0.$$

This result is obvious, since the integrand is free from singularities at 0 and π and is antisymmetrical about $\frac{1}{2}\pi$.

,

Lemma 2

$$P \int_{0}^{\pi} \frac{1 - \cos t - \frac{2t}{\pi}}{\sin t(\cos \theta - \cos t)} dt = -\frac{1}{\sin^{2} \theta} \left\{ (1 - \cos \theta) \ln \frac{1}{2} (1 - \cos \theta) \right\}$$

+
$$(1 + \cos \theta) \ln \frac{1}{2}(1 + \cos \theta)$$
.

To prove this result we note that

$$\int \frac{1 - \cos t}{\sin t (\cos \theta - \cos t)} dt = \int \frac{-\sin t}{(1 + \cos t)(\cos \theta - \cos t)} dt$$
$$= \frac{1}{1 + \cos \theta} \ln \frac{|\cos \theta - \cos t|}{1 + \cos t},$$

and

$$\int \frac{dt}{\sin t(\cos \theta - \cos t)} = \frac{1}{\sin^2 \theta} \ln \left[\cos \theta - \cos t\right]$$
$$-\frac{1}{2(1 + \cos \theta)} \ln (1 + \cos t) - \frac{1}{2(1 - \cos \theta)} \ln (1 - \cos t)$$

$$= \frac{1}{\sin^2 \theta} \left\{ \ln \left| \cos \theta - \cos t \right| - \ln \sin t - \cos \theta \ln \tan \frac{1}{2} t \right\},$$

$$\int \frac{t \, dt}{\sin t(\cos \theta - \cos t)} = \frac{t}{\sin^2 \theta} \ln |\cos \theta - \cos t|$$
$$-\frac{t}{2(1 + \cos \theta)} \ln (1 + \cos t) - \frac{t}{2(1 - \cos \theta)} \ln (1 - \cos t)$$
$$-\frac{1}{\sin^2 \theta} \int \left\{ \ln |\cos \theta - \cos t| - \ln \sin t - \cos \theta \ln \tan \frac{1}{2}t \right\} dt.$$
Now/

.

*in is used to denote loge,

•

.

Now

$$\int_{0}^{\pi} \ln \sin t \, dt = -\pi \ln 2,$$
$$\int_{0}^{\pi} \ln \tan \frac{1}{2} t \, dt = 0,$$

and

$$\int_{0}^{\pi} \ln |\cos \theta - \cos t| \, dt = \frac{1}{2} \int_{0}^{2\pi} \left\{ \ln 2 + \ln |\sin \frac{1}{2}(\theta + t)| + \ln |\sin \frac{1}{2}(\theta + t)| + \ln |\sin \frac{1}{2}(t - \theta)| \right\} dt$$
$$= \pi \ln 2 + \int_{0}^{2\pi} \ln \sin \frac{1}{2}t \, dt = \pi \ln 2 + 2 \int_{0}^{\pi} \ln \sin t \, dt$$
$$= -\pi \ln 2,$$

so
$$\int_{0}^{\pi} \left\{ \ln \left| \cos \theta - \cos t \right| - \ln \sin t - \cos \theta \ln \tan \frac{1}{2}t \right\} dt = 0.$$

Hence

.

$$P \int_{0}^{\pi} \frac{1 - \cos t - \frac{2t}{\pi}}{\sin t(\cos \theta - \cos t)} dt = \left[\frac{1}{\sin^{2} \theta} \left(1 - \cos \theta - \frac{2t}{\pi} \right) ln \left[\cos \theta - \cos t \right] \right]_{0}^{\pi} - \frac{1}{1 + \cos \theta} \left(1 - \frac{t}{\pi} \right) ln \left(1 + \cos t \right) + \frac{t}{\pi (1 - \cos \theta)} ln \left(1 - \cos t \right) \right]_{0}^{\pi}$$

$$= -\frac{1}{1 - \cos \theta} ln \left(1 + \cos \theta \right) + \frac{1}{1 - \cos \theta} ln 2$$

$$= -\frac{1}{1 + \cos \theta} ln \left(1 - \cos \theta \right) + \frac{1}{1 + \cos \theta} ln 2$$

$$= -\frac{1}{\sin^{2} \theta} \left\{ \left(1 - \cos \theta \right) ln \frac{1 - \cos \theta}{2} + \left(1 + \cos \theta \right) ln \frac{1 + \cos \theta}{2} \right\}.$$

Appendix III/

- 42 -

Appendix III

If

 $g_{1} = a_{0} + a_{1}x \quad (0 \leq x \leq X_{1}),$ = $b_{0} + b_{1}x \quad (X_{1} \leq x \leq X_{2}),$ = $c_{0} + c_{1}x \quad (X_{2} \leq x \leq 1)$

we put $n_2 = b_2 = c_2 = k_3 = \ell_2 = 0$ in eqns. (49) - (56) of §5.

If g, has the values shown in Fig. 1, then

$$b_{0} = \frac{b_{1} - b_{2}}{X_{2} - x_{1}}, \quad b_{1} = \frac{d - b + (b - c)}{X_{2}}, \quad b_{1} = \frac{d - b + (b - c)}{X_{2} - x_{1}}$$

$$c_0 = \frac{d - f X_3 - (d - e)}{1 - X_2}, \qquad c_1 = \frac{f - d + (d - e)}{1 - X_2}$$

If b = c (Fig. 2) or d = e (Fig. 3), g_i has only one discontinuity; if b = c and d = e (Fig. 4), g_i is continuous.

For the general case of Fig. 1,

g_i(x)/

. •

$$g_{1}(\mathbf{x}) = \mathbf{e} \left(1 - \frac{\mathbf{x}}{X_{1}}\right) + \mathbf{b} \frac{\mathbf{x}}{X_{1}} \quad (0 \leq \mathbf{x} \leq X_{1}),$$

$$= \frac{\mathbf{b}}{X_{2} - X_{1}} (X_{2} - \mathbf{x}) + \frac{\mathbf{d}}{X_{2} - X_{1}} (\mathbf{x} - X_{1}) - \frac{\mathbf{b} - \mathbf{c}}{X_{2} - X_{1}} (X_{2} - \mathbf{x}) \quad (X_{1} \leq \mathbf{x} \leq X_{2}),$$

$$= \frac{\mathbf{d}}{1 - X_{2}} (1 - \mathbf{x}) + \frac{\mathbf{f}}{1 - X_{2}} (\mathbf{x} - X_{2}) - \frac{\mathbf{d} - \mathbf{e}}{1 - X_{2}} (1 - \mathbf{x}) \quad (X_{2} \leq \mathbf{x} \leq 1);$$

$$G_{1}(\mathbf{x}) = \mathbf{a}\left(\mathbf{x} - \frac{\mathbf{x}^{2}}{2X_{1}}\right) + \mathbf{b}\frac{\mathbf{x}^{2}}{2X_{1}} \quad (\mathbf{0} \leq \mathbf{x} \leq X_{1}),$$

$$= 8 \frac{X_{1}}{2} \frac{b}{2(X_{2}-X_{1})} \left[X_{1}X_{2} - 2X_{2}X + X^{2} \right] + \frac{d}{2(X_{2}-X_{1})} (X - X_{1})^{2}$$

+
$$\frac{b-c}{2(X_2-X_1)}$$
 (x - X₁)(x - 2X₂ + X₁) (X₁ \leq x \leq X₂),

$$= \frac{X_{1}}{2} + b \frac{X_{2}}{2} - \frac{d}{2(1 - X_{2})} \left[X_{1} + X_{2} - X_{1} X_{2} - 2x + x^{2} \right] + \frac{f}{2(1 - X_{2})} (x - X_{2})^{2}$$

.

$$-(b-c)\frac{X_{2}-X_{1}}{2}+\frac{d-e}{2(1-X_{2})}(2X_{2}-X_{2}^{2}-2x+x^{2}) \quad (X_{2} \leq x \leq 1);$$

$$A_{1} = \frac{4}{\pi} G_{1}(1) = \frac{4}{\pi} \left\{ a \frac{X_{1}}{2} + b \frac{X_{2}}{2} + d \left(\frac{1 - X_{1}}{2} \right) + f \left(\frac{1 - X_{3}}{2} \right) - (b - c) \left(\frac{X_{3} - X_{1}}{2} \right) - (d - e) \left(\frac{1 - X_{2}}{2} \right) \right\};$$

A_o/

•-

~

.

$$\begin{aligned} -4\psi - \\ A_{0} &= -\frac{1}{\pi} \left\{ a \left[-\frac{(1-X_{1})^{2}}{2X_{1}} \ell n (1-X_{1}) + \frac{X_{1}}{2} \ell n X_{1} - \frac{1}{2} \right] \\ &+ b \left[\frac{X_{2}(1-X_{1})^{2}}{2X_{1}(X_{2}-X_{1})} \ell n (1-X_{1}) - \frac{(1-X_{3})^{2}}{2(X_{2}-X_{1})} \ell n (1-X_{2}) - \frac{X_{1}}{2} \frac{X_{2}}{X_{2}-X_{1}} \ell n X_{1} \right. \\ &+ \frac{X_{2}^{2}}{2(X_{2}-X_{1})} \ell n X_{2} \right] + d \left[-\frac{(1-X_{3})^{2}}{2(X_{2}-X_{1})} \ell n (1-X_{1}) + \frac{(1-X_{1})(1-X_{2})}{2(X_{2}-X_{1})} \ell n (1-X_{2}) \right. \\ &+ \frac{X_{1}^{2}}{2(X_{2}-X_{1})} \ell n X_{2} \right] + d \left[-\frac{X_{2}^{2}(1-X_{1})}{2(1-X_{2})(X_{2}-X_{1})} \ell n (1-X_{2}) + \frac{(1-X_{2})(1-X_{2})}{2(X_{2}-X_{1})} \ell n (1-X_{2}) \right. \\ &+ \frac{X_{1}^{2}}{2(X_{2}-X_{1})} \ell n X_{1} - \frac{X_{3}^{2}(1-X_{1})}{2(1-X_{3})(X_{2}-X_{1})} \ell n X_{2} + \frac{1}{2} \right] \\ &+ (b-c) \left[\frac{(1-X_{1})(2X_{2}-1-X_{1})}{2(X_{2}-X_{1})} \ell n (1-X_{1}) + \frac{(1-X_{2})^{2}}{2(X_{2}-X_{2})} \ell n (1-X_{2}) \right. \\ &+ \frac{X_{3}(2X_{3}-X_{1})}{2(X_{2}-X_{1})} \ell n X_{1} - \frac{X_{3}^{2}}{2(X_{2}-X_{1})} \ell n X_{2} + \frac{1}{2} \right] \\ &+ (d-c) \left[\frac{1}{2}(1-X_{2}) \ell n (1-X_{2}) + \frac{X_{3}(2-X_{2})}{2(1-X_{2})} \ell n X_{2} + \frac{1}{2} \right] \\ &+ (d-c) \left[\frac{1}{2}(1-X_{2}) \ell n (1-X_{2}) + \frac{X_{3}(2-X_{2})}{2(1-X_{2})} \ell n X_{2} + \frac{1}{2} \right] \end{aligned}$$

. .

 $y_{c} = a\eta_{1} + b\eta_{3} + d\eta_{3} + i\eta_{4} + (b - a) \eta_{5} + (d - a) \eta_{6},$

whore

,

.

$$\pi \eta_{1} = -\frac{(x - X_{1})^{2}}{2X_{1}} \ln |x - X_{1}| - \left(x - \frac{x^{3}}{2X_{1}}\right) \ln x$$

$$\div \left[\frac{(1 - X_{1})^{2}}{2X_{1}} \ln (1 - X_{1})\right] x + \left[\frac{X_{1}}{2} \ln X_{1}\right] (1 - x),$$

 $\pi n_{3}/$

,

$$\begin{aligned} -45 - \\ \pi\eta_2 &= \frac{\chi_3(x-\chi_1)^2}{2\chi_4(\chi_3-\chi_4)} \ln |x-\chi_4| - \frac{(x-\chi_3)^2}{2(\chi_3-\chi_4)} \ln |x-\chi_4| - \frac{x^2}{2\chi_4} \ln x \\ &- \left[\frac{\chi_4(1-\chi_4)^2}{2\chi_4(\chi_3-\chi_4)} \ln (1-\chi_4) - \frac{(1-\chi_3)^2}{2(\chi_3-\chi_4)} \ln (1-\chi_3) \right] x \\ &- \left[\frac{\chi_4\chi_5}{2(\chi_3-\chi_4)} \ln \chi_4 - \frac{\chi_3^2}{2(\chi_3-\chi_4)} \ln \chi_3 \right] (1-\chi), \\ \pi\eta_3 &= -\frac{(x-\chi_4)^2}{2(\chi_3-\chi_4)} \ln |x-\chi_4| + \frac{(1-\chi_4)(x-\chi_3)^2}{2(1-\chi_4)(\chi_3-\chi_4)} \ln |x-\chi_4| - \frac{(1-\chi)^3}{2(1-\chi_4)} \ln (1-\chi) \\ &+ \left[\frac{(1-\chi_4)^2}{2(\chi_3-\chi_4)} \ln (1-\chi_4) - \frac{(1-\chi_4)(1-\chi_4)}{2(\chi_3-\chi_4)} \ln (1-\chi_3) \right] x \\ &+ \left[\frac{\chi_2^2}{2(\chi_3-\chi_4)} \ln \chi_4 - \frac{\chi_3^2(1-\chi_4)}{2(1-\chi_4)(\chi_3-\chi_4)} \ln \chi_2 \right] (1-\chi), \\ \pi\eta_4 &= -\frac{(x-\chi_4)^2}{2(1-\chi_3)} \ln |x-\chi_5| + \frac{(1-\chi)(2\chi_3-1-\chi_4)}{2(1-\chi_3)} \ln \chi_3 \right] (1-\chi), \\ \pi\eta_5 &= -\frac{(x-\chi_4)^2}{2(1-\chi_4)} \ln |x-\chi_5| + \frac{(1-\chi)(2\chi_3-1-\chi_4)}{2(1-\chi_4)} \ln \chi_3 \right] (1-\chi), \\ \pi\eta_5 &= -\frac{(x-\chi_4)^2}{2(\chi_3-\chi_4)} \ln |x-\chi_5| + \frac{(\chi_3}{2(\chi_3-\chi_4)} \ln \chi_3 \right] (1-\chi), \\ \pi\eta_6 &= -\frac{(x-\chi_4)(2\chi_3-\chi_4-\tau)}{2(\chi_3-\chi_4)} \ln |x-\chi_4| + \frac{(x-\chi_4)^2}{2(\chi_3-\chi_4)} \ln (1-\chi) \\ &+ \left[\frac{(1-\chi_4)(2\chi_3-\chi_4-\tau)}{2(\chi_3-\chi_4)} \ln |x-\chi_4| + \frac{(1-\chi_4)^2}{2(\chi_3-\chi_4)} \ln (1-\chi_4) \right] x \\ &+ \left[\frac{\chi_4(2\chi_3-\chi_4)}{2(\chi_3-\chi_4)} \ln \chi_4 - \frac{\chi_3^2}{2(\chi_3-\chi_4)} \ln \chi_3 \right] (1-\chi), \\ \pi\eta_6 &= \frac{(x-\chi_4)(2\chi_3-\chi_4-\tau)}{2(1-\chi_3)} \ln |x-\chi_6| + \frac{(1-\chi_3)^2}{2(\chi_3-\chi_4)} \ln (1-\chi_4) \right] x \\ &+ \left[\frac{\chi_4(1-\chi_4)(2\chi_3-\chi_4-\tau)}{2(\chi_3-\chi_4)} \ln |x-\chi_4| + \frac{(\chi_4-\chi_4)^2}{2(\chi_3-\chi_4)} \ln (1-\chi_4) \right] x \\ &+ \left[\frac{\chi_4(1-\chi_4)(2\chi_3-\chi_4-\tau)}{2(\chi_3-\chi_4)} \ln |x-\chi_4| + \frac{(\chi_4-\chi_4)^2}{2(\chi_3-\chi_4)} \ln (1-\chi_4) \right] x \\ &+ \left[\frac{\chi_4(1-\chi_3)(2-\chi_3-\chi_4)}{2(\chi_3-\chi_4)} \ln |x-\chi_4| + \frac{(\chi_4(2-\chi_4))}{2(\chi_3-\chi_4)} \ln \chi_3 \right] (1-\chi), \\ \pi\eta_6 &= \frac{(x-\chi_3)(2-\chi_3-\chi_4)}{2(\chi_3-\chi_4)} \ln (1-\chi_4) + \frac{\chi_4(2-\chi_4)}{2(\chi_3-\chi_4)} \ln \chi_4 \\ &- \frac{\chi_4}{2(\chi_3-\chi_4)} \ln (1-\chi_4) + \frac{\chi_4(2-\chi_4)}{2(\chi_3-\chi_4)} \ln \chi_3 \\ &- \left[\frac{\chi_4(1-\chi_4)}{2(\chi_3-\chi_4)} \ln (1-\chi_4) + \frac{\chi_4(2-\chi_4)}{2(\chi_3-\chi_4)} \ln \chi_3 \right] (1-\chi), \\ \pi\eta_6 &= \frac{(\chi_4(1-\chi_4))(2-\chi_3-\chi_4)}{2(\chi_3-\chi_4)} \ln (1-\chi_4) + \frac{\chi_4(2-\chi_4)}{2(\chi_3-\chi_4)} \ln \chi_4 \\ &- \left[\frac{\chi_4(2-\chi_4)}{2(\chi_3-\chi_4)} \ln (1-\chi_4) + \frac{\chi_4(2-\chi_4)}{2(\chi_3-\chi_4)} \ln \chi_4 \right] \right]$$

•

.

 $\frac{dy_{c}}{dx} - A_{0} = a\xi_{1} + b\zeta_{2} + d\xi_{3} + f\xi_{4} + (b - c) \xi_{5} + (d - e) \xi_{6},$

where

$$\pi\xi_{1} = -\frac{x - X_{1}}{X_{1}} \ln |x - X_{1}| + \frac{x - X_{1}}{X_{1}} \ln x - 1,$$

.

$$\pi\xi_{3} = \frac{X_{2}(x-X_{1})}{X_{1}(X_{2}-X_{1})} \ln |x-X_{1}| - \frac{x-X_{3}}{X_{2}-X_{1}} \ln |x-X_{3}| - \frac{x}{X_{1}} \ln x,$$

$$\pi\xi_{3} = -\frac{(x-X_{1})}{X_{2}-X_{1}} \ln |x-X_{1}| + \frac{(1-X_{1})(x-X_{2})}{(1-X_{2})(X_{2}-X_{1})} \ln |x-X_{2}| + \frac{1-x}{1-X_{3}} \ln (1-x),$$

$$\pi\xi_4 = -\frac{x-X_2}{1-X_2} \ln |x-X_2| + \frac{x-X_2}{1-X_2} \ln (1-x) + 1,$$

$$\pi\xi_{5} = -\frac{x - X_{3}}{X_{2} - X_{1}} \ln |x - X_{1}| + \frac{x - X_{3}}{X_{3} - X_{1}} \ln |x - X_{2}| + 1,$$

$$\pi\xi_{0} = \frac{1-x}{1-X_{2}} \ln |x-X_{2}| - \frac{1-x}{1-X_{3}} \ln (1-x) + 1;$$

and

. -

•

,

$$-C_{M_{0}} = \frac{1}{6} \left\{ e_{X_{1}}(4X_{1}-3) + b_{X_{2}}(4X_{1}+4X_{2}-3) + d(1-X_{1})(4X_{1}+4X_{2}+1) + f(1-X_{2})(4X_{2}+5) - (b-c)(X_{2}-X_{1})(4X_{2}+8X_{1}-3) - (d-e)(1-X_{2})(1+8X_{2}) \right\}$$

For β , $\varepsilon_{c}(0)$, C_{Lopt} , α_{opt} , $\varepsilon_{c}(\theta)$, $\varepsilon_{c}^{i}(\theta)$ see eqns.(6),(8),(9), (27) and (28).

g_i/

ς.

•

•

,

gi Linear in Each of Two Segments

,

If g_i is linear in each of two segments, $0 \le x \le X$, $X \le x \le 1$, and has the values shown in Fig. 5, then

$$g_{1}(x) = a \left(1 - \frac{x}{X}\right) + b \frac{x}{X} \quad (o \leq x \leq X)$$
$$= \frac{b}{1 - X} (1 - x) + \frac{d}{1 - X} (x - X) - \frac{b - c}{1 - X} (1 - x) (X < x < 1).$$

We obtain the required formulae by putting d = e = f, and then making $X_2 \rightarrow 1$, in the results immediately preceding.

We thus obtain the following formulae.

$$G_{1}(\mathbf{x}) = \mathbf{a} \left(\mathbf{x} - \frac{x^{2}}{2X} \right) + b \frac{x^{2}}{2X} \quad (0 \le \mathbf{x} \le X),$$

$$= \mathbf{a} \frac{X}{2} - \frac{b}{2(1-X)} \left[X - 2x + x^{2} \right] + \frac{d}{2(1-X)} (x-X)^{2} + \frac{b - c}{2(1-X)} (x-X)(x+X-x)$$

Ao/

$$A_{0} = -\frac{1}{\pi} \left\{ n \left[-\frac{(1-X)^{2}}{2X} \ln (1-X) + \frac{X}{2} \ln X - \frac{1}{2} \right] + b \left[\frac{1-X}{2X} \ln (1-X) - \frac{X}{2(1-X)} \ln X \right] + d \left[-\frac{1-X}{2} \ln (1-X) + \frac{X^{2}}{2(1-X)} \ln X + \frac{1}{2} \right] + (b-c) \left[\frac{1-X}{2} \ln (1-X) + \frac{X(2-X)}{2(1-X)} \ln X + \frac{1}{2} \right] \right\};$$

$$y_{c} = ch_{1} + bh_{2} + dh_{3} + (b-c) h_{4},$$

,

١

where

•

.

.

•

$$h_{1} = \eta_{1} (\text{as given in the preceding section of this Appendix}),$$

$$\pi h_{2} = \frac{(x-X)^{2}}{2X(1-X)} \ln |x-X| - \frac{(1-x)^{2}}{2(1-X)} \ln (1-x) - \frac{x^{2}}{2X} \ln x$$

$$- \left[\frac{1-X}{2X} \ln (1-X)\right] x - \left[\frac{X}{2(1-X)} \ln X\right] (1-x),$$

$$\pi h_{3} = -\frac{(x-X)^{3}}{2(1-X)} \ln |x-X| - \frac{(1-x)(2X-1-x)}{2(1-X)} \ln (1-x)$$

$$+ \left[\frac{1-X}{2} \ln (1-X)\right] x + \left[\frac{X^{2}}{2(1-X)} \ln X\right] (1-x),$$

$$\pi h_{4} = \frac{(x-X)(2-X-x)}{2(1-X)} \ln |x-X| + \frac{(1-x)^{3}}{2(1-X)} \ln (1-x) - \left[\frac{1-X}{2} \ln (1-X)\right] x$$

$$+ \left[\frac{X(2-X)}{2(1-X)} \ln X\right] (1-x);$$

$$\frac{dy_{c}}{dx} - A_{0} = aH_{1} + bH_{2} + dH_{3} + (b-c) H_{4},$$
where/

where

 $H_1 = \xi_1$ (as given in the preceding section of this appendix),

$$\pi H_3 = \frac{x-X}{X(1-X)} \ln |x-X| + \frac{1-x}{1-X} \ln (1-x) - \frac{x}{X} \ln x,$$

$$\pi H_3 = -\frac{x-X}{1-X} \ln |x-X| + \frac{x-X}{1-X} \ln (1-x) + 1,$$

$$\pi H_4 = \frac{1-x}{1-X} \ln |x-X| - \frac{1-x}{1-X} \ln (1-x) + 1;$$

 $-C_{M_{O}} = \frac{1}{6} \{ aX(4X-3) + b(4X+1) + d(1-X)(4X+5) - (b-c)(1-X)(8X+1) \}.$

For β , $\varepsilon_c(0)$, C_{Lopt} , α_{opt} , $\varepsilon_c(\theta)$, $\varepsilon_c^{\dagger}(\theta)$ see eqns. (6), (8), (9), (27) and (28).

AH.

C.P. No.71 (8548) A.R.C. Technical Report

CROWN COPYRIGHT RESERVED

PRINTED AND PUBLISHED BY HER MAJESTY'S STATIONERY OFFICE To be purchased from c York House, Kingsway, LONDON, w C 2 429 Oxford Street, LONDON, w 1 P O Box 569, LONDON, s E.1 13a Castle Street, EDINBURGH, 2 1 St Andrew's Crescent, CARDIFF 39 King Street, MANCHESTER, 2 Tower Lane, BRISTOL, 1 2 Edmund Street, BIRMINGHAM, 3 80 Chichester Street, BELFAST or from any Bookseller 1952 Price10s 6d net

Friceros ou net

PRINTED IN GREAT BRITAIN