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SUMMARY

_{anuary, 1964

The unsteady motion of thin, slender wings with leading-edge vortioes
is considered. Incompressible flow and slender-wing theory are assumed through-
out, and use is made of an analogy between the unsteady flow  and related steady
flows. The particular motions treated are:

(i) a sudden plunging motion, or change of incidence,

(ii) entry into a gust,

For the first case, it is shown that the flow in any transverse
plane moving with the wing reaches its steady state as scan as that plane has
travelled past the initial position of the leading apex of the wing. An
extension of the theory of Brown and Michael is given to determine the strength
of the vortex and its path from the leading-edge to the steady-state position,
Preliminary results obtained are compared with  experiment,

For the second case, use of the analogy shows that quasi-steady
theory holds, The flow in any transverse plane is instantaneously in the
steady state corresponding to the effective incidence produced there by the
gust.
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I. a u c t i o n

The flight of slender wings with sharp leading edges is likely to
involve flow separation. This phenomenon gives rise to regions of concentrated
vorticity above and slightly inboard of the edges, and joined to them by vortex
sheets,

The theory of leadi g-e ge separation in steady flow has been
considered by several authors 9 A3

forms the basis of the present work,
One of the simplest approaches, which
is that given by Brown and Michael! for

flat delta wings. They replace the concentrated vorticity by an isolated
vortex and the vortex sheet by a "cut" joining the vortex to the leading edge.
Thus, the velooity  potential is one-valued but there is a discontinuity in
pressure across tho cut. Brown and Michael use the approximations of slender-
wing theory. In any oross-flow plane there are three unknown quantities -
the co-ordinates and strength of the vortex. These are determined from the
following conditions:

(i) the two components of the force acting on the
vortex and cut must be zero,

(ii) the fluid velocity must be finite at the leading
edge.

The extension of the Brown an Michael theory to flat wings with curved leading
edges has been given by SmithP .
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A theory of leading-edge separation for slender wings in
oscillatory motion has been presented by Randa114F5.  The method is a logical
extension of the Brown and Michael theory and is valid when the am litude
of oscillation is small compared with the 'mean  incidence. lHancock has
discussed the transient motion of slender delta wings with leading-edge
Separation, in particular the cases of entry intc  a sharp-edged gust and of
a sudden change of incidence. On the basis of slender-wing theory, he
concludes that the solution to the gust problem is trivial; the flow in any
transverse plane changes instantaneously from its initial steady state to its
final steady state as that plane enters the gust. The argument put forward by
Hancock for the case of a sudden change of incidence is based on considerable
supposition and will not be discussed here,

In the present note, use is made of an unaloey'which relates the
unsteady motion of a slender wing with leading-edge vortices to a sequence of
steady flows past slender wings of identical planform but with different
camber, The usual slender-wing approximations are made and an incompressible
fluid is assumed.

2. Notation

C
P
k

P

PCS3

t

u

X¶ Y, 2

X’ , Y', 2'

x, y, 25

x0

L z,

a

pressure coefficient

= tan&

pressure

free-stream pressure

time

free-stream velocity

Cartesian co-ordinates fixed in wing

oartesian co-ordinates fixed in space

Cartesian co-ordinates in the analogy

value of x' in reference plane (Fig.1)

position of vortex in cross-flow plane

incidence

defined by equation (23)

strength of vortex

semi-apex angle of delta wing

In a recent paper (A.R.C.25 118) Lcwson has independently adopted the same
analogy on the basis  of physical considerations and has applied it to
oscillatory motion.



2. _Notation (continued)

-71, G defined by equation (24)

x defined by equation (19)

E defined by equation (22)

P free-stream density

0-9 7 defined by equations (27) and (28)

#, 9’9 8 perturbation velocity potentials

3. &alogy for Sudden Plunging Motion

Suppose the motion is referred to axes oxyz fixed in a flat,
slerder  wing; origin 0
normal to the wing,

at the apex, ox along the wing centre-line, oz
oy completing a right-handed set (Fig.1).  For time

t < 0 the wing moves in the direction of tho negative x-axis with constant
velocity U and at zero incidence. At t = 0 the wing starts to plunge with
uniform velocity Ua in the direction of the negative z-axis, so that the
incidence changes suddenly from 0 to a. If the total velocity potential is
Ux + Uaz + +, the perturbation velocity potential $(x,y,z,t)  saL,isfios'

84 J2#
-+- = 0 ..* 0)
ay" a2

and, for t < 0,

t#l  2 0. . . . (2)

If the motion is referred to axes fixed in space such that

x - ut = x' , y = y', z - Uat = z', . . . (3)

then

cb(x,Y,z,t) = $(X + Ut,y',z'  t Uat,t) = V(x',y',z',t)  say, . . (4)

where

and

a2 #I' a2 $I'
-+- = 0
af2 ad2

4' = 0 (t < 0).

*.. (5)

. . . (6)

Since (5) is independent of x1, each plane x1
separately.

= constant may be considered

x' =
Thus, the remaining conditions on $' for each plane

constant are as follows:

w/m--------------- -------------------------------------------------“------
*
As in both linear unsteady flow and non-linear steady flow it is assumed that
aa#/axa may be ncglccted  in the partial diffcrcntial  equation.
JUStlflCatlOn  is yet available.

No rigorous
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(i)
W’ a#’

at infinity, - = 0, - = 0, . . . (7)
aY  ’ az’

(ii)
0’

on the wing, - = 0 (t < 0) -l

az' i
9

= -Ua (t 2 0)
. . . (8)

J
(iii) there is no flow through the leading-edge vortex sheet, so that

9f' a$' af' ap af’ a+’  aff
-+ --++-+ - -  = c,
at ad ad * ay ay ad ad

where f'(x',y',  z',t) =o is the equation of the sheet. Hence, within the
concepts of slender-wing theory,

af' aq aft a+’  aft
-+ --+- -- = 0 9 . . . (9)at ay ay ad ad

(iv) there is no diffarcnce in pressure across the vortex sheet, so that

on f' = 0, A(F+i[($>'+(;>'I) = 0, . ..(lO)

(v) it is required that the flow separates tangentially at the leading
edge at each Instant of time.

Consider the situation in some cross-flow plane x' = x0 = constant
which contains a section of the wing at t = 0 (Fig.1).  If

X = ut, Y = y', z = 9, . . . (11)

tho flow in this plane is analogous to the steady flow U past a wing of the
same planform, with local incidence zero for X < 0 and a for X 3 0 (Fig.2).
The analogy exists because the perturbation velocity potential @(X,Y,Z)  of
the steady problem satisfies

80 a2$?
-+- = 0 . . .
aP az2

02)

and 0 = 0 (x < 0). . . . (13)

The remaining conditions in any cross-flow plane X = constant are

aa aa
(0 at infinity, - = 0, - = 0, . * . (14)

ay az
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a@
(ii) on the wing, - = 0 (x < 0) -

a z

I

3 . . . (15)
= -ua (x b 0) ,

(iii) if F(X,Y,Z) = 0 is the equation of the leading-edge vortex
sheet,

aF arg  aF ag aF
U -+--+--  = 0, . . . (16)

ax ay ay a z  a z

(iv) there is no difference in pressure across the sheet, so that

on F = 0, *(u Z+*[( $i +( ii]) =  0 , ,.. (17)

(v) there is smooth outflow at the leading edge of the wing,

The equivalence  of the two corresponding sets of equations (5) to
(10) and (f,2)  to (17) is apparent if, in the latter, X is replaced by Ut.
The solution of the steady problem may therefore be applied to the unsteady
plunging motion. The steady flow characteristics for X = constant give
those in the plane x = x0 + X at time

X x - x0
t = - =

U u '

where x' = x0 is the reference plane in Figs.1 and 2.

An important consequence of the analogy is faund when x0 = 0. Then
the analogy is with the steady flow past the actual wing at uniform incidence
a. The characteristics in any plane X =
x=X fortime  t=x/U.

constant give those in the plane
In other words, for each section x = constant, the

steady-state is reached in time x/J. That this state is maintained for
Ut > x is easily seen by considering negative x . It is pointed out that
the same property holds for slender wings of arbitrary planform and camber,
whatever the initial incidence may be.

4. Application to Delta Win_g

Application of the analogy is particularly well-suited to delta
wings in plunging motion.
leading edge y = kx

Consider a delta wing of semi-apex angle E and
where k = tan E (Fig.1). Since the incidence is zero

for t<o, the analogy leads us to study the steady flow past a trapezium
wing at an incidence a (Fig.2). The similarity of the trapezium wings
resulting from arbitrary x0 shows that the flow in each plane X = constant
depends only on X/so where so = kx,. The solution for the unsteady
plunging motion is then known if the solution is known for one trapezium wing
for all positive X. In fact th8 flow characteristics in tK7plane

X/
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where

lx0
x = -

l-h '
. . . (18)

ut
h=--61, . . . (19)

X

give those in x plane x = constant at time t = Xx/U. Thus h is a
unifying parameter in the unsteady problem, This is also apparent from non-
dimensional arguments since, for the trapezium wing,

x Y z
QcGy,z) = Us,G -,-,- .

( >
. . . (20)

80  So 80

The transformation from (X,Y,Z)-space back to (x,y,z)-space shows that,
in the unsteady problem, the perturbation velocities and pressure in any cross-
flow plane are functions  of h, y/x, e/x. According to (18) the flobr
characteristics  for h = 1 are found from those In the plane X = M). Thus,
the steady state is reached when h = 1 as deduced 1n the last paragraph of
Section 3.

5. Trapezium Wing in-

A solution 1s based on the moth& of Brown and Mlchacl.  The a preach
will only be briefly outlined here - for a full account the reader is ro Berred
to Seotion 2 of Ref.5.

. * . (20

where

The equation of the lzadlng  edge is

IYI 6 so , x = oij

IYI = Sob-E),  x > "! '

X
E,=X--, . . . (22)

SO l=O

For any plane normal to the wing centre-line  let the strength and co-ordinates
of the leading-edge vortex be given by

r(E) = 2nUso(l+k&)Y(E)  , . . . (23)

Y, + iZv = s,(1+kc) h+z) l
. . . (24)

Conditions  (i) and (Ii)  of Section 1 lead to the following two differential
equations for IJ(E;),~(~),  (cf. Ref.5, oOquatlons (20)):
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4(l+kE;)b-(3?-aTJ  + T(+N%  + cw+iqa  10-i
+ 4(l+kg)[r(+-309g  - 0-(3j!-c?)p  - u($L+?)aT)j~’

= -c@J+P)[~+(c?+P)(+~~~)]

+~.cJ(c?+?)~
aW+E)

k + 1 rJ B
a

. . . (25)

and W+E)~b(37+? Tj + 7-(7qK?)~J[r)(~-~)+z?l  - da”+~)2dT’

+‘&&+lg)[[T(+3$a)q  - 0-(37%%1~T)(~-~b-e1  - d~+~)2w

= -a@+P)[(jd-3)  - (a”+Ja>(Tval

a’O+E.)
+ti (2 +id )” k[@1-1 h+G?  1 + h-h-1 >+e I 9

a >

. . . (26)

the dashes representing differentiation with respect  to 5. Here, u and T
are related to 7~ and z by a oonformal transformation such that

aa - 72 = qa - p - 1 , . . . (27)

u-r = l-g. . . . (28)

The vortex strength is found from equation (23) with

VW  =

a(@ + P)
. .  .  . (29)

2a

Ths solution of equations (25) and (26) can be determined numer-
ioally. However, a certain amount of information can be obtained analytically.
For the case of a sudden plunging motion a is constant so that the
differential equations simplify slightly with a1 = 0. The following series
expansions then hold for sufficiently small values of c:

N

rl = 1 + E a,+, E
r

n/3 , . . . (30)
n=o

N

cl = FJa/s
r b Ed3,
/ n . . . (31)
n=O

where/
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where 1
3

4 = --k
7

b 'a 9 114 I? 1 \
82 =

F-
-+--
16 49 2

2/3

1

h = -7”
I
1,
l ,’  .

18k?- ;
- - - -

1
i

49 a2 ,)

If k = 0 equations (30) and (3-l) give the expansions for a rectangular wing
In which case as =bs = 0.

When the solution in q and ;= has been obtained for the trapezium
wing up to some small value of E, it can be continued, say, by a Bunge-Kutta
process. However, the values of TJ and ;: at c = 01) are those in the steady
motion of tho delta wing and are given for example in Table 5 of Ref.5. The
values of TI' and z' at E = 00 are zero, but the limiting ratio of 5' to
rl' may be found as follows. The ratio of the left-hand-sides of (25) and (26)
is equated to the ratio of their right-hand-sides, the limiting value of which
is found by differentiating numerator and denominator with respect to F
(extension of L'HSpital's  rule). This leads to a quadratio  in g'/n',  the
coefficients of which are known in terms of ?~(a)  and G(W).

When q and ;: are known the strength of the leading-edge vortex
is given by equations (23), (27) to (29). The perturbation velocity potential
@(X,Y,Z)  can then be found for each cross-flow plane and q',G' can be
calculated from the differential equations. Hence the pressure coefficient*
on the wing

P
C - %3= = ----.- . . . (32)
P -2,

+p v2

can be evaluated.

*This differs from equation (21) of Ref.1 in the sign of the last term, since
the X-axis has been-taken parallel to the stream and not along the wing
centre-line (Fig.2).
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6. Comparison with Experiment

Some experiments/ have been carried out in the N.P.L. Water Tunnel to
observe the behaviour of the leading-edge vortices following the sudden plunge
of a flat, sharp-edged delta wing with semi-apex angle E = 2o", Tho particular
case a = 11.3O was analysed in detail. Measurements of the vortex position
appear to confirm the theoretical conclusion that the flow in each plane
x = aonstant  reaches its steady state in time t = x/U. Moreover, records of
the vortex movements in three such planes tend to indicate that Ut/x is a
unifying parameter for the delta wing.

In Figs. 3 and 4 theoretical curves of c against IJ are given to
show the effects of incidence and apex angle on the vortex positions during a
sudden plunge. The initial portions result from combined u3e  of equations (18),

t
28, (30)  3rd (31)
Section 5).

and the final portions  from the limiting values of G'/q'
The dotted central portions of the curves are roughly faired  to

these end portions. Figs, 3 and 4 give no indication of the rate of vortex
movement.

For the purpose of comparison with experiment 3 and < may be
written as

9
r) = I -++- + O(A5'3), . . . (32)

16

aX at3  1 4 13
c= -

( )
--A+ --e-

4k 7 L-

197 18 k? ah

24-o 49 $ I( )ii
+ O(h”‘3),  . (33)

where  A = Ut/x and equations (18)) (22), (30) and (31) have been used. Thus,
for sufficiently small time, q and

P
depend only on the unifying parameter

h and a single geometric parameter a k. Consideration of equations (25) and
(26) written in terms of X shows, in fact, that the complete solutions for
r) and < depend only on h and a/k. From equations (32) and (33) and the
final vortex positions in Table 5 of Ref. 5, curves of ?J and rJ are plotted
separately against Ut/x in Fig. 5 for the particular case a/k = 0.542
analysed in Ref. 7. These curves are compared with the experimental results
from Figs. 6 and 9 of Ref. 7 for the plane x = 3 (root ghord). The steady-
state vortex positions found experimentally by Alexander are also shown and
are seer; to give better agreement with the theoretical positions, Further
'experiments in the N.P.L. Water Tunnel are planned; these should provide
similar comparisons for more slender (e = IO') and less slender (E = 30")
delta wings in plunging motion.

At this stage it is worth making the following comments:

(I) Considerable differences occur between the Brown and Michael
theoretical and the final spanwise  vortex positions found in
experiment.
a/k

This can be seen from the following table for
= 0.542.

Table/



' Theory (Ref. 1)
!

0.897 0.131

Experiment (Ref. 7) 0.63 0.19
f
1 Experiment (Ref. 8) 0.77
I ! 0.14 I

A possible reason for discrepancy is secondary separation
which normally occurs in practice. It has been shown by
Alexander8 that, when the secondary separation is
eliminated by leading-edge blowing, the spanwise  vortex
position is closer to that predicted by theory, For
example, with blowing, Alexander finds n = 0.81 when
a/k = 0.542.

(2) For a sudden plunge, the initial path of the vortex in the
cross-flow plane 1s normal to the wing  surface from theory,
and apparently from experiment also. If, for example, a’
is a non-zero constant in equations (25) and (26), the
initial path would be inward and parallel to the wug
surface,

(3)  In the quadratic for ~'(w)/~'(oD) referred to in Section 5,
the numerical solutions corresponding  to Figs. 3 and 4 show
one negative and one positive  root, The former root has
been chosen as more physically realistic in the present
examples,

(4) Consideration of the expression for the pressure on the wing
shows that, away from the e$ges, the initial pressure at
t = 0+ is infinite as t-3, By contrast, linearized theory
gives  infinite pressure at t = 0, but flnlte  pressure at
t = oc.

7. Analogies for some Unsteady Motions

In dealing with the oase of sudden plunging motion the flow
in planes x1 = constant (fixed in space) was considered, and was referred to
b,Y' ,x')-space. This procedure can be applied to arbitrary unsteady motion.
The analogies to which it leads for some partlcuJ,ar  motions are discussed
in this section.

7.1 Entry~ugust

Suppose a slender wing, moving with uniform velocity, enters a gust.
Consider a reference plane x' = constant situated within the gust. By
applying the procedure mentioned above, it is seen that the flow in this plane
is analogous to the steady flow past the given wing at the effective incidence
produced by the gust in the plane, Since this property holds for any plane
x' = constant it is clear that quasi-steady theory holds for each plane
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X = constant moving with the wing. In other words, the flow in each plane
x = constant is instantaneously in the steady state corresponding to the
effective incidence produced by the gust. In particular, if the gust is
sharp-edged, the flow in each plane x = constant changes instantaneously
from its initial s eady state to its final steady state as the plane enters
the gust, Hancock8 has previously derived this result by a different argument.

Consider the case when the gust is not sharp-edged. Suppose, for
example, that the gust velocity increases monotonically to its full value, and
consider the variation of pressure at some point of the upper surface as the
wing enters the gust. A curve of -Cp against distance travelled into the
gust can be plotted for this point y 3s ng known steady-state pressure distri-
butions, in the case of delta wings 9 . This curve will not rise mono-
tonically for all points on the wing upper surface. In fact, if the chosen
point lies between the leading edge and the projection on the wing  of the
final vortex position, -Cp first rises, then falls, and then rises again
to its final steady value. This can be seen from Fig.7 of Ref.1 or from
theoretical calculations of Mangler and Smith in Fig.7 of Ref.2. The initial
peak in -Cp coincides approximately with the instant when the leading-edge
vortex is above the chosen point, It is relevant to point out that the
phenomenon of an initial peak in the pressure measured at the upper surface
of a delta wing has been found experimentally (Fig.??(b)  of Ref.S),  although
it is not clear whether the above theory is the correct explanation.

The case of entry into gusts by wings with curved leading edges is
covered by the quasi-steady property referred to above, so that in principle
the flow characteristics could be determined by means of Ref.3.

7.2 Other unsteady motions

The analogy can clearly be used to deal with sudden plunging motion
of Vikings  with curved leading edges. However, it is not nearly so convenient
since Ut/x is no longer a unifying parameter. Consideration would need to
be given to the analogy through a sequence of reference planes x1 = xo in
order to obtain the flow pattern. A glance at equations (30) and (31) shows
that the initial path of the vortex is still normal to the wing surface. In
addition it is known that the final position is reached at Ut/x = 1.

Other applications of analogies are to the cases of oscillating and
deforming wings. However, Ut/x would not be a unifying parameter, even for
delta wings. Compensating a little for this difficulty is the fact that theL; 5
restrictions on the motion are somewhat less severe than in Randall's theory '-.
It is sufficient that

(1) the mean incidence is large enough to ensure that the effective
local incidence is everywhere positive,

(2) Laplace's  two-dimensional equation holds.

Although the first restriction imposes some limitations on amplitude
of oscillation, there are several practical cases in which amplitude effects
could be investigated. For compressible flow, the second restriction limits
applications to oscillations at low frequency.

a./
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each cross-flow plsne. Application to other UnEteaQ motions  1s
briefly dtscussed.
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78E  UE?EADY  NOTION OF 8LENDW  UING8  Ul78

LEADING-rIlCE VORTICFS

Unsteuty motaons in  Incompressible flow  are teatea  by an analogy
rlth related steady flows. For sudden plungltg  motlon an extellslon
of the Brown and tllchael  Lhecry  Is  applled Lo the rehted  steady
problem and, for a delta ring.  ccu~parison  Is made with  experlmect.
For motlon into a gust, lt 1s shown  that  quasi-steady merry  holds In
each cross-flow plane. Appllcat  ion  to other unsteady motions  1s
brlefly  discussed.

h.R.C.  C.P. No.810
Januarp,  1964
Dore,D.B.

THE  UNsrEADY  HOTION  OF SLENDER WINGS UITR
WADING-EDGE  VORTICES

Unsteady motions In incaupnsslble flow arv?  treated by an analogy
with related steady rlous. For sudden plunging motlon an extension
of the  Brow and Michael  theory 1s applied to the related steady
problem and, for a delta ring,  canparlson  Is made with  experldent.
For  motion Into a gust,  It is shown that quasi-steady tbearg  holds lo
each crosstlox  plane. Application to other unsteady motions  18
briefly  discussed.
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