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SUMARY

The unsteady motion of thin, slender wngs wth |eading-edge vortioes
is considered. Inconpressible flow and slender-w ng theory are assuned through-
out, and use is made of an anal ogy between the unsteady fiow and related steady
flows.  The particular notions treated are:

(1) a sudden plunging notion, or change of incidence,
(i1) entry into a gust,

For the first case, it is shown that the flow in any transverse
plane nmoving with the wing reaches its steady state as soon as that plane has
travelled past the initial position of the |eading apex of the wing. An
extension of the theory of Brown and Mchael is given to determne the strength
of the vortex and its path from the |eading-edge to the steady-state position,
Prelimnary results obtained are conpared with experinent,

For the second case, use of the anal ogy shows that quasi-steady
theory holds, The flow in any transverse plane is instantaneously in the

steady state corresponding to the effective incidence produced there by the
gust.

CONTENTS

Replaces N.P.L. Aero Report No.1087 « A R C 25 489. _
Publ i shed with the permssion of the Darector, National Physical Laboratory.



CONTENTS
- Page
1. Introduction . ...... ... ... .. .. .. .. ... 2
2. Notation . . .. . ... 3
3, Analogy for Sudden Plunging Mtion ... ........ L
4. Application to Delta Wng . .............. 6
) TrapeziumWng in Steady Flow . . ... ......... 7
6, Conmparison wth Experiment . .............. 10
7. Anal ogi es for some Unsteady Mdtions — ......... 11
7.1 Entry into a Gust ... ... 11
7.2 Qther Unsteady Mtions . .............. 12
8, Acknowledgenment L 13
References . . . .. .. ... .. ... 13
Figures 1to 5,

1, auction

The flight of slender wings with sharp | eading edges is likely to
involve flow separation.  This phenomenon gives rise to regions of concentrated

vorticity above and slightly inboard of the edges, and joined to them by vortex
sheet s,

The theory of 1eadiqg-2e%ge separation in steady flow has been
consi dered by several authors '2<? One of the sinplest approaches, which
forms the basis of the present work, is that given by Brown and Michael for
flat delta wings. They replace the concentrated vorticity by an isolated
vortex and the vortex sheet by a "cut™ joining the vortex to the leading edge.
Thus, the velocity potential is one-valued but there is a discontinuity in
pressure across tho cut. Brown and M chael use the approximations of slender-
wing theory. In any oross-flow plane there are three unknown quantities —

the co-ordinates and strength of the vortex. These are deternined fromthe
following conditions:

(i) the two conponents of the force acting on the
vortex and cut nust be zero,

(ii) the fluid velocity nust be finite at the |eading
edge.

The extension of the Brown and Mchael theory to flat wings with curved | eading
edges has been given by Smth”.

&/
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A theory of |eading-edge separation_far__slender wngs in
oscillatory motion has been presented by Rendall*s2, The nethod is a | ogi ca
extension of the Brown and Mchael theory and is valid when the amplitude
of oscillation is small conpared with the mean incidence. Hancock® has
di scussed the transient nmotion of slender delta wings wth |eading-edge
Separation, iNn particular the cases of entry into a sharp-edged gust and of
a sudden change of incidence, On the basis of slender-wing theory, he
concludes that the solution to the gust problem is trivial; the flow in any
transverse plane changes instantaneously fromits initial steady state to its
final steady state as that plane enters the gust. The argunent put forward by
Hancock for the case of a sudden change of incidence is based on considerable
supposition and wll not be discussed here

In the present note, use is made of an analogy which relates the
unsteady motion of a slender wing with |eading-edge vortices to a sequence of
steady flows past slender wings of identical planform but with different
canber,  The usual sl ender-w ng approxi mations are nade and an inconpressible
fluid is assumed

2, Notation
CP pressure coefficient
k = tan ¢
3 pressure
Py free-stream pressure
t time
U free-streamvelocity
X, ¥, 2 Cartesian co-ordinates fixed in wng
x,Y, z oartesian co-ordinates fixed in space
X, ¥, 2 Cartesian co-ordinates in the anal ogy
Xo val ue of x' in reference plane (Fig.1)
Yy, Zv position of vortex in cross-flow plane
a incidence
y defined by equation (23)
T strength of vortex
€ sem -apex angle of delta w ng

nsé/
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“I'n a recent paper (A R C 25 418) Lowson has independent|y adopted the sane
anal ogy on the basis of physical considerations and has appslied 1t to
oscillatory motion



2, Notation (continued)

M, & defined by equation (24)
A defined by equation (19)
g defined by equation (22)
p free-stream density
o, T defined by equations (27) and (28)
P, o', & perturbation velocity potentials

3. Analogy for Sudden Plunging Mtion

Suppose the motion is referred to axes oxyz fixed in a flat,
slerder Wing; origin O at the apex, ox along the wing centre-line, oz
normal to the wing, oy conpleting a right-handed set (Fig.1). For tine
t <0 the wing noves in the direction of tho negative x-axis wth constant
velocity U and at zero incidence. At t =0 the wing starts to ﬁl unge with
uniformvelocity Ua in the direction of the negative z-axis, so that the
inci dence changes suddenly from0O to a If the total velocity potential is
Ux + Uaz+ ¢, the perturbation velocity potential ¢(x,y,z,t) sctisfics'

Fo  Fo
- 4+ — = 0 (X} (1)
y a2
and, for t < 0,
¢ = 0. o (2)
[f the motion is referred to axes fixed in space such that
x - Ut =x'",y = vy, z - Uat = z', o (3)
then
o(x,y,2,t) = ¢(x' + Ut,y',z't Uat,t) = ¢"(x',y',2',t) say, . . (&)
a2¢| 62¢l
wher e + = 0 tes (5)
ay'®  da'®
and ' =0 (t <0). . (6)

Since (5)is independent of x', each plane x' = constant may be considered
separately. Thus, the remaining conditions on ¢' for each plane
x' = constant are as follows:

p $Swn B = vm an o - - —— gty Y kg S G N vk o e W U B e -

“As in both linear unst eady flow and non-linear steady flow 1t 1s assuned that
62¢/ax2 may be ncglocte@ an the partial differential equati on. No rigorous
Justification s yet avail abl e.



o' o¢'
(1) at infinity, .Jﬁ. = 0, .f:. = 0, (M
ay' daz'
'
(ii) on the wing, —_— =0 (t<0)1
H non(8)
az‘ = - Ua (t? O)

(iii) there 1s no flow through the |eadi ng-eage vortex sheet, so that

oft  9¢' of'  ag' aft  dp' af!
+ + + 7 - = C,

at  ex' ox' - 4y' ay' oz ad

where f£'(x',y',z',t)=0 asthe equation of the sheet. Hence, within the
concepts of slender-wng theory,

aft  ap' of' 3¢’ ar
+ + = = 0
at oy' dy'  9z' az!

) .. (9)

(iv) there is no diffarcnce in pressure across the vortex sheet, so that

weco (EA[(EN (e e

(v) it is required that the flow separates tangentially at the |eading
edge at each Instant of tine.

_ Consider the situation in some cross-flow plane x' = x, = constant
which contains a section of the wing at t = 0 (Fig.1). If

Y =y, Z = z', (11)

tho flow in this plane is anal ogous to the steady flow U past a wing of the
same planform wth l[ocal incidence zero for X <0 and a for X » 0 (Fig.2).
The anal ogy exists because the perturbation velocity potential &(X,Y,2) of
the steady problem satisfies

*d o
— = 0 .. (12)
Yt a3z

and =0 (x <0). o (13)

The remaining conditions in any cross-flow plane X = constant are

o 08 28
(1) at infinity, - = 0, — = 0, o (1)
aY az

(21)/
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a@
(i) om the wing, —_ = 0 (x <0)
az , ... (15)

-ua (X 2 O)!

£]

(iii) if KXY, Z =0 is the equation of the |eading-edge vortex
sheet,

gF 3% oF 0% oF
Ut ——t—— = 0, o (18)
ax dY Y az az

(iv) there is no difference in pressure across the sheet, so that

N A<U§§+%Kg>ﬂ<§§f]>= 0. (@)

(v) there is smoth outflow at the |eading edge of the wing,

The equivalence of the two corresponding sets of equations (5) to
(10) and (42) to (17) is apparent if, in the latter, X s replaced by U.
The solution of the steady problem may therefore be applied to the unsteady
plunging notion. The steady flow characteristics for X = constant give

those in the plane x = x, + X at tine

X X = Xg

U u
where x' = x, is the reference plane in Figs.1 and 2.

An inportant consequence of the analogy is found when x5 = 0. Then
the analogy is with the steady flow past the actual wing at uniformincidence
a. The characteristics in any plane X = constant give those in the plane
X=X for time ¢t = x/U, In other words, for each section x = constant, the
steady-state is reached in tinme x/U. That this state is maintained for
Ut > x is easily seen by considering negative x . It is pointed out that
the sane ﬁroperty hol ds for slender wings of arbitrary planform and canber,
whatever the initral incidence may be.

4. Application to Delta Wing

Application of the analogy is particularly well-suited to delta
wings in plunging motion.  Consider a delta wing of seni-apex angle e and
leading edge y = kx., where k = tan e (Fig.1). Since the incidence is zero
for t <0, the anaiogy | eads us to study the steady flow past a trapezium
wing at an incidence a (Fig,g%, The simlarity of the trapezium w ngs
resulting fromarbitrary x, shows that the flowin each plane X = constant
depends only on X/so where sy = kxg,. The solution for the unsteady
pl unging motion is then known i? the solution is known for one trapezium w ng
for all positive X. In fact the flow characteristics in the plane

x/



Ax
X = _'3’ [X) (18)
I-h
Ut
wher e A= o — € 1, . (19)

give those in any plane x = constant at time t = Xx/U. Thus A is a
unifying Far ameter in the unsteady problem This is also apparent from non-

dimensional argunents since, for the trapezium w ng,
X Y z
8(x,Y,2) = Uso(}< —_ -, — >. .. (20)
8o 8, 8

The transformation from (X Y, Z)-space back to (x,y,z)-space shows that,

in the unsteady problem the perturbation velocities and pressure in any cross-
fl ow pl ane are functions of \, y/X, z/x. According to (18) the flow
characteristacs for A = 1 are found fromthose ain the plane X = . Thus,

the steady state is reached when A = 1 as deduced in the last paragraph of
Section 3,

5. Trapezi um Wng in Steady Flow

A solution 1s based on the method of Brown and Michael. The approach
will only be briefly outlined here — for a full account the reader is rogerred
to Seotion 2 of Ref.5.

The equation of the lcadang cdge i S

= 0l
Y| = so(1+k€), X > 0}
X X
where E = — = ;x— . o (22)
5o o

For any plane normal to the wing centre-lane | et the strength and co-ordinates
of the leading-edge vortex be given by

I() = 2nUso(1+kE)y(E) L (23)
Y, + i%y = so(1+kE) (n+iZ). .(2k)

Condations (i) and (1i) of Sectlon 1lead to the following two differential
equations for m(g),%(g), Ref.5, oquations (20)):

L(1+k8)/
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L(1+kE) {o(372 =0* ) + 7(*-307)2 + o(c®+7 ) Jgn!
+ 4(14KE) [1(2 =30 )nZ = o(31°-0* )2 « o(c®+7° )2 n}g!
= -a(c®+?)[20%-(c®+7? ) (72 =302 ) ]

Ve (25)

+ho(c® 4 ) [k + ﬁl Z

and  4o(1+kE) {[o(37 ~0? ) + 7(+2=30)Z][n(n=1)+L2 ] = o(c® +7° Y nin'
+ Bo(141E) [ [1 (#2302 ) = o(372=0?)Z][n(n-1)+2 ] = o(d®+72 L]z’
= —ar(R+2)[(P-0?) = (P+2)(P-3?)]
a' (1+kE) )

+40? (0° +7° )2<k[(2n—1 Ine2] + —— [n(n=1)+8 ]
a

LI (26)

the dashes representing differentiation with respect to E, Here, o and -
ara related ton and Z by a oonformal transformation such that

- P =P -, (@7
or = |-g. . (28)
The vortex strength is foaund fromequation (23) with
alg® + )
v - — . (29)
20°

Ths solution of equations (25) and (26) can be determ ned numer-
ioally. However, a certain amunt of information can be obtained analytically.
For the case of a sudden plunging notion ais constant so that the
differential equations simplify slightly with @' = 0. The follow ng series
expansions then hold for sufficiently small values of E&:

N

no= 1+ ya, /3 . (30)
n=o0
N

Z = 62/3 E:\ bn gn/B , (31)
n=o0

wher e/



wher e
3 ™~
Baz--—-k
7
a\*/% 9 1141:2]. ;”
- (TR
b 16 49 & |
a2/3
- (3)
4
1
bh = -~k ‘L>|

N

a\*/®—197 181 -
O
4 240 49 %

s

|f k = 0 equations (30) and (3-1) give the expansions for a rectangular wng
In which case a; = bs = 0,

Wien the solution in n and % has been obtained for the trapezium
wing up to sonme small value of &, it can be continued, say, by a Bunge-Kutta
process. However, the values of y and % at E = o are those in the steady
motion of tho delta wing and are given for exanple in Table 5 of Ref.5. The
values of n' and %' at £ = w are zero, but the limting ratio of Z'to
n' my be found as fol lows. The ratio of the left-hand-sides of (25) and (26)
is equated to the ratio of their right-hand-sides, the limting value of which
is found by differentiating numerator and denom nator with respect to &
(extension of L'Hépatal's rule). This leads to a quadratic in Z'/n', the
coefficients of which are known in terms of n(w) and Z(e).

Wien n and Z are known the strength of the |eading-edge vortex

is givep by equations (23), (27) to (29), The perturbation velocity potential
@fx,Y,z cgn tqhen be ft()unzj f(or )each(cr%ss-flow plane and n',Z' can be

calculated from the differential equations. Hence the pressure coefficient*
on the wing
P ap 2092 1 3% \®
¢ - oo=-____.._<_>-a2, L (32)
P 1ol UX U\ oY

can be eval uated.

6./

*This differs fromequation (21) of Ref.1 in the sign of the last term since
the X-axis has been-taken parallel to the streamand not along the wing
centre-line (Fig.2).
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6. Conparison with Experinent

Some experiments/ have been carried out in the N.P.L. Water Tunnel to
observe the behaviour of the |eading-edge vortices followaing the sudden plunge
of a flat, sharp-edged delta wing with sem-apex angle g = 20°, Tho particular
case a =11,3° was analysed in detail. Measurenents of the vortex position
appear to confirmthe theoretical conclusion that the flowin each plane
X = oconstant reaches its steady state in tame t = x/U Moreover, records of
the vortex novenents in three such planes tend to indicate that Ut/x is &
unifying parameter for the delta wing.

In Figs. 3 and 4 theoretical curves of £ against m are given to
show the effects of incidence and apex angle on the vortex positions during a
sudden plunge. The initial portions result from conbined useof equations (18),
222), (30) and (31) and the final portions fromthe liniting values of Z'/n'
Section 5). The dotted central forti ons of the curves are roughly faired to
these end portions. Figs, 3and 4 give no indication of the rate of vortex

novenent .

For the purpose of conparison with experinment = and % may be
witten as

3 9 114 %3 an \*/®
Bo=telas] —4—— (~> £O0%), (@)
7 16 49 o Lk

H

a\ 273 4 197 18 k? ah \*/3
("> ‘—M["""’"'— <“> +0(2%72), « (33)
4k 7 2,0 49 Lk

where A = Ut/x and equations (18), (22), (30) and (31) have been used. Thus,
for sufficiently small tine, = and depend only on the unifying paraneter
A and a single geonetric paraneter a?k. Consi deration of equations (25) and
(26) witten in terms of A shows, in fact, that the conplete solutions for
n and ¢ depend only on A and a/k. Fromequations (32) and (33) and the
final vortex positions in Table 5 of Ref. 5, curves of n and & are plotted
separately against Ut/x in Fig. 5 for the particular case a/k = 0,542
analysed in Ref. 7. These curves are conpared with the experinental results
fromFigs. 6 and 9 of Ref. 7 for the plane x = £ (root ghord). The steady-
state vortex positions found experimental |y by Alexander® are al so shown and
are seen to give better agreement with the theoretical positions, Further
"experiments in the NP.L \ater Tunnel are planned, these should provide
simlar conparisons for nore slender (e = 10°) and |ess slender (e = 30°)
delta wings in plunging notion.

At this stage it is worth making the follow ng comrents:
(1) Considerable differences occur between the Brown and Michael

theoretical and the final spanwise vortex positions found in
eyeriment. This can be seen fromthe follow ng table for

a/k = 0,542,

Tabl e/
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n g
Theory (Ref. 1) 0.897 0.131
Experiment (Ref. 7) 0.63 0.19
Experiment (Ref. 8) 0.77 [ 0.14

A possi bl e reason for discrepancy is secondary separation
which normally occurs in practice. It has been shown by
Al exander 8 that, when the secondary separation is
elimnated by |eading-edge bl owi ng, the spanwise vortex
position is closer to that predicted by theory, For
exanple, with blow ng, Alexander finds mn = 0,81 when
a/k = 0.542.

(2) For a sudden plunge, the initial path of the vortex in the
cross-flow Plane 1s normal to the wing surface fromtheory,
and apparently from experiment also. [f, for exanple, @
is a non-zero constant in equations (25) and (26), the
inutial path woul d be inward and parallel to the wing
surface

(3)In the quadratic for Z'(e)/n'() referred to in Section 5,
the nunerical solutions correspondang to Figs. 3 and 4 show
one negative and one positive root, The former root has
been chosen as nore pﬂysically realistic in the present
exanpl es,

(4) Consideration of the expression for the pressure on the wng
shows that, away fromthe edges, the initial pressure at
t =0+ is infinite as &~3, By contrast, linearized theory
gives infinite pressure at t = 0, but finite pressure at
t = oc.

7. Anal ogies for sone Unsteady Mtions

In dealing with the oase of sudden plunging motion the flow
in planes x' = constant (fixed in space) was considered, and was referred to
(t,y',z')-space, This procedure can be applied to arbitrary unsteady notion.

The anal ogies to which it leads for someparticular notions are discussed
in this section

7.1 Entry into a epust

Suppose a slender wing, mnoving with uniform velocity, enters a gust.
Consider a reference plane x' = constant situated within the gust. By
applying the procedure nentioned above, it is seen that the flow in this plane
i s anal ogous to the steady flow past the given wing at the effective incidence
produced by the gust in the plane, Since this property holds for any plane
x' = constant it is clear that quasi-steady theory holds for each plane

x/
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x = constant noving with the wing. In other words, the flow in each plane
X = constant is instantaneously in the steady state corresponding to the
effective incidence produced by the gust. In particular, if the gust is

sharp-edged, the flow in each plane x = constant changes instantaneously
fromits initial s feady state to its final steady state as the plane enters
the gust, Hancock® has previously derived this result by a different argument.

Consi der the case when the gust is not sharp-edged. Suppose, for
exanpl e, that the gust velocity increases monotonically to its full value, and
consider the variation of pressure at sone point of the upper surface as the
wing enters the gust. A curve of -C, against distance travelled into the
gust can be plotted for this point xsng known steady-state pressure distri-
butions, in the case of delta wings' #. This curve will not rise nono-
tonically for all points on the wing upper surface. In fact, if the chosen

point |ies between the Ieadin?.edge and the pro%ection on the wing of the
final vortex position =Cp TITst rises, then tfalls, and then rises again
to its final steady value. ® This can be seen fromFig.7 of Ref.1 or from
theoretical calculations of Mangler and Smith in Fig.7 of Ref.2. The initia
peak in -Cy coincides approximately with the instant when the | eading-edge
vortex is above the chosen point, It is relevant to point out that the
phenonenon of an initial peak in the pressure measured at the upper surface
of a delta wing has been found experinentally (F1g.11(b) of Ref.9), although
it is not clear whether the above theory is the correct explanation.

The case of entry into gusts by wings with curved |eading edges is

covered by the quasi-steady property referred to above, so that in principle
the flow characteristics could be determned by means of Ref.3.

7.2 Qther unsteady notions

The analggy can clearly be used to deal with sudden plunging notion
of wings with curved | eading edges. However, it is not nearly so convenient
since Ut/x is no longer a unifying paraneter. Consideration would need to
be given to the anal ogy through a sequence of reference planes x' = x0 in
order to obtain the flow pattern. A glance at equations (30) and (31) shows
that the initial path of the vortex is still normal to the wing surface. In
addition it is known that the final position is reached at Ut/x = 1.

O her applications of analogies are to the cases of oscillating and
deformng wings. However, Ut/x would not be a unifying paraneter, even for
delta wings. Conpensating a little for this difficulty is the fact that the
restrictions on the notion are somewhat |ess severe than in Randall's theeﬁyh’a

It is sufficient that

(1) the mean incidence is |arge enough to ensure that the effective
local incidence is everywhere positive

(2) Laplace's two-dinensional equation holds.

~ Although the first restriction inposes sone |imtations on anPIitude
of oscillation, there are several practical cases in which anplitude eftects

could be investigated. For conpressible flow, the second restriction limts
applications to oscillations at |ow frequency.

8./
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THE UNSTEADY MDTION OF BLENDER WINGB WITH
LEADING=EDGE VORTICES

Ungteady motions In tncompressible fiom are treated by an analogy
with related steady flows, sudden plunging motion an extension
of the Brown and Michael theory |s applied to the related steady
problem and, for a delta wing, camparison is made with experiment,
For motion Into a gust, It Issﬁown. Lhat quasl-steady theory holds in
each cross=flow plane. Application to other unsteady motionsis
briefly discussed.
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THE UNSTEADY :.ci: - SLENDER WINGS WITH
LEADING-EDGE VORTICES

Unsteady mottons in Incompressible tlow are treateq by an analogy
rith related steady flows.  For sudden plunging motlon an extension
of the Brown and Michael thecry 1s applled Lo the related steady
problem and, for a delta wing, camparison Is made with experimert,
For motlon into a gust, it Is shown that quasi-steady theory holds in
each cross-flow plane.  Applicat {on to other unsteady mottons {s
briefly discusseds
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Jamary, 1964
Dore, D. B.

THEUNSTEADY MOT 10N OF SLENDER WINGSWITH
LEADING-EDGB/ORTICES

Unsteady motions 1in incalxépmsslble flow are treated by an analogy
with related steady flows. or gudden plunging motlon an extension
of the Brown and Michael theory is applied to the related steady
problem and, for a delta wing, camparison 18 made with experizent.
Per motion Into a gust, It is shown that quasi-steady theory holds lo
each cross-flox plane.  Application to other unsteady motions is
brietly discussed.
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