

The Unsteady Motion of Slender Wings with Leading-Edge Vortices

By
B D Dore

The Unsteady Motion of Slender Wings with Leading-Edge Vortices
- By
B. D. Dore

January_1964

SUMMARY

The unsteady motion of thin, slender wings with leading-edge vortioes is considered. Incompressible flow and slender-wing theory are assumed throughout, and use is made of an analogy between the unsteady flow and related steady flows. The particular motions treated are:
(i) a sudden plunging motion, or change of incidence,
(ii) entry into a gust,

For the first case, it is shown that the flow in any transverse plane moving with the wing reaches its steady state as soon as that plane has travelled past the initial position of the leading apex of the wing. An extension of the theory of Brown and Michael is given to determine the strength of the vortex and its path from the leading-edge to the steady-state position, Preliminary results obtained are compared with experiment,

For the second case, use of the analogy shows that quasi-steady theory holds, The flow in any transverse plane is instantaneously in the steady state corresponding to the effective incidence produced there by the gust.

CONTENTS/

Replaces N.P.L. Aero Report No. 1087 - A.R.C. 25489.
Published with the permission of the Director, National Physical Laboratory.

CONTENTS

Page

1. Introduction 2
2. Notation 3
3. Analogy for Sudden Plunging Motion 4
4. Application to Delta Wing 6
5. Trapezium Wing in Steady Flow 7
6. Comparison with Experiment 10
7. Analogies for some Unsteady Motions 11
7.1 Entry into a Gust 11
7.2 Other Unsteady Motions 12
8. Acknowledgement 13
References 13
Figures 1 to 5.
9. auction

The flight of slender wings with sharp leading edges is likely to involve flow separation. This phenomenon gives rise to regions of concentrated vorticity above and slightly inboard of the edges, and joined to them by vortex sheets,

The theory of leadincedge separation in steady flow has been considered by several authors $, 2,5$ One of the simplest approaches, which forms the basis of the present work, is that given by Brown and Michael for flat delta wings. They replace the concentrated vorticity by an isolated vortex and the vortex sheet by a "cut" joining the vortex to the leading edge. Thus, the velocity potential is one-valued but there is a discontinuity in pressure across tho cut. Brown and Michael use the approximations of slenderwing theory. In any oross-flow plane there are three unknown quantities the co-ordinates and strength of the vortex. These are determined from the following conditions:
(i) the two components of the force acting on the vortex and cut must be zero,
(ii) the fluid velocity must be finite at the leading edge.

The extension of the Brown and Michael theory to flat wings with curved leading edges has been given by Smith ${ }^{3}$.

A theory of leading-edge separation ..f Ω, slender wings in oscillatory motion has been presented by Randall ${ }^{4,5}$. The method is a logical extension of the Brown and Michael theory and is valid when the amplitude of oscillation is small compared with the mean incidence. Hancock ${ }^{6}$ has discussed the transient motion of slender delta wings with leading-edge Separation, in particular the cases of entry into a sharp-edged gust and of a sudden change of incidence. On the basis of slender-wing theory, he concludes that the solution to the gust problem is trivial; the flow in any transverse plane changes instantaneously from its initial steady state to its final steady state as that plane enters the gust. The argument put forward by Hancock for the case of a sudden change of incidence is based on considerable supposition and will not be discussed here,

In the present note, use is made of an analogy wich relates the unsteady motion of a slender wing with leading-edge vortices to a sequence of steady flows past slender wings of identical planform but with different camber, The usual slender-wing approximations are made and an incompressible fluid is assumed.
2. Notation

C_{p}	pressure coefficient
k	$=\tan \varepsilon$
P	pressure
p_{∞}	free-stream pressure
t	time
U	free-stream velocity
x, y, z	Cartesian co-ordinates fixed in wing
$\mathrm{x}^{\prime}, \mathrm{Y}^{\prime}, z^{\prime}$	oartesian co-ordinates fixed in space
X, Y, 2	Cartesian co-ordinates in the analogy
x_{0}	value of \mathbf{x}^{\prime} in reference plane (Fig. ${ }^{\text {() }}$
Y_{v}, Z_{v}	position of vortex in cross-flow plane
a	incidence
γ	defined by equation (23)
Γ	strength of vortex
ε	semi-apex angle of delta wing

: In a recent paper (A.R.C. 25 118) Lowson has independently adopted the same analogy on the basis of physical considerations and has applied it to oscillatory motion.
2. Notation (continued)

$\eta, \boldsymbol{\zeta}$	defined by equation (24)
$\boldsymbol{\lambda}$	defined by equation (19)
$\boldsymbol{\xi}$	defined by equation (22)
$\boldsymbol{\rho}$	free-stream density
$\boldsymbol{\sigma}, \boldsymbol{\tau}$	defined by equations (27) and (28)
$\boldsymbol{\phi}, \boldsymbol{\phi}^{\prime}, \boldsymbol{\Phi}$	perturbation velocity potentials

3. Analogy for Sudden Plunging Motion

Suppose the motion is referred to axes oxyz fixed in a flat, slender wing; origin 0 at the apex, ox along the wing centre-line, $0 z$ normal to the wing, oy completing a right-handed set (Fig.1). For time $t<0$ the wing moves in the direction of tho negative x-axis with constant velocity U and at zero incidence. At $t=0$ the wing starts to plunge with uniform velocity $U a$ in the direction of the negative z-axis, so that the incidence changes suddenly from 0 to \boldsymbol{a}. If the total velocity potential is Ux $+U a z+\phi$, the perturbation velocity potential $\phi(x, y, z, t)$ sčisfios'

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{a 2}=0 \tag{1}
\end{equation*}
$$

and, for $t<0$,

$$
\begin{equation*}
\phi \equiv 0 . \tag{2}
\end{equation*}
$$

If the motion is referred to axes fixed in space such that

$$
\begin{equation*}
x-U t=x^{\prime}, y=y^{\prime}, \quad z-U a t=z^{\prime}, \tag{3}
\end{equation*}
$$

then
where

$$
\phi(x, y, z, t)=\phi\left(x^{\prime}+U t, y^{\prime}, z^{\prime} t U a t, t\right)=\phi^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}, t\right) \text { say, . . (4) }
$$

$$
\begin{equation*}
\frac{\partial^{2} \phi^{\prime}}{\partial y^{12}}+\frac{\partial^{2} \phi^{\prime}}{\partial z^{12}}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi^{\prime} \equiv 0(t<0) . \tag{6}
\end{equation*}
$$

Since (5) is independent of x^{\prime}, each plane $\mathrm{x}^{\prime}=$ constant may be considered separately. Thus, the remaining conditions on ϕ^{\prime} for each plane $\mathbf{x}^{\mathbf{\prime}}=$ constant are as follows:
(i) at infinity, $\quad \frac{\partial \phi^{\prime}}{\partial y^{\prime}}=0, \quad \frac{\partial \phi^{\prime}}{\partial z^{\prime}}=0$,
(ii) on the wing, $\quad \underline{\partial \phi^{\prime}}=0 \quad(t<0)$
$\left.\partial z^{\prime}=-U a(\mathrm{t} \geq 0)\right\}^{\prime}$
(iii) there 1 s no flow through the leading-edge vortex sheet, so that

$$
\frac{\partial f^{\prime}}{a t}+\frac{\partial \phi^{\prime}}{\partial x^{\prime}} \frac{\partial f^{\prime}}{\partial x^{\prime}}+\frac{\partial \phi^{\prime}}{\partial y^{\prime}} \frac{\partial f^{\prime}}{\partial y^{\prime}}+\frac{\partial \phi^{\prime} \partial f^{\prime}}{\partial z^{\prime} a d}-\quad=0
$$

where $f^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}, t\right)=0$ is the equation of the sheet. Hence, within the concepts of slender-wing theory,

$$
\begin{equation*}
\frac{\partial f^{\prime}}{\text { at }}+\frac{\partial \phi^{\prime}}{\partial y^{\prime}} \frac{\partial f^{\prime}}{\partial y^{\prime}}+\frac{\partial \phi^{\prime}}{\partial z^{\prime}} \frac{\partial f^{\prime}}{\partial z^{\prime}}=0, \tag{9}
\end{equation*}
$$

(iv) there is no diffarcnce in pressure across the vortex sheet, so that
on $f^{\prime}=0, \quad \Delta\left(\frac{\partial \phi^{\prime}}{\partial t}+\frac{1}{2}\left[\left(\frac{\partial \phi^{\prime}}{\partial y^{\prime}}\right)^{2}+\left(\frac{\partial \phi^{\prime}}{\partial z^{\prime}}\right)^{2}\right]\right)=0$,
(v) it is required that the flow separates tangentially at the leading edge at each Instant of time.

Consider the situation in some cross-flow plane $\mathrm{x}^{\prime}=\mathrm{x}_{0}=$ constant which contains a section of the wing at $t=0$ (Fig.1). If

$$
\begin{equation*}
X=\mathrm{Jt}, \quad \mathrm{Y}=\mathrm{y}^{\prime}, \quad \mathrm{Z}=\mathrm{Z}^{\prime}, \tag{11}
\end{equation*}
$$

tho flow in this plane is analogous to the steady flow U past a wing of the same planform, with local incidence zero for $\mathrm{X}<0$ and a for $\mathrm{X} \geqslant 0$ (Fig.2). The analogy exists because the perturbation velocity potential $\Phi(X, Y, Z)$ of the steady problem satisfies

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial Y^{2}}+\frac{\partial^{2} \Phi}{\partial Z^{2}}=0 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi \equiv 0 \quad(\mathrm{x}<0) \tag{13}
\end{equation*}
$$

The remaining conditions in any cross-flow plane $X=$ constant are

$$
\begin{equation*}
\text { (i) at infinity, } \quad \frac{\partial \Phi}{\partial Y}=0, \frac{\partial \Phi}{a Z}=0 \text {, } \tag{14}
\end{equation*}
$$

- 6-

(ii) on the wing

$$
\begin{align*}
\frac{a^{@}}{a z} & =0 \quad(x<0) \tag{15}\\
& =- \text { ua } \quad(x \geqslant 0),
\end{align*}
$$

(iii) if $F(X, Y, Z)=0$ is the equation of the leading-edge vortex sheet,

$$
\begin{equation*}
\mathrm{U} \frac{\partial \mathrm{~F}}{\mathrm{ax}}+\frac{\partial \Phi}{\partial Y} \frac{\partial F}{\partial Y}+\frac{\partial \Phi}{a z} \frac{\partial F}{a z}=0, \tag{16}
\end{equation*}
$$

(iv) there is no difference in pressure across the sheet, so that
on $F=0$,

$$
\begin{equation*}
\Delta\left(U \frac{\partial \Phi}{\partial X}+\frac{1}{2}\left[\left(\frac{\partial \Phi}{\partial Y}\right)^{2}+\left(\frac{\partial \Phi}{\partial Z}\right)^{2}\right]\right)=0 \tag{17}
\end{equation*}
$$

(v) there is smooth outflow at the leading edge of the wing,

The quivalence of the two corresponding sets of equations (5) to (10) and (1,2) to (17) is apparent if, in the latter, X Is replaced by Ut. The solution of the steady problem may therefore be applied to the unsteady plunging motion. The steady flow characteristics for $X=$ constant give those in the plane $\mathrm{x}=\mathbf{x}_{0}+\mathrm{X}$ at time

$$
t=\frac{X}{U}=\frac{x-x_{0}}{u},
$$

where $\mathbf{x}^{\prime}=\mathbf{x}_{\mathbf{0}}$ is the reference plane in Figs. 1 and 2.
An important consequence of the analogy is f ound when $x_{0}=0$. Then the analogy is with the steady flow past the actual wing at uniform incidence a. The characteristics in any plane $X=$ constant give those in the plane $x=X$ for time $t=x / U$. In other words, for each section $x=$ constant, the steady-state is reached in time x / τ. That this state is maintained for Ut > x is easily seen by considering negative x . It is pointed out that the same property holds for slender wings of arbitrary planform and camber, whatever the initial incidence may be.

4. Application to Delta Wing

Application of the analogy is particularly well-suited to delta wings in plunging motion. Consider a delta wing of semi-apex angle $\boldsymbol{\varepsilon}$ and leading edge $y=k x$, where $k=\tan \varepsilon$ (Fig.1). Since the incidence is zero for $\mathbf{t}<0$, the analogy leads us to study the steady flow past a trapezium wing at an incidence a (Fig.2). The similarity of the trapezium wings resulting from arbitrary \mathbf{x}_{0} shows that the flow in each plane $X=$ constant depends only on $\mathbf{X} /$ so where $s_{0}=\mathbf{k x}$. The solution for the unsteady plunging motion is then known if the solution is known for one trapezium wing for all positive X. In fact the flow characteristics in the plane
where

$$
\begin{align*}
& X=\frac{\lambda x_{0}}{I-h}, \tag{18}\\
& \lambda=\frac{U t}{x} \leqslant 1, \tag{19}
\end{align*}
$$

give those in any plane $x=$ constant at tume $t=X x / U$. Thus λ is a unifying parameter in the unsteady problem, This is also apparent from nondimensional arguments since, for the trapezium wing,

$$
\begin{equation*}
\Phi(X, Y, Z)=U_{s_{0}} G\left(\frac{X}{s_{0}}, \frac{Y}{s_{0}}, \frac{Z}{s_{0}}\right) \tag{20}
\end{equation*}
$$

The transformation from (X, Y, Z)-space back to (x, y, z)-space shows that, in the unsteady problem, the perturbation velocities and pressure in any crossflow plane are functions of $\lambda, y / x, z / x$. According to (18) the flow characteristics for $\lambda=1$ are found from those in the plane $X=\infty$. Thus, the steady state is reached when $\lambda=1$ as deduced $1 n$ the last paragraph of Section 3.

5. Trapezium Wing in Steady Flow

A solution 1 Is based on the mothod of Brown and Michaol. The approach will only be briefly outlined here - for a full account tho reader is roferred to Seotion 2 of Ref. 5 .

The equation of the loading cdge is

$$
\begin{align*}
& |Y| 6 s_{0}, \quad X=0 \tag{21}\\
& \left.|Y|=\frac{X}{}=\frac{X}{} \begin{array}{l}
\mid 1+k \xi), X
\end{array}\right\}, \tag{22}\\
& \xi=\frac{X}{s_{0}}=\frac{X x_{0}}{}
\end{align*}
$$

where

For any plane normal to the wing centre-line let the strength and comordinates of the leading-edge vortex be given by

$$
\begin{align*}
\Gamma(\xi) & =2 \pi U s_{0}(1+k \xi) y(\xi) \tag{23}\\
Y_{v}+i Z_{V} & =s_{0}(1+k \xi)(\eta+i \zeta) \tag{24}
\end{align*}
$$

Conditions (i) and (1i) of Section 1 lead to the following two differential
equations for $\eta(\xi), \zeta(\xi)$, (cf. Ref.5, oquations (20)):

$$
4(1+\mathrm{kg}) /
$$

$$
\begin{align*}
& 4(1+\mathrm{k} \xi)\left\{\sigma\left(3 \tau^{2}-\sigma^{2}\right) \eta+\tau\left(\tau^{2}-3 \sigma^{2}\right) \zeta+\sigma\left(\sigma^{2}+\tau^{2}\right)^{2}\right\} \zeta \eta^{\prime} \\
&+4(1+\mathrm{k} \xi)\left\{\tau\left(\tau^{2}-3 \sigma^{2}\right) \eta \zeta-\sigma\left(3 \tau^{2}-\sigma^{2}\right) \zeta^{2}=\sigma\left(\sigma^{2}+\tau^{2}\right)^{2} \eta\right\} \zeta^{\prime} \\
&=-\alpha\left(\sigma^{2}+\tau^{2}\right)\left[2 \sigma^{2}-\left(\sigma^{2}+\tau^{2}\right)\left(\tau^{2}-3 \sigma^{2}\right)\right] \\
&+4 \sigma\left(\sigma^{2}+\tau^{2}\right)^{2}\left[k+\frac{\alpha^{\prime}(1+\mathrm{k} \xi)}{a}\right] \zeta, \tag{25}
\end{align*}
$$

and $\quad 4 \sigma(1+\mathrm{k} \xi)\left\{\left[\sigma\left(3 \tau^{2}-\sigma^{2}\right) \eta+\tau\left(\tau^{2}-3 \sigma^{2}\right) \zeta\right]\left[\eta(\eta-1)+\zeta^{2}\right]-\sigma\left(\sigma^{2}+\tau^{2}\right)^{2} \eta\right\} \eta^{\prime}$

$$
+4 \sigma(1+\mathrm{k} \xi)\left\{\left[\tau\left(\tau^{2}-3 \sigma^{2}\right) \eta-\sigma\left(3 \tau^{2}-\sigma^{2}\right) \zeta\right]\left[\eta(\eta-1)+\zeta^{2}\right]-\sigma\left(\sigma^{2}+\tau^{2}\right)^{2} \zeta\right\} \zeta^{\prime}
$$

$$
=-\alpha \tau\left(\sigma^{2}+\tau^{2}\right)\left[\left(\tau^{3}-\sigma^{2}\right)=\left(\sigma^{2}+\tau^{2}\right)\left(\tau^{2}-3 \sigma^{2}\right)\right]
$$

$$
\begin{equation*}
+4 \sigma^{2}\left(\sigma^{2}+\tau^{2}\right)^{2}\left(k\left[(2 \eta-1) \eta+2 \zeta^{2}\right]+\frac{\alpha^{\prime}(1+k \xi)}{a}\left[\eta(\eta-1)+\zeta^{2}\right]\right) \tag{26}
\end{equation*}
$$

the dashes representing differentiation with rospect to ξ. Here, σ and τ are related to η and ζ by a oonformal transformation such that

$$
\begin{align*}
\sigma^{2}-\tau^{2} & =\eta^{2}-\zeta^{2}=1, \tag{27}\\
\sigma \tau & =1-g . \tag{28}
\end{align*}
$$

The vortex strength is found from equation (23) with

$$
\begin{equation*}
y(\xi)=\frac{\alpha\left(\sigma^{2}+\gamma^{2}\right)}{2 \sigma} \tag{29}
\end{equation*}
$$

Ths solution of equations (25) and (26) can be determined numerioally. However, a certain amount of information can be obtained analytically. For the case of a sudden plunging motion a is constant so that the differential equations simplify slightly with $\boldsymbol{\alpha}^{\prime}=0$. The following series expansions then hold for sufficiently small values of ξ :

$$
\begin{align*}
& \eta=1+\sum_{n=0}^{N} a_{n+1} \xi^{n / 3} \tag{30}\\
& \zeta=\xi^{2 / 3} \sum_{n=0}^{N} b_{n} \xi^{n / 3} \tag{31}
\end{align*}
$$

where

$$
\begin{aligned}
& a_{1}=-\frac{3}{7} \mathrm{k} \\
& a_{2}=\left(\frac{a}{4}\right)^{4 / 3}\left[\frac{9}{16}+\frac{114 k^{2}}{49} \frac{\alpha^{2}}{4},\right. \\
& b_{c}=\left(\begin{array}{l}
a \\
- \\
4
\end{array}\right)^{2 / 3} \\
& b_{1}=-\frac{1}{7} k \\
& b_{2}=\left(\begin{array}{l}
\alpha \\
- \\
4
\end{array}\right)^{4 / 3}\left[\begin{array}{ccc}
197 & 18 & k^{2} \\
- & - & - \\
240 & 49 & \alpha^{2} 1
\end{array}\right)
\end{aligned}
$$

If $k=0$ equations (30) and (3-1) give the expansions for a rectangular wing In which case $a_{3}=b_{3}=0$.

When the solution in η and ζ has been obtained for the trapezium wing up to some small value of ξ, it can be continued, say, by a Bunge-Kutta process. However, the values of η and ζ at $\xi=\infty$ are those in the steady motion of tho delta wing and are given for example in Table 5 of Ref.5. The values of η^{\prime} and ζ^{\prime} at $\xi=\infty$ are zero, but the limiting ratio of ζ^{\prime} to η^{\prime} may be found as follows. The ratio of the left-hand-sides of (25) and (26) is equated to the ratio of their right-hand-sides, the limiting value of which is found by differentiating numerator and denominator with respect to ξ (extension of $L^{\prime} H o ̂ p ı t a l^{\prime} s$ rule). This leads to a quadratıc in $\zeta^{\prime} / \eta^{\prime}$, the coefficients of which are known in terms of $\eta(\infty)$ and $\zeta(\infty)$.

When η and $\check{\Sigma}$ are known the strength of the leading-edge vortex is given by equations (23), (27) to (29). The perturbation velocity potential $\Phi(X, Y, Z)$ can then be found for each cross-flow plane and $\eta^{\prime}, \zeta^{\prime}$ can be calculated from the differential equations. Hence the pressure coefficient* on the wing

$$
\begin{equation*}
C_{P}=\frac{P-p_{\infty}}{\frac{1}{2} p U^{2}}=-\frac{2 \partial \Phi}{U} \cdot \frac{1}{\partial X}\left(\frac{\partial \Phi}{U^{2}}\left(\frac{\partial}{\partial Y}\right)^{2}-\alpha^{2},\right. \tag{32}
\end{equation*}
$$

can be evaluated.
*This differs from equation (21) of Ref. 1 in the sign of the last term, since the X-axis has been-taken parallel to the stream and not along the wing centre-line (Fig.2).

6. Comparison with Experiment

Some experiments/ have been carried out in the N.P.L. Water Tunnel to observe the behaviour of the leading-edge vortices followang the sudden plunge of a flat, sharp-edged delta wing with semi-apex angle $\varepsilon=20^{\circ}$. Tho particular case $a=11.3^{0}$ was analysed in detail. Measurements of the vortex position appear to confirm the theoretical conclusion that the flow in each plane $x=$ constant reaches its steady state in tume $t=x / U$. Moreover, records of the vortex movements in three such planes tend to indicate that Ut / x is a unifying parameter for the delta wing.

In Figs. 3 and 4 theoretical curves of ζ against η are given to show the effects of incidence and apex angle on the vortex positions during a sudden plunge. The initial portions result from combined use of equations (18), (22), (30) and (31) and the final portıons from the limiting values of $5^{\prime} / \eta^{\prime}$ (Section 5). The dotted central portions of the curves are roughly faired to these end portions. Figs, 3 and 4 give no indication of the rate of vortex movement.

For the purpose of comparison with experiment η and ζ may be written as

$$
\begin{aligned}
& \eta=1-\frac{3}{7} \lambda+\left[\frac{9}{16}+\frac{114}{49} \frac{k^{2}}{\alpha^{2}}\right]\left(\frac{\alpha \lambda}{4 k}\right)^{4 / 3}+0\left(\lambda^{5 / 3}\right), \\
& \zeta=\left(\frac{\alpha \lambda}{4 k}\right)^{2 / 3}-\frac{1}{7} \lambda+\left[\frac{197}{240}-\frac{18}{49} \frac{\mathrm{k} ?}{\alpha^{2}}\right]\left(\frac{a h}{4 k}\right)^{4 / 3}+0\left(\lambda^{5 / 3}\right),
\end{aligned}
$$

where $\lambda=U t / x$ and equations (18), (22), (30) and (31) have been used. Thus, for sufficiently small time, η and ζ depend only on the unifying parameter λ and a single geometric parameter a / k. Consideration of equations (25) and (26) written in terms of $\boldsymbol{\lambda}$ shows, in fact, that the complete solutions for η and ζ depend only on $\boldsymbol{\lambda}$ and a / k. From equations (32) and (33) and the final vortex positions, in Table 5 of Ref. 5, curves of η and ζ are plotted separately against $U t / \mathbf{x}$ in Fig. 5 for the particular case $a / k=0.542$ analysed in Ref. 7. These curves are compared with the experimental results from Figs. 6 and 9 of Ref. 7 for the plane $x=\frac{2}{3}$ (root ghord). The steadystate vortex positions found experimentally by Alexander are also shown and are seen to give better agreement with the theoretical positions. Further 'experiments in the N.P.L. Water Tunnel are planned; these should provide similar comparisons for more slender $\left(\varepsilon=10^{\circ}\right)$ and less slender $\left(\varepsilon=30^{\circ}\right)$ delta wings in plunging motion.

At this stage it is worth making the following comments:
(I) Considerable differences occur between the Brown and Michael theoretical and the final spanwise vortex positions found in experiment. This can be seen from the following table for $\alpha / k=0.542$.

	η	$\boldsymbol{\zeta}$
Theory (Ref. 1)	$\mathbf{0 . 8 9 7}$	$\mathbf{0 . 1 3 1}$
Experiment (Ref. 7)	$\mathbf{0 . 6 3}$	$\mathbf{0 . 1 9}$
Experiment (Ref. 8)	$\mathbf{0 . 7 7}$	$\mathbf{0 . 1 4}$

A possible reason for discrepancy is secondary separation which normally occurs in practice. It has been shown by Alexander8 that, when the secondary separation is eliminated by leading-edge blowing, the spanwise vortex position is closer to that predicted by theory, For example, with blowing, Alexander finds $\eta=0.81$ when $\alpha / k=0.542$.
(2) For a sudden plunge, the initial path of the vortex in the cross-flow plane is normal to the wing surface from theory, and apparently from experiment also. If, for example, a' is a non-zero constant in equations (25) and (26), the initial path would be inward and parallel to the wing surface,
(3) In the quadratic for $\zeta^{\prime}(\infty) / \eta^{\prime}(\infty)$ referred to in Section 5, the numerical solutions corresponding to Figs. 3 and 4 show one negative and one posituvo root, The former root has been chosen as more physically realistic in the present examples,
(4) Consideration of the expression for the pressure on the wing shows that, away from the edges, the initial pressure at $t=0+$ is infinite as $\mathbb{t}^{-\frac{1}{3}}$. By contrast, linearized theory gives infinite pressure at $t=0$, but finıte pressure at $\mathrm{t}=\mathrm{OC}$.
7. Analogies for some Unsteady Motions

In dealing with the oase of sudden plunging motion the flow in planes $\mathbf{x}^{\prime}=$ constant (fixed in space) was considered, and was referred to $\left(t, y^{\prime}, z^{\prime}\right)$-space. This procedure can be applied to arbitrary unsteady motion. The analogies to which it leads for someparticular motions are discussed in this section.

7.1 Entry into e gust

Suppose a slender wing, moving with uniform velocity, enters a gust. Consider a reference plane $\mathbf{x}^{\prime}=$ constant situated within the gust. By applying the procedure mentioned above, it is seen that the flow in this plane is analogous to the steady flow past the given wing at the effective incidence produced by the gust in the plane, Since this property holds for any plane $\mathbf{x}^{\prime}=$ constant it is clear that quasi-steady theory holds for each plane
$x=$ constant moving with the wing. In other words, the flow in each plane $x=$ constant is instantaneously in the steady state corresponding to the effective incidence produced by the gust. In particular, if the gust is sharp-edged, the flow in each plane $x=$ constant changes instantaneously from its initial s teady state to its final steady state as the plane enters the gust, Hancock ${ }^{6}$ has previously derived this result by a different argument.

Consider the case when the gust is not sharp-edged. Suppose, for example, that the gust velocity increases monotonically to its full value, and consider the variation of pressure at some point of the upper surface as the wing enters the gust. A curve of $-C_{p}$ against distance travelled into the gust can be plotted for this point using known steady-state pressure distributions, in the case of delta wings ${ }^{T}$. This curve will not rise monotonically for all points on the wing upper surface. In fact, if the chosen point lies between the leading edge and the projection on the wing of the final vortex position, \mathbf{C}_{p} first rises, then falls, and then rises again to its final steady value. This can be seen from Fig. 7 of Ref. 1 or from theoretical calculations of Mangler and Smith in Fig. 7 of Ref.2. The initial peak in $-C_{p}$ coincides approximately with the instant when the leading-edge vortex is above the chosen point, It is relevant to point out that the phenomenon of an initial peak in the pressure measured at the upper surface of a delta wing has been found experimentally (Fig.11(b) of Ref. 9), although it is not clear whether the above theory is the correct explanation.

The case of entry into gusts by wings with curved leading edges is covered by the quasi-steady property referred to above, so that in principle the flow characteristics could be determined by means of Ref.3.

7.2 Other unsteady motions

The analogy can clearly be used to deal with sudden plunging motion of wings with curved leading edges. However, it is not nearly so convenient since $U t / x$ is no longer a unifying parameter. Consideration would need to be given to the analogy through a sequence of reference planes $\mathbf{x}^{\prime}=$ xo in order to obtain the flow pattern. A glance at equations (30) and (31) shows that the initial path of the vortex is still normal to the wing surface. In addition it is known that the final position is reached at $\mathrm{Ut} / \mathrm{x}=\mathbf{1}$.

Other applications of analogies are to the cases of oscillating and deforming wings. However, $U t / \mathbf{x}$ would not be a unifying parameter, even for delta wings. Compensating a little for this difficulty is the fact that the restrictions on the motion are somewhat less severe than in Randall's theory 4 , 5 . It is sufficient that
(1) the mean incidence is large enough to ensure that the effective local incidence is everywhere positive,
(2) Laplace's two-dimensional equation holds.

Although the first restriction imposes some limitations on amplitude of oscillation, there are several practical cases in which amplitude effects could be investigated. For compressible flow, the second restriction limits applications to oscillations at low frequency.

8. Acknowledgement

The author washes to acknowledge the assistance of lis. S. Lucas, who was responsible for the numerical calculations and who prepared the dragrams.

References

No.
Author (s)
1 Brown, C. E. and
Michael, W. H.
2 Mangler, K. W. and
Smith, J. H. B.

3 Smith, J.H.B.

4 Randall, D. G.

5 Randall, D. G.

6 Hancock, G.J.

7 Lambourne, N. C., Bryer, D. W.
and
Maybrey, J. F.M.

Alexander, A. J.
$9 \quad \begin{aligned} & \text { Hunt, G. K., } \\ & \text { Roberts, D. R. }\end{aligned}$
$9 \quad \begin{aligned} & \text { Hunt, G. K., } \\ & \text { Roberts, D. R. }\end{aligned}$ and
Walker, D. J.

Tatle, etc.
On slender delta wings wath leading-edge separation. Nall c. A. Tech. Note 3430. April, 1955.

Calculation of the flow past slender delta wangs with leading edge separaizon. Proc. Roy. Soc. a., Vol. 251, p. 200. İay, 1959.

> is theory of the separated flow from the curved leading edge of a slender wing. A.R.C. R. \& M. 3116. Iovenber, $\mathbf{1 9 5 7}$.

A theoretical determination of the flow past and the air force; on an oscillating slender delta wing with leading-edge separation.
R.is.E. Report Structures 284.
A.R.C. 24 910. March, 1963.

> Oscillating slender wings in the presence of leading-edge separation.
> R.A.E. Report Structures 286 .
> A.R.C. $\mathbf{2 4} 929$. spril, 1963 .

On the transient motion of a slender delta wing with leading edge separation. A.R.C. C.P.563. March, 1960. a prelimınary note on the behaviour of the leadıng-edge vortices of a delta wing following a sudden change of incldence. N.P.L. Lero Note 1006.
L.R.C. 24187. November, 1962.

Ixperiments on a delta wing using leading edge blowing to remove the secondary separation. Colloge of Aeronautics Report No. 161. د.R.C. 24 9y6. iliy, 1963.

Measurements of transient pressures on a narrow-delta wing due to an upward gust. i.R.C. C.P.624. September, 1961.

FIGS.1\&2

FIG.I

Co-ordinate systems

$$
\text { FIG. } 2
$$

Effect of incidence on vortex positions $\left(\epsilon=20^{\circ}\right)$

FIG. 4

$\underline{\text { Effect of apex angle on vortex positions }\left(\alpha=11 \cdot 3^{\circ}\right)}$

Theoretical and experimental vortex movement $\left(\epsilon=20^{\circ}, a=I I \cdot 5^{\circ}\right)$
A. Ren. C.P. No. 810

Jeruary, 196
Dore, B. D.

THE UNSTEADY MDTION OF BLENDER WINGE WITH LEADIMO-EDEE VORTICES

Unsteady motions In incompressible flom are treated by an analogy Wh related steady s1oms. sudden plunging motion an extensi on of the Brown and michael theory Is applied to the related steady problem and, for a delta wing, cuparison is made with experiment. For motion Into a gust, It Is shown Lhat quasl-steady theory holds in each cross-flow plane. Application to other unsteady motions is briefly alscussed.
A.R.C. C.P. NO. 810

Jamary, 1964
Dore. B. D.

TEE UNSTEAOT, masbe po SLENDER WINGS WITH
 \section*{LEADING-EDCE VORTICES}

Unsteady mottons in Incompressible flow are treatea by an analogy rlth related steady flows. For sudden plunging motlon an extension of the Brown and Michael thecry is applled Lo the relased steady problem and, for a delta wing, comparison Is made with experimert. For motlon into a gust, it is shown that quasi-steady theory holds in each cross-flow plane. Applicat ion to other unsteady motions is briefly discussed.
A. ReC. C.P. No. 810

Jamary, 1964
Dore, D. B.
the insteady mot ion OF SLENDER WINGSwith
EADING-EDCE/ORTICES
Unsteady motions in incompressible flow are treated by an analogy With related steady flows. For sudden plunging motlon an extension of the Brown and MichaeI theory is applied to the related steady problem and, for a delta wine, comparison is made with experisent. problem and, for a delta ining, comparison is made mith experisent. For motion Into a gust, It is shown that quasi-steady theory holds
each cross- flom plane. Application to other unsteady motions is
bry brtefly discussed.

(C) Crown copyrıght 1966
Prmted and published by Her Majesty's Stationery Office
To be purchased from
49 High Holborn, London w c 1
423 Oxford Street, London w 1
13A Castle Street, Edmburgh 2 109 St Mary Street, Cardiff
Brazennose Street, Manchester 2 50 Farrfax Street, Bristol 1
35 Smallbrook, Rmgway, Bırmıngham 5
80 Chichester Street, Belfast 1 or through any bookseller

