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SUMMARY 

This paper considers the inviscid incompressible flow, uniform 
at infinity upstream, past a two-dimensional cascade of aerofoils, and in 
particular the problem of determining the flow field, given the 
geometrical characteristics of the cascade. 

The literature on this problem is already very extensive 
but in spite of this, there is a need for a definitive method of solution, 
to any desired degree of accuracy, which can readily be applied as a 
routine procedure. Especially is the need felt to incorporate into 
such a standard method the power of the electronic computer, and the 
analysis needs to be positively fashioned to take full advantage of such 
machines. 

Consideration of the inherent features of the two principal 
methods of tactiing such Laplacian problems leads to the adoption of a 
method based on conformal transformations (closely akin to that of 
Carrick, 194J+) in preference to one based on distributions of 
singularities. Such comparisons as have been made between the results 
obtained by these two approaches suggest that our preference is justified. 

The problem of design is notoriously more difficult and we do 
not report, in this paper, q progress towards a practical and accurate 
design method. Perhaps, however, the thought might be expressed that 
design ideas may be formulated on the basis of numbers of solutions of 
the direct problem. 

It is hoped that, if this work can be regarded as a 
definitive procedure for the highly idealised case of potential flow 
about a cascade of aerofoils, others may be encouraged to build on it 
methods equally valid for the more complicated flows which occur in the 
reality of turbo-machinery. 

1. Introduction 

Until recent years, the technology of gas turbine engines was 
not sufficiently advanced in any of its aspects to necessitate accurate 
methods of performance estimation; certainly, engine designers have 
not been accustomed to fluid-dynamic theories as accurate as those of 
external aerodynamics. 

However,/ 
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However, there are msny indications that the efficiency of gas 
turbines has reached some kind of limit accotiing to available. design 
methods, many of which in any case describe flow conditims only in the 
large, rather than in detail. This is particularly true of multi-stage 
compressors in which, for example, it is still virtuslly impossible 
accurately to take into account non-uniformities in the inlet flow. 

A full theory of viscous compressible flow through an annulus 
of varying cross-sectional sxea inwhich there sre a number of rotor and 
stator stages is clearly beyond our reach at the present time; Wu (1952) 
has attempted to state the general problem, but there are limitations even 
in his statement of it, and in any case, there is much to be done before his 
work yields a practical method of calculation. Also, there are as yet, 
in this field of engine aerodynamics, no theories, however specialised, as 
highly developed and accurate in application as the corresponding theories 
in external aerodynsmics. 

In this situation, therefore, it seems worthwhile to return to 
some of the simplest idealisations so as to establish methods of solution 
of certain accuracy on which to build more complicated theories. Such a 
procedure is unlikely to give the engine designer everything he wants in 
the immediate future, and he will no doubt have to continue to rely for some 
time on more or less ad hoc and approximate theories. But in the long-term 
view, there is much to be said for disposing fully of the direct and 
indirect problem of a single two-dimensional cascade-raw in incompressible 
inviscid fluw, before going on to consider the complications due, in turn, 
to viscosity, compressibility, axisymmetry and a number of stages, 

This paper attempts a definitive solution to the problem of 
determining this most highly idealised flow past a cascade row of prescribed 
geometrical shape. We do not seek a solution which can in some sense be 
displayed analytically in closed form, partly because even here the flow is 
too complicated to admit of the kind of formula typical of, say, linearised 
aerofoil theory, and partly because in any case the electronic computer is a 
legitimate constituent of q moaern method. Thus our ain has been to 
develop a theory and its associated computational techniques which, when 
taken together, enable a solution of any desirea degree of accuracy to be 
obtained. 

It is instructive to admit, at this point, that much of the 
analysis in this paper has, in one form or another, appeared in the 
literature over the last thirty years, and it may be asked, if' this is so, 
whether further work on similar lines adds any-thing of value. The answer, 
in part, is that earlier theories of cascade flow - for example, those of 
Collar (1940)) Merchant (1940), Merchant snd Collar (1942), Garrick (1944), 
Mutter-per1 (1944)) Carter and I3ughes (I 946), Katzoff, Finn and Laurence (I 947 
Howell (1948)) Isay (1953)) Murai (1955), Schlichting (1955)) Mortensen (1959 
Polacek (l%Y), Czibere (1960), Riegels (1961), and Pollard and 
Wordsworth (1962) - were devised with the desk calculating machine in mind. 
Such methods sre not necessarily the most appropriate in this computer age 
and a modern method should be constructed SO that, both in detail and in 
its overall features, it is wholly suitable for moaern numerical techniques, 

As to these overall features, there are two principal techniques 
available for solving the two-dimensional Laplace equation with conditions 
prescribed on given boundaries, namely the u8e of conformal transformations 
and representatiofl by a suitable distribution of singulsr~ties. 

The representation of the flow by singularities within the body 
contour has, of course, been highly aeveloped in isolated aerofoil theory and 
is in effect the basis of linearised theories; the first applications to 
cescade flow seems to have been made by Betz (1942) and Katzoff, Finn and 
Laurence (1947). In their work the first approximation to the flow about a 
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cascade of blades is taken to be the flow about one of the blades in an 
infinite stream and this is represented by a distribution of discrete 
singularities within that blade's contour. This distribution of 
singularities is then assumed to be repeated in each of the remaining blades, 
and Betz gives a figure from which the effect of the row of equally-spaced 
singularities on the first-chosen blade can be calculated. In this way the 
original flow past the single blade can be modified and an iteration set up, 
This method was improved by Schlichting (1955) who gave the analytical 
expression for the velocity potential due to the series of equally-spaced 
singularities; a singular integral equation results. 

Pollard and Wordsworth (1962) tackle the problem by assuming 
continuous distributions of singularities corresponding to the individual 
terms of a Fourier series. The boundary conditions are then satisfied at a 
number of discrete points on one of the blades to give a set of simultaneous 
equations for the Fourier coefficients. A number of simplifying 
approximations, similar to those of linearised theories, are employed and 
they restrict the validity of the method to blades of small camber. As it 
deals largely with simultaneous linear equations, the method is well suited 
to electronic computers. 

A further refinement of the singularities method has been 
introduced by Martensen (1959) who transforms Schlichting's singular integral 
equation into a regular Fredholm equation of the second kind. Also, in his 
method, the singularities are placed on the blade contour itself, permitting 
consideration of a wider range of blade shapes. 

Turning now to methods involving the use of conformal transformations, 
the first step normally consists of an initial transformation of the infinite 
series of aerofoils into a single closed contour in the whole plane by some 
periodic transformation. Simple standard transformations are then usually 
used to obtain a near-circle. Finally, the near-circle is transformed to an 
exact circle by Theodorsen's method. The flow past the cascade can now be 
derived from the tiown flow about a circle. 

The practical success of such methods obviously depends on the 
transformations used; in particular, it is desirable to minimise the number 
of transformations and to avoid the creation of highly irregular shapes. 
A favourite initial transformation has been z = tanh z, used in this 
country notably by Howell (I 948) and by Pollard and Wordsworth (I 962); but it 
usually results in S-shaped figures which both authors had to treat with 
several successive Joukowski transformations in each of which it was necessary 
to choose the co-ordinate axes. Further, although all methods tend to become 
more difficult to apply as the pitch-chord ratio decreases, the 
tanh-transformation is particularly unsuitable in this respect. 

A rather different method was put forward by Mutterperl (1944) in 
which the cascade of blades is transformed into a cascade of flat plates, the 
chord length being kept constant. The flat plates are then transformed into 
a circle by an equation similar to that used by Murai (1955). The first 
transformation is, of course, initially unknown and has to be determined by an 
iterative procedure; but a peculiarity of the method is that the final 
transformation to the circle is involved in the iteration and on the whole 
this gives an unfavourable comparison with the methods of, say, Howell or 
Murai in which each transformation can be made independently of the others. 

There are naturally many variants of the two principal lines of 
attack which we have exemplified by quoting a few of the best-known papers, 
but enough may have been said to support our view that the singularity method 
is the less valid of the two when it comes to laying down a definitive form, 
There are two main reasons for this view. First, any method based on a 
finite number of linearly-dependent unknown quantities is vulnerable to the 
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effects of the choice of pivotal points and to the possibility of 
ill-conditioned equations; and what is more, there are no known methods of 
guarding against these effects. Second, the algebraic complications become 
such as to make highly desirable some sort of linearised approximation in 
which the boundary conditions and values are not necessarily satisfied 
exactly on the boundary. 

Transformation methods, however, are not completely free from 
disadvantages; their difficulties arise mainly in the choice and number of 
the transformations and especially of the co-ordinate axes. 

This paper reposes the use of only two transformations (apart from 
a trivial translation P , the first being that used by Garrick (1944) and the 
second that of Theodorsen (1932). Indeed the whole procedure given here 
follows Garrick's very closely with, however, two significant improvements. 
First, great attention is paid to the choice of axes and parameters involved 
in the first transformation so that the given blade contours are mapped into 
as smooth a near-circular shape as possible. Second, the computation of 
Theodorsen's theory is *roved by the treatient given by Thwaites (1963) 
which, by using various formulae given first by Watson (1945), avoids the 
explicit determination of the coefficients of the Laurent series in the 
transformation. 

2. Notation 

(a) Geometrical properties of the given cascade 

C 

6C 

d 

Y 

(xn,yn),n = 0,1,...2N-1 

eL 

pT 

(b) Other notation 

z = x + iy 

2' = x1+ iy' 

stagger angle 

parameter in Ta; its derivation is given 
in Section 7 

chord length of a cascade blade 

parameter in Ti; its derivation is given 
in Section 7 

pitch 

parameter in TZ given by equation (6) 

co-ordinates of the cascade referred to the 
axes of Fig. 4b. 

radius of curvature of the leading edge of a 
cascade blade 

angle between the directions of the blade chord 
and the normal at the blade leading edge 

radius of curvature of the trailing edge of 
a cascade blade 

angle between the directions of the blade chord 
and the normal at the blade trailing edge 

complex variable in the plane of the cascade 

alternative complex variable in the plane of 
the oascade 
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r: = 5 + in 
e$+i0 

o- = $ + i0 

eiOT 

z 

eJit+iO1 

z .= X + iY 
eg+i$ 

R = ey 

a n = 1,2, . . . n' . 

TI 

Ta 

Ta 

W 

f,&h 

Vieial 
. 

Vaeias 

V 

P 

Pi 

complex variable in the plane of the near-circle 

point on the near-circle in the &plane 

point in the C-plane corresponding to the sharp 
trailing edge of the given aerofoil 

weighted mean of the points of the near-circle in 
the G-plane 

complex variable in the plane of the displaced 
near-circle 

point on the near-circle in the G'-plane 

complex variable of the plane of the exact circle 

point on the cirgle in the Z-plane, whose radius 
is therefore ey 

complex coefficients in Theodorsen's transformation 

transformation from the z-plane to the C-plane 

transformation from the g-plane to the G'-plane 

transformation from the Cl-plane to the Z-plane 
(Theodorsen's transformation) 

velocity on the circle in the Z-plane 

functions used in calculating W 

velocity at infinity upstream of the cascade 

velocity at infinity downstream of the cascade 

fluid speed on a cascade blade 

pressure on a cascade blade 

fluid density. 

3. Outline of General Procedure 

We refer first to Figs. 1 and 2. In the z-plane it is assumed 
that the given shape of the cascade blades will be expressed as a list of 
randomly distributed co-ordinates of the surface. 

The transformation TI is designed to produce a reasonably regular 
curve approximating to a circle in the G-plane; the details are given in 
Sections 6 and 7. For the moment it is sufficient to remark that, unlike 
some of the other methods, TI is entirely determined by the various 
geometrical properties of the cascade, and thus that a set of points is then 
known on the contour in the G-plane. 

Now for the efficient application of Theodorsen's transformation, 
it is desirable that the variation of radial distance from the origin to the 
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near-circle contour is, in some sense, minimised. Thus the G-plane contour 
is displaced by a constant g, of which the derivation is given in Section 5, 
so that in the Gt-plane the radial distance - now 3r' e - is more nearly 
UIlirOXTIl. Thus in thisplanetoo,a setofpointsis known. 

At the final stage, however, the transformation into a circle in 
the Z-plane is best done when the points sre given at equal intervals of 8'. 
Thus an Interpolation is carried out in the 2;'-plane to obtain these 
equally-spaced values of @'(et). 

The finsl transformation is arranged so that IaI/cIZl is evaluated 
at these equally-spaced points in the G'-plane and so that the corresponding 
pints on the Z-plane circle are known. 

Finally it is necessary to relate the now equally-spaced ct-values 
to points on the cascade but this only involves straightforward calculation 
through the transformations T: and Ta. 

We go on to discuss the general. features of the three transformations. 

4. T3: Near-Circle to Circle 

Theodorsen's theory is well known snd depends on the fact that, on 
the boundaries, the transformation given in equation (3). of Fig. 2 reduces 
to the form 

$t(Ot) - T - i($XIt) = value on the cLrcle IZi = e' 
00 

of the function C a-Zwn which 
n=l I1 

is analytic outside the ctile. 

Hence (@'(St) -q) and ($4') are related by Poisson's integrals and the 
correspondence between the two planes is thus established. The analytical 
details and the computational procedure adopted in this paper ere given by 
Thwaites (1963) with the improvement that this differentiation matrix is 
replaced by one derived from a Ugrangian psrtial range aifferentiation 
The method req@rea the values of Jr' to be given at equally-spaced values 
of 8'. To obtain these from the randomly-sited values of Jr' which result 
from the previous trsnsformation, seveLnth-order Lagrangian interpolation 
polynomials are used, and these are found to produce sufficient accuracy. 

Inourp~sentproblem anadditianalresultis required, aswillbe 
seen later, namely the calculation of the point Z in the Z-plane which 
corresponda to a given point G* exterior to the near-circle. Following 
Appendix Cof Cerrick (1944) we appls Cauchy's formula to the function 

00 
f(z) = C anZmn in equation (3) to give 

n=l 

log (4) = - ; lo2' Y(g){1 - (Ze-')e-+]d# = f(Z) 

where H(#) = *‘(et). 

. . . (4) 

This equation (4) is an *licit uation for Z and can be 
'=%I simply solved by an iteration in which the n vdue, & of Z is 

inserted Fn the integral to give an improved value, Z where 
Z = (:'exp(-f(G)). q maybe taken as zt. n+i' 

n+i 

5./ 



5. Ta: I Displacement of Near-Circle --- 

The Gplane contour will, it is hoped, be approximately circular, 
but there is no reason for the origin in the plane to be near the centre of 
the approximating circle. There is obviously no exact criterion by,which 
to determine this centre, and so some rough and ready procedure is 
sufficient, especially since the method of computing Ta is by no means 
critically dependent on the choice of origin. 

The method employed here is to determine z as something in the 
nature of a weighted mean of the given points in the Z-plane. If these 
are denoted by Gn, n = 0, 1, . . . (2N-I), then the weighting given to'the 
point ?& is &n(Cn+l - C,,) in the notation of Fig. 3. As a result, 
the contour will be more evenly spaced round the origin in the (Z-z)-plane, 
that is the Z'-plane, than in the G-plane. 

6. TL: Cascade to Near-Circle 

We refer to Fig. 1 again for some basic notation and to Fig. 4 
for further details of Ti given by equation (1). 

Ti is a modification of equation (6b) given by Garrick (194-4). 
Its characteristic property is the mapping of the exterior of 1Z1 = 1 onto 
the whole z-plane cut along an infinite number of straight, finite 
periodically-spaced lines. 

To be more precise, the central cut is the straight line L'T 
joining the point -(c-bc)e -i&3 to the origin in the z-plane. The 
G-points corresponding to T and L' are G = +e i&J! respective1.y where 

tarleT = tanhy taa@-@) . ..(5) 

and CT is an acute angle. Here y is a convenient parameter which can 
be thought of as depending primarily on the gap-chord ratio. 

In fact, the equation connecting the geometrical quantities 
d, (c-6c), ,&6P and y is 

1 

cos(p-6p) +. ~cod?y - sir-la (p-6/3) IF 
= cos (p-6@ log 

sinhy 1 . 
. ..(6) 

sin (p-Q) 
+ ain(p-hp) tat-l-1 

[coshay - si2 @-6p) 33 1 
which is easily verified by expressing the length (C-SC) as the distance 
L'T between the singular points of TI, at which dz/a = 0. Thus in 
principle - and the practical problem will be discussed in Section 7 - the 
value of y may be found from this equation (6) from the geometrical 
properties of the cascade. 

Let us now look at some typical sets of contours in the z-plane 
which correspond to circles in the ?&plane and, to begin with, we might 
consider the set of concentric circles 1Z1 = e.q > 1, together with 
the orthogonal set of radial lines 8 = constant. Fig. 5 gives a typical 
picture in the case (p-6fl) = ,- 30" and (c&)/d = 0.3866. 

Lf a given blade profile from a cascade of the same gap/chol?l ratio 
and stagger angle as those of the fi,rlure were to conform to one of the full 
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lines, then the solution follows at once. But in practice the problan will 
involve placing a given cascade shape, cm a suitable scale, in the z-plane 
so that, as has already been discussed, the G-plane contour is closely 
circular. Now the $-constant curves in Fig. 5 appear substantially 
different from typical blade shapes, but this in itself does not imply that 
realistic shapes cannot be transformed into &plane circles; it implies only 
that such circles will certainly not have their centres at the origin. 
Therefore it is of interest to examine the z-plane contours corresponding to 
other sets of G-plane cticles. 

Now most real turbine blades are more or less cusped at the 
trailing edge; such a trailing edge clearly should be located at one of the 
singularities of the transformation, namely at T (which has been arranged 
for convenience to lie at the origin of the s-plane). The other 
singularity L' of the transformatia should lie within the blade contour, 
and so we might consider the fsmily of circles shown in Fig. 6. The z-plane 
contours corresponding to these circles are shown as f'ull lines in Fig. 7, 
and the contour corresponding to the circle which passes through T is of a 
more realistic shape than the curves in Fig. 5. Conversely, one is led to 
hope that a given cascade could in fact be placed in the Z-plane to give a 
c-plane contour reasonably close to a circle. 

The first step then for blades cusped at the trailing edge, is to 
place the trailing edge at one of the singularities of the transformation. 
There are then two parameters 6P and 6c appearing in Ti which need to 
be determined, and this is done by matching the radius of curvature and 
normal direction of the appropriate $-constant curve with the radius of 
curvature and camber line direction of the given blade at its leading edge. 
This procedure is carried through in Section 7. 

Rowever, for blades with rounded trailing edges, the position of T 
the trailing edge must also be moved away from T' the corresponding 
singularity of the transformation, and the analysis for this is briefly 
given as part of the worked example in Section y(b). 

7. Calculation of Sf3 and 6c 

The matching problem at the leading edge is attempted by an 
approximate analysis, linear Fn & and 6c/c, which is justified 
a posteriori on the grounds that these two parameters are found to be of 
order PL/c, the ratio of the leading-edge radius of curvature to the blade 
chord length. Cn the assumption that 6P and 6c/c are O(P~/C), 
equation (1) gives 

F(c) = F,(Z)(l + Oh+) > . . . (7) 

where Fe(c) = 2 e-@ log 
2X c 

eY4 &e Y 
-+ ejp 
eY4 

log - 
key 3 

- &c. 

We will write 

. ..(a) 

NJ = Fo(t;) . . . (9) 

on the understanding that the errors Fn equations (Y), (10) and (12) can be 
represented by a factor (1 + O(pL/c)). 
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We have, at the singularity L', 
I 

(3 = 0 

. . . (IO) 

where 
,I (cosh2y + cosq3y 

B=- 
27~ (cosh'y - sit?j!3)sinh82y 

. . . (11) 

and is real. In terms of the variable CT, where G = Jr+33 u e = e, 
equations (10) are 

dF 
- 

( > 
d'F 

r: 0; - 
du L’ ( > = - BL . . . (12) a* Ll 

With these values; anexpsnsion of z, in terms of' ~,maybe made in the 
neighbourhood of L'. 

At this stage it is, in fact, more convenient to develop the 
analysis in terms of the two parsmeters A and 6, shown in Fig. 4, rather 
than sp and 6c. The point L' is then given by 

Z = zL, ,- - c[I - Aei"(PL/c)lo . . . (13) 

Once A and 6. have been found, the required values of &9 and 6c follow 
easily. 

Thus, near L', we have, fkam equations (I), (12) and (13), that 

2 = -c+p,ABiG-Bd~u-i(~~~)]‘[d +o(PL)+O(CJ- 
2 

i(e,+x)) . 
C 1 

. . . (14) 

Thus the value, CL, of CT at the leading edge (where e = - c) is given 
by 

bL - i(0,+7t) IS = f pLAeiG [1 + 0 (%) + O(U - i(e,++?t))]. . ..(15) 

Equation (15) shows that {uL - i(OT+n)] = 3 O(pL/c) . Hence, sufficiently 

close to the leading edge, the -8 5 equations (14) and (I 5) can be 
represented by the factor (1 + O(pL,/c)'), which is now understood to be the 
error in subsequent equations. 

To calculate 6 we uBe the condition that the tangent to the 
blade camber line at the leading cage' should be parallel to the normal to the 
appropriate JI-constant curve, or to the tangent to the orthogonal 
e-constant curve. .Now, for a e-constant curve, 

dZ 
- 

au I 



- IO - 

a2 d.z 

-c-z- Bdlc - i(BT+7c) ] . . . (16) 
au d$ . 

from equation (14). Thus the required conditionis 

argdz = qd- Bdio- i(OT+x)]] = argia - i(e,+~~)] l e. (17) 

since B is real. Thus with the value at the leading edge given by ' 
equation (15), 

6 
argdz = - 

2 

while from Fig. 4, arg dz = cL. !rhus 

6 = 2&L. . ..(18) 

Once 6 has.been found, the condition that the radius of curvature 
of the appropriate Jr-constant curve and the radius of curvature of the 
leading edge &ould be the asme, can be used to find A. The curve in the 
s-plane in the neighbourhood of Lr which corresponds to a small arc of a 
circle,centrethe origin, in the g-plane is given by 

x= - 
c 

c+ + if? (0 - eT - 7c)‘) 
2 

Y = pLA sins - l?d$r(e -0,-x), 

and its radius of cukvature is given by 

. . . (19) 

Now at the leading edge, equation (15) gives the vskx?-s 

1 
6 6 

Jr cos--t 8 = eL =,eT+7t+ sin -. 
2 2 

Equation (20) then yields 

= 2pL A set fL, from equation (18), 

which gives A= * L' COB e . ..@I) 

Now that A and 6. have been found it is a simple matter to 
calculate, from Fig. 4, the values of the parameters s/9 and 6c in terms 
of theblade geometry. They are 

w 
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. . . (22) 

8. The Flow about the Cascade 

We proceed to describe the method by which the flow about the. 
cascade is calculated now that the transformations Fhich map a given cascade 
onto a circle have been completely determined. 

Consider the flow in the Z-plane about the circle lZl = R given 
by the complex potential 

n(Z) = E eia log 
[ 

Pi+2 
- + e-la log 

z + R”/Fi 
27c Pa-Z z * P/Pa 1 
ir (z + WEWZ - Ry/i%) 

- -log 
4% cm% > @a-z> 

l .e (23) 

which arises from concentrated sources, sinks and vortices placed as shown 
in Fig. 8, where -pi, pa are the points corresponding to the points at infinity 
in the plane of the cascade. 

w = Ian/azl, the speed on the ckcle*, can be calculated as 

r r 
Vd sina +- Vd sina -- 

w = f. f vawsa)+&( 2 
x / 

'1 +h.( 
\ m / \ m > \ 

1 
where f=- 

2R 

1 * 
g = -- 

4R 

h = + 

, 
1 

a- 
m 

&I ) 
1 

- + cos& 
nh . . 

. . . (24) 

. . . (25) 

----_--em ---------e-w- --mm_-- --we _-m-e -we 
8 
A similar expression for W was given by Howell (1948) and it may be useful to 

note that the source strengths are 2Va7t in his notation where we have 
?Vd cosa, and the vortex strengths 0re VwiK and Vw27c in his notation 
corresponding to our values (Vd sina + r/2) and (Vd sina - r/2). 
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and ml = ~PI b-l, ma = IPaIR? . ..(26) 

Fig. 8 should be consulted for the definitions of & and #a. 

We must now discover the interpretation that should be placed on 
the variables V and a appearing in equations (23) and (24), in terms of 
the physical properties of the flow through the cascade. It will be shown 
that, in fact, Veia is the vector mean of the inlet and outlet velocities, 
Vieia' and Vaeiap; the angles a, Q and aa being measured from the line 
perpendicular to the stagger line (see Fig. 9). 

The velocity in the z-plane is obtained from the equation 

m do dZ dt;' dG dz' 
- = -e-e-*-e- 
dz dZ @,' dt: de' dz' 

. ..(27) 

the terms of which can be evaluated using equations (I), (2), (3) and (23). 
Considering the flow at infinity upstream of the cascade we have from 
equation (27), since we sre taking the direction of flow to be from left to 
right, 

d!J - r 1 E .viei(-Q +P> = veiCa+p) + ir eiP . 
dz 2d -W 

Similarly the outlet velocity vector is 

m r 1 - 
dz 

+w 

. ..(28) 

. ..(29) 

Addition of equations (28) and (29) shows that the mean of the inlet and 
outlet velocities has magnitude V and is at sn angle (a+@) to the x-axis. 
We can also show that the inlet and outlet angles are given by 

r r 
sina + - sina - - 

2Vd 2Vd 
cxi = - tsxii ; aa = -ul . . ..(30) 

cosa > '( cosa > 

In the practical problem of finding the flow about a cascade we 
will be given the inlet velocity V%e ia.I and the Joukowski condition at the 

trailing edge of the blade, from which the outlet velocity Vaeiaa is 
calculated as follows. Rewrite equation (24), using equations (30), as 

Kdcosai 
w = (f - gtanai - htsnaa) . ..(30 

71 

in which Vcosa ha3 been replaced by vicos~, from the real part of 
equation (28). Then, for a stagnation point at the trailing edge, we have . 

fT - gTtanai - hTtanaa = 0, d32) 

where the suffix T denotes values at the point on the Z-plane circle 
which corresponds to the trailing edges of the blades. Thus the outlet angle 
is given by 
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c&J = tani . ..(33) 

Also, from equations (28) and (2V), the outlet velocity is given by 

va = VI CosCGt secaa. . ..(34) 

' The speed, W, on the circle can now be evaluated from equation (31) 
since a2 isknown. It is clear that, in our case, it will be most 
convenient to calculate W at the points on the circle with the angular 
displacements 9 which result from Theodorsen's transformation; that is, 
corresponding to the interpolated, equally-spaced points on the near circle 
in the Zt-plane. The points on the cascade corresponding to these can 
then be traced back through transformations Ta and TI. The speed, v, at 
these points on the cascade can then be calculated using the modulus of 
equation (27), which becomes 

drl dZ a 
- = v = WK.---, . ..(35) 
a2 a.' dz' 

since ldZt/d.Zl = 1, Ta being merely a translation. ldZ/dZtl is 
calculated as part of Theodorsen's method (see Thwaites, 1963); lar;/azl can 
be derived from equation (1) and is given by 

de' 2a 
- z-x 
dt; 7c I 4 

osa(~-~~)coshay(cosha~-cos~)+sina(~-~~)s~~(co~~-sinae)-~sin2~-~~)sinh2ysin28 

cos.ha2y - 2cosh2ycoah2$cos2e + cosa2e + sti2JI 

. ..(36) 

The pressure on an aerofoil is usually iven in terms of the 
pressure coefficient Cp, defined as (p-B)/+P~ I, where pI 9 is the 
free-stream pressure. Thus, by Bernoullils equation 

. ..(42) 

I W%l 
In the case of a profile with a cusped trailing edge, W and 

are of Course both zero at the trailing edge, so that v has to be 
calculated as a limit. It is easily found that 

‘in 
vT= az 

where, from equation (1) 

daz 

dt? 

dZ a dan 

-I 

da z' 
= - . ..(37) 

T wT ZaT z T' 

dicosh*y - sina@-68)]' 
= 

T rrr(sinhy coshy)" ' 

' and fawn equations (23) and (30), 

dan Vid cos~i 
= (p+Qa )'. 

d' T 
2x 

. ..(38) 

l ..(39) 

In/ 
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In equation (3V), P and Q sre given by 

and 

where 

P = -Al+Aa-&+A4 - f2.n a~(&-6) + tan a,@2-lk), 
.** (40) 

Q = -& +Bd - Ei3 + Et + tan adAd-fb) - t82-i a&d4), 

& = A@ $,), B 1 = Bbl, #lT)9 

% = A(-m2, YjaT), B = B&y,, 9aT), a 

A3 = A(l/m 19 #iT), B3 = @l/y, #lT), 

A4 = &l/m, daT), B4 = B<-l/m, daT), 

1 I 
- - + m co9 2$ ( > 

+ CO8 $ 
2 m 

Ab, #> = 

sin$ + &rn sin2$ 
6, $1 = 

2mRa[cos#+t(m+~)j 

9. Test Examples 

(a) Merchant and Collar Cascade 

> l 
. ..(41) 

To test the foregoing theory, a flow was required. whose properties 
can be determined exactly, but which was not derived by Carrick's 
transformation. The most convenient method of producing such a flow seemed 
to be that of Merchant and Collar (I 941) which has also been used for 
comparison purposes by other recent workers, especially by Gostelow (1963). 

Merchant and Collar's analysis is not reproduced here, but the 
blade shown in Fig. IO was derived by a straightfom calculation using the 
following values of the parameters in the original notationx- 

Stagger angle = 3705~ 

B = 0.725 

p’ = 0.8 

Co-ordinates of the centre of the ,@I-oval 
in the d-plane = (-0.06320, +o~l1251). 

For the application of the present method to this cascade, it is 
necessary to specify the blade shape as a set of'.points whose co-ordinates 
could be used as input data. Two sets of co-ordinates were in fact used, 
one of 30 points and the other of 40 points; and upon these were based 
respectively the 20-point* and 40-point programmes. The set of 40 chosen 
points is indicated on Fig. IO, on which is also given the points on the 
blade which were found, after calculation, to correspond to the equally-spaced 
points in the G'-plane. Fig. 11 shows, for the 40-point programme, the 

contour/ 
--------------I------------------------- * 
A P-point programme is one which takes P equally-spaced points on the 

cl-plane contour. 
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contour in the g-plane and also this contour when displaced by the 
transformation Ta; again the given points and interpolated points are shown. 
This figure indicates how successfully the choice of parameters in Tl has 
avoided the irregularities usually present in contours obtained by 
transformations. 

The flow about this given Merchant and Collar cascade has been 
calculated exactly for an inlet flow angle UI = 53*5O, namely that used by 
Gostelow (1963). The exact pressure distribution for this inlet angle is 
shown in Fig. 12 on which are also plotted the points calculated by the 
20-pointand40-point programmes. These calculated points agree very.well 
with the exact result and it is surprising that the 20-point calculation seems 
almost as satisfactory as the @&point. No doubt, the accuracy of the 
calculations could be further improved by taking more than 40 points. 
(It may be further noted that 40-point calculations come close to using all 
the available storage space on the Pegasus computer used here; blade profiles 
specified at many more points could, of course, be handled on larger machines.) 

The outlet angle has also been calculated using the 40-point 
and 20-point programmes and is compared in the following table with the exact 
value. 

Ekactvalue &point 20-point 

tan&a 0.57793 O-57808 o-57704 

% error 00 026 -0.154 

Some of the other methods of calculating cascade pressure 
distributions have recently been applied to the same Merchant and Collar 
cascade. Fig. 13 showa results obtained by Gostelow (1963) using Schlichting's 
singularity method, and by Rolls-Royce Ltd.* using the singularity method of 
Martensen (1959), compared with the values obtained by the leGpoint programme. 
The reader may drawhis ownconclusions. 

(b) Cascase of loC4/3OC50 aerafoils 

In a recent report, Pollard and Wordsworth (1962) have compared 
two theoretical methods of solving the direct problem of cascade flow. Their 
methods were: first, a conformal-transformation method based on Howell's 
transformation and second, a modif'ied version of Schlichtingts singularities 
method. They have calculated the pressure distributions and deviation 
angles for a cascade of lOC4/3oC50 aerofoils with gap-chord ratio unity, 
for a variety of stagger angles. 

Further interesting comparison can be made by applying the present 
method to the same examples. We have thus used a lCC4/3OC50 aerofoil given 
at 32 points asashown in Fig. 15. These are derived from the 17 values of 
the C4 thickness distribution given in Howell (1946) which were also the basis 
of Polls& and Wordsworth's calculations. 

It will be noted that the C4 profile has a non-zero trailing-edge 
radius of curvature. To take account of this the proceeding theory must be 
modified slightly at the stage when the axes of the z-plane are being fixed. 
The position of T, the trailing edge, must-be moved away from T', the 
corresponding singularity of the transformation, in the same way as, at the 
leading edge, L was moved away fkom L'. 

Fig. lJ+ shows the general position of a blade relative to the 
co-ordinates in the z-plane. The transformation Ti is now given by 
equation (43) of Fig. 14, where 6z is calculated by sn argument similar to 
that used in Section 7 to find &3 and 6~. 6z and the now modified 
expressions for 6p and 6c are given by equations (44) to (46) on Fig. 14. 

Initially/ 
-______________-____--------------------- * 
Not available at the. present time. 



Initially we consider a cascade with stagger angle 36O. The 
computations were based on 32 equally-spaced points interpolated in the 
Z1-plane from the 32 initially specified points. The interpolated points and 
the points in the <- and z-planes corresponding to them are shown in Figs. 15 
and 16. Retaining the inlet angle of 51' -used by Pollard and Wordsworth, 
the pressure distribution has been calculated and is compared on Fig. 17 with 
the results obtained by their two methods. 

Over the central parts of the blade, the results from the two 
conformal transformation methods lie, on the whole, very. closely together and 
both differ significantly from the values given by the distributed 
singularities method. However, there are some striking differences between 
the conformal transformation methods in the neighbourhood of the leading-edge 
pressure peaks. 

The lift coefficient has been independently calculated from the 
integrated pressure distribution and from the total angle through which the 
flow is turned, and is given in the following table, for a stagger angle of 36': 

Integrated pressure 
distribution Turning angle $ difference 

0.724 0*720 0.6 

Pollard and Wordsworth give the difference for this calculation as &$ in the 
Howell transformation case and 1% in the singularities case. 

One of the most disturbing results for practical design is the 
lack of agreement which Pollard and Wordsworth found between the curves of 
deviation v. stagger when calculated by Howell's and the singularities methods. 
The curve obtained by the present method, shown in Fig. 18, is not in close 
agreement with either of the other curves, and until msny more cases are 
calculated, it is difficult to draw any firm conclusion. 

IO. Conclusions 

A method has been produced to calculate the potential flow about a 
given two-tiensional cascade of a-foils. It has been programmed for a Pegasus 
computer and needs no intermediate curve-plotting. 

Comparisons with an exactly-known flow have been made. Excellent 
agreement between the exact and calculated pressure distributions is achieved; 
in particular the fluid outlet angle is given to three significant figures. 
It appears likely that the method will give results superior to those obtained 
from other methods of treating the problem such as those based on the work 
of Schlichting (1955) and Martensen (1959). The Schlichting method, in the 
modified form of Pollard and Wordsworth (lV62), msy be the least satisfactory. 

With a cascade of lOC4/3OC50 aerofoils, comparison between the 
present method and the methods developed by Pollsrd and Wordsworth (1962) 
shows that, of the latter methods, that based on Howell's transformation gives 
the closest agreement except for the leading-edge pressure peaks. Once again 
the results based on Schlichting's singularity method differ substantially 
from those of the transformation methods. The curve for the deviation angle 
as a function of stagger obtained by the present method lies a little lower 
than those obtained by Pollard and Wordsworth. Experimental investigation 
of the pressure distribution and the variation in deviation angle for this 
profile would be of interest. ._ 

Satisfactory results from the present method have been obtained for 
cascades of low cambered profiles using at most L+O point programmes which 
require 13 hr computing time in the Autocode version given in this paper. 
A Pegasus machine orders version has also been prepared which allows 
calculations using up to 70 points to be carried out and which reduces the 
computing time to 20 min. When it is noted that this time would be reduced 
to under 10 set on an 'Atlas computer, the possibility presents itself of using 
the method as a part or subroutine of an iterative design calculation. 

References/ 
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Computing Programmes and Detailed Formulae 

A description is given here of the prokme used in the 
calculation of the pressure distribution and outlet velocity for a given 
cascade, and the required form in which the data must be made up, together 
with formulae too detailed to be suitable for presentation in the main part 
of the report. 

The calculation has been prograxmned for a F err-anti Pegasus machine 
using the Automat programme code which allows both arithmetic and matrix 
instructions to be written in the ssme programme. Automat is a combination 
of the usual Pegasus Autocode and the Matrix Interpretive Scheme which has 
been made up by Dr. Samet of the Ccmrputation Laboratory, Southampton 
University. It can be used only on Pegasus machines which have a large drum. 

The complete calculation programme is arranged as a series of nine 
sub-programmes each dealing with a distinct part of the calculation. The 
sub-programmes run consecutively using information calculated and stored from 
stage to stage, giving a completely automatic solution. The maximum number 
of blade points which can be dealt with is 4-O. The annotated pro-e shown 
at the end of this Appendix applies only to blades with cusped trailing edges 
although a more general programme which can be used for blades with both cusped 
and rounded trailing edges has also been produced. A description of the 
sub-programmes follows. 

Sub-Programme 1. Calculation of the Transformation Parameters 

Given the cascade parameters 8. and c/d, together with the blade 
characteristics PJ” and eL, the parameters 6,T and 6c are calculated l 

using equations (22). The transformation parameters (@a) and (c-6c) 
are then set up and the related parameter y is calculated from equation (6) 
using Newton's root finding procedure. In fact it has been found simpler to . 
perform the iterations involved to find the quantity Q which is defined by 

Qa = co&lay - sin? @-S/9). 

Thus equation (6) is rewritten as 

G(b) = 
sir@-6p) 7cC Q + co&-68) 

-tan 
Q 2d sin@-6/Y) - 

cot@6/3) log 
c k? - ’ 31 cosa (p-&9) p- 

Also required,is 

= 0. . . . (47) 

dG SW+@) 71C Q + cos@-@) 
- = - - seca 

2d si.n(@&3) - 
cot(/w@) log 

dQ Qa, c w - cosa (a43) 33 

cot (p-&q cos(p-6p) 
. . . . (48) 

P -  cosa (a-@) l 

31 

To obtain a good initial value of Q we note that, in Fig. 2 of Garrick (lp&), 
for a given value of y the variation of c&c) with (@a) is small. 
Thus we may put (/3-&p) = 0 in equation 6) to obtain the following 
appro*tion to cash y:- 

, cash Y/ 
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cash y = coth [ "'";$) -j. 

This e-ression is used to calculate the first approximation to Q. 
y has been calculated, 0T is found from equation (5). 

The required in-put data for this progranre is as follows: 

specified accuracy for the complete calculation expressed 
as the number of significant binary digits 

P - the stagger angle 

c/a - chord/pitch 

PL/" - leading-edge radius of curvature/chord 

"L - direction of the leading-edge normal 

a - pitch. 

Sub-Programme 2. Reduction of the Blade Data to a Standard Form 

. ..(49) 

Once 

The Cartesian co-ordinates of an individual blade ,of the cascade Nith 
its chord line along the x-axis are first of all transformed so that the 
trailing edge is at the origin; The blades are now in the position shown in 
Fig. 4b. These co-ordinates are then transformed so that the blade is 
rotated by -6,8 and the trailing edge moved to the point ($(c-6c), 0). 
This is done so that the simpler form of the original Garrick transformation 
can be used in sub-programme 3 and the blade co-ordinates thus transformed will 
be in the z'-plane. 

An additional part of this sub-programme can be called upon by 
reading in a non-zero camber angle, to generate blades made up from a thickness 
distribution on a circular arc camber line. 

The form of the input data for this programme follows. It should 
be noted that the blade points or thickness distribution must be read in 
consecutively, starting with the trailing-edge value. 

+ ‘9 input parameter 

Camber angle 

Number of given blade points 

Blade co-ordinates in Cartesian form z thickness distribution 
based on unit chord. 

Sub-Programme 3. TI - Transformation to the G-plane 

This sub-proR@mne starts with the transformed trailing-edge point 
which is known to be e' T, SO that o. .= 33 T, and a step-by-step procedure 
for calculating in turn the value of Z corresponding to each value of z, 
is followed from there. In general, to go from a point z;, at which 5n 
isknown, to 2' n+i, the difference dz: = z;+~'- z: is formed and used in 
the formula 

&F’ = dzA , 
eoan F’(a,) 

where/ 

. . . (50) 



- 22 - 

where u = $+ie and 

F'(c) = A+iB . ..(54) 

and 

7cA Kinh$ [cos @-G~)cosecoshy (cm3hay-cosh~-sie) +sin@-68)sinosinhy(co~~+co~~-~a~)1 
-= 
4a cosha2y - 2cosh2ycosh2+cos2e + sinha2Jr + cosa2e 

. ..(52) 

xl3 ’ ~~[[oos(p-6P)s~coshy(~~+slnhzJI +sin?8)+sin~-68)cassinhy(ooshzJr-ooshaY-sina~) 1 
-= . 
4a % co5ha2y - 2co.sh2ycosh2$cos2e + sinha2Jr + cosa20 

. ..(53) 

Now z;(O) = F(on + da',o') is calculated. In general this will not be the 
same as "II,, ' in which case the difference dz ?(I> 

and used in equation (50) with on replaced byn 

= zt _ z'w 
3 

is formed 

hence z~") 
Qn + d"<, givning dd" and n 

which should be a closer approximation to 
%+i l 

The sequence 
is repeated until the desired accuracy is obtained. The method of iteration 
is illustrated in Fig. 19. 

There are some modifications to this scheme which cOme into I 
operation near the trailing edge. Once again the difference dzl, = z; - zC, 
is formed. However, since F1(Uo) = 0, equation (50) is replaced by 

do0 = rFr;;)f, 

. 

.*e (54) 

where 
d icosh'y - sinl(/9-6,~3)]~ 

F"(oo) = - . 
7c sinhaycaihay 

. ..(55) " 

Now z; o = 

intervai (z:, 
F(uo + dg) is calculated and if Iz8 - z;I < Iz; - z. o1 the 1 
zl) is halved so that the end of the step to be taken i.: now at 

z; + $(z' - z;). !l!he approximation z. i to this is calculated, and if 

l$(zi - ;;)I < 1~: + &(zl - z;) - z: i 1 'the end of the step is taken as 
9 

z; + yz; - z;) and so onuntil ; (z; - z;) > z; + f (z; - z;) - z;,p . 

Once this condition has been fulfilled the iteration is allowed to continue 
in the way described in the previous paragraph to calculate, first of all, 

u 
o,P 

correspondingto zA+ $- (z; - zo). The progrsmme then calculates 

values of u at the end of each subinterval of length f (=J - z;) until z 
1 

is reached. The procedure has been illustrated in Fig. 20. It has been 
designed to combat the possible poor convergence obtained by using equations (50) 
and (54) in the neighbourhood of the singularity situated at the trailing edge. 

The input data for this programme is:- 

+’ 9 input parameter. 

Sub-F?rogramme/ 
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Sub-Programme 4. Ta - Change of Origin 

z is calculated according to the procedure of Section 5. 
The contour in the c-plane is then transformed to the c'-plane by Ta. 

The input data required is:- 

+?, Fnput parameter. 

Sub-Programme 5. Lagrangian Interpolation of Points at Equal Angles 

Values of JI' are interpolated at equally spaced values of 6l 
starting with 04, using Lagrangian interpolating polynomials of the seventh 
order based on four given points on each side of the point being interpolated. 
Any number of interpolated points, within the overall maximum of 40 points, 
can be produced. 

The input data required by the programme is as follows:- 

+I ¶ input parameter. 

Number of interpolated points required. 

Sub-Pro-e 6. T3 - Theodorsen's Transformation with Lagrangian Differentiation 

The programme calculates Y($), F, c and la'/dZl using Ta. 
Thwaites (1963) should be consulted for details of the analysis. Some small 
changes have, however, been made to his method. First, six terms of the 
series for Y or e (equations (18) and (20) of Thwaites (1963)) were found 
to give sufficient accuracy. , Second, his differentiation matrix (D) has 
been replaced by one which produces Lagrangian derivatives based on three 
values on either side of the position at which the derivative is required. 
The coefficients used were taken from Kapal (2955). 

The input data required for this programme is:- 

+I Y input parameter. 

Sub-Pro-e 7. The Position of the Singularity Points in the Z-Plane 

The position of singular points in the z'-plane, i.e., T ey + z, 
are calculated and then referred to the line srg(c') = 0,$ The value of 
Y(#), found in sub-programme 6, is then used in a direct iteration of 
equation (4) to calculate the positions, +I snd 81, of the singular 
points in the Z-plane. For the purposes of computation the real and 
imaginary parts of equation (4) srerequiredand are as follows. If 
f(Z) = p + iq then 

- . 

1 2x (Xe-' cos# + Ye -P 

i 

sins5 - l)yP(#)d# 
P =* - . . . (56) 

7c 0 l- 2(Xe4 cos# + Ye ;Ip sir@) + (2 + n”)e-@ 

( Xe q sin+ - Ye-' cos#)'P($)d# 
. . . . (57) 

I - 2(Xe-’ cos# + Ye -’ sin#) + (X5 + Pl)e-@ 

The input data required for this programme ial- 

+I Y input parameter. 

Sub-Programme/ . 
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Sub-Programme 8. Interpolated Co-ordinates 

The co-ordinates in the G-plane corresponding to the equally-spaced 
interpolated values in the cl-plane are calculated using Ta. These 
G-plane co-ordinates are then transformed by b to give the interpolated 
points on the blade. [The programme comes to a stop just before printing 
out the data required for a possible re-run of sub-programme 9. A short 
amount of blank tape should be punched out before running on, and the punched 
tape which follows preserved,] 

The input data for this programme ist- 

+I, input parameter. 

Sub-Programme 9. Velocities and Blade Pressure Distribution 

With given values of the&inlet angle and speed, the outlet angle 
and speed are calculated using equations (25), (33) and (34). W is now 
calculated using equations (25) and (31) and hence v and Cp are calculated 

a 
from equations (35), (36) and (4-2). vsnd - will be printed only if 

de 
handswitch 0 is depressed. The calculation of v at a cusped trailing 
edge is a special case and is done by evaluating equations (37) to (41). . 

The input data required for this programme is as follows:- 

+I , input parameter 

vi inlet speed 

ai inlet angle. 

Other values of the inlet conditions can be considered by reading 
in new data in the form given above when the programme has oome to a stop, 
or the programme can be re-run at another time with the following data:- 

+0, input parameter 

vi inlet speed 

R inlet angle. 

Special output from sub-programme 8. 

Annotated Programme 

The Automat programme which follows is annotated with reference to 
the equations of the text showing which instructions deal with each part of 
the calculation. It is followed by an example sbowing the required form 
for the data and also by a list of operating instructions. 



- 24 - 

Programme 0pemti.w Instruction5 

. Notes:- S+R = Startandrun 

R =RUtl 

* = Data or parameters on a separate tape. The 
remainder camprises the main programme tape. 

All programmes and data are read by tape reader I. 

Operating 
instruction 

S+R 

' R 

S+R 

R 

S+R 

R 

S+R 

R 

S+R 

R 

R 

S+R 

R 

R 

R 

S+R 

R 

R 

R 

S+R 

R 

R 

R 

R 

Sub-programme 1 0 

Input data (cascade and blade parameters)* 

Sub-programme 2 

Input data (blade co-ordinates)* 

Sub-programme 3 

Input parameter 

%b-propme 4 

Input parameter 

Sub-programme 5 

Input parameter 

Data (number of interpolated points required)* 

.&e-set parameter instruction (~1600) 

Parameter (number of points)* 

Sub-programme 6 

Input parameter 

Tl600 

Parameter (number of points)* 

SuMmgramme 7 

Input parameter 

Ti600 

Parameter (number of points)* 

Sub-programme 8 

Input parameter 

Af'ter stop and punching out some blank tape 

s+R/ 
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Operating 
5xkstruction 

S+R T1600 

R Parameter (number of points)* 

R Sub-pro-e 9 

R Data (inlet velocity)* 

R Further inlet velocity data, if required*. 

ES 
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QGGOO Bed In AUTOMAT from maeJletio tape. 

D 
N 
PR . r CALCULATION OF TRANSFORMAT ?ON, PARAMETERS 

na s=TAPE 
V roo=TAPE t 
vr8=3.x4r$gab$ 
vrg=vr8/r8o 
vIo=vrooxvIg 
~o=v1oI~~r8 
vx7=oxVo 

Bead In aocuraoy required, 
Read in B, o/d, b/a. &?. d. 

L II 

Cailoulatlon of 80/o and Q¶ using equations (22).. 

VI-x-v3 . 
V10j'V101 
vfOf"VIXvrOI 
vI08=v~ 

vIr=SIKvIo' 
v1240Sv10 
vrg=:r/vrx 
V14=VrzXV13 
VI~=vIaXvrz3 
Vxh=tJ12XV14 

Constants required In the oaloulation of y. 

vO=VI8XO.~ 
u1=v101 
v00=v0xv1 
v21=020xv1z 

FV?~KXV1,30a5 
s 

VO=vIO/vf9 ’ 
PR ItClY~0,4065 
vgo=vo 

Vo=EXPVao ’ 
v1=1+vo 
vawo-I 
v3=v1/va 
Vr=x/V3 
vo=z73-V1 
uo=o . sxvo 
Vo=voXVo 
vo=vo+vI~ 
vaz=SQRTvo 

p&)t + and p - Sa . ( 

stpre p - tip . 

First approximation to Q I [coah*y - B~A? (B - Sa))* . 
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n ‘0 
4 2 n3=n3+1 

tv24=r/vaa 

V2I=V33Xv33 

Vsg=Va4XVa4 
V~=VaI-Vx$ 
33,O'VS 
v4=S@RTv5 
Vx=VaatVxa 
Vo=Vx/V4 
vo=L0@Jo 
Vo=Vr4Xvo 
Vah=Va3-00 
Vo=TANVa6 

Vo=Va6XVa6 
vo=x tvo 
vO=t’OXv 5 
vo=v 16;/Vo 
VI=-vIrXVa5 
V7’=Vx-vo 

Iteration loop to oaloulate Q, terminating 
when oomeoutios approrimatione differ by 
lees than lyo binary digits. 

~)vI=vpr 
v I =SQRTv x Caloulatlon of y ., 
v2=v4+v1 
Vo=LOGV a 
PF!lKTVa,406$ 
PRINTVo,qoa~ 
PRI~~Tng.4000 ” 4 
vgr=v2 Store 0' . 

31 

Print out ey, y and the number of iteration0 . 

3 h3=r;3+1 
V~~=S@RTVIS 
Va2=Vaat0~00000r 
$2, r00sng 
PRlKTn3,3ooo 

Outlet srquenoe when an iteration of Q inplies 
oosh'y e 0 . 

I )V36=VrrXVrr 
vO=vI2XvI3 
v37=Vo 
v38=VrzXVr3 

Vo=x/Va Calculation of BT ublng equation (5) . 
vr=vb+v2 
V2=v2’VO 

Vo=.$XvI 
Vx=VaX .5 

V39=VoXVo 
v40=v1xv1 
V4~=Vr/Vo 

vorvqr/v38 
v r=ARCTANVo 
v42=vt/vr9 
PF’ INTVJZ ,306~ 
v94=v42 

kint 8T . . 
. 

V96=V 103 
VC)9=vIO2 

Vg7=V104 
store parameters OT, o/d, sg, a, (a - 60)/d. 
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Z Stop; to enable cascade data to be read in. 

D 
N 
PR.2 REDUtX’lON OF BLADE COORDINATES TO STANDARD FORM 

Initial orders. 

?II =TAPE 
+14,n1=1 
Vg6rTAPE.j 

Read in input Parameter . 

Read in parameter8 If oaloulatlon It3 started at this programme, 

r.j)Vroo=TAPE 
no -TAPE 
Ill=2xn2 
vi $I=TAPEns 
V-=3 .xqxsga65 
vrg=v~8/x80 
vrxowg8xvg7 
vIxI=vg6xvg7 

Read in oamber angle (non-zero only with thiokness 
diatrlbution), no. of given points and given coordinates. 

+IO*O.IxJIOO Jump to oalow of s 
PR fNTvroo,gobo 
vIoo=vIooXtiIg 
n4=-1 
nI=n2-1 

I I > 114=n4+1 
np2xn4 
n6=n5+1 
“7=1;3 -r;h 
n7=n7+q 
n7=n7+r 48 
n8=n7+1 
n5=rtS+x gr 
n6=n6+Ip 
v0=0. pvns 
vo=voxv 100 
v~o=Srhvo 
v~I=COSvo 
v0"0.~XvI00 
VI=SINVO 
q2=r/v1 
7.J S3=COSvo 
tJ54-U111Xo.s 
vo=vsoxv 53 
vSpvIooxvn6 
vr=IfV~~ 
02=x-v55 
vI=VIXvo 
VzrVaXVo 
v1=1-v1 

Vz=r-Va 
vnpvxxvS4 
vn7=v2xvS4 

vI=I+v$S 
V3"I-v~~ 
vI=VIXV~s 
va=vaxv~I 
VI”VX-953 
va-va-vg3 
vo=v 54xv 53 
vn6=voxv1 
ven8=v0xv2 

Caloulation of blade ooordinatea with a oiroular are 
oamber line fsyn a given thioknese distribution and 
omiber angle. 

. 

*rx,nx>n4 
Xn2 q-2 



ro)uo=MODV~oa 
Xnr =na-s 
+0.0.00000001w0 
PF!INTv~xo,xoa~ 
PRlNTVrrr,ooa~ 
PRlNTvg9,aooS 
Vo=V99XV19 
v~s=SINvo 
Xr'~6=COSoo 
v57=0.5XvIIO 
Xv58=vr 51 

-Jo- 

Endif 6p =o . 

Print 0-60, 0 and S@. 

Calculation of etandarh 
form of blade data, 
stored from location 151. 

np-1 
12)npn4+x 
npaxn4 
npnS+r gx 
n6=n$+x 
vorvnpS8 
PRINTvo,3045 
PR INTunb,qoq$ Print blade ooordirrntes with trailing edge at the origin . 

vr=voxv~6 
VasVoXV$s 
vOrvn6xuSj 
vo=9o+v I 
unpv0+vs7 
PRINTun5,408S 
vo=vn6xv 56 
vn6=vo+vi 
Pj?lNTVn6,404s print out blade aoor 

npn4+r 

(+o 1 
tXttXttt 
z 

Store number of given point8 . 

stop; to enable blade ooordinates to be read In. 
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N” 
PR.g 'I-I - TRANSFORMAtlCN TO ZETA PLANE 

Jvwo 
Jr .O 

Initial orders. 

STOP 

nt GAPE 
+1g,n1=1 

fis 7=TAPE 
Vgo=TAPEzi 
Vgq=TAPE 
V g6=TAPE3 
YQ=TAPE 
116=2x n4 

VI sr=TiPEn6 

J 

Input If oaloulation Is started with this programme. 

xgha=vg6xvg7 
nt0=n2 7 
nf2=149 
?I$=0 
n7=:I 
nr=I 50 
na=x 51 
npt $2 
“13=x47 
n14=14a 
nf 5=300 
nI6=goI 
n8=0 
vrd=g .t4rSga65 
vIg=vI8/I00 

Constants, i.e. funotions of (B-8 @) and y, and 
lnltlal values for the step-by-step oaloulatioa 
of points In the C-plans . 

vro=vgoxvrg 
ev14=vQ4xvtg 8 = eF . 
v46=SfNV14 
vi 7=cosv I ; 
nf0=0 

vo=I/2~gI 

VI=vcr-vo 

v2t7=t*x .5 

Va=Vgt+Vo 
Vag=Vax l 5 
VaC;=COSvro 
va741Nvro 

. USo=vagXVa6 
V3r=va8XVa7 
V3a=vagXVag 
V33=V3a-I 
Vo=aXV3a 
v34=vo-I 
v3s=v34xv34 
vo=4xvg7 
V36=vo/vr8 
V37=o.raSXV36 
V38=oepa6 
V39=-oe$XVa7 

Va=V3aXV33 
Vo=Va 7XVa 7 
Vo”u3a-Vo 
V I =SQRTvo 
vo=voxv I 
Uo=aXVo 
V s3rUa/Oo F"(u,) . 

- 
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:)x3=0 -30. 
13 )n8=??8+1 
i; s=a 
V23=Vra 
nxa=n1a+a 

n1==m+a 
n2=n2+2 
n3=n3+a 
nr3=nrg+a 
nr4=nI4+a 
nr 5=tlr~+a 
flI6=nr6+2 
vnxg=EXPvrg 
PRINTVnr3,3o65 
vnr4=vf4 
vO=vI.@I9 
PRINTvo,qot3~ 
vnr s=v47 
vnr 6=vq6 
n7=r 
v6o:vna 
v6:=.vn3 s’A+L. 
v66=vna=Gma 
v67=vn3-Vnr &‘a l 

$0, f?82nq 

output of e’ and 0. 
Storage looatlons, e' fbom 131, 153, ......... 

8 irom 152, 154, ......... 
008 8 from 303, 303, ......... 
ssn 8 prom 30&, 306, ......... 

rdv46=SINu14 
v47=COSvr4 
V48=v46XV46 
~493~~~48 
V49”I -v49 
v$o=v49xv49 

Vo=EXPv13 
Vr=r/Vo 
v qo=vo+v I 
V40”. 5xv40 
V41=Vo-Vx 
V41'.5XV41 
Vqa=V4oXV40 
V43=V4a-r 
v44=axv4a 
v44=v44'1 
V4PV44XV44 
vqg=v45-1 

j Vx=V3a+V4a 
v KIWI-V48 
vo=v33+v43 
V saWo+V48 

Va=2XV47 . 
Vo=vaXvl9 
vo=VoXv40 
vr=v$I-vo 

vo=v~I+vo 
vpvo/vr 

vo=vaXva8 
Vo=voXV41 
vI=v~a-vo 
Vo=V 5a+Vo 
v8=vo/vr 

Calwl8tion of g’(C) 
using Garriok’s equation dlreotly. 

vr=t?a8XVqo 
vactta9xvqr 
vo=v1-va 
uI=-vI-va 
v 7=~46/~0 
~6=V46/V I 
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Vo=z’aoXv24 

v1=v21xva5 
voet'o+vI 
VI=t’2oXv25 

V2=VarXVaq 
zJ1=v1-v2 
vo=voxv22 

v1=v1xv22 

V13=V13+Vo 
vI4*14+vI 
fig=nS+n6 
l 1a,ng2-I 

Text If (uiK+" I=lu:" 1 . 
vI=vI@vI4 

v0=v0+v1 

V63=SQRWo 
3x3 ,~a=*V63 
312 

II hpn5+r 
VarV23 
vOetr24xv24 

vI=va~Xt.Ja~ 

vo=vo+vI 
V234QRtvo 
+x4,vo>va3 
n7=2xn7 
066=.5X066 
V67’.SXV67 
V6o=VnxatV66 
t~61=vm+v67 
~I~,nIO=I 
$1 

1 14 nfr=nxo+nS 
+17,n11=1 
*I$,tfpI 
~18,??10=0 
n7=n7-r 
+x0, ns*2 
q-f 
*I6 

Caloulatior; of du,,k' for the traIlins 
edge using equations (5&J and (531 ad 

the prooedure for halving the step used. 

I7)vo=v2~to2$ 
vo=voxv 53 
Vo=SQRTvo 
Vr=V25XV53 
v1=v1/v0 

vI3~13+vO 

VXJ~=VI~+VI 

$12 

ro)n6=n6+r 
V6o=V6o+V66 
V61=~61+t167 
*r6,#6*n7 
n6=o 
np=-: 
*x6 

Rooedme for setting up the next sub-step, 

x8)npo 
n7=1 
v23Wrr 
vcio=vn2 

u6I=vn3 
v66=vtb=vg 
v67=vng-v8 
nr O=I 
316 

Prooedure for setting up the lest 
sub-step to finish with x’:. 

. 

bo) 
tXXtXXXtt 
+I 

Data: Input parameter. 
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ii 
PE.4 Ta - CHANGE OF ORIGIN 

. 

LPO 
mtlal oraers. 

wct.$a 
STOP 

JI o =-i-APE 
*28*nIO'I 
IQ=iAPE 
nth=n4x 2 
V I 4 g=TAPE n6 -.-_ 
Vt8=g .x4x 59265 
Vrg=Vx8/18o 

Read In input parameter . 

Input. if the promeme is run separately . . 

fir=148 
q=x48+n6 
24)n1=n1+2 
VnI=VnIXvIg 
+24, npm 

Used when progremme is run separately . 

28 bgq=V 150 
;15=134 
n6=2xng Initial constants . 
n7=3oo+n6 
fZ2=300 
ng=301 
IL+=I 48 

+2g,nI0=1 -. 
2 5 I n2=32+2 
FJ~=?l3+2 
npn4+2 
v n2 =cOsv n4 
ViZ3=S INvn4 
32 5, npn2 

Calculation of COB On, sin On when the 

programme is run separately o 

29)X06 =~XVI~ 
Vx48=~ I 8+n6)969 9 
V(qo+n(i .nuI5o+v6g 4 Caloulation of *(em, - an,, ) e 

XMr=r46 
Yf2=150 

np2 50 

n7=2 50+nS 

30) tq=n4+3 
n1=nr+a 
n2=112+2 

vo=vna-vnr 

vnp. gxv0 
*20,npn~ 
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us=0 
v4=0 
v s=o 
V6=0 
nr=147 
np3 50 
n2=300 
n3=301 

a I )114=114+x 
131=1;1+a 
n2=n2+2 
n3=n3+a 
v2=vntxvn4 
vn2=vnxxvn2 
vn3=vnrxvq 
v0=v2xvn2 
vI=v2xvn3 
v I ~=vn~xvnz 
vI0=vrIxvn4 
v3~V3iva 
v4=v4tvo 
v~=v~+vI 
v6=V6+V10 
321, npn4 

Calculation of 5 and c. 

V 6=SQRTVo 
i%:?NT~4,306~ 
PR!NTv5,4065 
PP INTv6,4065 
d5--‘4 
vg., 5 a’tz) 
vo=v4xv4 
vr=vSxv5 
vo”vo+v I 
vo=SQfITuo 
v1=V s/V4 
vx=ARCTANvr 
vr=vr/vrg 
PRlNTvo,4065 
PR~NTVI ,408~ 

output of c and r . 

store c . 

Calculation and output of 5 in 
polar coordinates . 

-_- 
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xvy-100 
xvg=o 
1$0=x gg 
n1=1qg 
n2=300 
n3=j0I 
w=I99+w Transformation of points to the C'-plane 

using T2. 
32 )n0=n0+x 
nI=m+I 
n2=m+a 
n3=ngt2 
v0=vn3-v4 
vr=vng-vs 
va=voXvo 
V3”vxxVr 
va=V2+>3 
q.tio=SQRTva Store e” from looation 200. 
PRlNT~~o,3065 
V~=VI/VO 
Vo=ARCTANV6 
923,V6>~7 
vg=vg+vx8 
a3 )vn1=v0+vg 
v 7~6 
vnr=vnr/vxg Store 8' from looation 150 . 
PR INTvnr ,408~ 
922, npn0 

xvgg=vI~o 
PPINTvg~,Ioo8 Store and Print 0; . 
xn3=149 
Xn =14g+ns 

cp’ 

1 

output of 8’ and e beparately to 
a6 n3=n3+1 nerve ae data for the PollowIng 
PRINTvn3,3085 programmes, If required . 
926, npn3 

Xn0=199 
Xn =Igg+nS 

I 37 n0=n0+r 
PR INTVno,go6~ 
+ay,ny>no c- 

Store no. of points. 

Data: input parameter* 
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PF -5 LAGRANGIAN INTERPOLAtlON OF POINTS AT EQUAL ANGLES 

--. --. .- 

J7090-I 
JSIl 1nitie41 orders . 
07168 

O71or 

Coeffiolentb of the interpolation 
polynomial o 

J3ao 
JJ87090 

STOP 
Initial order8 . 

Bxtra end dlues of C' ourve 
(using the periodioity of the funotions). 

nr I =TAPE 
nrs=TAPE 
no=v10 
+4,?lfx=x 
VI sorTAPE@ 
Vaoo=TAPE. 

$1 maw30 
z-0 

f 4 Iv ( Soo+nx 1-t 
nx=nx+r 
*14,8>~ 

Read In input parameter and number of ' 
equally spaoed points required . 

Input if programme is run separately. 

Unit teotor from looktion 500 . 
. 

nxwlt-1 
. nama-3 

npn3+r 
npnq+r 
*6,4>n4 

voo=vr~o 
v0=nt 3 
Var=g6o/Vo 0 
. 
naL0 
nj-0 
n4-4 
v-3940 
v~I=vooo 
*I 

Initial 8’ mlue and B” In-al . 

Initid OOn8tWXt8 , 
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1a)no=300 
~M7080,300 

n8=goo 
ng=x 
nx0-0 
3 )nS=n8+ng 

3)un8arv(ab+ng)~(l6+nro) 
n8=n8+r 
npng+r 
*s,8’n9 

Caloulatlon of the ooeffloients of the 
Lsgranglan interpolation polynoppial 0 

nx0=nro+r 
npnr 0+x 
92, pm0 
+M7103, I 

13 Iv ( 40+nr bUa0-U (ab+nr 1 
u 50~ soxv (40+nr ) 
nf=nz+f 
+13,8>nr Caloulation of lnterpolated~value 0 

m=0 
~~)~o~tt(~otnr)xv (6otnd , 
v1=1/vo 
vo=vnsxvr 
v~I=v~Itvo 
V$a=V~atVt 
nr=mtI 
ng=n5+x 
*I 5,8>nr 

1) $Fv saxu 50 
v $Ir=t, <IXV go 
r~PRINTvao,~o61 
PR INTV $1,4018 
PR!NTn3,4o6o 
vn7=Lo~t.q~ 
np=n7+1 

I 
Output of equally-spa008 8' and 8. 
Storage of # ’ from looation 3960. 

u20=va0+vr1 Next value of 8'. 
b Ra=na+x 
*I 8, na>nr 3 

x6)+xo,uao>U(rSotn3) 
*II ,npn4 
n4=nq 
n6=146tn3 
m-0 
17)u(a6tnrbWl6 
nbWI6t1 
nr-nrtr 
+r7,8m: 
+x0 

Choloe of whloh given *point8 to ube in 
the interpolation polynomial. 

18 )xn7=3940 
xn -nr St3940 
rg f PR lNtun7,1008 
n7=n7tr 
+1g,nrm7 , 

k&**** . 

output of i9“. 

Dater: Input paremeter . 

Stop to allow the number of equally-spaced pOi%g ~88 
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T16oo Present parameters Instruction. 
f Stop; to allow the number of interpolated points used to be 

reaa 1p . 
D 
N 
W-T.6 T3 - THEODOESEMS TRANSFOFHATlON WITH LAGRANGIAN DlFFN. 

J7090-I 
JSI2 
0 7168 Initial orders. 

07060 
(100,241x1)*100 
07060 
(I700,24IXI)~I700 

Completion of (C) and (D) matrices, 
(C) from location 100, 
(D) From location 1700, 

07101 

U7101 

Input of Cp" If programme Is CM separately a 

)*48 Il#ql In location 48. 

07060 Caloulation of (-l)"#'(")/n!.lf na8 = 0, 
~I~00,2~1~2~1~~~~~00,2~1~1~~~~00 or IP)/n: If IQ8 = I, 

8:~%3340,24IxIb3300 from location (3260 + GOn)c 

07x01 

(Ioo,24rX241)X(3940,24IX1b3780 
(3780,241Xrb3820 Calculation of 6 terms of series 
(382o,aqr/)x(3340,~4rxx b3g4o 
3780,241/)x(3820,241x1)~3820 for 9 if mm - n - I)L” -  ”  # 

38ao,a4I/)x(3380,24rxI)*3860 
(3g40,=4r/)+(3860,24t/)$3940 

or E ifn28=9, 

Prom location 3940 i 

(37~0,241/1x(3820,241x1b3820 

t 
3820,241/)x(3500,241XI)‘3860 
3940,=4*/)+(386o,a4r/)~3g4o 

(3940,=4*/M 
(394o,IXa4I)x f 

300,24I/b 940 
9 3g40r241xx "49 

07101 
ll *II or ll Eli In looatfon 49 . 

Print Q* 

Print 6, 

l+(#'("))' from location 100. 
300,rx241)x(3300~24rX1~~48 11 El1 in location 48. 

. 
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3g40,a41X1)~0 Print E, 

t 

394or14IXIl* 00 
17oo,o41Xa I x(~g4o,a4tXr)*z8o 

t 
I 

r80ra4x/)+ 5o,a4r/br80 
07101 

(aao,aqtXr)+o 
t7101 

print laz/asl . 

(3gvra4x/)+3780 
J16 

I 
J 310 
Jwgo 
58 
STOP 

1nlti.81 oraerai 

;:=y;L; 59a65 
5 . 

*S.na PI 
m j =TXPE 
nz 7=TAPE 
gfUaWX13 
Vg=Va/a 
na=v3 
nr=v2 
V4=Vr/Va 
05=v4xa 
Vii=r/Va 

Bead in input parameter . 

Input if prograamm ir run separately .. 

:m 50tn3 b-1 
n3=n3tI 
*)4,non3 Unit veotor From looation 50, 

n30=0 
v100=0 

I 

v(100+n3)=0 
vroey4 
n3cx 
VII=-I Caloulation of first oolum Of (C) ndA.X N 
x )Vra=COTUro 
npnr-n3 
+a,v11=:-I 
u(100+n+=0 
96 
i)v(Iootn+ura/w$ 
6)u(too+n4)~-v(roo+ns) 
Ur2WIaXVII 
UII--VII 
U10=v10+v4 
npn3ts 
+I,?Wn$ 

v I 700=0 
tJ I TOI=-540 

U17oa=+Io8 
v1703=-Xl 
npnr -7 
n3-0 
a7jv(x704+n3)=0 
nj=nsti - - 

Caloulatioa of first oolmn of (I)) matrix. 
(Lagrangian differentiation). 

vo=v X790 
7 

. 
uo=x vo - 
nf =O 
a8 )u (I 7oottJj b ( I 7oo+n3 )Xvo 
n3=n3tx 
*a8,nx>n3 
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Completion of (C) and (D) matrioes . 

if3r=n3+r 
+~17103,1 
n8m8 +I 
n3=n3+nx 
$3, nr>n8 
v I 700=0 

tu I =164-m 5 
+M7103,"11 

na8=o set for iteration of Y  l 

* 

w)ng=I 

nag=0 
n30=0 
ng I ‘40 
VII’1 
17)~11,ns8=0 
v1a=r/v11 
318 
II ha-I/VII 
18)*M7103, IO 
n30=n30+40 
ngx=n31+40 
n3=n3+1 
v11=vr1+1 

Caloulation of (-l)"#*@)/n: if n28 a 0, 
B(“)/n: If n26 = 1. 

5)+15,na8=1 
*:17103,X5 
7)~14,v48=w49 
V48=v49 
*5 

Iteration for 9, oeasing when inner 
products are unchanged to nb binary 
si@fioant flguree. 

rqb16,~28=1 
+M7Io3,36 
na8=1 
*I9 

I+M7103,58 
"7 

IterstLon for E. 

Ib)vgg=EXPvgg 
PRfNTVgg,Ioa8 
+M7Io3rsI 

~~'jlvOIo=EXfw(I4o+n3) 
v10=v10/v g 
vrr=SQRTv roo+n3) P 
VIo*IoXvII 
~(aao+~3)~10/~(,180+~3) 
npnj+x: 
934, nr>ng 
+M7Io3056 

Caloulatlon of Jaz/acJ. 

Data: input @rameter. 
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Txcioo Preset p8rameters order . 

Stop to 8lb3~ the number of points used to be read in . 

Pt? .7 POSITION OF SINGULAR ITY POINTS IN Z-PLANE 

37090’I 
J312 
07168 Iiritial orders. 

. Iteration of equations (56) and (51) . 

07101 

(0,24xX1 )+a60 
07101 Input of 9 if programme is run separately . 

I 
5320 
Jww 

Initial orders. 
Js. 

nr o=TAPE 
+3, i1IO"I 
ntr -TAPE 
na 7=TAPE 
ugr=TAPE3 
ug s=TAPE 
Vgg=TAPE 
*f?7103) 16 
tr)Fl,=fl, 

.&e8d in input parameter. 

Input if progremme Is run separately .* 

tlo=Il27 
U88=-vgx 
U8g=Ugr 

C8loulatlon of constants e 
XUxa=x/Ugg 
uo=-I 
Ur8=ARCCCSuo 
Va=ilo 
U8=a/Ua 
UO=UI~/U~ 
U3=aXUo 
U~=~XUI~ 
urg=r8o/ur8 
uo=ug~/urg 
02 7=cosuo 
VatbSINUo 

nI=0 
u 4 =o 
3 u (boo+nr bCOSu4 
u (300+nr bS INU4 
n:=nf+f 

u4-3+u4 
94, twnr 

CalOUl8tiOll of 006 4, sin 9 8t equal 
intervals fVom loo&ions 600 and 300 
respeotivaly. * 

1123-2 
U24*-1 
nx=0 
7)u (64o+nx )=I 
nr=nx+t 

$7, n;a>nr 

Sualar matrioes in looations 23 and 24. 
bnit veotor from location 640. 
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TI600 
c Present mrameter lnmt oode. 
2 Stop to allow number of points uned to be read in. 

ND 
PR.8 !NtERPOLATED COORDINATES 

J709wI 
JSX2 
0.7168 

i O,l4IXIbI40 
07101 

InitlQ orders. 
. 

Input of $ g at equally speasd 8’ if progmme is 
run separately. 

t 
700,341XI 90 

j 220.241X1 *o 
(260,241X1 +o 

j (300,241Xr *o 
(400,141xIbO 

07101 

htplt of data for the folhWing progranrme, 
If required. 

I 
3320 
J7o9o 
J8. 
STOP 

Initial orders. 
. 

nt o=TAPE 
vo=-I 

VI 8=ARCCOSVo 
~19=V18/180 
~~8.?710=1 
v9o=TAkt9 
n2 =T APE 
+M7103,1 

Read in input p8mmster. 

. 

Input if progrmme is run separately 

, 

18)v4=~92 
vs=-v93 
xv7=-100 
xv9=0 
vz=na 

v2=vaxo 05 

~rr=V18/V2 
vIO-9~xvI9 

nr=259 
n4=139 
n3=299 
n7=a 59+na 

Tmnsformation of equally sp8oed interpolated 
.polnts in the (‘-plane to the C-plane using 
Ta . 

22 )YU=?It+I 
n4=n4tr 
n3=n3tI 
vo=cosv 10 
vI=SINvIo 
v2=EXPvn4 
v3o=v2xvo 
va1=uaxv1 
vo=v2o-v4 
VI=tbI-V5 
v2=voxvo 
v3=vrxv1 
va=va+vg 
v ng =SQRTv a 
PR INTvng ,306s 
v6ex/Vo 
vo=(iRCTANVd 
+23,v6=7 
vg=v9+vt8 
23 h.m=vo+vg 
~7~6 
vm=vnr/vrg 
PRINTVnr,4o8$ 
v10=v10+v11 

922,npnx 



VfO=Vg0XVf9 
Xvo=r/v91 
XVVf=Vgx-Vo 
038=vrx.5 
va=vgx+vo 
v2g=vox .$ 
~ab=COWro 
v27=SINvro 
V3o=V2gXVa6 
V3r=V28XVa7 
vqa=v2gxvag 
v33=v32’1 
VoeVg8XVg7 
V57’0.5X130 
vo=vg4xv I g 
v 3 4~C0SV0 
vg s=s IWO 
vd=vg7/vr8 
v37=o.gxvo 
~38=0. sXV26 
v39 =-o.sXV27 
. 

n4=0 
1O)Vl =v(300+n4) 
VI4”V 26o+n4)xvrg s 
v46=SIFIv14 
v 4 7=cosv I( 4 
v48=d46xv46 
v6+g=2xv4a 
v49=2 -7349 
v ~o=v4g%v4g 

vo=vr3 
vr=r/vo 
v4owo+v I[ 
v40= .5xv40 
v4r=vo=vx 
v4r=.gxv4r 
v42=v4O%t)40 
v43=v 43-r 

V2raXV47 
vo=v2xv29 
vorvoxv4o 
vI=v~r-vo 
vo=v$I+vo 
vgeo/ttr 

Vo=VaXV28 8 
vo-~oxv4r 
vr=v~2-vo 
v.o=v 52’VO 
V8=vo/vz 

- 4.6 - 

Caloulation of ooxmtants 
1.8. funotlone of p-s/3, y 

. sp, 040, d, 0. 
. . 

Transformation of interpolated pohte to the 
z-plane by IL. 

Vr=va8XV40 
v2=v2gxvqt 
Vo=v1l'Ja 
vI=-vl-c~2 
v 7=v46/vo 
v6~~46/Vr 
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v 7=ARCTANV 7 
V6=ARCTANU6 
l 7,vo>o 
“g ,v46>o 
v7-yV18 
98 
g)tq=v7+vx8 
+8 
7)+8,oWr 
+6,V46>0 
V6=V6+V18 
?8 
6)V6=~6918 
8 )vg=LOc,vg 
vgcvgxv38 
VorU7--Zd6 
Vo=VoXV27 
Vg~g+Vo 
v9=u9xv3 7 
xpf)g=v9*57 

Ils above. 

vo=vgxvg4 f 
vrw8XVg 
v (4oo+n4 5 =vo+vr 
uo=wgxv3 5 
thrvaxq 
v(440+n4 =vr*o 4 
PRINTV(4oo+n4),3045 
PR INTo-( 44o+n4 1,404 5 
n4=q+f 
+10,n2>934 
STOP 

94, nx0=0 Output of data for the 

Xn4=0 follarlng programto, if required. 

S)PRINTV(8o+n4),3to8 
npn4fI 
*s. 4>n4 

4h4=0 
Xnx x=g+nfo 
~I)PRINTu(go+n4),3ro8 
n+=n4+r 
+3f,nmn4 

v0=nI 0 
vo=axuo 
nftru0 
nr t=ynr 1 
*M/IO3,nr? 
. 

I)ata: input parsmter . 
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Preset parameters Input order. 

Stop to allow number of points being used to be read in. 

PR.; VELOCITIES AND BLADE PRESSURE DISTRIRUTION 

37090-r 
JSI3 
07168 

! 
0.241X1 $700 

1 0,241X1 +a20 
(0,241~1 )+a60 
(0,241x1 19300 
(0,24IxIb400 
07101 

Initial orders. 

Input of gogramam ie run separately. 

I 
J320 
Jwm 
58 
STOP 

Initial crdere. 

nro=TAPE 
vrq=TAPEa 
u '-1 
V;i=ARCCOSVo 
vrg=vr8/r8o 
*18,fl10=1 
nz=TAPE 
v8o=TAPE4 

.vgo=TAPEto 
‘M7103, I 

Read in input parameter . 
Bead in Vr, %. 

Laput Ff programme is run separately. 

18 )V2=‘/2 
vo=oxv I 8 
vg=vo/va 
n3 =o 
v4=vgsxv1g caloulation of # = 8'+ E, 
:;4=700 
I I )v ( x00+n3 bV4+Vn4 
v4=V4+v3 
ll3=tl3+1 
npn4+r 

311 ,n2>ti3 

m=0 

V82=~82-180 
I )vo=v (82ffiI )+og5 

v (82tnr )=uoxvrg 

nI=m+I 

3X ,a>Yh 
or s=v1 gxvrg Caloulation of constants 
vo=cOSvI~ and trailing edge initial 
V16=VoXV14 valuea. 
vo=voxvg7 
va7=vo/~18 

n12=0 

vz=t/vgg 
V8o=V8oXV2 
v8IcL~Z81XVa 
vo=z/v80 
VI=I/V~I 
020=~80*0 
VZI=V~I-VI 
vo=vo+v8o 
v22=0.5xvo 
vo=vrtv8r 
V23=0.5XVo 
V24=ora$XVa 
vo=vaxv2 
V28eo .a SXVo 
v2g=TANvr 5 



s: 
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I~ho=vgoxuIg 
Xu0=1/ug1 
XU1cV91Wo 
U28WtX.5 
u2=ugr+uo 
u2g=u2x .5 
U26=COSuro 
Ua7=S INUrei 
u3o=uagxua6 
u31=u28xu27 
u~4=u30xu31 
u32pvagxu2g 
U33=u32'1 
Uo=JoXUga 
u34-O-I 
u3s=v34xu34 
uq=4xug7 
U36=~0/~18 
u37=0.125xu36 
usg=dW 
~38=0.5~~26 
u3g'-o.~xu2p 

FuMt1on8 of (a - W), Y and d. 

uaw3axu33 
uo=ua 7xu2 7 
U~7’UOXU33 
Ur=~26~~26 
U58=u32XUr 

Uo-U32-Uo . 
u I =SQRWo 
uo=uoxu I 
uo=uo/u2 Caloulatlonof fi . 
uoruoxu3 7 I 1 a59 T 
U61=Uoxa 
Uo=ug7Xug6 
u62=t/uo 

n4=0 

10>u1 =u(300+n4) 
u14=i7 260+n4h~r9 t 
U46”SINUI4 
u47=COSur4 
U48=u46XU46 
u(rg=axu48 
u49=1*49 
u zo-u49xu49 
uo=u46xu47 
u $p;rxuo 

Caloulatlon of (Ls w 
UOpvI3 
ut=t/uo 
u4oJvo+u I 
u4o=b5xu40 
u4r-‘uo+1 
uqr= .5xu4r 
u42=u4oxu40 
u43*42’X 
u44=2xu42 
u44*44-x 
u4w44xu44 
u4w4s-1 
uo=u4oxu4x 
u 56=aXoo 
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+r6,n4=o 
v0=v gaxv 53 
vxpv4w4a I 
vx-v57xvr 
va=v S4XV $5 
vo=vo+vI 
yo=vo*r 
Vr-V44XV49 
vxru34sr 
Vl-vIXVt 
V.a-V56x~V$~ 
Va-VaXVa 
Vx=Vt+Va 
vo=vr/vo 
vo-SQRTVO 
VOPVOXV (300+n4) 
V6o=v $9XVO 
91 
~6 v6omx/V6t ‘I * 

r7)vasv6oxo(r8o+n4) Caloulotion of vf vi, , 

v I =v ( 4oo+n4 IXV6a 
v1=1+v1 
PRINTvx,~o65 
vo=vaXV a 

Caloulatioa and output of 1 + f and CF. 
( > 

Vo=1~0 
PR1NTVo,4087 
sPvo=wa 
SP~o~v6o 
n4=n4+r 

4 

optioml output of V/Vi md 
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accuracy, 

Casonde data . 

z 

+1 
+o 

Inmt uarameter _ 
Cjsoular arc-oamber ango . 

Blade data , 

+4o Number of given points, 
+I-57432474 +O -0 
+x.$5738553 +omoo5z3700a68 Blade ooordhtee . 
+I .qao6o484 +o.o46a 5ao3a5 
+1.305rao35 +o.o8r7zarggo 
+I l zgr7oa38 +o.zz46g3goa 
+r .oa47g4oa +o .z6oa8o4ro 
+om8a30775r7 to.aogg70g5z 
+o&$6Sr5g87 to.246rya34g 
to.464734474 to.a8aI6ooa6 
to.zo5gaa353 to.32o56883o 
-o.o5973sass3 to.346968399 
-o,38ggr6o2q to.35gIa43r6 
-oeS7a4aa62r to.3545Iaa83 
'0.773x4234S +0.338$7133t 
-omg4r060388 to.3r49896a6 
-r.rqgS3s88 +o.a6g57rr48 
-s.3z718xqg toezr547245z 
-xm$4883za8 to.rss3ssjor 
-r.4847ag84 to.z3438g8a6 
-1.56604665 to.oyoxog73g4 
-r.583ra345 +o.o4865a5ra4 
-x .5g4r 7486 to.oa746747z3 
-r .5g8ar36o to.oo68orqo778 
-1 .$g38o6o8 -0.0130108841 
-1es7877419 -0.03r4goaS70 
-1 .sws7068 -0,o479007055 
‘I 049974774 -oeo60g87azz7 
‘z l 4z So7438 
-1.24565310 

-0.0681858518 
-o.o6rqo$97ag 

-I l o73roggo -o.oqag3gsS36 
-o.86rsgg786 -o.o14676aago 
-0.576aaao5a to.oa46g6a586 
-o-W94og44 to.o645008z34 
-0.0115565313 to.o8705goaor 
to.3584z3z84 +0.108253224 
to.6sog6o8zs to.rzo533z53 
to.889897786 to.zorz85338 
+I -08755085 to.o847a~a884 
+x13t6s886a +oeoS4ror737g 
tz .47aa7347 to.oa46g786oo 

Z 

t4o Number of interpolated pin% 

Z 

4 

+I Inuut mwuneter . 
+z 00 v, l 

+53es ai. 

Z 

Inlet flow data. 

) %XXXXXXXXtft*XX 
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C-plane 

c = x + iy 

c = t + 13 

cp(e)+0 u on c,c=e -0. 
The points 8, and B2 oorrespond to the points at x = Jo in the r-plane. 

Transformation 

Tl 
d - : 2 =- I e-u log ey+( 

2r- ey - c 
+ ,i@-Wlog 5 + ey - - 1 

c - -0 J 2 to - bo)e-iap (1) 

= F(C) 

Figwe 1. Some notation and the first transformation of the oasoade. 



{'-plane 

Z-plane 
$‘(8’)+itJ’ On CS’ = e . 

The points B, 
to the point8 
z-plane. 

and B2 correspond 
at x = r 0~ in the 

Z=X+iY 
On C,Z = e if+M = ROW . 

Transftarmatlons 

T2 : <' = C - ;, ; constant 
" 

T3 :log'({'/Z)r 
L 

' a t" t 
n 

nrl 

%ure 2. Further notation and tranefonnations. 



- 



b) r-plan 

/’ I 
I 
I 

The transformation from the z'- to the z-plane is c = ' c' 
thus we obtain T, ae I 

- 'f - 6c)‘~eviSB; I\c j 

Figure 4. l?etails of transformation T 
standard Carrick equation. 

, , showing its deqivstion fmm the 



a 



‘IllI//\\--\ \\\\\\ 

The points B, and 

B oorreapond to the 
4 lnts at x = +'- 
in tlm s-plane. 

\\\-A//// 

Figure 6. The < -plane circles to which the ourves in Figure 7 correspond. 



b-plane 

Figure 7. The t-plane ourveb to which the circles in Figure 6 cmreapond (full lines) 
together with the orthogonal curves (bmkem linea). 



The points B, and B2 carrespond to the point8 at x = 7 - in the S-Plme, 

B3 
and Bb are their inveras points in the circle. 

Fsgurs 8. System of eingularitiss for the circle plane. 



Fim 9. Inlet and outlet velocities. 



PitclJ/ohord = 0.99016 
Stamr = 37.9 
Chord = 3Jm68 

i- m 40 points used as Input data. 
0 The 40 Interpolated pointe, bdng equally-awed in the c'-ply. 

lb-0 10. The test blade profile calculated fram the method of Merohant and Collar (1961). 



C-plane co tour 
\ 

pltoh/ohord = 0.99016 
stagger = 37.9 

+ The 40 given points. 
0 The points equally spaced in the {'-plane. 

B, and Bp are the C-plane singular points. 
B; and Bi are the C'-plane singular points. 

Figure 11. Contours in the {- and c'-planes for the Merchant 
and Collar oasoaib. 
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c-plane 

L and T are the leading and trailing edges of a blade. 
L' and T' are the corresponding singularities of transformation T,. 

T, is now given by 

8z = %he 
21ET 

= &pT coa E Te2iET 
following the procedure of Section 7 to find AT. Also 

= (pLksin 2sL - p& sin %)/0 

=’ 4) ‘Pt - CO8 E sin 26 - 12 
8 L L w C 

08 ET nin 2ET, 

and 
80 = ; PL COI EL 001 2EL + 3 PT CO? ET 008 a*. 

(41) 

(45) 

(46) 
FQu.ra 14. Calculation of the parameters in treneformation T, fc~ bladea with 

roundcid trailing edgea. 



Y 

t 
- 1.0 

I 

-1 .o X 

-6.0 

+ The 320points. 
I 

0 Interpolated points. 

chord = 6.28319 

Figure 15. The lOCL/3OC50 blade. 



pitoh/ohord = 1 
stagger = so 

C-plane oontour 

\ 
5 ’ -plane oontqw \ 

Bl 

B;+ 

B2 
I II ‘ 

1.2 1.4 1 .6 

+ The 32 given point I 

0 Interpolated points 

B, and B2 are the C-plane singular points 

B; and Bi are the C’-plane singular points 

Figure 16. Contours in the <- and <‘-planes for the oaeoade of lOU&IC~O aerofoils, 



0.6 

-0.6 

4.8 

--o-- 32 point progmme 

+ Howell's oonfonnal trHnsfcmmtion method + Howell's oonfonnal trHnsformxtion method 

Method of distributed eingularities Method of distributed eingularities 

pitoh/ohora = 3. pitoh/ohora = 3. 
stageer = so stageer = so 
inlet angle = 51' inlet angle = 51' 

. Riye 17. Pressure distribution: Comparative resulta forth, lw3oC50 oasoad~. 



deviation angle 

8 

wfl 

i., c 
Y- 
1, 

cc 
I- 

- 

4 .- 

3 I- 

2 , 

1 

I 1 I I I 

-9 -40 -30 -20 -10 0 

f / 
/’ / / . / 

-- 

10 30 I+0 

Stagger fuvde. 

Cum8 a - Howell*s conformal transformation 
b - Method of distributed singularities 
o - Rule for mninal deviation 
d - Preeent nmthod 

See Pollard and WordaworQ~ (1962) 

F~~UIW 18. Deviation v. rtagger: Comparative results for th loc4/30C50 oaacade. 



(u (0)) 

g&G 
n l flun) =A 

Figure 19. The iterative scheme for calculating {-plarn points, 

,I’ =‘o,o 
0 

0 
I;-=’ 0 

O#O 0 

Figure 20. The {-plane iterative aoheme near the trailing edge. 
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A.B.C. C.F. No.806 
November, 1963 
W. S. Hall and B. Thwaites 

ON THECAICULATIONCE'CASCADEFLCWS 
This paper considers the calculation of the inviscid 

incompressible flow, uniform at infinity upstream, past a 
two-dimensional cascade of aerofoils, given the 
geometrical characteristics of the cascade. 

The solution is obtained by means of a series of con- 
formal transformations, the most important of which are 
those due to Gsrrick and Theodorsen to which, however, 
essential modifications have been made which allow a prac- 
tical numerical solution The mathematical validity is 
successfiLly tested against the known surface pressure 
distribution about a given compressor cascade as 
calculated by Gostelow. 

A.R.C. C.F. No.806 
November, 1963 
W. !3. Hall and B. Thwaites 

ON THE CALCULATION OF CASCADE FLOWS 
This paper considers the calculation of the inviscid 

incompressible flow, uniform at infinity upstream, past a 
two-dimensional cascade of aerofoils, given the 
geometrical characteristics of the cascade. 

The solution is obtained by means of a series of con- 
formal transformations, the most important of which are 
those due to Garrick and Theodorsen to which, however, 
essential modifications have been made which allow a 
practical numerical solution. The mathematical validjty 
is successfully tested against the known surface pressure 
distribution about a given compressor cascade as 
calculated by Gostelow. 

A.R.C. C.P. No.806 
November, 1963 

1 W. S. Hall and B. Thwaites 
ON THE CALCULATION OF CASCADE FLOWS 

This paper considers the calculation of the inviscid 
incompressible flow, uniform at infkity upstream, past a 
two-dimensional cascade of aerofoils, given the 
geometrical characteristics of the cascade. 

The solution is obtained by means of a series of 
conformal transformations, the most important of which are 
those due to Garrick and Theodorsen to which, however, 
essential modifications have been made which allow a 
practical numerical solution. The mathematical validity 
is successfully tested against the hewn surface pressure 
distribution about a given compressor cascade as 
calculated by Gostelow. 
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