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SUMMARY

This paper considers the inviscid incompressible flow, uniform
at infinity upstream, past a two-dimensional cascade of aerofoils, and in
particular the problem of determining the flow field, given the
geometrical characteristics of the cascade,

The literature on this problem is already very extensive
but in spite of this, there is a need for a definitive method of solution,
to any desired degree of accuracy, which can readily be applied as a
routine procedure., Especially is the need felt to incorporate into
such a standerd method the power of the electronic computer, and the
analysis needs to be positively fashioned to take full advantage of such
machines,

Congideration of the inherent features of the two principal
methods of tackling such Laplacian problems leads to the adoption of a
method based on conformal transformations (closely akin to that of
Garrick, 1944) in preference to one based on distributions of
singularities, Such comparisons as haye been made between the results
obtained by these two approaches suggest that our preference is Jjustified,

The problem of design is notoriously more diffiicult and we do
not report, in this paper, any progress towards a practical and accurate
design method. Perhaps, however, the thought might be expressed that
design ideas may be formulated on the basis of numbers of solutions of
the direct problem,

It is hoped that, if this work can be regarded as a
definitive procedure for the highly idealised case of potential flow
about a cascade of aerofoils, others may be encouraged to build on it
methods equally valid for the more caomplicated flows which occur in the
reality of turbo-machinery,

1. Introduction

Until recent years, the technology of gas turbine engines was
not sufficiently advanced in any of its aspects to necessitate accurate
methods of performance gstimation; certainly, engine designers have
not been accustomed to fluid-dynamic theories as accurate as those of
external aerodynamics,

However,/
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However, there are many indications that the efficiency of gas
turbines has reached some kind of limit according to available. design
methods, many of which in any case describe flow conditions only in the
large, rather than in detail., This is particularly true of multi-stage
compressors in which, for example, it is still virtually impossible
accurately to take into account non-uniformities in the inlet flow.

A full theory of viscous compressible flow through an annulus
of varying cross-sectional area in which there are a number of rotor and
stator stages is clearly beyond our reach at the present time; Wu (1952)
has attempted to state the general problem, but there are limitations even
in his statement of it, and in any case, there is much to be done before his
work yields a practical method of calculation. Also, there are as yet,
in this field of engine aerodynamics, no theories, however specialised, as
highly developed and accurate in application as the corresponding theories
in external aerodynamics.

In this situation, therefore, it seems worthwhile to return to
some of the simplest idealisations so as to establish methods of solution
of certain accuracy on which to build more complicated theories. Such a
procedure is unlikely to give the engine designer everything he wants in
the immediate future, and he will no doubt have to continue to rely for some
time on more or less ad hoc and approximate theories, But in the long-term
view, there is much to be said for disposing fully of the direct and
indirect problem of a single two-dimensional cascade-row in incompressible
inviscid flow, before going on to consider the complications due, in turn,
to viscosity, compressibility, axisymmetry and a number of stages.

This paper attempts a definitive solution to the problem of
determining this most highly idealised flow past a cascade row of prescribed
geometrical shape. We do not seek a solution which can in some sense be
displayed analytically in closed form, partly because even here the flow is
too complicated to admit of the kind of formula typical of, say, linearised
aerofoil theory, and partly because in any case the electronic computer is a
legitimate constituent of any moderm method. Thus our aim has been to
develop a theory and its associated computational techniques which, when
taken together, enable a solution of any desired degree of accuracy to be
obtained.

It is instructive to admit, at this point, that much of the
analysis in this paper has, in one form or another, appeared in the
literature over the last thirty years, and it may be asked, if this is so,
whether further work on similar lines adds anything of value, The answer,
in part, is that earlier theories of cascade flow - for example, those of
Collar (1940), Merchant (1940), Merchant and Collar (1941), Garrick (194L),
Mutterperl (1944), Carter and Hughes (1946), Katzoff, Finn and Laurence (1947),
Howell (1948), Isay (1953), Murai (1955), Schlichting (1955), Mortensen (1959),
Polacek (1959), Czibere (1960), Riegels (1961), and Pollard and
Wordsworth (1962) - were devised with the desk calculating machine in mind.
Such methods are not necessarily the most appropriate in this computer age
and a modern method should be constructed so that, both in detail and in
its overall features, it is wholly suitable for modern numerical techniques.

As to these overall features, there are two principal techniques
available for solving the two-dimensional Laplace equation with conditions
prescribed on given boundaries, namely the use of conformal transformations
and representation by a suitable distribution of singularities,

The representation of the flow by singularities within the body
contour has, of course, been highly developed in isolated aerofoil theory and
is in effect the basis of linearised theories; the first applications to
cescade flow seems to have been made by Betz (1942) and Katzoff, Finn and
Laurence (1947). In their work the first approximation to the flow about a
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cascade of blades is taken to be the flow about one of the blades in an
infinite stream and this is represented by a distribution of discrete
singularities within that blade's contour, This distribution of
singularities is then assumed to be repeated in each of the remaining blades,
and Betz gives a figure from which the effect of the row of equally-spaced
singularities on the first-chosen blade can be calculated, In this way the
original flow past the single blade can be modified and an iteration set up.
This method was improved by Schlichting (1955) who gave the analytical
expression for the velocity potential due to the series of equally-spaced
singularities; a singular integral equation results.,

Pollard and Wordsworth (1962) tackle the problem by assuming
continuous distributions of singularities corresponding to the individual
terms of a Fourier series. The boundary conditions are then satisfied at a
number of discrete points on one of the blades to give a set of simultaneous
equations for the Fourier coefficients. A number of simplifying
approximations, similar to those of linearised theories, are employed and
they restrict the validity of the method to blades of small camber. As it
deals largely with simultaneous linear equations, the method is well suited
to electronic computers,

A further refinement of the singularities method has been
introduced by Martensen (1959) who transforms Schlichting's singular integral
equation into a regular Fredholm equation of the second kind. Also, in his
method, the singularities are placed on the blade contour itself, permitting
consideration of a wider range of blade shapes,

Turning now to methods involving the use of conformal transformations,
the first step normally consists of an initial transformation of the infinite
series of aerofoils into a single closed contour in the whole plane by some
periodic transformation. Simple standard transformations are then usually
used to obtain a near-circle, Finally, the near-circle is transformed to an
exact circle by Theodorsen's method. The flow past the cascade can now be
derived from the known flow about a circle,

The practical success of such methods cbviously depends on the
transformations used; in particular, it is desirable to minimise the number
of transformations and to avoid the creation of highly irregular shapes,

A favourite initial transformation has been & = +tanh z, used in this
country notably by Howell (1948) and by Pollard and Wordsworth (1962); but it
usually results in S-shaped figures which both authors had to treat with
geveral successive Joukowski transformations in each of which it was necessary
to choose the co-ordinate axes. Further, although all methods tend to become
more difficult to apply as the pitch-chord ratio decreases, the
tanh-transformation is particularly unsuitable in this respect.

A rather different method was put forward by Mutterperl (1944) in
which the cascade of blades is transformed into a cascade of flat plates, the
chord length being kept constant. The flat plates are then transformed into
a circle by an equation similar to that used by Murai (1955). The first
transformation is, of course, initially unknown and has to be determined by an
iterative procedure; but a peculiarity of the method is that the final
transformation to the circle is involved in the iteration and on the whole
this gives an unfavourable comparison with the methods of, say, Howell or
Murai in which each transformation can be made independently of the others.

There are naturally many variants of the two principal lines of
attack which we have exemplified by quoting a few of the best-known papers,
but enough may have been said to support our view that the singularity method
is the less valid of the two wher it comes to laying down a definitive form.
There are two main reasons for this view. First, any method based on a
finite number of linearly-dependent unknown quantities is vulnerable to the
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effects of the choice of pivotal points and to the possibility of
ill-conditioned equations; and what is more, there are no known methods of
guarding against these effects, Second, the algebraic complications become
such as to make highly desirable some sort of linearised approximation in
which the boundary conditions and values are not necessarily satisfied
exactly on the boundary,

Transformation methods, however, are not completely free from
disadvantages; their difficulties arise mainly in the choice and number of
the transformations and especially of the co-ordinate axes.

This paper proposes the use of only two transformations (apart from
a trivial translation), the first being that used by Garrick (1944) and the
second that of Theodorsen (1932). Indeed the whole procedure given here
follows Garrick's very closely with, however, two significant improvements.
First, great attention is paid to the choice of axes and parameters involved
in the first transformation so that the given blade contours are mapped into
as smooth a near-circular shape as possible., Second, the computation of
Theodorsen's theory is improved by the treatment given by Thwaites (1963)
which, by using various formulae given first by Watson (1945), avoids the
explicit determination of the coefficients of the Laurent series in the
transformnation,

2. Notation

(a) Geometrical properties of the given cascade

I stagger angle

Y] parameter in Ty ; its derivation is given
in Section 7

c chord length of a cascade blade

dc paremeter in Ty; its derivation is given

in Section 7

d pitch
y parameter in T: given by equation (6)
(x_,y.),n = 0,1,,..2N-1 co-ordinates of the cascade referred to the
n’/n’’

axes of Fig. Lb,

Py, radius of curvature of the leading edge of a
cascade blade

I angle between the directions of the blade chord
and the normal at the blade leading edge

P radius of curvature of the trailing edge of
a cascade blade
€ angle between the directions of the blade chord

and the normal at the blade trailing edge

(b) Other notation

z = X + iy complex variable in the plane of the cascade

z!' = x'4+ iy! alternative complex variable in the plane of
the cascade

&/
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Z = & + in complex variable in the plane of the near-circle
i0 . <
e\p+1 point on the near-circle in the Z-plane
o = V¥ + 16
16 . .
e T point in the <&-plane corresponding to the sharp
trailing edge of the given aerofoil
b4 weighted mean of the points of the near-circle in
the Z-plane
Z'=E' 4+ int' =% - Z complex variable in the plane of the displaced
near-circle
1,101
ew o point on the near-circle in the &'-plane
Z = X+ iY complex variable of the plane of the exact circle
ew+l¢ point on the circle in the Z-plane, whose radius
is therefore eg
R = ell!
a,n = 1,2, .., complex coefficients in Theodorsen's transformation
Ts transformation from the z-plane to the <Z-plane
Ta transformation from the &-plane to the &'-plane
Ta transformation from the &'-plane to the Z-plane
(Theodorsen's transformation)
w velocity on the circle in the Z-plane

f,g,h functions used in calculating W

V@eiai velocity at inf'inity upstream of the cascade
V‘geia‘Q velocity at infinity downstream of the cascade
v fluid speed on a cascade blade
P pressure on a cascade blade
oy fluid density.

3. Outline of General Procedure

We refer first to Figs. 1 and 2, In the 2z-plane it is assumed
that the given shape of the cascade blades will be expressed as a list of
randomly distributed co-ordinates of the surface.

The transformation Ti is designed to produce a reasonably regular
curve approximating to a circle in the <&-plane; the details are given in
Sections 6 and 7. For the moment it is sufficient to remark that, unlike
some of the other methods, T4+ is entirely determined by the various
geometrical properties of the cascade, and thus that a set of points is then
known on the contour in the <Z-plane.

Now for the efficient application of Theodorsen's transformation,
it is desirable that the variation of radial distance from the origin to the
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near-circle contour is, in some sense, minimised. Thus the Z-plane contour
is displaced by a constant Z, of which the derivation is given in Section 5,

so that in the &'-plane the radial distance - now e — is more nearly
unif'orm. Thus in this plane too, a set of points is known,

At the final stage, however, the transformation into a circle in
the Z-plane is best done when the points are given at equal intervals of 0!,
Thus an interpolation is carried out in the Z'-plane to obtain these
equally-spaced values of V'(6'),

The final transformation is arranged so that |d%'/dz| is evaluated
at these equally-spaced points in the Z'-plane and so that the corresponding
points on the Z-plane circle are known,

Finally it is necessary to relate the now equally-spaced &'-values
to points on the cascade but this only involves straightforward calculation
through the transformations T: and Ti.

We go on to discuss the gemeral features of the three transformations,

4, Ta: Near-Circle to Circle

Theodorsen's theary is well known and depends on the fact that, on
the boundaries, the transformation given in equation (3) of Fig. 2 reduces
to the form

yr(6!) = T -~ i(¢-0') = value on the circle [z] = e
[0o]
of the function I anz"n which
n:‘l

is analytic outside the circle,

Hence (V'(8!') - T) and (¢-O') are related by Poisson's integrals and the
correspondence between the two planes is thus established, The analytical
details and the computational procedure adopted in this paper are given by
Thwaites (1963) with the improvement that this differentiation matrix is
replaced by one derived from a Lagrangian partial range differentiation

The method requires the values of {' to be given at equally-spaced values
of 0!, To obtain these from the randomly-~sited values of V' which result
from the previpous ftransformation, seventh-order Lagrangian interpolation
polynomials are used, and these are found to produce sufficient accuracy.

In our present problem an additional result is required, as will be
seen later, namely the calculation of the point Z in the Z-plane which
corresponds to a given point &' exterior to the near-circle, Following
Appendix C of Garrick (1944) we apply Cauchy's formula to the function

£(z) = z anz'n in equation (3) to give
n=1
zt 1 2% =
log(—) = -—[ v(¢){1 - (Ze-w)e-l‘ﬁ}dq& = £(2) eoo (L)
VA X JO

where ¥(¢) = ¥'(8').

This equation (4) is an implicit e%;lation for Z end can be
simply solved by an iteration in which the n™? value, Z,, of Z is

inserted in the integral to give an improved value, Zn+1 , where
Z., = Z,'exp(—f(zn)). 7, may be taken as Z'.

5./
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5. Ta: Displacement of Near-Circle

The Z-plane contour will, it is hoped, be approximately circular,
but there is no reason for the origin in the plane to be near the centre of
the approximating circle. There is obviously no exact criterion by ,which
to determine this centre, and so some rough and ready procedure is
sufficient, especially since the method of computing Ts 1is by no means
critically dependent on the choice of origin,

The method employed here is to determine & as something in the
nature of a weighted mean of the given points in the &-plane. If these
are denoted by én’ n = 0,1, ... (2N-1), then the weighting given to' the

point & is %rn(em_1 - en-n) in the notation of Fig. 3. As a result,

the contour will be more evenly spaced round the origin in the (%-Z)-plane,
that is the &'-plane, than in the &-plane,

6. T, : Cascade to Near-Circle

We refer to Fig., 1 again for some basic notation and to Fig. 4
for further details of Ti: given by equation (1).

Ty 1is a modification of equation (6b) given by Garrick (1944).
Its characteristic property is the mapping of the exterior of él = 1 onto
the whole =z-plane cut along an infinite number of straight, finite
periodically-spaced lines.

To be more precise, the central cut is the straight line L'T
joining the point —(c—ﬁc)e—lsﬁ to the origin in the z-plane. The

Z-points corresponding to T and L' are & = * eleT respectively where
ta'ﬂeT = tanl’ly tall(ﬁ"’éﬁ) cee (5)

and GT is an acute angle, Here Yy 1is a convenien* parameter which can
be thought of as depending primarily on the gap-chord ratio.

In fact, the equation comnecting the geometrical quantities
d, (C"SC), p-84 and y is

x , c=b¢
()

=

cos(B-88) + {cosh?y - sin® (8-88)] i]

N

cos(8-58) log [
sinh y

e (6)

+

sin(8-5p)
in(B-07) v {: {cosh®y - sin® (ﬁ—&ﬂ)}%:l

which is easily verified by expressing the length (c-Sc) as the distance
L'T between the singular points of Ty, at which dz/dZ = 0. Thus in
principle - and the practical problem will be discussed in Section 7 - the
value of y may be found from this equation (6) from the geometrical
properties of the cascade,

Let us now look at some typical sets of contours in the z-plane
which correspond to circles in the Z~plane and, to begin with, we might

consider the set of concentric circles |Z| = & > 1, together with
the orthogonal set of radial lines © = constant, Fig. 5 gives a typical
picture in the cuse (B-88) = =~ 30° and (c=dc)/d = 0°3866,

If a given blade profile from a cascade of the same gap/chord ratio
and stagger angle as those of the figure were to conform to one of the full
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lines, then the solution follows at once. But in practice the problem will
involve placing a given cascade shape, on a suitable scale, in the z-plane

so that, as has already been discussed, the Z-plane contour is closely
circular., Now the Vy-constant curves in Fig, 5 appear substantially
different from typical blade shapes, but this in itself does not imply that
realistic shapes cannot be transfarmed into Z-plane circles; it implies only
that such circles will certainly not have their centres at the origin,
Therefore it is of interest to examine the z-plane contours corresponding to
other sets of Z-plane circles,

Now most real turbine blades are more or less cusped at the
trailing edge; such a trailing edge clearly should be located at one of the
singularities of the transformation, namely at T (which has been arranged
for convenience to lie at the origin of the z-plane). The other
singularity L' of the transformation should lie within the blade contour,
and so we might consider the family of circles shown in Fig, 6, The z-plane
contours corresponding to these circles are shown as full lines in Fig. 7,
and the contour corresponding to the circle which passes through T is of a
more realistic shape than the curves in Fig, 5. Conversely, one is led to
hope that a given cascade could in fact be placed in the Z-plane to give a
Z-plane contour reasonably close to a circle,

The first step then for blades cusped at the trailing edge, is to
place the trailing edge at one of the singularities of the transformation,
There are then two parsmeters 08 and O0c appearing in Ti; which need to
be determined, and this is done by matching the radius of curvature and
normal direction of the appropriate VY-~constant curve with the radius of
curvature and camber line direction of the given blade at its leading edge,
This procedure is carried through in Section 7.

However, for blades with rounded trailing edges, the position of T
the trailing edge must also be moved away from T' the corresponding
singularity of the transformation, and the analysis for this is briefly
given as part of the worked example in Section 9(b).

7. Calculation of 0@ and Oc

The matching problem at the leading edge is attempted by an
approximate analysis, linear in &8 and ©&c/c, which is justified
a poasteriori on the grounds that these two parameters are found to be of
order pL/c , the ratio of the leading-edge radius of curvature to the blade
chord length. On the assumption that &8 and &c/c are O(pL c),
equation (1) gives

F(Z) = F (2)(1 + 0(py/c)) eeo (7)
d . eY¥+Z X Zee’
. — ) .18 i o1
where FO(Z},) = = {e log T + e log Z’-ey} Le. ees(8)
We will write
F(z) = F, (%) ... (9)

on the understanding that the errors in equations (9), (10) and (12) can be
represented by a factar (1 + O(pL/c)).

We/
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We have, at the singularity L',
dr
(3) -
dz 4,

aF
and also (z’;;—)y = - B |

. 1 (cosh2y + cos28)?
where B = — ... (1)
: 2x (cosh®y - sin®g)sinh?2y

? ee.(10)

eﬂr+i6 (o2

and is real, In terms of the variable o, where & = = e,

equations (10) are

<§)L, - O (%;)L, = - cee (12)

With these values, an expansion of 2z, in terms of ¢, may be made in the
neighbourhood of L',

At this stage it is, in fact, more convenient to develop the

analysis in terms of the two parameters A and &, shown in Fig., 4, rather
than 68 and ©0c., The point L' is then given by

2 =z, = -clt - a¥(n /o)l NCE)

Once A and & have been found, the required values of 68 and Oc follow
ea.Silyo

Thus, near L', we have, from equations (1), (12) and (13), that

16 2 . L .
z = =cC+ phe -—2— fo - 1(6mx)}* | 1 40 -;- + 0(o = 1(6m)) | .
...(14)
Thus the value, 0., of O at the leading edge (where z = - c) is given

’
by L

ﬂch - i(e,l,m)}’ = é pLAei6 |:1 +0 (-p—L) + 0(o - i(6T+7t)):] e 0o (15)

c

1
Equation (15) shows that {O’L - i(6T+1t)} = O(pL/c)z. Hence, sufficiently

close to the leading edge, the errors in equations (14) and (15) can be

represented by the factor (1 + O(pL/c)E), which is now understood to be the
error in subsequent equations.

To calculate & we use the condition that the tangent to the
blade camber line at the leading edge should be parallel to the normal to the
appropriate Vy-constant curve, or to the tangent to the orthogonal
B-constant curve. .Now, for a O-constant curve,

dz

do
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dz dz
— = — = -Bio- 160 ... (16)
do ay .

from equation (14)., Thus the required condition is

arg dz = arg[- Bdfo - i(6T+7t)}] = argf{o - 1(6T+7t)} eee (17)

since B is real, Thus with the value at the leading edge given by
equation (15),

)
arg dz = -
2
while from ¥ig. 4, arg dz = €. Thus
6 = 2€L. ...(18)

Once & has been found, the condition that the radius of curvature
of the appropriate Vy-constant curve and the radius of curvature of the
leading edge should be the same, can be used to find A, The curve in the
z~plane in the neighbourhood of L' which corresponds to a small arc of a
circle, centre the origin, in the <&-plane is givem by

Bd Bd
x = {-c+pLAcosﬁ-—-\b’} +— (8 - 8, - %),
2 2

y pLAsfmG-delr(G-GT-x), .o (19)

{
and its radius of curvature is given by

3
[(Ba(6-8, )} + (-Ba)* ] BalY® + (8-0,-0) I oo
- (~Bay)Bd ¥ T

Now at the leading edge, equation (15) gives the values

1 1
2014 & 20, A 2 &
\l{ = \IIL = ——) cos =3 6 = GL =.eT+7t+< )sin—.
Bd 2 Bd 2
Equation (20) then yields
. 3 N
2p_A\? 2p_A \? )
b = m(-L > {(—L ) coa-}
Bd Bd 2
= 2p, A sec ¢, fram equation (18),
which gives A = % cos e eeo(21)

Now that A and 6 have been found it is a simple matter to
calculate, from Fig. 4, the values of the parameters 88 and Oc in terms
of the blade geometry. They are

74
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ﬁ
’L
88 = — cose_ sin2e_,
> L L
c
> 000(22)
dc 23
—_—n — coscL cosZeL
c 2c
A\

8. The Flow about the Cascade

We proceed to describe the method by which the flow about the.
cascade is calculated now that the transformations which map a given cascade
onto a circle have been completely determined.

Consider the flow in the 2-plane about the circle |Z| = R given
by the complex potential
va - . B1+Z . Z + R /B
a(z) = — | &% log + e % 1og ——_—]
2K Pa~2Z Z - Ra/ Ba
il (2 + /B, ) (2 - K/Fa)
- —— log seoe (23)

L (z+81) (Ba-2)

which arises from concentrated sources, sinks and vortices placed as shown
in Fig. 8, where -f1, fa are the points corresponding to the points at infinity
in the plane of the cascade.

W = |dn/az|, the speed on the circle*, can be calculated as
T r
Vd sina + — Vd sina - —
Vd cosa 2 2
W=f.( >+g.< >+h.< )
x x 1:
~ h oo (24)
1 sings singa
where f = ——< + F, .-.(25)
1 1 1 1
—(m+——>+cos¢1 —<m3+-—>—cos¢g
L 2 m 2 mg o
i 1
m -~ —
1 my
g = "_< > ’
LR 1 1
—(m1 +—->+cos¢1
2 my
L . o
r 1 .
mg ~ —
1 mg
h = +_< > ’
LR | 1 1
- mg+—>—COS¢a
and/

*A similar expression for W was given by Howell (1948) and it may be useful to
note that the source strengths are *Vax in his notation where we have
+Vd cosa, and the vortex strengths ere Vwa® and Vwa® 1in his notation
corresponding to our values (VA sint + I'/2) and (Vd sina - T/2).
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and m = |A|R', m = |B|K™. ... (26)
Fig. 8 should be consulted for the definitions of ¢s and ¢3.

We must now discover the interpretation that should be placed on
the variables V and a appearing in equations (23) and (24), in terms of
the physical properties of the flow through the cascade. It will be shown

that, in fact, Veia is the vector mean of the inlet and outlet velocities,

V,,ela1 and Vaelaa; the angles a, @y and @3 being measured from the line

perpendicular to the stagger line (mee Fig., 9).
The velocity in the z-plane is obtained from the equation

a0 e dz 4z' d& adz'

-—':_o—o_o"—.—’ -.o<27)
dz dz dz' 4z dz' az

the terms of which can be evaluated using equations (1), (2), (3) and (23).
Considering the flow at infinity upstream of the cascade we have from
equation (27), since we are taking the direction of flow to be from left to
right,

4an . . ir |
[_:l = ,Viel(—a“'ﬁ) = Vel(a+/9) + - elﬁ. o (28)
dz 2d
—-00
Similarly the outlet velocity vector is
dz 24
+00

Addition of equations (28) and (29) shows that the mean of the inlet and
outlet velocities has magnitude V and is at an angle (a+8) to the x-axis.
We can also show that the inlet and outlet angles are given by

T T
sina + — . sin@ - —
2va . 2va
@ = = tan'? <-—-——-—>, @y = -t&n"( ) «..(30)
cosa cosa

In the practical problem of finding the flow about a cascade we
will be given the inlet velocity Vi e?™  and the Joukowski condition at the

trailing edge of the blade, from which the outlet velocity Va em2 is
calculated as follows, Rewrite equation (24), using equations (30), as

Vadcosas
W = ——— (£ - gtanay - htanas) oo (31)
=

in which Vcosa has been replaced by Vicosas, from the real part of
equation (28), Then, for a stagnation point at the trailing edge, we have

fp - gptena, - hotane = O, .o (32)

where the suffix T denotes values at the point on the Z~plane circle
which corresponds to the trailing edges of the blades. Thus the outlet angle
is given by

aa/
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| f - g  tanx
aa = tan-i ( T T 2 ). 055(33)
+hy
Also, from equations (28) and (29), the outlet velocity is given by
Va =4 Vi COSad. Seca2 . e (Bll-)

. The speed, W, on the circle can now be evaluated from equation (31)
since as 1is known, It is clear that, in our case, it will be most
convenient to calculate W at the points on the circle with the angular
displacements ¢ which result from Theodorsen's transformation; that is,
corresponding to the interpolated, equally-spaced points on the near circle
in the &'-plane. The points on the cascade corresponding to these can
then be traced back through transfarmations Ts and Ti. The speed, v, at
these points on the cascade can then be calculated using the moduius of
equation (27), which becomes

an az az
—| = v =w|=1].—=1, ... (35)
dz az' dz'

since |d;'/d;| = 1, Tsa being merely a translation, |dZ/d§'| is

calculated as part of Theodorsen's method (see Thwaites, 1963); |dZ/dz| can
be derived from equation (1) and is given by

dz' 24
— | = N
az x| 2|

l:bosa(ﬁ-Sﬁ) cosh?y (cosh®{-cos®) +sin®(8~88)sinh’y (cosh®Y-sin®0) - & sin2 (8- 58)sinh2ysin20
cosh®2y - 2cosh2ycosh2ycos2 + cos®20 + sinh®2y
..o (36)

The pressure on an aerofoil is usually given in terms of the
pressure coefficient Cp, defined as (p-p1)/2m Vi, where ps is the

free-stream pressure. Thus, by Bermoulli's equation

. (42)
C = 1 - . ) }+2
P v

In the case of a profile with a cusped trailing edge, W and
Idz/dé,l are of course both zero at the trailing edge, so that v has to be
calculated as a limit. It is easily found that

an az an az
Vp = | T = | — - — | oo (37)
dz | a2 lp | 427 Iy az |y
where, from equation (1),
3
a*z dfcosh®y - sin?®(8-58)}?
- = ’ ... (38)
az? |n ®(sinhy coshy)?
"and from equations (23) and (30),
. &0 Vad cosas N
—_— ] 2 —— (PP+Q?)%. ... (39)
az 2%

T

1

.
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In equation (39), P eand Q are given by

P = =M +Aa —f + A - tan o (Bi-Ba) + tan aa(Be-BK ), (10)
eee \ 4O
Q = - B + B =B + B + tan ay (A-A ) - tan a3 (A-Ad),
and A = A(mi’ ¢1T)’ B:. = B(miy ¢1T)’
bo = A(-ma’ ¢a’l‘)’ Ba = B(-mz’ ¢aT)’
Ay = A(1/m1’ ¢1T)’ Ba = B(1/m1, ¢1T)’
A = A(-1/m2’¢aT)’ B4 = B(-1/m2’¢aT)’
1,1 7
- (-— + m cos 2¢ ) + cos ¢
2 \m
where A(m, ¢) = 2
1 1.
Zmﬁ{cos ¢+—<m+-)}
2 m
. eee (1)
sin ¢ + 2 m sin 2¢ r
B(m’ ¢) = 2
1 1
ZnRa{cos¢+—<m+—>}
2 m

9. Test Examples
(a) Merchant and Collar Cascade

To test the foregoing theory, a flow was required whose properties
can be determined exactly, but which was not derived by Garrick's
transformation, The most convenient method of producing such a flow seemed
to be that of Merchant and Collar (1941) which has also been used for
comparison purposes by other recent workers, especially by Gostelow (1963).

Merchant end Collar's analysis is not reproduced here, but the
blade shown in Fig, 10 was derived by a straightforward calculation using the
following values of the parameters in the original notation:-

Stagger angle = 37-5°
B = 0725
gt = 08

Co-ordinates of the centre of the pA'-oval
in the &-plane = (-0+06320, +0-11251),

For the application of the present method to this cascade, it is
necessary to specify the blade shape as a set of .points whose co-ordinates
could be used as input data. Tw> sets of co-ardinates were in fact used,
one of 30 points and the other of LO points; and upon these were based
respectively the 20-point* and 40-point programmes. The set of 40 chosen
points is indicated on Fig. 10, on which is also given the points on the
blade which were found, after calculation, to correspond to the equally-spaced
points in the &'-plane, Fig. 11 shows, for the 4O-point programme, the

T e e I I NS R
A P-point programme is one which takes P equally-spaced points on the
Z'-plane contour.



contour in the Z-plane and also this contour when displaced by the
transformation Ty; again the given points and interpolated points are shown,
This figure indicates how successfully the choice of parameters in Ty has
avoided the irregularities usually present in contours obtained by
transformations.,

The flow about this given Merchant and Collar cascade has been
calculated exactly for an inlet flow angle @ = 53°5°, namely that used by
Gostelow (1963), The exact pressure distribution for this inlet angle is
shown in Fig, 12 on which are also plotted the points calculated by the
20-point and 4O-point programmes. These calculated points agree very well
with the exact result and it is surprising that the 20-point calculation seems
almost as satisfactory as the 4O-point, No doubt, the accuracy of the
calculations could be further improved by teking more than 40 points.

(It may be further noted that 4O-point calculations come close to using all
the available storage space on the Pegasus computer used here; blade profiles
specified at many more points could, of course, be handled on larger machines, )

The outlet angle has also been calculated using the 4O-point
and 20-point programmes and is compared in the following table with the exact
value,

Exact value LO-point 20-point

tan @3 057793 0 57808 0° 57704
% error - ' 0+ 026 -0*154

Some of the other methods of calculating cascade pressure
distributions have recently been applied to the same Merchant and Collar
cascade, Fig, 13 shows results obtained by Gostelow (1963) using Schlichting's
singularity method, and by Rolls-Royce Ltd,* using the singularity method of
Martensen (1959), compared with the values obtained by the 4O-point programme,
The reader may draw his own conclusions,

(b) Cascase of 10CL/30C50 aercfoils

In a recent report, Pollard and Wordsworth (1962) have compared
two theoretical methods of solving the direct problem of cascade flow., Their
methods were: first, a conformal-transformation method based on Howell's
transformation and second, a modified version of Schlichting's singularities
method, They have calculated the pressure distributions and deviation
angles for a cascade of 10C4/30C50 aerofoils with gap-chord ratio unity,
for a variety of stagger angles,

Further interesting comparison can be made by applying the present
method to the same examples. We have thus used a 10CL/30C50 aerofoil given
at 32 points as .«shown in Pig. 15. These are derived from the 17 values of
the CL4 thickness distribution given in Howell (1946) which were also the basis
of Pollard and Wordsworth's calculations.

It will be noted that the CL profile has a non-zero trailing-edge
radiug of curvature, To take account of this the proceeding theory must be
modified slightly at the stage when the axes of the z-plane are being fixed,
The position of T, the trailing edge, must be moved away from T', the
corresponding singularity of the transformation, in the same way as, at the
leading edge, L was moved away from L'.

Fig. 14 shows the general position of a blade relative to the
co-ordinates in the z-plane, The transformation Ti. is now given by
equation (43) of Fig. 1k, where 6z is calculated by en argument similar to
that used in Section 7 to find 8 and 6c. 6z and the now modified
expressions for 83 and &c are given by equations (44) to (L6) on Fig, 1l

Initially/
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*
Not available at the present time.
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Initially we consider a cascade with stagger angle 36°.  The
computations were based on 32 equally-spaced points interpolated in the
Z'-plane from the 32 initially specified points. The interpolated points and
the points in the Z- and z-planes corresponding to them are shown in Figs., 15
and 16, Retaining the inlet angle of 51° used by Pollard and Wordsworth,
the pressure distribution has been calculated and is compared on Fig. 17 with
the results obtained by their two methods.

Over the central parts of the blade, the results from the two
conformal transformation methods lie, on the whole, very closely together and
both differ significantly from the values given by the distributed
singularities method, However, there are some striking differences between
the conformal transformation methods in the neighbourhood of the leading-edge
pressure peaks.

The 1lift coefficient has been independently calculated from the
integrated pressure distribution and from the total angle through which the
flow is turned, and is given in the following table, for a stagger angle of 36°:

Inteiz f;ibﬁﬁziure Turning angle % difference

0724 0+720 06

Pollard and Wordsworth give the difference for this calculation as 7% in the
Howell transformation case and 1% in the singularities case.

One of the most disturbing results for practical design is the
lack of agreement which Pollard and Wordsworth found between the curves of
deviation v, stagger when calculated by Howell's and the singularities methods.
The curve obtained by the present method, shown in Fig, 18, is not in close
agreement with either of the other curves, and until many more cases are
calculated, it is difficult to draw any firm conclusion,

10, Conclusions

A method has been produced to calculate the potential flow about a
given two-dimensional cascade of aerofoils, It has been programmed for a Pegasus
computer and needs no intermediate curve-plotting,

Comparisons with an exactly-known flow have been made, Excellent
agreement between the exact and calculated pressure distributions is achieved;
in particular the fluid outlet angle is given to three significant figures,

It appears likely that the method will give results superior to those obtained
from other methods of treating the problem such as those based on the work

of Schlichting (1955) and Martensen (1959). The Schlichting method, in the
modified form of Pollard and Wordsworth (1962), may be the least satisfactory,

With a cascade of 10CL/30C50 aerofoils, comparison between the
present method and the methods developed by Pollard and Wordsworth (1962)
shows that, of the latter methods, that based on Howell's transformation gives
the closest agreement except for the leading-edge preasure peaks, Once again
the results based on Schlichting's singularity method differ substantially
from those of the transformation methods, The curve for the deviation angle
as a function of stagger obtained by the present method lies a little lower
than those obtained by Pollard and Wordsworth, Experimental investigation
of the pressure distritution and the variation in deviation angle for this
proflle would be of interest.,

Satisfactory results from the present method have been obtained for
cascades of low cambered profiles using at most 40 point programmes which
require 1% hr computing time in the Autocode version given in this paper,

A Pegasus machine orders version has also been prepared which allows
calculations using up to 70 points to be carried out and which reduces the
computing time to 20 min, When it is noted that this time would be reduced
to under 10 sec on an Atlas computer, the possibility presents itself of using
the method as a part or subroutine of an iterative design calculation,
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APPENDIX

Computing Programmes and Detailed Formulae

A description is given here of the programme used in the
calculation of the pressure distribution and outlet velocity for a given
cascade, and the required form in which the data must be made up, together
with formulae too detailed to be suitable for presentation in the main part
of the report. ‘

The calculation has been programmed for a Ferrantl Pegasus machine
using the Automat programme code which allows both arithmetic and matrix
instructions to be written in the same programme, Automat is a combination
of the usual Pegasus Autocode and the Matrix Interpretive Scheme which has
been made up by Dr. Samet of the Computation Laboratory, Southampton
University. It can be used only on Pegasus machines which have a large drum,

The complete calculation programme is arranged as a series of nine
sub-prograrmes each dealing with a distinct part of the calculation. The
sub-programmes run consecutively using information calculated and stored from
stage to stage, giving a completely automatic solution. The maximum number
of blade points which can be dealt with is 40. The annotated programme shown
at the end of this Appendix applies only to blades with cusped trailing edges
although a more general programme which can be used for blades with both cusped
and rounded trailing edges has also been produced. A description of the
sub-programmes follows,

Sub-Programme 1. Calculation of the Transformation Parameters

Given the cascade parameters A . and c/d, together with the blade
characteristics pI/c and €7, the parameters 88 and ©6c are calculated .

using equations (22). The transformation parsmeters (8-88) and (c-S6c)

are then set up and the related parameter y is calculated from equation (6)
uding Newton's root finding procedure. In fact it has been found simpler to
perform the iterations involved to find the quantity Q which is defined by

Q® = cosh®y - sin®(8-88).

Thus equation (6) is rewritten as

sin(B-84) e Q + cos(B-68)
G(Q) = ———— - tan - cot(B-58) 1 T
* Q [2d sin(s8-58) ° * { { - cos®(8-88)12 }]

= 0. eeo (47)

Also required is

aG sin(B-68) nc Q + cos(p-68)
— = - ———— - sec? - cot(B-68) 1 .
aQ Q* ° I: 2d sin(B-68) ot(p-5) og{ { - cos® (ﬁ-ﬁﬁ);f}:l

cot(8-68)cos(8-63)
@ - cos® (5-88)

To obtain a good initial value of Q we note that, in Fig. 2 of Garrick (1944),
for a given value of Yy the variation of (c-0¢) with (B-08) is smell,

Thus we may put (B-68) = O in equation (6) to obtain the following
approximation to cosh y:- i

eeo(48)

cosh y/
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®(c-0c) }. o (49)

cosh Yy = coth {
24

This expression is used to calculate the first approximation to . Once
Y has been calculated, GT is found from equation (5).
The required input data for this programme is as follows;-~

specified accuracy for the complete calculation expressed
as the rumber of significant binary digits

B ~ the stagger angle

c¢/d - chord/pitch

pL/c - leading-edge radius of curvature/chord
€, - direction of the leading-edge normal
d - pitch,

Sub-Programme 2. Reduction of the Blade Data to a Standard Form

The cartesian co-ordinates of an individual blade of the cascade with
its chord line along the x-axis are first of all transformed so that the
trailing edge is at the origin. The blades are now in the position shown in
Fig. U4b. These co-ordinates are then transformed so that the blade is
rotated by -88 and the trailing edge moved to the point (3(c-8c), 0).

This is done so that the simpler form of the original Garrick transformation
can be used in sub-programme 3 and the blade co-ordinstes thus transformed will
be in the z'-plane.

An additional part of this sub-programme can be called upon by
reading in a non-zero camber angle, to generate blades made up from a thickness
distribution on a circular arc camber line.

The form of the input data for this programme follows. It should
be noted that the blade points or thickness distribution must be read in
consecutively, starting with the trailing-edge value.

+ 1, input parameter

Camber angle

Number of given blade points

Blade co-ordinates in cartesian form or thickness distribution
based on unit chord.

Sub-Programme 3, Ti — Transformation to the ¢-plane

This sub-progrgmme starts with the transformed trailing-edge point
which is known to be et T, so that cb = iGT, and a step~by-step procedure

for calculating in turn the value of & corresponding to each value of 2z,
is followed from there. In general, to go from a point zA, at which o

is known, to z! , the difference dz' = z! '~ z! is formed and used in
nN+1 n n+1 n
the Tormula
dz' .
do_(o) = n Y deos (50)
" On i
e p (Gh)

where/
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where o = V+ 10 and
F'(O_) = A + j_B 0'0(51)
and

R®A  sinh{[cos(8-88)cosBcoshy (cosh®y-cosh?y-sirf) + sin (3-88) sinOsinhy (coshy+costPy-sin?0)]

4d cosh®2y - 2cosh2ycosh2ycos20 + sinh®2y + cos®20 (52)
ees (52

7B coshy[cos (8-68 )sircoshy (sinh®y +sinh® +sin0) +ain (8-68)cadsinhy (cosh®y —cosh®y-sin®6 ) ]

La . cosh?®2y - 2cosh2ycosh2{icos20 + sinh®2y + cos®20

ees (53)
Now zr'1<0) = F(O’n + do‘lf1 ©)) is calculated. In general this will not be the
same as z! , in which case the difference dzI'l(“ = z! - Zrlx(O) is formed

and used in equation (50) with o replaced by @ + aoﬁ1 ©) giving do(n ) and

hence zr'1(1) which should be a closer approximation to z:'x+1' The sequence
is repeated until the desired accuracy is obtained, The method of iteration

is illustrated in Fig. 19,

There are some modifications to this scheme which come into '

operation near the trailing edge. Once again the difference dzé = z' - zé
1
is formed, However, since F'(O‘o) = 0, equation (50) is replaced by
_1_ [}
2dz‘; 2
4o = [ , eeo (54)
(o
o <)
d {cosh®y - sin®(5-88)}?
where F"(o—o) = = . eoe (55)
= sinh® ycosh®y
' - s s 1 ot '
Now z! = = F(CJ'o + dO'o) is calculated and if lz1 zol < Iz1 zo,o' the

’
interval (zc'), z;) is halved so that the end of the step to be taken is now at
z' + %(z; - z!).  The approximation z to this is calculated, and if

1
Il o ot t I T A N ) ? .
IZ(Zi zo)l < lzo + z(zi zo) 20’1[ the end of the step is taken as
. 1 1
' oot — (g! = gt t 4 — (! = zt) = 7!
23 + Z(Z:. zo) and so on until (z1 zo) > |z + (z1 zo) Zo,p .

Once this condition has been fulfilled the iteration is allowed to continue
in the way described in the previous paragraph to calculate, first of all,

' 1
Go,p corresponding to z! + E (zi' - zo). The progrann:e then calculates
values of o at the end of each subinterval of length = (z; - zé) until z

2

is reached, The procedure has been illustrated in Fig, 20, It has been
designed to combat the possible poor convergence obtained by using equations (50)
and (54) in the neighbourhood of the singularity situated at the trailing edge.

The input data for this programme is:-
+1, input parameter.

Sub-Programme/
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Sub-Programme 4, Ta - Change of Origin

Z is calculated according to the procedure of Section 5.
The contour in the &-plane is then transformed to the &'-plane by Ta.

The input data required is:-
+1, input parameter.

Sub-Prograrme 5, Lagrangian Interpolation of Points at Equal Angles

Values of V' are interpolated at equally spaced values of O
starting with 6', using Lagrangian interpolating polynomials of the seventh

order based on four given points on each side of the point being 1nterpolated
Any number of interpolated points, within the overall maximum of 4O points,
can be produced.
The input data required by the programme is as follows:-
+1, input parameter.

Number of interpolated points required.

Sub-Programme 6. Ts = Theodorsen's Transformation with Lagrangian Differentiation

The programme calculates ¥(¢), ¥, ¢ and |d%'/dz| using Te.

Thwaites (1963) should be consulted for details of the analysis. Some small
changes have, however, been made to his method, First, six terms of the
series for ¥ or ¢ (equations (18) and (20) of Thwaites (1963)) were found
to give sufficient accuracy. . Second, his differentiation matrix (D) has
been replaced by one which produces Lagrangian derivatives based on three
values on either side of the position at which the derivative is required.
The coefficients used were taken from Kopal (1955).

The input data required for this programme is:-
+1, input parameter.

Sub-Programme 7. The Position of the Singularity Points in the Z-Plane

The position of singular points in the &'-plane, i.e., ¥ e’ + Z,

are calculated and then referred to the line arg(Z') = 8% The value of

¥($), found in sub-programme 6, is then used in & direct iteration of
equation (4) to calculate the positions, -1 and pSa, of the singular
points in the Z~plane, For the purposes of computation the real and
imaginary parts of equation (4) are required and are as follows. If
£(2Z) = p+ iq then

. 1 j27t (Xe"‘_l’ cosp + Te ¥ i sing - 1)¥(¢)as o (56)
Tedo 4L 2(Xe4g cos¢ + v sing) + (X® + Ya)e_zg
1 ;2w (Xﬁe-ﬁ sing - Ye 7 cos¢)¥(¢)d¢

q = —f — - . eee (57)
%x Jo

1 - 2(Xe4w cosp + Ye sin¢) + (X 4+ Ya)e-zw
The input data required for this programme is:-

+1, input parameter.

Sub-Programme/
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Sub-Programme 8, Interpolated Co-ordinates

The co-ordinates in the &-plane corresponding to the equally-spaced
interpolated values in the <&'-plane are calculated using Ta. These
Z-plane co-ordinates are then transformed by Ty to give the interpolated
points on the blade. [ The programme comes to a stop Just before printing
out the data required for a possible re-run of sub-programme 9. A short
amount of blank tape should be punched out before running on, and the punched
tape which follows preserved, ]

The input data for this programme is:-
+1, input parameter,

Sub-Programme 9, Velocities and Blade Pressure Distribution

With given values of the:rinlet angle and speed, the outlet angle
and speed are calculated using equations (25), (33) and (34). W is now
calculated using equations (25) and (31) and hence v and Cp are calculated
from equations (35), (36) and (42). v and | — | will be printed only if

dz
handswitch O is depressed. The calculation of v at a cusped trailing
edge is a special case and is done by evaluating equations (37) to (41).
The input data required for this programme is as follows:-
+1, input parameter
vy inlet speed
ay inlet angle.

Other values of the inlet conditions can be considered by reading
in new data in the form given above when the programme has come to a stop,
or the programme can be re-run at another time with the following data:-

+0, input parameter

vy inlet speed

a; inlet angle.

Special output from sub-programme 8,

Annotated Programme

The Automat programme which follows is ammotated with reference to
the equations of the text showing which instructions deal with each part of
the calculation. It is followed by an example showing the required form
for the data and also by a list of operating instructions.

Progremme/
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Programme QOperating Instructions

.Notes:- S+R
R

*

All programmes and

Operating
instruction

-—

i

i

Start and run
Run

Data or parameters on a separate tape,

The

remainder camprises the main programme tape.

data are read by tape reader 1.

1¢7]
+
W oW W o W W W W W W W W ™ W W W W W ow W

=9

Sub-programme 1

T1600

T1600

]

Input data (cascade and blade parameters)*
Sub-programme 2

Input data (blade co-ordinates)*
Sub-programme 3

Input parameter

Sub-programme 4

Input parameter

Sub-programme 5

Input parameter

Pre-set parameter instruction (T1600)
Parameter (mumber of points)#*

Sub~-programme 6

Input parameter

Parameter (mmber of points)*
Sub~-programme 7

Input parameter

Parameter (mumber of points)*
Sub-programme 8
Input parameter

After stop and punching out some blank tape

Data (number of interpolated points required)*

S + R/
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Operating
instruction
S+R T1600
R Parsmeter (number of points)*
R Sub~programme 9
R Data (inlet velocity)*
R Further inlet velocity data, if required*.

ES






Q6600

- 27 -

Read in AUTOMAT from magnetic tape.

D
N

PRe.r CALCULATION OF TRANSFORMAT ION PARAMETERS

J7090
Jr.o
XX

Initial orders,

STOP

iz 7=TAPE

Read in accuracy required,

Vroco=TAPE ¢

Vi8=34141592365
V1g=vU18/180
Vio=ViocoXV1g
Vo=Vio01XV18
V19=2XVo
Nnoxilay

Read in B, c/d o, &, 4,
ead 2 JLJ_%é_L~i_.

VosU103XV19
Vas=zXVo
V4=C0Sva
Vs=SlNva
V6=C0Svo
Voro.5XV4
V34=v6XVo
Vo=, va 5
V35=06XVo

Xv3=U34XV102
V4=U35XV102
vs=v4/v39

Caloulation of 8c/c and 88 using equations (22) .,

PR INTV3,3035
PRINTV g, 4008

Print 8o0/c, 58.

XVio=ti0o~V4
Vi=1=-v3
vio3=Viol
Vi1o1=UIXV1012

‘Caloulation of S - 86 and 22— 8°.

Vios=V§

Vir=SINvio
V12=C0SV1to0
viz=1/vin
V14=V12X013
VIg=U12XV12
V16=U12XV14

Vo=Vi18Xoe§
visUIo1
Vao=UoXV1
VU23=Vao0oXV113

Constants required in the caloculation of y.

PRINTV1,303%
Sv8=o
vo=vi10/VIg
PRINTV0,4065%

Print gﬁiég end B -8 .

Vgo=lo

st?“ ﬁ-sﬁ.

Vo=EXPV30
visitlo
Va=vo~-i
v3=v1 /U3
Ve /U3
Vo=U3-0V12
Vo=0e5XV0
vo=voXVo
VorvlotV1§
v32:S0RTVo

First approximation to Q = [cosh®y - sir (B - 88)}F .




ni=o
2/N3=fg+1

© RWa4mr/Van
V21=VU32XVa3
Vas5=V24XVagy
V§=Uar~r1§
3,0%05
V4=SQRTV§
Vi=taatV12
Vo=v1/V4
Vo=LOGVo
Vosl'14XVo
Va6=v23-Vo
Vo=TANV26

VE=U11XVayq
V6=U6~Vo

VoxV26%V26
Vo=14Vo0
Vo=toXVs§
vo=v16/vo
VIs~UIIXV3a§
V=t1~Vo

Vo=~v6/v9q
V22=V22+V9
>5,V22=008
V8=V23

>2

Iteration loop to calculate Q, terminating
when comsecutive approximations differ by
less than n% binary digits,

s)vr=v g4
V1=SQRTV1:
Va=U4tl:
Vo=LOGU2

Calculation of ¥ ..

PRINTV2,4063
PRINTVo,40235%
PRINTN3, 4000

Print out oY, y end the number of iterations ,

Vgr=z¥2

Store dy .

>1

3)n3=n3+x
V22=SQRTV1S

V32=032+0+000001

>2,100>N3
PRINTN3, 3000
>0

Outlet sequence when an iteration of Q implies
cosh®y ¢ 0 .

1)v36=v11XVIX
Vo=U12XV13
V37=Vo
V38=U12XvV13

vo=1/v2

Vi=Uo+V2
Va=U2-Vo
Vo=, 5XV1
VI-‘-sz.S

v39=VoXVo
V40=VIXV1
v41=U1/vo

Vo=V 41/v38
U1=ARCTANVo
V4z=vr/V1g

PP 1TV 42,3065

Celculation of 6, using equation (5) .

H‘int OT L]

V94=U42

Vg6=V103
Vg9=V103
Vg7=U1o4
Vgb=V1o1

Store parameters GT’ c/4, 8, a, (e - 8c)/4.

(s0)
RERXXKLXX



z
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Stop; to enable cascade data to be read in,

D
N

PRe2 REDUCTION OF BLADE COORDINATES TO STANDARD FORM

“J7090 Initial orders,

Jr .o

N ¢ L.t1-

STOP

nr=TAPE Read in input parameter .

> n

v ;g::TIIU:E s Read in parameters if calculation is started at this programme,
v

;:lTiggﬂ‘APE Read in camber angle (non-zero only with thickness

n3=3XNa distribution), no. of given points and given coordinates.

V151=TAPEn3

V18=3.14159365
V19=v18/180
V1i10o=Vg8XVg7
V111=096XV99y

2310,0.12V100

Jump to galculation of atandard forma

PRINTv100,3060
Vioo=V100XV19
Nng=-x

nr=fa~g

11)ng=nig4+1
ns=2Xn4
né=ns+x
ny=13—=n6
ny=19+n3
ng=ti7+148
ng=nq+1
ns=is+1se
né=in6+1 51
Vo=0.5-UNS
Vo=VoXVr100
V50=S1\vo

V 51=C0Svo
Vo=0+5XV100
V1=SiNvo
Vsa=1/v1

vV 53=COSvo
V54=VI11X0e8
Vo=V 50XV 52
V§5=V1ooXvné
vi=i+vss
V2=1=VU5§5
Vi=vrIXvo
Va2=VaXvo
Vi=1-vr
Va2=1-Va
VAS=VIXV 54
UNn7=vaXxvss

Vr=140355
Va=1-V§5§
VI=vIXVSE
V2=V2XV 352
Vi=v1-v353
Va=v3~v3s3
Vo=V 54XV 52
Un6=vox?¥1
Ung=voXva
9!!,71!)"4—

Calculation of blade coordinates with a circular arc
camber line from a given thickness distribution and
camber angls ,

Xn2=n3=3



to )Vo=MODV103
Xny=na~gx

—}O—

20,0.00000001>V0 End if 88 =0 «

PRINTVIYO0,1025
PRINTVIXI 2025
PRINTv99,3005

Print o-8c, ¢ and 8.

Vo=UgQXV1g

v 55=SINvo

A §6=COSVo
V5750 5XVI10
Xvs8=v1s1

ng=-1

12 )ngengde
Nns=3Xn4
ngens+r sy
néefg+
Vo=vNns=vs8
PRINTvo0,3045
PRINTUNG, 4045

Calculation of standard
form of blade data,
astored from location 151,

Print blade coordinates with trailing edge at the origin .

VI=UoXV 56
V2sVoXVSS
Vo=UN6XVSS
Vo=~vo+V1I
VNns=vo+l 57
PRINTUNS, 4085
Vo=UNn6Xv 56
Vné=vo+va
PRINTUNG, 4048

132, ,Nn1004

Print out blade coo
an angle -8 ,

ng=nag+i

Store number of given points ,

(»0)
TLXITIXX
A

Stop; to enable blade coordinates to be read in .
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D
N

PRe3 Tr = TRANSFORMATICN TO ZETA PLANE

J7090 Initial orders,
JI.Q

STOP
n1=TAPE Read in input parameter.

>19,n1=1

132 7=TAPE )

V9o=TAPE2a

V94=TAPE

V96=TAPE3 Input if caloulation is started with this programme .
n4=TAPC

néezXng

" V15t=TAPEnN6

19)V12=096xV97

nlo=na9

nraer4g

né=o

ny=1

nr=zso Constants, i.e., funotions of (-8 f) and y, and
Nasxs1 initial values for the step-by-step calculation
n3=rsa of points in the {-plane «

nNr3=147

N14=148

n1 5=300

nié=3o01

n8=o

V18=3.14159265

Vig=v18/180

VUio=VgoXV19

VI4%Vg4XV129 on = QP .

V46=SINvUI4
V49=COSVU1L4
fro=o

Vo=1/v9g1
Vi=Ug1=vo
028=le.5
Va=sUgr+Vo
V29=0aXe§
V26=C0SV10
V37=SINV10
V30=U39XV26
V31=v28XVa%
V32=039XV39
V33=U32-1
Vo=3XV332
V34=Vo=~1
V35=U34XV34
VosgXVg7
v36=v0/V18
V37=0.135XV36
V38=045XV26
V39%=0+5XV27

Va=U33XV33
Vo=v329Xv3%

Vo=v33~vo

V1=SQRTVo

VoEloXV1:

Vox=2XVo

v53=v3/vo P(a,),




1)13=o Q = ()4

-32 -

13)N8=n8+1
ng=aq

v23=U1a
Nrac=iira+ts
Nni=fx+a
nz2=nz+a
n3e=nzta
ni3=nr3+a
ni4=nig+a

Ny s=115+3
Ni6=nié+z
vnr3=EXPvU13
PRINTVN13,3065
UNI4a=vi4
VYo=v14/V19
PRINTVo,4085
VNI 5=V 49
UN16=v46
ny=1

0utmn:ofcf and 0.

Storage locations, ew from 151,
6 from 152,

cos 6 from 303,

sin 8 from 30k,

V6o=Vti2 .
v61=UN3 B'nese

66=vn2~U 13
V69=0N3~UNI  Az'p o

>0, 11814

ss0000ees )
ss00esces P
6esecces

®secevoe

13)U46=SINVL4
v47=C0Sv14
V48=046XV46
V49=2X048
V49=1-V49
V50=049XV 49

Vo=EXPU13
vi=1/vo
V4o0=Vo+V1I
V40=e5XV40
V41=Vo-01
V4I=e5XV 41
V42=V40XV 40
V43=043~1
V442XV 42
V44=04q4"1
V455U44XV44
V45=V451

V1=U33+V42
Vs51=U1-V48
Vo=v33+043
V5a=Vo+V48

Vaes2XV47 .
Vo=VaXV29
VosvoXV 40
vVisvUsi—vo
Vo=V s1+Vo
Vo=vo /U1

Vo=V2aXV28
Vo=voXV 412
vVi=vUgsa~to
Vo=V 53+V0
v8=vo /1

v1I=02a8XV40
Va=VagXV4r
Vo=Ut=¥2a
Vie=Ut~V3
V=046 /Vo
V6= 46/V1

Caloulation of £'({)

using Garrick's equation directly.

!



vV 92=ARCTANV 7
V6=ARCTANV 6
»97,V0>0
>9,V46>0
V7=U2-V18
>8
oveqncq+eum
8
7)38,0>v1
26,U46>0
vE=U6+U:r 8
>8
6)v6sv6-18
8)v9=L.0GVg
Vgo=VgXv38
Vorv 7~v6
Vo=VoXV3a9
Vgo=Ug+VUo
Vo=tlgX¥39

ve=LOoGVUS
v8=v8xv39
Vorv64v9
V6=voXV3a6
v8=v8+V6
V8=V8XV37
#10,n6>0

|u.wl

As above,

16)Va4=v60-Vg

Vas=v6r~v8
11,0520

15)vorv3av 42

Vo=Vo~v48
Vi=U30XV47
Vo=V IXVo
VasvU31XV46
VIsV5I1XVa
Va=U34XV44
Va=vaXvg49
VawzXva

V3=U35+V 50
U3g=t3+U45§
Vg=t3~va
Vy=1/vg

Vo=Vo+¥1t

Vo=UoXV41
Vos=UoXV36
Vao=voxVy

VI=U30XV¢6
Vo=t XV 53
vViev42-v3a
Vi=Ur =048
VasU3IXV47
visviIxva
VosUo+VU1:
VYoxlVoXV4o0
VorvoXv36
VarsvoXvg4

Vo=UaoXVa0
Vi=Va1Xvaz:
Vo=VodVU1
Vas=31/vo

Caloulation of mhuxu
using equations (50) - (53),



Vo=U20XV24
ViI=v21XV3§
Vosto+V1l
Vi=vaoXV2§
Va=V31XVayq
Vi=v1-V3
VosVoXV32
VI=v1XV3a3

.-31‘__

V13=Ur3+vVo
Vi4=vr4+vz

ofke1) _ oK) | gol®)

flo=15+ng
»12,Nn9#~1
V2=v63
VorVr3Xvr3
Vi=Ur4XV14
Vo=sbo+4V1
V63=SQRTvVo
>13,Va=*063
>12

Test if [of**%) [=lof®) |

11)ns=ns+r
Vaxvag
Vo=Ua4XViasg
Vi=vUagsX¥ags
Vo=vot+V1
v23=SQRTvo
P34,V2>Va3
ng=axn9y
V66=,5X066
V69=.5X067

V6ox=UNI2a+v66

V6r=tni4v69y
>15,N10=1
>1

I4)n1I=N10+ns

>r7,n1151
>15,n5=1
>18,N10%=0
ny=nq=-x
>10,n5=2
ng==~g

>16

17)vo=vz4+bz3

vo=voXV 53
Vo=SQRTVo
VI=U35XV 53
Vi=vz Vo
vr3evrj4vo
V40144V
>12

Calculation of dqgk) for the trailing
edge using equations (5;) and (55) and
the procedure for halving the step used.

10 IN6=16+1
V6o=U60+V 66
V61=U614V69
>16,n6xn9
né=o

ng=-g

>16

Procedure for setting up the next sub-step,

18)ns=o
Ny
Va23=V13
V6o=vNa
V61=UNg
V66=U13-Dg
V67=0n3-v8
o=y

>16

Procedure for setting up the last
sub-step to finish with £'.

(30)
£XXXTxx22
+I

Data: Input parameter,

SEXLZTR2
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N
PRe4 T2 - CHANGE OF ORIGIN

33090 Initial orders.
DX

STOP

Nn1o=TAPE Read in input parameter ,

»28,n10=1

n4=TAPE

n6=14X2

V149=TAPE#6 Input: if the programme is run separately .

V18=3414159265
Vrg=v18/180

nr=148 Used when programme is run separately .
ny=148+n6

z4)ﬂx=nx+z

UNI=UnIxvig

224,07301

38)v94=v1 50

15=134

n6=zXNs . Initial constants ,
ny=300+n6

hz2=300

n3=301

Ra=148

329,n10=1

25)nz=n2+2

13=1n3+2

ni=n2+3 Calculation of cos Gn, sin On when the
yn2=C0Svng
v13=SINvng
>25,N7>N2

programme is run separately ,

29)XV6g=2XV18

V148=0{1484n6)=v6g .
v(150416)=v150+V69 Caloulation of %(6  , - an_1) .
X"l=146

fa=150

Ng=250

ngy=zs50+n;s

20)Ng=ng+1
nr=ni+a
a=12+2
VosUN2=-UNt
Un4=. SXUO
da0,N7>Ns



V3=o
V4=0
vs§=o
V6=0
n1=147
n4=zso
Nnz2=300
n3=so01

a1 )ng=ngts
Ni=fi1+3
fla=Na2+2
Nay=fz+a
Va=tnixvng
Vn2=vunixXvnsz
VA3 NIXUNg
Vo=Uz2XUN2
V1=U2aXUN3
Vri=vnrxunsy
Uio=U11XUnNy
U3=t3tva
V4=V4+V0
V§=UstUy
V6=V64+V10
>31,n9>04

- 36 -

-1
° ) .
Calculation of ji; %rn sin On(Gn+1 On_1),
n=0
2N-1

2
ji: irh cos on(onﬁ1 8n—1)’
n=0

2N-1
%rn (an+1 - enr1)'
n=0

V4=U4/U3
vs5=vs/v3
Vo=U6X0e$
Voslo/V18
V6=SORTVo

Calculation of { and r,

PriiNTV 443065
PRINTV 5,4065
PP INTV6,4065

Output of { and r .,

Ug3=04
Vo3=vg

-

Store { .

Vo=UaXU4
VIs=VsXUSs
Vo=Uo*V1
V0=SQRTVo
vi=0s5/va4
V1=ARCTANVD:
vi=v1/V1g
PRINTvVo,4065
PRINTv1, 40858

Calculation and output of § in
polar coordinates ,




_37_

XV 97==100 J

Xvg=o

no=199

nr=149

na=300

ni=jol1 .

n7=199+ns Tranaformation of points to the {'-plane
uaing T2 )

22 )No=no+1
nr=ir+y
fa=12+a
fi3=i3+2
Vo=Un2-v4
vi=vNn3—-v;s
Va=UoXVo
V301XV
Va=U2+403 "
UNo=SQRTVa Store e fyrom location 200,
PRINTVfi0, 3065

v6=v1 /vo

Vo=ARCTANV6

>23,06>v7

Vgo=Ug+v18

33)vni=vo+vg

V=U6 '

uni=uni1/vig  Store 6' from location 150 ,
PRINTUNI1,4085

>22,Nn7>N0

Xvg9s=v1 so
PPINTv9s, 1008 Store and print 63

Xn3=149 P
Xilg=1494Ns Output of ' and e separately to

36)n3=n3+1 serve as data for the following
PRINTuns,308% programmes, if required ,
>26,n9>n3

Xno=199
Xn7=199+ns

37 )no=no+:x
PRINTV70, 3065
P29,09>00

Vio=ng Store no. of points,

(30)
ILXXLEXRX

Data: input parametere

+1
b$33333 331
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PF.s LAGRANGIAN INTERPOLATION OF POINTS AT EQUAL ANGLES

Jr090~1
Jsia Initial orders .
07168
£3oo.8x8g-94oo ,
300,8%x8)=(400,8x8)>300 Coefficients of the interpolation
3°°o3X§ +(soo 8/; ioo polynomial .
300,8/)x(308,8
60,8/ )x 5326 8x:;960
60.3/ X(324,8%X1)%60

60,8/;X 333,8X1)%60
60,8/)x(340,8x1)>60
(60,8/)x(348,8x12)»60
(60, 28/)x(356,8x1)%60
O7xox

I T e
J3a0

Jyo90
J8 Initial orders ,

STOP

n11=TAPE Read in input parameter and number of
n:3=TAPE equally spaced points required ,

No=vV1o

d>4,n11=1
Ut 5o=TAPE®

V200=TAPEe Input if programme is run separately.

4)nxa=no

fi1m=o

14)v(soo+ﬂx)-x

nre=ny+s Unit vector from location 500 .
>14,8>01 .

Nye==g
na=no=1
n3=no
Extra oend values of {*' ocurve
v ( 1 5o+nt )uv (150402 )~360 (using the periodicity of the funotions),
§!S°+”3§=°§IS°+”4 +360 \
aootns aoo+na
V(2oo0+n3)=v(200+n4
nisni=g
NamNa=g
ni=ng+e
nisngr
>6,4>n4

Vao=vg 50
Vo=nij Initial 6' value and 6° interval .
varsg6o/vo

nawo

i3m0

N4=ng Initial constants o
n7=3940

Vsi=Ug00

>3
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33)”03300

»M7080, 300

ng=300 Caloulation of the coefficients of the
no=1 Lagrangian interpolation polynomial e
nio=o

3 )n8=n8+ng

3)uns=v (364+n9)=v (26+n10)
n8e=nd+x
Nomilg+:
>3,8>n9

nios=nio+i
fig=fzo+:
P2, 72030
>M7103,12

11)n1=0

Vsoxl

13)v(404n1)evz0o-v(364n1)

vso=v soxv(40+nz)

Nreng+sx

>13,8>m Caloulation of interpolated value o

vst=o
Vs5aso0
ns=196+ns
ni=o
15)vosv (40401 )xv (6o+nz)
vi=r/vo
Vos=yUnsgxve
VsI=vs14vo
Vs5a=U5a+v1
ni=ni+:
nsens+s
>15,8>n

U §a=v 53XV 50
VSI=USIXV 50

1 JPRINTY 6 ~ 97
P?'ilmx'v 5::::»3: b Output of equally-spaced 8' and ¢''.

PRINTN3, 4060 ' Storage of $' from location 3940,
Vn7=LOGV 51
Ny=ny+e

Vzo=vao4Val Next wvalue of 6°,
Mla=fa¥1
»18,n322M113

16)>10,v30>v(1504n3)

>11,Nn3m04

ng=n

né=146+ns

nimo :

17)v{26+n1)mvné Cholce of which given'points to use in
Nn6uné+: the interpolation polynomial.

nr=nz+z

>17,8>n1 -

»za

xo)n3-n3+x
»16

18)Xny=3940

Xny=nr3+3940

19)PRINTUN7,1008 Output of $'.
nr=ng+s

>19,01>N17

(%0)
L2222

+3 Data: Input parameter

i Stop to allow the number of equally-spaced poinﬁg Egg&iiﬁd to
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T16°° Present parameters instruction,

Z Stop; to allow the number of interpolated points used to be
D

N

"\

Re6 T3 =~ THEODORSEMS TRANSFORMATION WITH LAGRANGIAN DIFFN.

Jy090-1

Jsia

0 7168 Initial orders ,

07060 Completion of (C) and (D) matrices,

(100,241X1)>100 (C) from location 100,

07060 (D) from location 1700,

(1700,241%1)%1900

O7101

{0,241X1)>3040 Input of ¢° if progremme is run separately , )
(3940,24!XI)*2300

_3300,1Xz4r)x 3300,24:)(:)948 ||¢'|l in location 48 .,

On101

07060 Caloulation of (-1)"¢*("™)/n! if n28 = 0,

1700,241X341)x(3300,241X1)23300 or E™/nt 4if n28 = 1,

07060
(12)x(3340,341X1)53300 from location (3260 + 40n) o

07101

(100,241%241)x(3940,241%1)%3780

(3780.34!X;)~Z3830 y Calculation of 6 terms of series
3820,241/)x(3340,241X1)>3940 _
3780,241/)x(3820,241X1)>3830 for ¢ if n28 =0,
3820,241/)x(3380,241x1)>3860 or € if n28 =1,

(39400341/)+(5860,341/)>3940 from location 3940 ;

53730-241/;X§38zo,34IXx}93830
3820,341/)x(3430,341X1)>3860
(394°t341/)*(3860,241/)93940

(3780,241/ X(3830,z4tX1g§38zo
3820,241/)x(3460,242X1)>3860
3940,341/)+(3860,241/)>3940

(3780,341/)x(3820,241%1)>3820
3820,341/)X$3500,241XI)93860
3940,341/)+(3860,241/)>3040

(3780,241/)x(3830,241x1)>3820
3830,24:/)X§354o,24zX:)93860
3940,341/)+(3860,341/)>3040

(3940,341/)+(3300,341/)>3040
3940,1%241)x{3940,241x1)>49 I ¢ll or lell in 10cation 49 ,
Ty

(3040,241%1)%0 Print ¢
{50,1X241)x(3940,341X1)>99

(6)x(99)299 - _
(99)%0 Print v
(3300,241X1)>3380
xoo,341X241)X?394o.34xXI)>3300

00,241X1 )20 ___ Print B,

(3940,241X1)>360
(3380,341%1)>140

3300,341IX1)>3940

3940,34IXI)93780

3340,241/)x(3340,341X1)>100 ‘

c0,341/)+(100,341/)>100 14+($¢*) )® from location 100 ,
£33oo,th41)X(33oo,z4tX17§48 N E]l in location 48 .
U2101




- -

940,341XI /%0 Print €
43326:?Z?Yi;;733""""‘""""""""""""
:7oo.z4xXzzx x(3940,241X1)>180

180,241/)+(50,3241/)>180
O%101

(230,248%1)%0 Print |az/af|.

O%5Yot

(3940,341/)%3780
Jié

!

J 320

J7090

J8 Initial orders,

STOP

VI=3e1415926
n2 s=TAPE. 5 Read in input perameter ,

98, nas=1
n13=TAPE
nas 7=TAPE ) Input if programme is run separately .,

§lva=nts
v3=va/a
Nn2=v3
ng=v2
v4=v1/V2
Vs=U4X2
V6=1/va

Vg94=V99 - & loocation .
flo=fiz 7

ni=o
430(50+n3)-!
n3=fiz+l

P4,01>N3 Unit vector from location 50.

n3o=o
VIoo=o
v(100+n2)mo
Vio=U4g

na=1

Vrre=t Caloulation of first column of (C) matrix ,
1)v12=COTv10

ng=nz=n3

23,011="1

v(1004n3)=0

>»6

3)v(1o0+n3)wvia/vs

6)v(100+n4)e-v(1004n3)

ViasUiaXVUr1:

vVrir==viz

Vio=V1io+V4

niyeng+z

>1,na>n3

v1700%0

Vijor==s540

Vijoa=+108

v1703==13

ng=ni=2

n3=o

a7)v(19044n3)=0 Caloulation of first column of (D) matrix,
n3=n3+z (Lagrangian differentiation).

2297,N4>03

v :7o4+n3§-+ta
v{1705+n3 )=-=108
v (1706403 )=+540

Vo=v§X 730

vo=x1/vo -

fn3=o

28)v (1700403 )=v (1900403 )xvo
nysngtr

528, n1>n3




Nna3=ns
ng=gx

3)v(xoo+n )=v(gg+n3)
3=v(1699+n3)

v( I j00+n3
nag=n3~=iz
i3r=ng+1
>M7t103,1
18=n8+3

ni3=n3+ny
>3,n1>n8
V170030

- L2 -

Completion of (C) and (D) matrices ,

n11=6+na§
*M9103,n11

na8=o0

Set for iteration of ¥ ,

»9)nig=1
Nnag=o

730=0

n31=40

Vir=t
19)>11,%28=0
via=i/viz
>18
11)V1a=-1/v11
18)>M7103,10
nzo=nj3o+40
n3r=nszr+40
n3=nz+g
Vir=vri+:

17,6213

Caloulation of (=1)"#'(") /ns 1£ n28 = 0,
B™ /n! if n28 = 1,

§)>15,na8=z
>M7103,15
7)314,048=0049
V48=049

>5

Iteration for ¢ , ceasing when inner
products are unchanged to n, binary
significant figures,

$4)>16,M28=1
*>M7103,36
Nna8=t

919

15)9M7to3.58
*7

Iteration for e,

36)099=EXP099
PRINTV99,%028
M7103, 51
fiz=o

34)vxo=EXPv(xgo+n3)

Vio=U1o/Vq9

v11=SQRTV (z00+n3)

ViomsUioXV1r

v(2204n3)=v10/v(180+n3)

n3sn3+z
>34,01>N3
*M7103, 56

Calculation of |az/af].

(»0)
P39 2983090449

Data: input parameter.

+1
33333333331
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Tz600 Preset parameters order .

z Stop to allow the number of points used to be read in ,
D

N

PRe7 POSITION OF SINGULARITY POINTS IN Z-PLANE

J7090~12
Jsiz

07168 Initial orders,

ézo;x 6oo.z4tXxgisoo
21)X(300,341X1)>540
5oo,z4xxx)+(530.z4xxx)954o
24)+(540,341/)2340 .
23)%x(540,241%X1)> 500 Iteration of equations (56) and (57 «
32)=(500,341/)%430
20)X(300,341Xx)>500
21)X(600,341X2)¥540
500,341X1)=(540,241%X1)>380
420,241/),(640,341x1)3460
340,241/ )%(460,341%2)>500
380,241/)%x(460,241X1)>540
{260,1%X241 xgsoo.34xXx 330
zz6o.th4x X{540,342X1)?31
07101

(0,241%1)%260
07101 Input of ¢ if programme is run separately .

]

J3zo0

J7090

Jg ° Initial orders.

STOP -

nro=TAPE Reed in input parameter,

>8,710=1

n1=TAPE

13 7=TAPE )

Vor=TAPE3 Input if programme is run separately -
V9 5=TAPE

VY99=TAPE

>M7103,16

8§/nz=nt

no=naq

V88=-vg1

V8g9=Vog1

. Caloulation of constants .
Xvra=1/vg9
Vo==3
vr18=ARCCOSvVo
Va=f3
v8=3/Va
vo=v18/v3
V3=aXVo
V7=3XV18
Vig=180/v18
Vo=vg§/V19
V2 7=COSvo
V28=S[Nvo

nL=o Caloulation of cos ¢, sin ¢ at equal

z?:?6°°+nt),0030 4 intervals from locations 600 and 300
v(300+n1)=SINv, respectively.

nr=ng+1

V4=U34V4

91,ﬂz>ﬂ!

3::::3: Sgalar matrices in locations 23 and 24,

nr=o unit vector from location 64O,
7)v (640401 )=1

nr=nr+:

>7,N2>n1




N3=o0
10)vro=v(88+n3)-vgs

Vire-vg3 Position of singular points in the {'-plane

Vo=VI10oXV37
VI=vIIXv2a8 relative to the radius vector through T,

U4=Vr1oXVa8
Vs=VrI1Xvaq
Vio=svUo+U1y
Vir=0s-v4
Xvig=vi1o0
Vis=vit
PRINTV 10,3025
PRINTvU11, 40325

Vg=o

ni=o

1)nz=nr4rx

V2o=014XV13

Va1=v1g5XxVi1s

Vo=V30XV30

Vi=Vai1Xvazx -

Vo=Vo+V1 Iteration of equations (56) and (57 fo

Vzz2=1+0o -f1 or f3 terminating when Ewnn or mn_

>M7103,1 i3 unchanged to n, binary significant
digits.

U3zo==v8XV30

V3r=08XV31

V30=EXPV30

v32=C0Sv31

U31=S]Nv3r

VosUroXV32

VI=vIIxvsz

Vo=Vo+V1

Vr4=U30XVo

Vo=V1oXV31I

VI=vUrixvia

Vo=Ur—Vo

V1 5=oXV30

Vo=V14XV14
VI=Urs§xvis
Vosvo+U1
Vo=SQRTvo
>23,V0=4V9
Vg=Vo’

1

3)PRINTVI14,30a8 Print position of singularity point in Z-plane
PRINTv125,4028 relative to line arg(2) = 64.

PRINTvVo, 40328

v{(40+n3)=v0

Vi=v15/v14 Polar coordinates of singularity point in the
V:r=ARCTANVI Z-plane,

>6,014>0

Vr=v1+v18

6)vi=viXvz9

PRINTVz1, 4067

PR INThz, 2060 .

vi4a+n3)=v:

n3=mn3+x Repeat the calculation for the other singularity point.
>t0,n3=1

N2=o0

&weamoiau )=v(g0+n3) Store polar coordinates of the singularity
n3=n3+x points from location 80,

24,4203

(>0)
TEAXXXXXXX

+1 Data: input parameter,

rEEEFFTFF
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Ti600

Present parameter input code,
Z Stop to allow number of points used to be read in,
D

N
PR.8 INTERPOLATED COORDINATES

J7090-12
Jsra

07168 Initial orders.

é°0’4‘x1)"‘4° Input of ¢' at equally spaced &' if programme is
7101 run separately, .

i7oo.z4xXx;90

220,341X1)%0 Output of data for the following programme,

260,241X1)%0 if required.
300,341X1)%0

400,241X1)%0
O7101

1
J3ao

j go 90 Initial orders,

STOP

nro=TAPE Read in input parameter,

Vos==1

V18=ARCCOSVo

v19=v18/180

218,1105=12

Vgo=TAPLg

n2=TAPE Input if programme is run separately
>M7103,1

18)v4=wg3

V5==V93

Xvg==300

Xvg=o

V2=#2 Transformation of equally spaced interpolated
V2=03%X0e5 .points in the {'-plane to the {-plane using
vI=v18/Va Te.

Vio=Ug3XV19

fite259

n4=139

n3=3299

nq=2 59+12

23 )nr=ni+z
fig=n4qt+t
n3=fg+e
Vo=COSvV10
vi=SINvio
Va=EXPU4
V3o=sVaXVo
Var=vaXv1
Vo=U30-V4
VI=wa1=vs
V2=UoXVo
U3=VIXVI
Vacvaiv3
Yn3=SQRTVa
PRINTYN3,3065
v6=v1/Vo
vo=ARCTANV 6
»23,V6>V7
Vo=Ug+vUz8
33)Unt=vo+V9
V=06
yni=ung/Vi9
PRINTYUNI, 4085
Vio=Uio#VIil
®23,N7>01




- 46 -

Vio=UgoXU19

Xvo=1/vog1

Xvi=vgr=vo

V28=V1IXe§ Caloulation of constants
V3=vgrtvo i.e. functions of f-88, y

V29=V3Xe§ - § -$c, 4, o,
v26=C0Sv10 Py o=bo, 3,

v27=51INV10
V30=VagXVaé
V31=v38Xvay
V32=V29XV29
V33=V32~1
Vo=Ug8XVgq7
V§7=0.5XVo
Vo=Vo4XV19
U34=C0Svo
v35=Sil{ve
vo=vg97/v18
V37=0e5XV0
v38=o.5)wz6
V39==0.5XV37

na4=o

10)vs =v(3oo+n4)

vx4=viz6o+n4)xv19

V46=SINV1g¢

V47=C0Sv14

V48=046%XV 46

V49=3X0483

V49=1-V49

V50=V 49XV 49 Transformation of interpolated points to the
z-plane by Ty .

Vorv1j

vr=1/Vo

Vg4o0=V0tV1

V4o=e3XV 40

V4r=0o0~V1

V41=a5XV412

V42=0404V 40

V430421

Vi=sv33+V 42
Ust=U1-V48
U53=048+V43
Vs2=U53+033

Va=3XV47
Vo=Uz2XVa9
Vo=VoXV40
vr=v5r-vo
Vo=V 51+Vo
VosUo /U1

Vo=D2XV28
Do=VoXV41
V1i=vs52~Vo
Vo=V §53+v0
V8=vo V1

V1=028XV40
V2=0294X0V412
Vo=bi1-V2
VisVr-Va
V7=046/Vo
V6=v46/v2



- 47 -

v 1=ARCTANV 97
V6=ARCTANV6
>7,V0>0
29,V46>0
Vv 7-V18
>8

o)V 7=V 7+v18
>8

7))8,o>vx
»6,V46>0
V6=064+018
>8
6)U6=06~v18
8)vg=LOGV9
Vos=UgXU38 Aa abhove,
Vo=U 706
Vo=VoXV29
Vo=vg+Vo
Vo=U9gXV37
XPV9=v9~V 57

v8=LOGV8
v8=V8XV39
Vo=vV64V 7
V6=VoXV26
v8=U8+V6
SPVB=V8XV37

Vo=VgXV34
vx=08xv3§

v(4oo+n4 =Vo+V1
Vo=V9XV3§

VI=U8XV3

v( 440%7N4)=V2~Vo0
PRINTY (400+14),3045
PRINTU (440+n4),4045
Ng=hg4+1

>10,M2>M4

STOP

4,4N10=0 Output of data for the

Xn;=o following programme, if required,
s)PRINTv (80+414),3108 :

n4=na+t

5:4>14

4)Xng=0

Xngr=g+nzo

31 )PRINTV (go+n4),3108
Nna=n4+1

>21,N11>N4

Vomlio
Vo=3XVo
nri=vo
fnrr=s5=-nrz
>M7103,01%

(30)
b4 548444

41 Data: input paramter .

TXXXT2TXIXRIX
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T1600 Preset parameters input order.

z Stop to allow number of pointa being used to be read in,
D

N .

PRe.9 VELOCITIES AND BLADE PRESSURE DISTRIBUTION

J7090-1

Jsta

07168 Initial orders,

go.z4xx:;97oo
0,241X1)>230 Input of mrogramme is run separately.
(0,241X1)2260
(0,241X1)>300
o,z4IXI)94oo
07101

]

J3zo0

J7090 Initial arders.
J8

STOP

N10=TAPE Read in input parameter

V14=TAPE2 Read
—po==T ead in vt ’ .

v18=ARCCOSVo
v19=v18/180
>18,n10=1

n2=TAPE

V80=TAPE4

Voo=TAPEzo0 Input if programme is run separately,
*M7103,12

18)v2=n2

Vo=2XV18

V3=vo/V2a

n3=o

V4=Uo§XV10 Calculation of ¢ =0'+ €,
a=700

110 (100403 )= 440Ny
V=044V 3

1i3=n3+1

Na=tig+s

>11,782>03

ni=o

V82=v82-180

1 )vo=v (824n1)+v9g5s

v (824111 )=voXV19g

Nr=nr+i1

>1,2>N2

Vrs=v15XVr9 Calculation of constants
Vo=COSV1 5 and trailing edge initial
Vib=UoXV14 values.

VorvoX¥97y

Vva9=vo/V18

nraz2=o
v2=1/V9o
V8o=U80oXV2
V8i1=vX81XV2
vo=1/v80
vi=1/v81
Vao=V80Vo
V21=081~V1
Vo=Vo+V80
Vaz=0.5XV0
Vo=U1+VU81
V23=0e5XV0
V24=0e35X0V2
Vorl2XV2
VUz8c0.2 vao
V2 5=TANV1§



Ugzo=VUivo~v82a
v31=Ui00~v83

- 49 -

3)v3a=SINv30
v33=CO0Sv30
v34=SINv3x
V3 5=COSv3x
VarsVU32+033
V3=v33-V3§
va=1/va
v3=1/v3

VosvaXV32
VI=U3XV34
Vo=Uo+V12
Vo=aXVo
V36=034XV0

£ in location 36,

Vo=DaoXV2
_V37=-VoXV34

& in looation 37 .

Vo=U31XV3
V38=VoXVa4

h in location 38 .

>3,M13=1

Caloulation of W,

Vo=—V35XV37
Vo=Vo+V36
va6=vo/v38

tan a3 in location 26 .

Vo=ARCTANVa 6
Xvo=vo/V1g
ViI=VabxXvab
Vi=I+v1
Vr=eSORTY:
UI=U16XU1L

400

PRINTvz,3065%
PR INTvo, 4066
PRINTv26,2008

Print Vy, o and ten oy -

Xil12=1
n3=1

Caloulation of ag and V¥, »

Vs00=V30
Vsor=v31
Vsoa=v30
Vso3=U3I1

Vs1o=v8o0
Vs1I==-v8g
vs1a=1/v80
vs§13=-1/v81

n4=o

Caloculation of

a*n

az

24)V44=3%v(s00+n4)

V4 5=CO0SV | s00+n4
V46=SINV{soo+ny
V47=C0Sv 44
V48sS[Nv44

cawnu\camno+:hv
vo=v49+0{s104M4)
v 50=0. MXCO

Vo=V 5oV 45§
Vo=VoXVo
vsi=v49/Vo

VoV (S1o+ny )XV4 9
VoxU49+Vo

Vomo,. §XVo

V8=V 4500

vo=v (g10+n4 )XV 48
Vo=V0X0+e§
V59=UotV 46

V{64404 )=Us9XVSI

'3#“3#.«&
34,4204

| -

T



Vo=—vV6o+V63
Vo=vo~-v63
Vso=Vo+V63
Vo=064=V66
Vo==VoXV23j
Vr=065-V67
Vi=viXva26

Vo=v §o+Vo
Vso=vo+v1 P,

Vo=-v644+065
Vo=Vo-06S
Vsi=vo+V67
vVo=V60-V63
Vo=UoXUas
Vr=v61-v63
Vi==JV1XvVab

Vo=V s14Vo
Vsr=Uo+V1 Q.

Vo=V 50XV S0
Vi=vU§IXVS:
Vo=Vo+v1

Vo=SQRTVo
Yo=vVoXv28
V4o0=V0XVa7y

Vo=V100/V19
PRINTVo,3065
PRINTV 40,202
V40=V40/V 219+N3
>4

- 50 -

Calculation of

o
az

~H (cont.) .

3)vo=-v37XVas§
Vr=~U38X%Xv26
Vo=VotV1
V40=Vo+V36
V40=0V40X0V27

Caloulation of W from equation (31) .

PRITNTV 40,2033

_4)v(z99+n3)=040/v(3194+n3)

wx|az/ag |,

PRINTV(199+n3),3035

vo=v(100+73)
aun3u+u
dr4,n3203

>r
uaweanO\cuo
PRINTV1,3065
V30=Do~V8B2
V31=00~V83

$1 end ¢y

22




15)V10=vg0XV19
Xvo=1/vVg1
Xvisvgr-vo
Va8=V1Xe5
Va=Vo1r+Vo
V29=VU3X.§
V26=C0Svzto
v39=SINvzo
V30=V29XV36
V31=v38Xxva%
Vs§4=U30XV31
V32=Va9XV39
V33sU33=1
VomaXV3a
V34=Vo~-1
V35=V34XV34
Vo=4XV97
v36=v0/v18
V37=0e135XV36
vV59=2/v36
038=o.5)(1)36
V39==0.5XV327

Va=v32XV33
Vo=V27XVa7
V57=00XV33
VI=v26XV26
V§8=v3aXV1

- 5

Punotions of (§ - 58), y and 4,

vo=vV32~vVo
V1=SQRTVo
Vo=vVoXVr:
Vo=vVo/V3
Vo=voXV37
V61=VoX2
Vo=Uq7XV¢6
v6a=1/vo

Caloulation of

o

ag

ik

n4=o0
10)v13=0(3004n4)
vx4=vizso+n4)xvx9
V46=SINV14
V47=COSV14

V48=0 46XV 46
V40=3XV48
V49=1-V49
V50=V49XV49

Vo=v 46XV 47
V55=2XVo

Vo=v13
vi=r/vo
V40=Vo+V1r
V40=05XV40
V41=vo0V1
V4r=.5X041
V425V 40XV 40
V4330421
V44=aXV43
V44=V44"1
V452V 44XV 44
V45=V45-1
Vo=V 40XV412
Vs56=2%XVo

- VI=U33+v43
VsI=01=v48
Vs3m048+043
Vs2=v53+V33

Caloulation of

)



...52..

»16,Nn4%0
Vo=V 58XV 33
Vinml42=v48
viIsv §7XVL
V3=V 54XV S5S
Vo=VotV1
Vo=vVo=V3a
VImU44XV49
Vimh34e-V1
Vr=ViIXV12
Vanp 56XVSS
VamvaXva
VisPr+Va
Vo=vz /Vo
vo=SQRTVo
vo=voxv(3oo+n4)
V6o=V §9XVo

>z
16;v6o-x/v61

17)vasvéoxv(z80+ng) Caloulation of v/ Vi,

vVi=v(g400+14)XV62

VisI4vI

PRINTVI,3065 Caloulation and output of (1 +* 3) and C_ .
Vo=VaXV3a ° P
vom1=vUo

PRINTVO, 4087 ‘

SPvVo=vVa

SPvo=v 6o Optional output of v/ V, and I%&,].
ng=ny ¥z - . !

d>10,N2>N04
) -
TLTXXTXTXZ

Z
TLXXTXIXXXXZ
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+17 ' Specified accuracy,

¥37.5 B -

+1.0008963 o/d,

+0.01 56 il" . Casoade data ,
+16.0 [

+3e74159265 ¢

A

t1 Input paramster ,

+o

Ciroular arc-camber angle ,

+40
Number of given points,

+1.57492474 +o.0
+1.55738553 +0.005213700268 Blade coordimates ,
+1042260484 +040462520335
+1e305123035 4040817121990
+1.19170238 404114693002
+1.02479402 +0.16028041%0
+04823077519 404309970951
404656515987 404246192349
400464734474 404282160026
+00205932353 +0.330568830
~0+0597352553 +04346968399
~0e389316034 +0.359%04326
~0e57242262F 404354512283
“0e773142345 +0338571331
~00941060388 +0.314989626
~134953588 +0e269571148
~I1+31718149 4042154734512

=1444883128 4041553555012 Blade data ,

~1e48472984 400134389826
~1e56604665 +0.0701007394
~1¢58312345 +0.04865235124
~1459417486 4040274674713
~I1.59821360 +0+00680140778
~1+59380608 —=0.01301088412
~1+57877419 =0.0314902570
~1¢54957068 ~0.0479007055
~1+49974774 =0ecb609873117
~1+41507438 -0.0681858518
~1e24565310 =0.0614056739
~1+07310990 =040429395536
~0e861599786 =0e.0146762290
~0.576322053 +0.03246963586
~0+248940944 10.0645008134¢
~0+0115565313 +0.0870590202
+0+358413184 +oe.r08253224
406650360815 +04110533153
+0.889897786 +0.101185338
+1.08755085 +0.0847222884
+1.31658862 +0.0541017379
+1.47227347 +t0e02469978600

pA

+40 Number of interpolated pointa,

+1 Input parameter ,

+1.0 Vi o Inlet flow data,
+53‘3 @ .,

yA

TXXXXXXXXXREREX

D 37338/1/Wt.61 Ki 400 7/65 PD & CL






gz-plane

L {-plane

=€+ 1n

on C,{ = °¢(0)+10 . Ga

The points 81 and 32 correspond to the points at x = + « in the s-plane,

Tranaformation

2 L e = ({ - o
= P({)
Figure 1, Some notation and the first transformation of the cascade.

D= d | Wy ed, 202, £r o7 | -3 e-s0® )



{'-plane

+
31 + Bz
1 [ ] 1 [ ]
(r=8t v tn Z-plane

on c,gr = of (6104107

+
B,
The points B1 and 82 correspond
to the points at x = + » in the
z-plane,
Z=X4+ 1Y
On C,2 = ea"’“’ = Row.
Transformations
T, ¢ {* = -, { constant (2)
[
Ty : log (€'/2) = Z a8 . (3)
n=1

Pigwe 2, Purther notation and transformations,



Figure 3,

r - KICH

Notation used in the determination of the conatant

( in Tzo



g'-plane [

(a), | B-38
| //
| N/
/
1 /
arrick's transformation is
_Ll1(a-08)) L 1), Leo |
BT ey g |
(b) s-plane

'

4 RIRET
The transformation from the z'- to the z-plsne is z = Lz' - §(c - ﬁc)je ﬁ;
thus we obtain T1 as

- y )
z = ?d'- l:'wlog e_:_*_i . ei(p'28ﬁ)l°g i_*_e_-y] _% (c - sc)e 18;3.
- e’ -e |

Flgure L, Netails of transformation Ty, showing its derivation from the
standard Garrick equation,

[
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JUB38UCO=-g T

JUBISUOO= e
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The points 31 and

B, correspond to the {-plane
ints st Xz ¢+ @
in the s-plane,

Pigure 6. The { -plane circles to which the curves in Figure 7 correspond.



¢=-plane

Figura 7. The z-plane curves to which the circles in Figure 6 carrespond (full lines)
together with the orthogonal curves (broken linmes).
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Pigure 8,

and

and

and

Vvd cos &

Vd cos @

and B, correspond to the pointa st x = T @ in the z-plane,
are their inverse points in the circle.

lZ‘: m1l.

\z}= ngp.

IZI=-;3:R.

lzl= 2.

I2

System of singularities for the circle plans.



Pigure 9, Inlet and outlet velocities,



Pitch/chord = 0.99016
Stagger = 37.5°
Chord = 3,11068

+ Tho 40 poimnts used as input data,
O The 40 interpolated points, being equally-spaced in the {'-plane.

Pigure 10, Tho test blade profile calculated from the method of Merchant and Collar (1941),




{-plane contour piteh/chord = 0,99016 -
Stagger = 37.%°

§*~=plane contour

+ The 40 given points.
O The points equally spaced in the {‘'-plane,
B, and B, are the {=plane singular points,

B} and B) are the {'-plane singular points.

Pigure 11, Contours in the {- and {'~planes for the Merchant
and Collar cascade,
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L and T are the leading and trailing edges of a blade.
L' and T' are the corresponding singularities of transformation T1.

‘I.‘1 is now given by

3 Y b 4 4
z = _29'_[0-1#1°<8_y§ + ei(ﬁ_zap)lo ’—%] - ¥c - Sc)e-‘ap - 8¢, (43)
e -9
where
g = PTA,reZiET
= ko cos € TeZiET (4s)

following the procedure of 8ection 7 to find A’l“ Also
~ L'P _ -
$= 77 = (pLALain 2, PrAp 8in ZET)/‘
1 ""L { pT\
= %—:)cos €, 8in 2, - K?)cos €p 5in 2, (45)

and

~ 1 hl
8¢ T 3 P COB £ 008 2/ + } Py COB €, 0OB 2., (46)

L

Figure 14, Calculation of the parameters in transformation '1'1 for blades with
rounded trailing edges,



+ The 32-points,
o) Interpolated points,

chord = 6,283%19

Figure 15, The 10CL/30C50 blade,
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pitch/chord = 1

stagger = 36°
{~plane contour

{*-plane conteur

B, B,
[ 11 i
1,4, 1,6
+ +
Bl
1 [ ]
B>

+ The 32 given points
O Interpolated points

B1 and B2 are the {-plane singular points

B; and Bé are the {'-plane singular points

Pigure 16. Contours in the {- and {'-planes for the cascade of 10CL/30C50 aerofoils,
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4+ Howell's conformal transformmtion method
Method of distributed singularities

pitch/chord = 1,
stagger = %°
inlet angle = 51°

Mgwxe 17, Pressure distribution: Comparative results for the 10C4/30C50 cascade.,
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Figure 18, Deviation v, stagger: Comparative results for the 10CL/30C50 cascade,



Pigure 19, The iterative scheme for calculating {-plane points,

Figure 20, The {-plane iterative scheme near the trailing edge.
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ON THE CALCULATION COF CASCADE FLOWS

This paper considers the calculation of the inviscid
incompressible flow, uniform at infinity upstream, past a
two-dimensional cascade of aerofoils, given the
geometrical characteristics of the cascade,

The solution is obtained by means of a series of con-
formal transformations, the most important of which are
those due to Garrick and Theodorsen to which, however,
essertial modifications have been made which allow a prac-
tical numerical solution, The rathematical validity is
successfully tested against the known surface pressure
distribution about a given compressor cascade as
calculated by Gostelow,
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