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SUMMARY

The pressure distributacon has been measured on the rear of a slender
delta wing wath rhombic cross-secilons as pari of a programme to investigats
the influence on the wave drag of thickness distributicns that give rise to
a marked adverse pressure gradienl and a relatively larpge suction near the
trailing edge.

Dven for such 'non~smoclh' thickness &istributions, thin-wing theory
gives falr results. It has, however, been found that a form of second-order
inviscid perturbation theory (not-so-thin wing theory) gives much more
reliable results. Slender-wing thooriecs, on the other hand, can be most mias-
leading for such thickness distrabutions.

The gecond-order theory has also becn applied to othor thickness
disbributicns and has been found to give more reliable results than thin-wing
thecry except near the wang leading edges where both methods fail.

Replaces R.A.E, Tech Note No. Aero 2926 - A.R.C. 25 708,
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1 INTROPUCTTON

In the search for slender wings with low drag some of the original.
investigations were made on sample shopes such as delta wangs with diamond
ercss+-sections for which theoretical calculation and model monufacture can be
more easily accomplished. The work described in this Note, which forms part
of a general rcsearch programme tc find wings with low volume-dependent wave
drag, deals vith the pressure distribution on the rear of such a wing with a
larger edverse pressure gradient lhan on wings tested up to now, together
with a large suction near the trailing edge.

The obgect of this test was to sece whether inviscid, small-perturbation,
theory can be relied upon to estimate the pressure distribution even when the
pressure gradients are changing fairly rapidily along the chord.

In the series of models used for urag measurements, the results Tor
which are publashed in Ref.1, the model tested here corresponds to wing 3.

2 CESCRIPTION OF TUEK MODEL

The details of the wing, which has a unit aspect ratio, o velume
paraseter (1) of 0+05 and a centre line thickness distribution given by

3
a0 _ % 0 4 5o 33 g2 €7 g
SOy g(1- &) {140 + 52:67 & = 167-33 E° + 11667 £’} (1)

are given in Fig.1. E(= F/co) 1s the chordwise station normalised with

reference to the centre-line chord and is measured from the apex.

The model was supported from the undersurface so that at the Mach numbers
at which tests were made the support should not have influenced the measurements
which were made on the upper surface. The centre-line chord (co) was

12+00 inches and 21l the planform edges hod a nominal 0002 inch radius. The
thickness distribution was modified slightly to include the extra thickness
due to the radiused planform edges.

The centre line thickness and cross sectional area distributions are
given 1n Figs.2 and 3 where they nre compared with distributions for the now
well known 'Lord V' end 'Newby' wings. Ving 3 1s simailar in many respects
to a 'Lord V' waing but 15 not as smooth geometricelly, 2nd has a much larger
slope near the trailing edge, which 1s comparable with the 'Newby' wing. The
centre line thickness distribution for the 'Newby' and 'Lord V' wings are
given by the following equations:-

v/c3

Z(E\,O) = 3 S/g CU‘E) {12} (Newby) (2)
v/

Z(E’O) = 5 afz E(1-E) {08 = 42 £ + 28 £2 = 7 &) (Lora V) . (3)
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3 BXPERTMENTAL DETAILS

3.1 Wind tunnel

The model was mounted in the R.A.D. No.19 (18" x 18") supersonic wind
tunnel which is a continuous return flow closed circuit tunnel with a
nominal Mach number range of 1+ to 2+2 with o square working section of
18 inch side at all Mach numbers. In the present tests the stagnation
pressure was varied up to a maximum of 75 inches of Hg corresponding te a
maximum Reynolds number of 11+3 x 1 based on the wing root chord. The
stagnation temperature was kept constent for all tests at a particular Mach
number such that the model remained close to normsl temperature (15°C). The
tunnel air wza kept dry during these tests using a dry-air interchange
system. The tunnel humidity was measured duraing the tests and no results
vere recorded until the humidity was less than 0-0002 1b of water per 1b
of dry air.

The model was mounted on a quadrant type incidence gear and a check
was made during the running to see that the model remained at zero incidence
for all stagnation pressures,

342  Accuracy
3.201 F.].OW

The superscnic nozzles used for these tests are all double sided and
the Mach number distribution has been obteined but not the flow inclination.
The changes of the Mach number in the empty tunnel are reasonably gradusl
over the region occupied by the model and are within the following limits
in the region of model pressure points.

M 1440  *0-005"
M = 1:58 *+0+007
M = 202 *0-010
M = 249 +0-007

Although the flow inclinations in the tunnel have not been mcasured
previous tests all indicate that any flow inclinations that do exist are
negligible,

3.2.2 Measurements

A1l the pressures have been measured using capsule type manome ters?
with & nominal accuracy of *0-015 inches of Mercury. There were, however,
faults in these instruments which reduced their accuracy. A datum pressure
was measured using the instrumentis before and after each run and if a change
in instrument zero of more than 0°+04 inches of Mercury occurred then the
results obtained with that instrument wore discarded. The remaining
instruments should then have an accuracy of better than *0+03 inches of
Mercury which corresponds to a change in pressure coefficient of about
*0+001 at a Reynolds number of 107 for all the test Mach numbers. To obtain

-l -



a corresponding £igure for a lowor Reynolds number this value should be
increased by the inverse ratio of ilie Reynolds numbers.

4. LXPERIMETAL RESULTS

The pressures meesured during these tests are given in Flgs.u{a)—(d) ahd
are presented as pressure coeflicients based on the mean flow in the region
of the model pressure points., Aldl the results obtained at the highest Reynclds
number for each Mach number are presented, but other results are given only if
ihey are measurably different {rom ithose at the highest Reynolds number. All
the measurements presented were cbtaiuned with free transition but a check, at
M = 2:02, made with itransition bands of the distributed roughuess typse
descrabed in Ref.?1 showed no measurable influence of the transition bands at
the highest Reynolds number.

5 ESTIMATION OF PRESSURE COEFFICIENTS

et Thin-wing theory

Thin-wing theory s the term generaliy accepted for the theery of inviscid
irrotaticnal Tlow based on the first-order linearized potential equation, in
which the boundary conditions to be satisfied on the wing surface are applied
in the cheordal planae of the wing and {the {low variables required on the wing
surface are evalualed again in the chordal plane of the wing. The pressure is
cbtained from the first~order linearlized Dernoculli equation. I, in addation,
the slender approximation (]32 ¢xx| << I¢yyl + ]¢ZZ[) s made, then the theory

is termed slender thin-wing theory.

The pressure distributlon at zero 1if't for delts wangs with rhombic
cross~sections has heen oblained from than-wing thoory by a numerical method
by Fuintond using the D,E.U.C.E. digital computer, but the machine time
involved was large!(order of minutes per station)® so 1t was decided to obtain
an analytical solutlon. This is possiable 1f the centre line thickness distri-
bution is restricted tco pelynomial Torm. A Mercury autocode programmc has been
written which obtains the first-order velocity perturbations [or such waings”;
it tekes about 1 second per station,

Corresponding results for slender thin-wing theory may be obtained from
the results given by Weber®.

5.2 A not-so-thin wing theory

For 'wing like' shapes such thal the local thickness is very much smaller
than the Jocal span the velocity potential & for irrotational, homentropic flow
may be written as & = U(x + ¢1 + ¢2 + O(t3)), where ¢1, ¢2 ete. are proportional

to the wing thickness, square of the wing thickness etc. IBguating terms of the
same order in thickness the differentisl equations satisfied by the velocity
perturbations are

*A Mercury autocode programme‘iF for the thin-wing theory pressure distribution on
wings of more complex cross sections and planferm using numerical methods now
exi1sts and takes about ] minute per station.

....5..-
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where ¢1 is the first-order perturbation velocity potential and ¢2 is a

second-order correction to it

(see Ward7 for instance).

The boundary conditions may be obtained by equating the velocity normal
to the wing surface to zero and again gquating terms of the same order in

thickness, then
oz 2=0

o - G

(6)
-Z_zl>z=o ' (2%> (%;1)220 B (:.jz1>z=0 .
vor (7)

Equations (4) and (6) correspond to the e?uatlons satisfied by thin-

wing theory but general solutions of equations

found f'or limiting cases such

5) and (7) have only been
as, two-dimensional, slender, and conical wings.

The wings we are discussing here are neither two-dimensional nor very
slender and it is desirable to find a method of estimating the effect of ¢2

cn the pressure distribution.

¢2 = ¢2a + ¢2b’ then without

3¢
2 2 2a
Vet TS
X
2
v ¢2b ax2

with the boundary conditiona

If we split ¢2 into two parts so that
any loss in generslity we can have

o
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The solutiion of the equations for ¢2b may be obtained from the methods

available for thin-wing theory since the dafferential equation (equation (9))

is the same. The only difficulty is that the boundary condition ?équation (11))}
has logarithmic singularities at the leading edge of the wing unless the first-
order solution i1s made uniformly valid.

The solution of equations (8) and (10) for ¢, 18, In general, not easily

cbtaincd, but may be obtained in two limiling cases. Tirstly, when the slender
approximation applies and ¢2a and 1ts derivatives are small compared with ¢?b

and its derivatives and, secondly, when the wing is two-dimensional the
sclution 15 obtainable and has been dorived in Appendix 1.

The second-order approximation to Bernoulli's equaiion is

3¢ 3¢ o 32 ¢ NG
oo % P 2 /%% 1 sl
Cp - 2 ax 2 3x 25z * P (ax ) (ay > (az ) !
(12)

and hence the only second-order corrections to the velocity perturbations that
a¢2a a¢2b
are important in calculating the pressure coefficicnt are " and e

In Appendix 4 it is shown that

B @ o

for a two-dimensicnal wing. This solution may not, as 1t stands, be extrape-
lated to wings of other planforms sance a1t is not compatible with Lthe slender
o
approximation, in whaich, (ax2§> may be neglected compared with other second-
z=0




order thickness terms. If, however, equation (13) is rewritten in terms of

6¢1
(3;{) » then we have
2=0

). - [ -G (

which is acceptable for both cases since for the slender approximation case
it may be neglected compared with the other second-order terms in the
pressure equation. Equation (14) provides an 'interpolation' between the
two-dimensionel approximation and the slender approximation, Others are
possible, but this is the simplest. Its use can only be justified by com=
parison with more exact theories and experimental results, as discussed in
Section 6.

The solution of equations (9) and (11) for ¢2b has not been calculated,

but the slender-theory approximation to it is readily obtained from Cookea,

s shown in Appendix 2,

Cooke gives a result for Ag, the difference in potentiasl in changing
from slender thin-wing theory to slender not-so-thin-wing theory, computed
at the wing surface. His result for a wing with doubly symmetrical cross-

sections at zero 1lift is
oz 3
B )
Ap = ZB Frealls (BB (ax >c>c (15)

(ex)), = “:?f £x) gr (16)

where

x=-x'

It is shovm in Appendix 2 that

D 2
ifgh = 9%Be¢ EEE -3 ° % (17)
dx Todx Ix B.,2 °
2=0 ox

From this, equations (6), (12) and (14) and the expansion

3¢ 3 2%
_._.1_(__.1.) +z< 1) + vee We ot
8x dx 20 B \dxdz 220
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cee (18)
for the pressure coeffacient on the surface of the wing.2 This result agrees
9¢
with that cbtained by Cooke apart from the term in (3;#) » which is negligable

in the slender approximation.

An objection to the procedure used to obtain equation &18) 1s the lack
of uniqueness in the choice of boundary conditions (10) and (11) to be
satisfied by the separate parts of ¢2. This obgectron arises only because

equations (8) and (9) have been treated approximately and it 1s weakened to the
extent that the approxamations are valid. The cholces made were dictated by
the availability of the approximate sclulions used. The usefulness of

equation (18) as an improvement on thin-wing theory must rest on comparisons
with solutions exact to second order and with measuwrements in a real fluid,
such as those presented in the fellewing section.

6 DISCUSSION

One of Llhe main purposes of thesc tests was to show whether the thln-wing
thecry may be relied upon to give the pressure distribution on a slender wing
even when the thickness distribution 1s likely to give rise to a marked adverse
pressure gradient and a large suction ncar the trailing edge. The results in
Figs.i{a) -~ (4) show that, as for less extreme thickness distributions such as
the 'Newby' wing (Fig.é) snd the 'Lord V' wing (Fig.7), thin-wing thoory works
fairly well except at M = 1°4 ncar the trailing edge.

The measurements have been made at several Reynolds numbers, but the
results have heen ggund to be insensitive to Reynolds number provided it 1s
greater than 5 x 1 based on the wing length. At thiz Reynolds number
azobenzene sublimation and oil flow techniques indicaie that the boundary
layer 18 non-laminar® ahead of all the pressure poants. Schlieren photographs
are presented in Figs.5(a)— (4) at the highest Reynolds number at which tests
vere made for each Mach number. These suggest that the boundary layer has
thickened considerably along the chord at all dMach numbers. DBut oil flow and
hand shadowgraph techniques showed that the boundery layer did not separate
(i.e. no reverse flow in oil flow), end that the shockwave stems from the
trailing edge, or a point very close to it, at all test Mach numbers above
M= t+. At these relatively high Reynolds numbers the Schlieren sysiem was
extremely sensitive to very small disturbances; for example, there was a slight
surface imperfection at about 70% of the wing length vhere the surface changed
from araldite to steel, this was insufficient to cause transition when the

*il.e. in a transitional state or ftruly turbulent.

-9 -



boundary layer was laminar in that region but produced an apparently large
disturbance on the Schlieren photograph. At M = 1<L (%—s‘- = 0-245> Fig.5(d)

0
a photograph is presented of the flow at a lower Reynolds number also, since
this was the only instance when there was a visible difference in the flow
as the Reynolds number was changed. The terminal shock-wave appesars to have
moved forward from the wing trailing edge® at the higher Reynolds numbers
and its locatlon depends on Reynolds number. In fact the pressure measure=-
ments (Pig,4{(d)) confirm that the recompression has moved forward over the
centrel region since there is a marked drop in suction near the trailing
edge for the higher Reynolds numbers; the measurements at ¥/s = 0+5 show
no such change with Reynolds number.

In & normal two=-dimensional compression corner with no upstream
pressure gradilent, separation moves downstream as the Reynolds number
inecreasediC, ‘is suggests that some further mechanism is invelved in the
present case. In fact, the calculated local Mach number on the centre line
at the trailing edge at a free stream Mach number of 1<4 is close to that
at which the turning of the flow from the wing surface into the free stream
direction can no longer be achieved through an oblique shock.

Cooke'? has investigated the influence of a turbulent boundary layer
on the pressure distribution for delta wings at zero 1lift, His examples

are, wing 3 at E-"i = 0487 (Fig.4(a)), and the 'Lord V' wing at fj—s = 04577
o 0

(Fig-?), from which he concluded that the increment of pressure due to the

boundary layer is relatively smell, and is not sufficient to acoount for

the differences found between the experimental and theoretical results.

In fact, the actusl magnitude of the calculated pressure increment does not

exceed 0+002 ot a Reynolds number of 107, over most of the region vhere

pressures have been measured.

The results of slender thin-wing theory have also been plotted in
Figs.4{a) - (4) and they indicate how misleading slender theory results may
become when the condition of slenderness is violated. In fact on the rear
part of any slender wing unless the pressure gradients are extremely small
it can only be fortuitous if the slender theory is accurate since the
slenderness condition 1s B%|¢__| << |¢_ | + [¢__| and the right hand side
is small. xx yy zz

In Section 5.2 an attempt was made to formulate a not-so=-thin-wing
theory for pressure coefficients by estimating the terms that were not
known to second-order accuracy by the most acgurate available method., This
method 1s similar to that formulated by Cooke®, who obtains all the second
order terms from the slender approximation. His method worked quite well

*This result was confirmed by tests on the sam% model at lower supersonic
speeds in the R.A.E. 2' x 13' Transonic Tunnsl”.

- 10 -



for the Lord V and Newby wings where slender theories are known to give
reasonsble results, but ho found that 1t failed to give any improvement over
thin~wing theory for the measurements described here. This is perhaps not
surprising since the slenderness assumption is vieclated for this wing.

The results of the not-so-thin-wing theory are most encouraging since
the method shows a marked improvement over thin-wing theory for the 'Newby!'
wing (Fi1g.6) and the 'Lord V' wing (Fig.?), both necar the centre line and
Ffurther cut on the span. The method alsc shows a slight improvement for
these wings over Cooke's methed (results not shown) especially away from the
centre-line where his method failed to give much improvement over thin-wing
thoory. On Figs.6 and 7 other curves are included with certain of the sccond-
order terms equated to zero in order that the influence of the various terms
in equation (L) may be eppreciated. The results for ¢2 = 0% z = 0 is what

would be cbtained af the boundary conditions were applied at z = O and the

pressure computed in that plane and the ¢?b = 0, 2 = 0 indicates the change

6¢2§>. At ¥/s = 04

in pressure coefficient on including the estimate for (a
X

the curve for ¢2 = 0, % = O has been omitted since it is very nearly the same

as the curve for thin-wing theory. From these results it appears that both

a¢2a aq!’Zb

(3;-;> and (S;j~) may be approciable and that the proposed methods of
Z:ZB Z:ZB

estimation work quite well for both these wings. The method has also been

used to estimate the pressure coefficieuts for wing 3 (Figs.i(a) - (d)) and the

results show a marked improvement at all test Mach numbers over thin-wing

theory especially near the centre line. The improvement is perhaps surprising

51NCO <ax2€) is obteined from slender theory and the slenderness assumption
2=

B \
18 known to be violated for this wing., At the ¥/s = 05 station there is a
tendency for the pressure to be higher than that cstimated, especially where
the surface slope 1c small.

In all cases where the not-so-than-wing iheory has hoen tried for delta
wings there has been a marked improvement over thin-wing theory for the
pressure distribution. The programme mentioned previously for the computation
of the thin-wing theory pressure coefficienis® has been adapted to give results
for the not-so~thin-wing theory method. The method is equally applicable to
more compiicaled planforms and thickness distributions, and, provided the
first order perturbation vcloecity components are known, can be sumply applied
since the methoed involves only the firsteorder perturbation velocity components
and a thickness correction from slender theory.

A furthor check on the method is possible by considering the pressure
distribution on a conical body of rhombic cross-scotion (Flg.B) since for this
example a full second-order solution exists?2:13 as well as some measurements

Py =y, Py

- 11 -



made at R.AWE. Bedford14’15’16. The experimcntal results presented here
have in fact been extracted from Kichemann's!® paper, where he shows that
slender-body theory e&nd thin-wing theory are never fully adequate. The
present method predicts almost the same veriation in pressure coefficient
with Mach number as the full second-order theory but it tends to over=-
estimate the pressure coefficient._ As anticipated, the method fails near
the wing leading edge. Lighthill?7?, Van Dyke'8, Randalll9 and WeberZC have
shown how the predictions of thin-wing theorics necar leading edges can be
improved and such techniques could be combined with the present method.
The full second order results show remarkably good agreement with the
experimental resul ts.

Tho present methed is not suitable for computing the wave drag since
the theory gives a non-integreble singularity near the wing leading edge.

7 CONCLUSIONS

The results presented in the preceding sections suggest that small-
perturbation methods taken to second-order accuracy, but with certain of
the terms estimated by cruder methods, may be used to predict the pressure
coefficients, on slender delta wings of rhombic cross-sections at zero 1lif't,
at points not too close to the wing leading edge, even for a wing with an
adverse pressurs gradient over part of the chord and a relatively large
suction near the trailing edge. The method suggested is relatively sample
to apply, and it is recommended that it should be tried on other planforms
and cross sections.

Slender theory should not be relied upon for the calculation of the
pressure coefficients since in the region of the trailing edge the
assumption of slenderness {52{¢xx| << l¢&yl + |¢zz|} is valid only for a

very restricted range of wings. Thin-wing theory on the other hand gives

quite a good first approximation to the pressure coefficient in all cases
tried.

The experimental results indicate that the trailing-edge shock wave
mey, depending on thickness distribution, still be detached from the
trailing edge at Mach numbers as high as 1+4 without any positive signs
of boundary~laysr separation. Further work is necessary if the transonic
behaviour of the trailing-edge shock wave 1s to be understoocd.

-12 -
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SYMBOLS

P-P
pressure coefficient < q.“j
change in pressure coefficient due to thickness
(see Section 4.2)
wing chord at centre line

arbitrary functions
+1
¥ L}
conjugate of £ i.e. - 1-], ELE_lJ%E_
0 X=X
-1

zero 1ift wave drag factor

local pressure

ambisnt pressure

kinetic pressure of free stream

mean free stream Mach mumber

Reynelds number based on wing c¢hord at centre line
semi-span at the trailing edgze

max wing thickness

gross-sectional area in plane normal to free stream

volume of thc wing

Cartesian coordinates with crigin at the apex of the wing;
X axis measurcd in the darcetion of the undisturbed stream;

the z axis normal to the chordal planc of the wing

7z ordinate of the wing surface

M° - 4

A

%/co, the chordwise station as a fraction of the centre line

chord and measured from the apex

- 13 -



SYMBOLS (Contd)

¢ = velocity potential
¢1 = 18t order velocity potential perturbation
bs = 2nd order correction to ¢y
$oq1Pop = gee Section 5.2
Ag = change in velocity potential between a thin wing and a
body theory (see Section 5.2)
3/2
T = V/(planform area)™ ©, a volume parameter
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APPENDIX 1

DETERMINATION OF THE SECOND (RDER SOLUTION TO TIIE POTENTTAL
EQUATION FOR TWO DIMENSIONAL FLOW

In two dimensions equation (4) may be written as

2 2
0 a¢
p° -—-Z‘ -— =0 (19)
ox 0z

the general solution of which 1s

¢, = €,(x-pz) + ¢, (x+p2) (20}
where Gﬁ and G2 are arbiirary functions. The boundary conditions for ¢1 are
ap dz
1 B
¢, = O for x=-Pz<0 and (az> = 35— = f£(x) (sey)
z=0
from which we may obtain
d¢p o¢
1 1 1.
ax - B f(}\.-BZ) 3 az - f(x ﬁZ) (21)

which satisfy the bourndary conditions at z = Q.

llaving obtained a general solution to equation (19) we now have enough
infermation 1o sclve the differential equation for ¢2a in two dimensions 1.e.

2 2
3% 3% 3¢
2 Z2a 28 . _ g2 3 2 _ _ 2 T1 42
B 22 W5y (V8,07 - r=1) W 5 Vg,

ves (22)

On substituting the first order solutions from cquations (21) we get

2 2
3¢ o ¢ A

o7 223, _ 22a I 2+1 £{x - Bz) £!(x=pz) (23)
ox dz p

with boundary conditions from equation (11).
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Appendix 1

l.e,

with
= 0 for x-Bz<0 . (24)

If we transform equation (23) to (u,v) coordinates such that
u=x=-£zsand v=x+ Bz we obtain

2%
5?8'3_& = - EMT" (y +1) £(u) £'(w) (25)

the solution of which is

2
Sy = - i‘% (y+1) {f(x-m)] (x+pz) + F,(x+pz) + F,(x-p2)

8p
e (26)
where F1 and F2 are arbitrary functions.
The differential equation for ¢2b in two dimensions
i.e.
2 2
09 ¢
2 2
p 22b - ) b = 0 (27)
ax d3
mey be solved in a similar way, the solution of which is
by = E1(x4-Bz) + Ez(x-ﬁz) (28)

where E1 and E2 are arbitrary functions with boundary conditions from
equation {12)

2 2
1.0. <a¢2b . L . 2°z,
9z z=0 3 32 / z=0 B d.x2
with
$p = 0 for x=-Pz<0 . (29)
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Appendix 1

Yow on differentiating the solutlons and applying the boundary asonditions
we got

F1(x) = 0
2 2

() o A ) W A\ W RE T ' (&g
i - o @) =[5 )@
E1(x) = 0

2

a
EYx) = -z deB . (30)

The contribution to the pressure coefficient from ¢, is dependent on
Sy Moy ¥y

s== = =55 4 == and this may be obtained from equations (26), (28) ena (30)
i.e.
¢ b L
ax% = = :;“ (y+1) £(x-s) £'(x~pz)(x+pz) = ;I“T* (ye1){£(x-p2)1° + 7} (x-fz)
g

and

ad

g;g-b- - Eé(x—ﬁz) (31)

¢
50 that since we require only -a-}—c-z- on the wing surface end all terms are
already of second order we obtain

and

32 = mp—2 (32)
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Appendix 1

o¢
Although for the present application we require only (ax2a.) it is

of interest to determine the pressure coefficient computed on the wing
surface to second order accuracy for a two dimensional wing

i.0.
o op o
= - of1 {22 - b
o < 25, @G, E., @
! B ““B
and since
2
¢ dz. d
1 - -1 - .1 _3B
(ax s, = ﬁf(x ﬁzB) = -5 Tt % 2 + oaea
we obtein
2
c - 2 825 rup?- 1 (ya1) d"B) . (34)
p p dx 254 ax

which agrees with the result obtained by Busemann from simple wave theory.
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APPENDIX 2

o¢
DETERMINATION OF (ﬁ) FROM SLENDER THEORY IN TERMS OF THE DIFFERENCE
Z=2
B

IN POTENTIAL BETVEEN NOT-S5C-THIN-WING THEORY AND THIN WING

Let tpT(x,y,z) be the velocity potential whon cobtained from slender thin
wing theory and ch(x,y,z) be the velocity potential when obtained from slender

not~so~thin wing theory, then we may write for small z and small (z-zB),

acpT
onlX,7,2) = op(x,y,0) + 2 (3;)2_0 * e (35)
ach
(PB(nysZ) = @B(X:Y:ZB) + (Z'ZB) (EFZ— - + ase (36)
e

by a Teylor expansion, where =z
z = 0 plane.

B is the location of the body surface above the

8

New Cooke” defines A¢ &s

@B(X:Y:ZB) - @T(x,y,O) = Ag (57)

and by comparing the slender theory approximation to the equations for ¢2b
wrth those sclved by Cooke we have

op(x,7,2) = oplx,7,2) = ¢, - (38)

Hence from equations (35) te (38) we have

azB
fpz,b = Ag - ZB 5;_.'“ (39)
aq;T ach - i‘zB
since [ 3—= and | —= may both be replaced by ——— to the order of
=} =0 0z gz ux

B
accuracy reguired.
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Appendix 2

On differentiating equation (39) with respect to x we have

2 2
¢ g oz
& _ 3 - B _ /%%
o = ar (8e) - gy — (“”’a::) . (40)

Printed in England for Her Majesty's Stationery Office by
the Royol #ircroft Establishment, Farnborcugh, W.I.60.K.4.
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The pressure distributlion has been measired on the rear of a slender
delta wing with rhombic cross~sections as part of a programme to Investi-
gate the influence on the wave drag of thickness distributions that glve
rise to a marked adverse pressure gradlent and a relatively large suction
near the trailing edge.
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more reliable results, Slender-wing theories, on the other hand, can be
most misleading for such thickness distributions,

The secono-irder theory has also been applied to other thickness
distributlons and has been found to give more relfable results than thin-
wing theory except near the wing leading edges where both methods fall.

more reliable results, Slender-wing theorles, on the other hand, can he
mest misleading for sich thickness distributions,

The second-order theory has glso been applied to other thickness
distributions and has been found to give more rellable results than thin-
wing theory except near the wirg leading edges where both metheds fail,

more reliable results, Slender-wing theories, on the other hand, can be
most misleading for such thickness diatributions,

The second=cgrder theory has also been applled to other thickness
distributiong and has been found to give more reliable results than thin-
wing theory except near the wing leading edges where both methods fail,
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