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KINGS AT S,UPERSONIC SPEEDS 

by 

M, C. F. Pirmin 

The pressure dxtr2xrtacn has been measured on the rear of 3 slender 
delta wing wxth rhombic cross-sections as part of a progrommu to investigate 
the influence on the wave drag of thickness distributions that give rise to 
a marked adverse pressure grsdienl and a relatively lareo suction near the 
trailmg edge. 

Gven for such 'non-smool.1~' th~ckncss <istrzbutions, Chin-wing theory 
gives fair results. It has, however, been found that a form of second-order 
lnviscid perturb?tlon theory (not-so-thin ~nng theory) gives much more 
relxble results. Slender-wing theories', on the other hand, cnn be most mis- 
leading for such thxkness distrxbutlons. 

The second-order theory has also been applied to other thickness 
dlstrlbutlons and has been found to give more reliable results than thin-wing 
theory except near the vnng leading es&es where both methods fail. 

Replaces R.A.E. Tech Note No. Aero 2926 - A.R.C. 25 708. 
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1 INTROD1JCT~ON 

In the sewch for slender wings with low drag some of the original. 
investigations were made on sunple shapes such as delta wings with diamond 
cross-sections for which theoretical calculation and model manufacture can be 
more easily accompllshod. The work &scribed in this Note, which forms part 
of a general research programme to find wing s with 10s volume-dependent wave 
drag, deals vrith the pressure distribution on the rear of such a wing with a 
larger adverse pressure gradient than on wings tested up to now, together 
mth a large suction near the trailing edge. 

The object of this test was to see whether inviscid, small-perturbation, 
theory can be relied upon to estimate the pressure distribution even when the 
pressure gradients are changing fairly rapGU.y along the chord. 

In the series of models used for drag measurements, the results for 
which are published in Rcf.1, the model tested hero corresponds to wing 3. 

2 CESCP,Il?TIOI~ OF TIE MODZL 

The details of the wing, which ha,s a unit aspect ratio, a volume 
parameter ('I) of 0.05 and a centre line thickness distribution given by - 

are given m Pig.1. S(E "/co) IS the chordwise station normalised with 
reference to the centre-line ChOrd and is measured from the apex. 

The model was supported from the undersurface so that at the Mach numbers 
at which tests were made the support should not have influenced the measurements 
which were made on the upper surface. The centre-line chord (co) was 
12-00 inches and 011 the planform edges had a nominal 0*002 inch radius. The 
thickness dlstributlon was mocitiled. slightly to include the extra thickness 
due to the radiused planform edges. 

The centre line thxkness and cross sectional area distributions are 
given in Figs.2 and 3 where they arc compared vith distributions for the now 
well known 'Lord V' and 'Newb,y' wings. Wing 3 2.9 similar in many respects 
to a 'Lord V' !iirng but 1s not as smooth geometrically, and has a much larger 
slope near the trading edge, which IS comparable with the 'Ncwby' wing. The 
centre line thickness distributxon for the 'Newby' and 'Lord V' wings are 
g~vcn by the follorang equations:- 

?LlLla= 3 
C 

2v;;z 5(1-E) IId 
0 0 

(Newby) (2) 

%(5,0) v/c3 
= c F$- E;(l- E) 128 - 42 F + 28 c2 - 7 c'] (Lord V). 

0 0 
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3 EXF'ERIMEN~L~LJDETAILS 

3.1 Wind tunnel 

The model was mounted in the R.A.C. No.19 (18" x 18") supersonic wind 
tunnel which is * continuous return flow closed c&cult tunnel with a 
nominal Mach number range of I.4 to 2.2 with a square working section of 
18 inch side at all Mach numbers, In the present tests the stagnation 
pressure was varied up to a maximum 

og 
f 75 inches of Hg corresponding to a 

maximum Reynolds number of II.3 x 1 based on the wing root chord. The 
stagnation temperature was kept constant for all tests at a particular Mach 
number such that the model remained close to normal temperature (15'C). The 
tunnel air was kept dry during these tests using a dry-air interchange 
system. The tunnel humidity was measured during the tests and no results 
mere recorded until the humidity was less than OS0002 lb of water per lb 
of tiy air. 

The model was mounted on a qundrant type incidence gear and a check 
was made during the running to see that the model remained at zero zncidence 
for all stagnation pressures. 

3.2 Accuracy . 

3.2.1 Flow 

The supersonic nozzles used for these tests are all double sided and 
the Mach number distribution has been obtained but not the flow inclination. 
The changes of the Maoh number in the empty tunnel are reasonably gradual 
over the region occupied by the model and are within the following limits 
in the region of model pressure points. 

M = 1.40 +0*005' 

M = 1.58 +0*007 

M = 2.02 +0*010 

M = 2'19 +oaI7 

Although the flow inclinations in the tunnel have not been measured 
previous tests all indionte that any flow inclinations that do exist are 
negligible. 

3.2.2 Measurements 

All the pressures have been measured using capsule type manometers2 
vnth a nominal accuracy of ItO- inches of Mercury. There were, however, 
faults in these instruments which reduced their accuracy. A datum pressure 
was measured using the instruments before and after each run and if a change 
in instrument zero of more than O*Ol+ inches of Mercury occurred then the 
results obtained with that instrument more discarded. The remaining 
instruments should then have an accuracy of better than to.03 inches of 
?dercury which corresponds to a change in pressure coefficient of about 
+O*OOl at a Reynolds number of 107 for all the test Mach numbers. To obtain 
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a corresponding figure fo> a lomcr Reynolds number this value should be 
increased by the inverse ratio of the Reynolds numbers. 

4 XXt'ERI!@XJTAL RESULTS 

The pressures meesured during these tests ere given in lkp.4!a)-(d) and 
are presented cts pressure coefficients based on the mean flolv in the region 
or the model prossuro points. All the results obtained at the highest Reynolds 
number for each Mach number are presented, but other results are given only if 
they are measurably different from those at the highest Reynolds number. All 
the measurements presented were obtaiucd irlth free transition but a check, at 
M = 2.02, made with transition bands of the distributed roughness type 
descnbod in Ref.1 showed no measurable lnflucnce of the transition bands at 
the highest Reynolds number, 

5 ESTlX~TION Ol? PRESSUR3 COEPP~CIENTS 

5.9 Thin-winE theory 

Thin-wing theoJy 1s the term gonerally accepted for the theory of inviscid 
irrotatlonal' flow based on the first-order linearized'potential equation, in 
L;hich the boundary condltlons to be satisfied on the wing surface are applied 
in the chordd plane of tho wing and the flow variables required on the wing 
surface arc eviLlusted again in the chordal plane of the wing. The pressure is 
obtained from the first-or&er linearizod Bernoulli equation. If, xn addition, 
the slender approximation (lb* $rx] ci l$n] + IS,,l) IS made, then the theory 
is termed slender thin-wing theory. 

The pressure distribution at zero lift for delta mngs with rhombic 
cross-sectiors has been obtaIned from Ljl~n-vlng theory by a numerical method. 
by 3nlinton3 using the D.E.U.C.E. &eltal computer, but the machine time 
Involved was large (order of minutes per station)* eo It was deaded to obtain 
an analytical solution. This is FOsslbble of' the centre line thlckncss distri- 
bution is restricted to polynomial form. A Mercury autocode programme has been 
w-rltten vihlch obtains the fust-order velocity perturbntzons for such wmgs5; 
it t&kes about 1 second per station. 

Corresponding results for slender thin-yang theory may be obtained from 
the results given by Wobor6. 

5.2 A not-so-thin wing thoow 

For 'Ming like' shape3 such that the lot-al thickness is very much smaller 
than the local span the velocity potent&. @ for irrotationti, homentropio flow 
may be written as @ E U(x + +, + 4, + O(tj)), whore $J,, $2 etc. are proportional 
to the ~ng thickneso, square of the wing thickness dto. Equating terms of the 
same order in thickness the differential equntionb satisfied by the velocity 
perturbations are 

*A Mercury autococlc progr,amm& for the thin-wing thedry prossure distribution on 
wings of more complex cross sectlons and plz$orm using numerical methods now 
exists ana t&es about 1 minute per station. 
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a*+, v*+, -M2- 
ax2 

a*#* v* cg12 - M2 - 
ax* 

where $, is the first-order perturbation velocity potential and $2 is a 
second-order correction to it (see Ward 7, for instance). 

The boundary conditions may be obtained by equating the velocity nomd 
to the wing surface to zerc and again equating terms of the same order in 
thickness, then 

= 0 (4) 

a$, 2 = M* !& (V$J,)~ + (y-1) M* dx V .$, (5) 

a+l ( > z- 
z=o 

=2 (6) 

(2)z.o = (2) (2)zEo + (2) (z)z;o - “B (,,, ’ 
. . . (7) 

Equations (4) and (6) correspond to the e uations 
wing theory but general solutions of equations ? 5) 

satisfied by thin- 
znd (7) have only been 

found for limiting cases such as, two-dimensional, slender, and conical wings. 

The wings we are discussing here are neither two-dimnsional nor very 
slender and it is desirable to find a method of estimating the effect of 62 
on the pressure distribution. If we split c$* into two parts so that 

42 =+*a + $,, then without any loss in generality we can havo 

= M2$-(V~,)*+(y-1)M2~V2~, , (8) 

2 - M2 
a*+, 

' '2b 
-=o, 
ax2 

with the boundary conditions 

(9) 
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a+2, 

( > 
azB d$ 

az -4 z=o =3;;- ( ax /z=o (IO) 

= >(>),;, - 'B (2)s;, ' (11) 
z=o 

The solution of the equuations for $I, may be obtained from the methods 

available for thin-w&n& theory since the dlfferontial equation (e uation (9)) 
is the same. The only difficulty is that the boundary condition ? equation (11)) 
haslo~~~~thrn~c slngularlties at the lending edge of the w.ng unless the first- 
order solution 3.s made uniformly valid. 

The solution of equations (8) and (IO) for +2a is, in general, not easily 
obtaln&, but may be obtained z.n two limiting cases, l?irstly, when the slender 
approximation applies and $I,, and Its derivatives are small compared wrath 4% 

and its derivatives and, secondly, tifhcn the wing is two-dimensional the 
solution x obtainabic and has been derived m Appendjx 1. 

The second-order approxunetion to Bernoulli's equotlon is 

C a@l 
P = 

-- -_ 
- * ax 2 a@2s 

ax 2 ~+q~~$l)?(~f, 

. . . (12) 

and hence the only socon&-order corrections to the velocity perturbations that 
a%a a%b are important In calculating tho prcssurc coefflclont are - ax and ax . 

In Appendix 1 it is show that 

a92s (3 ax 
z=. = i;?i - &iip-- @i) (13) 

for a two-~imensicne.1 wing. This solution may not, OS It stands, be extrnpo- 
lated to wings of other planforms suce It is not compatible with the slender 

approximation, in whuh, may be neglected compared with other second- 
z=o 
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order thickness terms. If, however, equation (13) is rewritten in terms of 

, then we have 
ko 

which is acceptable for both cases since for the slender approximation case 
it may bo neglected compared with the other second-order terms in the 
pressure equation. Equation (IL+) provides an 'interpolation between the 
two-dimensional approximation and the slender approximation. Others are 
possible, but this is the simplest. Its uss can only be justified by ccm- 
pariscn with mere exact theories and experimental results, as discussed in 
Section 6. 

The solution of equations (9) and (II) for #2b has not been calculated, 
but the slender-theory approximation to it is readily obtained from Cooke', 
as shown in Appendix 2. 

Cocks gives a result for A'p, the difference in potential in changing 
from slender thin-wing theory to slender not-so-thin-wing theory, computed 
at the wing surface. His result for a wing with doubly symmetrical crcss- 
sections at zsrc lift is 

where 

(fWc = -; x-x’ dx’ . +’ r(x’) 
J -1 

It is shown in Appendix 2 that 

2 
-e - . 

z=o B ax2 

(15) 

(16) 

(17) 

From this,equaticns (64, (12) and (14) rind ths expansion 

2 =(gy& + SB (g),=. + . . . we get 
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. . . (18) 

for the pressure coefflclent on the surface of the wing. 
a+, 2 

This result agrees 

with that obtazned by Cooke apart from the term in 5;;- 
( > 

, whzch is negligible 

in the slender approximation. 

An obJection to the procedure used to obtain equation 18) is the lack 
of uniqueness in the choice of boundary conditions (IO) and I 11) to be 
satisfied by the separate parts of +2. This ObJectlon arises only because 

equations (8) and (9) have been treated approximately and it 1s weakened to the 
extent that the approximations are valid. The choices made were dictated by 
the availability of the approximate solutions used. The usefulness of 
equation (18) as <an Improvement on thin-wing theory must rest on comparisons 
with solutions exact to second order and inth measurements =n a real. fluid, 
such as those presented in tho follcnlng section. 

6 DISCUSSION 

One of the main purposes of these tests was to show whether the thin-wing 
theory may be relied upon to give the pressure distribution on a slender wing 
even when the thickness dlstrrbution 1s likely to give rise to a marked adverse 
pressure gradient and a large suction near the tratiing edge. The results in 
Figs.&(a)-(d) show that, as for less extreme thickness distributions such as 
the 'Newby' ,wing (Fig.6) and the 'Lord V' wing (Flg.7), thin-wing theory works 
fairly well except at M = I*4 near the trailing edge. 

The measurements have been made at several Reynolds numbers, but the 
results have been f und to be InsensitIve to Reynolds number provided it 1s 
greater ths.n 5 x 1 og based on the ~.ng length. At tins Reynolds number 
aeobenzene sublsmation and 011 flow techniques indlcats that the boundary 
layer 1s non-lamlnar* ahead of all the pressure pornts. Schl~eren photographs 
are presented in Figs.5(a)- (a) at the highest Reynolds number at whloh tests 
were made for each Xach number. These suggest that the boundary layer has 
thickened considerably along the chord at all Mach numbers. Dut oil flow and 
hand shadowgraph techniques showed that the bouniiary layer ?iGl not separate 
(i.e. no reverse flow in oil flow), and that the shockwave stems from the 
trailing edge, or 8 point very close to it, at all test Mach numbers above 
M = 1 'I+. At these relatively high Reynolds numbers the Schlleren system was 
extremely sensitive to very small disturbances; for exmple, there was a slight 
surface lmperfectlon at about 7% of the wing length where the surface changed 
from araldite to steel, this was insufficient to cause transltlon when the 

%.e. in a transitional state or truly turbulent. 
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boundary layer was laminar in that region but produced an apparently large 

disturbance on the Schlieren photograph. At M = ?*4(: = O-24-5) Fig.!i(d) 

a photograph is presented of the flow at a lower Reynolds number also, since 
this was the only instance when there was a visible difference in the flow 
as the Reynolds number was changed. The terminal shock-wave appears to have 
moved forward from the wing trailing edge* at the higher Reynolds numbers 
and its location depends on Reynolds number. In fact the pressure meaaure- 
merits (Fig,4(d)) corifirm that the recompression has moved forward over the 
central region since there is a marked drop in suction near the trailing 
edge for the higher Reynolds numbers; the measurements at Y/s q 0.5 show 
no such change with Reynolds number. 

In a normal two-dimensional compression corner with no upstream 
pressure 

% 
adient, separation moves downstream as the Reynolds number 

increased . ‘&is suggests that some further mechanism is involved in the 
present case. In fact, the calculated local Mach number on the centre line 
at the trailing edge at a free stream Mach number of I.4 is close to that 
at which the turning of the flow from the wing surface into the free stream 
direction can no longer be achieved through an oblique shock. 

Cooke" has investigated the influence of a turbulent boundary layer 
on the pressure distribution for delta wings at zero lift. His examples 
are, wing 3 at F = 0~4.87 (Fig.4(a)), and the 'Lord V' wing at F = 0.577 

(Big.7), from which he concluded that the increment of pressure &e to the 
boundary layer is relatively small, and is not sufficient to acoount for 
the differences found betwaen the experimental and theoretical results. 
In fact, the actual magnitude of the calculated pressure increment does not 
exceed 0.002 at a Reynolds number of 107, over moat of the region where 
pressures have been measured. 

The results of slender thin-wing theory have also been plotted in 
Figs.lc(a)- (a) and they indicate how misleading slender theory results may 
become when the condition of slenderness is violated. In fact on the rear 
part of any slender wing unless tho pressure gradients are extremely small 
it oan only be fortuitous if the slender theory is accurate since the 
;~;~~~a9 condition is p21+=j << I$yyl + I$J and the right hand side 

. 

In Section 5.2 an attempt was made to formulate a not-so-thin-wing 
theory for pressure coefficients by estimating the terms that were not 
known to second-order accuracy by the most ac 
method 19 similar to that formulated by Cooke 8 

urate available method. This 
, who obtains all the second 

order terms from the slender approximation. His method worked quite well 

*This result was confirmed by teats on the ssm 
speeds in the R.A.E. 2' x 13' !Cranaonic Tunnel 5 

model at lower aupersonio 
. 
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for the Lord V and Eewby wing- ., Tthere slender theories are known to give 
reasonable results, but ho found that It failed to give a~ improvement over 
thin-wing theory for the measuremeats described here. This Js perhaps not 
surprising since the slenderness assumption is violated for this wing. 

The results of the not-so-thin-wing theory are most encouraging since 
the method shows n marked improvenicnt over thin-wing theory for the 'Newby' 
wxng (Flg.6) an& the 'Lord V' wine; (F.LG.~), both near the centre line and 
further out on the span. The method also shows a slight Improvement for 
these wings over Cooke's method (results not shown) especially away from the 
centre-line where his method failed to give much improvement over thin-wing 
theory. On Figs.6 and 7 other curves are included with certain of the socond- 
order terms equated to zero in order that the influence of the various terms 
in equation (4) may be appreciated. The results for $2 = O*, z = 0 is what 

would be obtained sf the boundary conditions were applied at z = 0 and the 
pressure computed In that plane and the 3, = 0, z = 0 mdicates the change 

3+2a in pressure coeffiolent on including the estimate for - . 
( > 3x 

At Y/3 = 0.4 

the curve for +? = 0, e = 0 has been omitted since it is very nearly the seme 
From these results it appears that both 

may be approclsble end that the proposed methods of 

estimation work quite well for both these wings. The method has slso been 
used to estimate the pressure coefflclellts for wing 3 (Figs.4(a) -(cl))and tine 
results show a marked improvement at all test Mach numbers over thin-wing 
theory especially near the centre line. 

a'2b 

The improvement is perhaps surprising 

S~nccz 3x ( > 
is obtained from slender theory and the slenderness assumption 

ZZE B 
1s known to be vIolated for this wing. At the Y/s = 0.5 stAtion there is a 
tendency for the pressure to be higher than that estimated, especially where 
the surf3co slop0 1: small. 

In all cases where the not-so-thin-vdng theory has boen tried for delta 
wings there ha3 been a marked unprovement over thin-wing theory for the 
pressure distribution. The programme mcntioncd previously for the computation 
of' the thin-wing theory pressure coefficients5 has been adapted to give results 
for the not-so-thin-wing theory method. The motiiod is equally appllcablc to 
more complicatefi planforms and thickness distributions, sna, provided the 
first order perturbatzon velocity components are lcnov?%, can be slrnply applied 
since the method involves only the fust-order pcrturbatlon voloclty components 
and a thlcknoss correctlon from slender theory. 

A further oheck on the method is possible by considering the pressure 
d.Lstribution on a conicel body of rhombx cross-neotlon (Flg.8) since for this 
example a full second-order solution cxists12>'3 as well as some measurements 

* '2 = '2a + $2, 
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made at R.A.& Bedfo~3.'~9'~3'~. The experimcntsl results presented here 
have in fact been extracted from Kiichemann's'G paper, where he shows that 
slender-body theory and thin-wing theory are never fully adequate. The 
present method predicts almost the same variation in pressure coefficient 
with Mach number as the full second-order theory but it tends to over- 
estimate the pressure coefficient. As antici ated, the method fails near 
the wing leading edge. Lighthill'7, Van Dyke 53 Randelll9 and Weber*O have 
shown how the predictions of thin-wing theorios'ncar leading edges can be 
improved end such techniques could be combined tith tho present method. 
The full second order results show remarkably good agreement with the 
experimental results. 

The present method is not suitable for computing the wave drag since 
the theory gives a non-integrable singularity near the wing leading edge. 

7 CONCLUSIONS 

The results presented In the preceding sections suggest that smsll- 
perturbation methods taken to second-order accuracy, but with certain of 
the terms estimated by cruder methods, may be used to predict the pressure 
coefficients, on slender delta wings of rhombic cross-sections at sero lift, 
at points not too close to the wing leading edge, even for a wing with an 
adverse pressure gradient over part of the chord and a relatively large 
suction near the trailing edge. The method suggested is rclntively sunple 
to apply, and it is recommended that it should be tried on other planforms 
and cross sections. 

Slender theory should not be relied upon for the calculation of the 
pressure coefficients since in the region of the trailing edge the 
assumption of slcndcrness ip2j$,I << j$yyl + /#s,l] is valid only for a 
very restricted rang* of wings. !Chln-ting theory on the other hand gives 
quite a good first approximation to the pressure coefficient in all oases 
tried. 

Tho experimental results indicate that tho trailing-edge shock wave 
may, depending on thickness distribution, still be detached from the 
trailing edge at Mach numbers as high as 1'4 rnthout any positive signs 
of boundary-layer separation. Further work is necessary if the transonic 
behaviour of the trailing-edge shock wave is to be understood. 
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SYMBOLS 

= pressure coefficient 3 
( > (I 

AC = 
P 

change in pressure coefficient due to thickness 
(see Section 4.2) 

c = 
0 

wing chord at centre line 

F, P2&, ,G2 = arbitrary functions 

K. 
.P 

P cc 

9 

M 

Be 

S 

t 

Sk) 

v 

= conjugate of f i.e. - : +' f(Y) dx' 

i X-X' 
-1 

= zero lift wave drag factor 

= locnl pressure 

= ambient pressure 

= kinetic pressure of free stream 

= aan free stresm 8Inch number 

= Reynolds number based on wing chord at centre line 

= semi-span at the trnlling edge 

= max Tvlng thickness 

= cross-sectional area in plane normal to free stream 

= volume of the wing 

F Cartesian coordinates with origin at the apex of the wing; 
x axis measured in the dwcction of the undisturbed stream; 
the a axis normal to the chordal plane of the wing 

= s ordinate of the wing surface 

= 
I-- 

M*- 1 
? 

= VC,, the chordmise station as a fraction of the centre line 
chord and measured from the apex 
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SYNBOLS (Contd) 

= velocity p0tentie.l 

= 1st or&r velocity potential perturbation 

= 2nd order correction to 4, 
= see Section 5.2 

A'p = change in velocity potential between a thin wing and n 
body theory (see Section 5.2) 

T = V/(plantorm area) 3/z , a volume parameter 
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APFTCNDIX 1 

DETElU\~INATIOM OF TW SECORD CmDER SOLUTION TO EIE POTENTIAL 
EQUATION FmWO DlhIENSIONAL FLOW - 

In two dimensions equation (4) may be written s.s 

P2 
a"+, a2$, 
m-w = () 
ax2 az2 

the general solution of which 1s 

(19) 

9, = G,b-Pz) + G2(x+ Pd (20) 

where G, a@. G2 are arbltraly functions. The boundary conaltlons for 6, are 

#, = 0 for x - pz i 0 and a+l ( > azB 
z- =z-= f(x) (say) 

e=O 

from which ~1) may obtain 

a% a$1 
ax= 

-$f(x-pz), r - f(x-Pz) 

whhlch satisfy the boundary conditions at s = 0. 

iIsving obtained a general solution to equation (19) we now have enough 
information to solve the difYorentljl equation for $2a In two dimensions I.e. 

a+, 2 
-Mz$--(V$,)2- (y-l)M*~V$, . 

. . . (22) 

On substituting the first order solutions from equations (21) we get 

a242a a2ti2a 
p*--- = _ d+(y+l~ 

3x2 az2 P2 
f(x-pz) f'(x-pz) (23) 

with boundary conditions from equation (11). 

- 47 - 



Appendix 1 

i.e. 

e=O z=o 

with 

+ *a = 0 for x - pz < 0 . 

If we tramfor~~ equation (23) to (u,v) coordinates such that 
u=x- @z and v = x + &z we obtain 

2 
a +2e 
auav= - 25 (y+l) f(u) f'(u) 

4p4 

the solution of which is 

(24) 

(25) 

+2s = - $ (y+') px+j2 (x+pz) + F,(X+pz) + F2(x'pz) 

. . . (26) 

where F, and F2 are arbitrary functions. 

i.e. 
The differential equation for $2b in txo dimensions 

B 
2 ""42b "'@2b ---=o 

ax2 az2 
(27) 

may be solved in a similar way, the solution of shioh is 

'2b = 6,(x+@) + E2(x+e) (28) 

where E, and I32 are arbitrary functions xith boundary conditions from 
equation (12) 

with 

= - "B as2 ~Z=O 

%!b = 0 for x - pz < 0 . (29) 
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Now en UfYerentiating 
w get 

F,(X) = 0 

Apgentux 1 

the solutions and applying the boundary oond.iiSo~~~ 

F;(x) = ~(y+l,(~)(~)x+~-~(Y+l)](, 

a+2 
'P&J oontribution ta the pressure ooef'f%i.ent from $2 is dependent en 
a$2E% %?3 

x=ax+ax and this may be obtained from equations (26), (28) and (30) 

i.e. 

a%!a M4 
ax' (y+l) f (x-pz) f' (x+2) (x+pz) - - 

813~ 
:r+11 I.&pz)l 2 + Fp+Z) 

and 

a@2b -= 
ax E$x -pz) 

a+, $0 that since WI require o?iLy T on the wing s~Taoe and all tenn.3 .%I% 
already of second order me obtain 

and 

. a%h 
( ) 

d2% 
ax = --z -. 

z=z B B ax* 

(34) 

(32) 
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Appendix 1 

Although for the present application we requ~~re only it is 

of interest to determine the pressure coefficient computed on the wing 
surface to second order accuracy for a two dimensiord. wing 

i.e. 

C 
P = - 2 (2)z=, - 2 (s)*zzB - 2 (il-yZZZB (33) 

and since 

a% ( > dzB a233 
XT 

= -- 
Z=Z 

; f(x-psg) = 

B 

-; -g-f z*z+ . . . 

we obtain 

C %? 
P 

= $ -.&-’ 40 c 2- d+(y+l) a% 2 

28 I( ) z- + . . . (34) 

which agrees with the result obtained by Buscmann from simple wave theory. 
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APmmJlM 2 

DETERXIIUTION OF FROM SLJJNDER T%XORY IN TERMS OF THE DIE%%IQXE 
Z=Z B 

IN POTENTIAL BETWJXEM NOT-SO-TIIIM-WIIIIJC 'THXORY .4ND THIN WING 

Let 'pT(x,y,z) be the velocity potentid when obtained from slender thin 
wing theory and $x,y, ) z be the velocity potential when obtained from slender 
not-so-thin wing theory, then we rnw write for smell .z and small (z-e,), 

T&'Y,Z) = 
"pT 

'pTb'Y,O) + z F ( > + . . . 
z=o 

qx,Y,z) = (PB(X'Y,ZB) + b-zg) + . . . (36) 
Z=Z n 

by a Teylor expansion, where zB is the location of the body surf&e above the 
z = 0 plane. 

Now Cooke8 defines Acp es 

VB(%Y,ZB) - 'pTh,o) = A'P 

and by comparing the slender theory approximation to the equations for $2b 
w?th those solved by Cooke we have 

qBP,(x,Y,z) - (PT(X'Y,Z) = & - (38) 

Hence from equations (35) to (38) we have 

%b 
azB = A(P-z~z (39) 

eince (>),;, e,na ($)zzzB m;y both be replaod by 2 to the or&a. of 

oocuraoy required. 

- 21 - 



Appendix 2 

On differentiating equation (39) with respect to x we have 

a% ax= k (Acp) - zD % - (2)' . 
ax2 

.~&,ted in Snglmd for Her Wqesty's Stat+one7y Office by 
the Royal Aircraft Ertablrshxnent, Pamtnso~h. W.f.60.K.Y. 

(40) 
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