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SUMMARY 

A symmetrically tapered wing of aspect ratio 4 and taper ratio & 
with streamwise tips describes simple harmonic oscillations of low frequency 
in supersonio flow. Pitching and heaving derivatives are evaluated to first 
order in frequency, on the basis of lmearised thin-wing theory, for Mach 
numbers in the range I*017 6 M < 2~50. Comparisons are made with oscillatory 
strip theory and steady sonic theory. 

I .  Introduction 

The aerodynamic forces acting on oscillating wings of hexagonal 
planform are considered on the basis of linearised tb-wing theory in 
R. & !d.J298'. To first order in frequency, the exact aerodynamic loadang is 
formulated in Ref.1 for wrngs describing smple harmonic pitching oscillations. 
The formulae of Ref.1 apply to hexagonal vnngs having supersonIc, or sonic, 
leading and trailing edges; an additional lower llmlt on Mach number is 
imposed by the condition that the two tLp regions are non-interactmg. 

In this report stability derivatives are evaluated for a wing 
planform of aspect ratio 4 7~1th stresnwlse tips and a symmetrical taper of 

. 5 ratlo K . This planform IS included in experimental programmes for pltohing 
and heaving derivatives at transonio and supersonIc Mach numbers up to 2.8. 
The present calculations provide some results by lmear~zed theory for 
supersonic Mach numbers in the range I.017 to 2.50. For the lowest Mach 
numbers, linearised theory does not apply to wings of practical thickness 
ratio and other non-linear effects wiL1 arIse 1~1 the experiments; then the 
theoretical derivatives are not expected to agree with the measured values, 
but should be regarded as the first stage of a semi-empirical procedure. 

2./ 
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2. Evaluation of Derivatives 

A symmetrically tapered wing with streamwise tips is classtiled zn 
Ref.1 as case (iii); expressIons for the lift and pitching-moment derivatives 
for low frequency pitchvrg oscillations are formulated xn Section 3 of that 
report. The leading and trailing e$ges of the wing are supersonic or sonic 
when p tan h 3 1; that is, p > F for the wing planform defined in Table 1. 
In the present report, solutioqs are evaluated for the eight Mach numbers 
corresponding to /3 = [M’ - I]’ = 1 A, ++, Fr 5, 3, $9 99 5 * The values g, 4 
correspond to the two particular cases where the planform is divided 
conveniently by the Mach lines from the wing apex, as shown in Fig.1. At the 
lowest Mach number of I*017 when the leading and trailing edges are sonic, 
the condition for non-interactmg tips in equation (20) of Ref.1 is still 
satisfied. 

The pitching derivatives CS, 46, me, IJIB are defined according 

to the notation of Ref.1. Thus, for pitching oscillations of angular frequency 
w and amplitude 8s about an axis hoc, downstream of the wing apex, 

where 

Pitching moment about s.xls hoc, , 

= pJJ:s c,[mg + IV0 “~1 e,e iwt 

co = root chord 

s = area of wxng planform 

I 

. 

"0 = frequency parameter = wc,/U~ 

. . . (1) 

The pitching derivatives can be expressed in terms of ho and the pitching 
and heavxng derivatives corresponding to the reference axis h, = 0, I.e., 

heho) = d,(o) - Wz(0) 

Ct)(h,) = 4,(O) - h&;(O) 
. . . (2) 

me(ho) = me(O) + h,[tg(0) - mZ(0)l - ham, 

mi(ho) = m;(O) + h,[Ci(O) - m;(O)] - h",e;(O) 

J 
Here, the heaving derivatives &s(O), L;(O), m,(O), m;(O) are defined by 

equation (1) with h, = 0 and B. replaced by (2,/c,,), the amplitude of 
the heaving oscillation. To first order III frequency parameter v. , these 
derivatives are given by the relations 
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es(o) = mp) = 0 
e;(o) = e,(o) 

1 . . . (3) 

m;(O) = me(O) J 
The pitching derivatives Co(O), e;(O), m,(O), m;(O) are 

expressed, in equation (29) of Ref.1, as the sum of integrals of the velocity 
potential functions FmJ (m = 0 and 1) over each region J = A, B . . . H 

on the half-wmg. The regions of integration J which occur m the present 
calculations are defined for four Mach numbers in Fig.1. The formulae for 
F mJ corresponding to supersonic and sonic leading-edges are presented in 

respective Appendices B and C of Ref.1. In this note, the pitching 
derxvatives for h, = 0 were evaluated for each parlxular Mach number by 
integrating analytically the appropriate functions FmJ over the regions J 
of the half-wing. The values of these pitching derivatives are tabulated in 
Table 2 for the eight Mach numbers in the range I.017 G M Q 2.462. 

The root chord o,, 1s used for the definitaon of the derivatives 
in equation (1). Howexer, the derivatives are often req_uired III terms of the 
geometric mean chord c or the aerodynamic mean chord c whxh are defined 
in equation (49) of Ref.1. Each pitching derivative can be converted to any 
reference length d, say, by multiplying by the appropriate factor in the 
following table. 

The conversion factors correspondxng to d =: and : are given in Table 1. 

3. Discussxon of Results 

Variation of the stabxllty derivatives over the Mach number range 
1.017 6 M d 2.462 IS shown zn Flgs.2 to 8. The calculatedllftand 
pitching moment derlvatlves for the mid-chord pltchlng axis ho = 0.5 are 
plotted against Mach number in Figs.2 to 6. The CUPV~S drawnthroughthe 
calculated values are suggested by mterpolation, but may be inaccurate for 
the lower values of M. From Table 2 it can be seen that the variation of 
the stability derivatives with Mach number decreases rapidly 111 the range 
1.250 d M 6 2.462. This IS illustrated in Fxg.3, where values of the lxft 
derlvatxve &d are plotted against Mach number. The variation of the 

damping derivative -m; with axis position IS shown m Flg.7 for M d I.25 
and m Fig.8 for M 2 1.25. The varmtxon of -m; wi<h h, becomes less 
marked as Mach number x~creases. 
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The use of the two-dimensional supersonic solution (Ref.2, 
Section 5.3) on a strip-theory basis leads to ample formitae for the 
evaluation of stability derivatives. In the case of a planform with 
streammse tips and symmetrical taper, the pltchmg derivatives for the 
mid-chord axis h, = O-5 are as follows:- 

2 

eel = a 
r 

1 c 

( ) 

2 

( 

l+r+? 
CF, = -F c, = ---$ 

l+T > 

me = 0 

. . . (4) 

where T = tip chord/root chord = A . Values of these derivatives are shown 
in F1gs.2 to 6 for M a l-15. For the present planform of moderate aspect 
ratlo and taper ratio, strip theory gives a useful rough estimate of all 
four derivatives at M = l-25. For M > 2, it is found that strip theory 
gives a famly good approximation to the patching derivatives; for ho = 0 
the stiffness derivatives from strip theory are within l+$ of the exact-theory 
values, while the corresponding discrepancies in the damping derivatives are 
within $$. The variation of -mF, with axis position h, is shown 3.n Fig.8 

to be a satisfactory approximation to the exact theoretical curves for 
M a 1.803. 

At M=l, the stabdity derivatives LO and me can be determined 
by linearized theory for steady sonic flow3. For a symmetrically tapered wing 
with streamwise tips of aspect ratio A, the stiffness derivatives referred 
to mid-chord axis are obtained as 

. . . (5) 

Values of 8, and mg for the present planform at M = 1, are plotted m 
Figs.2 and 5 and con-elate satisfactorily with those for the lowest supersonic 
Mach number. 

In Fig.7, the damping derivative -me is plotted against axis 

position h, for the four values of M = 1.017, d.057, l-118 ad 1.250. 

There/ 
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There is considerable variation of -mi, with h, , especially at the lower 

Mach numbers. When M = l-017, negative damping only appears for pitching 
axes near the wing apex. As M mcreases, the corresponding axis position 
for zero damping mcwes rapidly downstream to about mid-chord; for axis 
positions forward of this the magnitude of the negative damping decreases 
rapidly as M increases from i-057. The results show a similar trend to 
those in Fig.lO(a) of Ref.1 for another symmetrically taperedwlng 
(A = 4.33, T = 0.266). As M increases above l-25, in Fig.8, negative 
damping tends to disappear. By equations (2) to (4), strip theory gives 

0.6006 
-El' = 8 

B 
"'z") + hi (;) . . . (6) 

which is always positive when M is greater than 1.576. Thus, from Fig.8 
it is seen that exact theory gives positive damping for all axis positions 
when M P 1.505, whereas from equation (6) strip theory predicts some 
negative damping in the range I.505 6 M $ l-576. 
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Table I 

Defmition of Symmetrically Tapered Wrng 

Semi-span/root chord = +$ 

Tip chord/root chord = T = 5 

Semi-apex angle = h = 79.380 

Aspect ratio = A = 4 

co/F = 1.3750 , (0,/C)" = 1~8906 

co/c= = I.3134 , (co/~)" = 1.7251 

Table 2 

Stability Derivatives for F'itchmg Axis h, = 0 

M 

1 ‘017 

I.057 

1.118 

I.250 

I.505 

I.803 

2.125 

2.462 

3.707 -10.152 

3.718 - 6.514 

3.169 - 2.443 

2.363 - 0.235 

1.661 0.384 

1.273 0.445 

I.030 O-417 

0.864 0.376 

“z = 0 

4. s = e, 

-m e 

O-956 -0.513 

1.522 -3.328 

I.457 -1.437 

I.139 -0.160 

0.815 0.221 

0.629 0.263 

0.511 0.248 

oh29 0.224 

m = 0 
e 

m. = 
z me 

DR 

D 310.33/1/wr..30 K4 11l.34 XL/CL 
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