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Theoretical Stabaility Derivatives for a Symmetrically
Tapered Wing at Low Supersonic Spe=ds
Doris B. Lehrian, B.Sc. and Gillian Smart

SUMMARY

A symmetrically tapered wing of aspect ratio 4 and taper ratio-fr

with streamwise tips describes simple harmonic oscillations of low frequency
in supersonic flow., Pitching and heaving derivatives are evaluated to first
order in frequency, on the basis of linearized thin-wing theory, for Mach
mumbers in the range 1017 < ¥ < 2.50, Comparisons are made with oscillatory
strip theory and steady sonic theory.

1. Introduction

The aerodynamic forces acting on oscillating wings of hexagonal
planform are considered on the basis of linearized thin-wing theory in
R. & M.52981. To first order in frequency, the exact aerodynamic loadang is
formulated in Ref.1 for wings describing simple harmonic pitching oscillations.
The formulae of Ref.1 apply to hexagonal wings having supersonic, or sonigc,
leadang and trailing edges; an additional lower limit on Mach number is
imposed by the condition that the two tip regions are non-interacting.

In this report stability derivatives are evaluated for a wing
planform of aspect ratio L4 with streamwise tips and a symmetrical taper of

ratio f} . This planform 1s included in experimental programmes for pitching

and heaving derivatives at transonic and supersonic Mach numbers up to 2-8.
The present calculations provide some results by linearized theory for
supersonic Mach numbers in the range 1:017 to 2:50. For the lowest Mach
numbers, linearized theory does not apply to wings of practical thickness
ratic and other non-linear effects will arise in the experiments; then the
theoretical derivatives are not expected to agree with the measured values,
but should be regarded as the first stage of a semi-empirical procedure.
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2. Evaluation of Derivatives

A symmetrically tapered wing with streamwise tips is c¢lassified in
Ref.4 as case (1ii); expressions for the 1ift and pitching-moment derivatives
for low frequency pitching oscillations are formulated in Section 3 of that
report. The leading and trailing %dges of the wing are supersonic or sonic
when £ tan A 2 1; that is, 2 35 for the wing planform defined in Table 1.
In the present report, solutions are evaluated for the eight Mach numbers

corresponding to £ = [M® - 1] = &, &, £, 3, 2 3 45, 2 . The values ol

33’
correspond to the two particular cases where the planform is divided
conveniently by the Mach lines from the wing apex, as shown in Fig.1. At the
lowest Mach number of 4:017 when the leading and trailing edges are sonic,
the condition for non-interacting tips in equation (20) of Ref.1 is still

satisfied.
The pitching derivatives &6, 85, g, Wy are defined according

to the notation of Ref.q1. Thus, for pitching oscillations of angular frequency
w and amplitude O, about an axis hye, downstream of the wing apex,

Lift = pUssle, + woaé]eoemt
Pitching moment about axis hgc, ; . ees (1)
= pU3s co[me + 1, mé] eoeith
where ¢, = root chord ]
5 = area of wing planform y
vV, = frequency parameter = wco/Ug J

The pitching derivatives can be expressed in terms of h0 and the pitching

and heaving derivatives corresponding to the reference axis h, = 0, 1.e.,

-y

£4(h)) = £4(0) - ot (0)

ey(n,) = £4(0) - hoty(0)

. e (2)
me(ho) = me(O) + ho[&e(O) - mZ(O)] - hgsz(o)
mé(ho) = mé(O) + ho[sé(o) - m%(O)] - h%&é(o)

A
Here, the heaving derivatives &Z(O), &;(O), mz(O), mé(o) are defined by

equation (1) with h, = O and 6, replaced by (z,/c,), the amplitude of
o] [s] ] 0

the heaving oscillation. To first order in frequency parameter u, , these
derivatives are given by the relations

¢,(0)/
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&Z(o) = mz(O) = 0
&;(O) = &e(o) r eee (3)
mé(O) = me(O) J

The pitching derivatives 66(0), Eé(O), me(O), Mé(O) are

expressed, in equation (29) of Ref.1, as the sum of integrals of the velocity
potential functions FmJ (m = O and 1) over each region J =4, B ... H

on the half-wing. The regions of integration J which cccur in the present
calculations are defined for four Mach numbers in Fig.1. The formulae for

FmJ corresponding to supersonic and sonic leading-edges are presented in

respective Appendices B and C of Ref.1., In this note, the pitching
derivatives for hg = O were evaluated for each particular Mach number by

integrating analytically the appropriate functions FmJ over the regions J

of the half-wing. The values of these pitching derivatives are tabulated in
Table 2 for the eight Mach numbers in the range 1:017 < M g 2-462,

The root chord c¢, 15 used for the definition of the derivatives

in equation (1). However, the derivatives are often required in terms of the
geometric mean chord ¢ or the aerodynamic mean chord ¢ which are defined
in equation (49) of Ref.1., BEach pitching derivative can be converted to any
reference length d, say, by multiplying by the appropriate factor in the
following table.

2/ &é mg mé

1 ¢,/d c,/a (c,/a)?

The conversion factors corresponding to d = ¢ and ¢ are given in Table 1.

3. Discussion of Results

Variation of the stabalaity deravatives over the Mach number range
1017 < M s 2°462 1s shown an Figs.2 to 8. The calculated 1ift and
pitching moment derivatives for the mid-chord pitching axas hg = 0*5 are
plotted against Mach number in Figs.2 to 6. The curves drawn through the
calculated values are suggested by interpolation, but may be inaccurate for
the lower values of M. From Table 2 it can be seen that the variation of
the stability derivatives with Mach number decreases rapidly in the range
1250 ¢ M g 2+462. This 15 1llustrated in Fag.3, where values of the 1ift
deravatave &6 are plotted against Mach number. The variation of the

damping derivative -m3  with axis position 1s shown in Fig.7 for M < 1-25

-

and in Fig.8 for M > 1-25. The variation of -mg with h, becomes less

marked as Mach number increases.

The/
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The use of the two-dimensional supersonic solution (Ref.2,
Section 5.3) on a strip-theory basis leads to simple formulae for the
evaluation of stability derivatives. In the case of a planform with
streamwise tips and symmetrical taper, the pitching derivatives for the
mid-chord axis h, = 0*5 are as follows:-

W |

(5]
e
I
I
|
TN

g eoe (&)

mg = C

LN e
mE = = 1+
® 12( g® )

J

5
11 °
in Figs.2 to 6 for M > 1-15. For the present planform of moderate aspect
ratio and taper ratio, strip theory gives a useful rough estimate of all

four derivatives at M = 4-25. For M > 2, it is found that strip theory
gives a f'airly good approximation to the pitching derivatives; for ho = 0

the stiffness derivatives from strip theory are within 41% of the exact-theory
values, while the corresponding discrepancies in the damping derivatives are
within 3%. The variation of -mg Wlth axis position h, is shown in Fig.8

where 7T = tip chord/root chord = Values of these derivatives are shown

to be a satisfuctory approximation to the exact theoretical curves for
M 2 1 '803.

At M =1, the stability derivatives 66 and mg can be determined

by linearized theory for steady sonic flowj. For g symmetrically tapered wing
with streamwise tips of aspect ratio A, the stiffness derivatives referred
to mid-chord axis are obtained as

1
&3 = 2 A
. asn (5)
_ 1
my = o ma(1 + 27)

Values of 458 and By for the present planform at M = 1, are plotted an

Figs.2 and 5 and correlate satisfactorily with those for the lowest supersonic
Mach number.

In Fig.7, the damping derivative -mé is plotted against axis
position h 2 for the four values of M = 1-017, 1.057, 1.118 and 1-250.

There/
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There is considerable variation of -3 with h, , especially at the lower

Mach numbers. When M = 1017, negative damping only appears for pitching
axes near the wing apex. As M increases, the corresponding axis position
for zero damping moves rapidly downstream to about mid-chord; for axis
positions forward of this the magnitude of the negative damping decreases
rapidly as M increases from 1.057. The results show a similar trend to
those in Fig.10(a) of Ref.1 for another symmetrically tapered wing

(A =433, 7 =0:266). As M increases above 1:25, in Fig.8, negative
damping tends to disappear. By equations (2) to (&), strip theory gives

0°6006 0+4812 2 07614 2
g = (T Y (22T e (D) e
g g 54 p* B

which is always positive when M is greater than 1+576. Thus, from Fig.8
it is seen that exact theory gives positive damping for all axis positions
when M > 1.505, whereas from equation (6) strip theory predicts some
negative damping in the range 1°505 < M < 1576,

Acknowledgement

Some of the numerical results given 1n this report were calculated
by Mrs. S. Lucas of the Aerodynamics Division, N.P.L.

References
No. Author(s) Title, etc.
1 Doris E. Lehrian Calculation of stability derivatives

for tapered waings of hexagonal planform
oscillating 1n a supersonic stream,
AR.C. R, & M.3298. September, 1960.

2 J. W. Males The potential theory of unsteady
supersonic flow.
Cambridge University Press, 1959.

3 K. W. Mangier Calculation of the pressure distribution

over a wing at sonic speeds.
A.R.C. R. & M.2888. September, 1951.

Table 1 /



DR

-6 -

Table

1

Definition of Symmetrically Tapered Wing

Semi~-span/root chord

Tip chord/root chord

[
o]

-
'8

=

11

Semi-apex angle = A = 79-38°
Aspect ratio = A = L
co/C = 13750 , (co/C)° = 1-8906
cg/c = 1°313% , (c/E)? = 1.7251
Table 2
Stability Derivatives for Pitching Axis h, = 0
M &e &é ~mg —mg
1-017 3707 -10+152 0+956 -0-513
1-057 3-718 - 6-514 1-522 ~3+328
1-118 3169 - 2443 1457 -1:437
1250 2.363 - 0-235 14139 ~0-160
1505 1.661 0-384 0.815 0.221
1.803 1.273 0445 0.629 0.263
2-125 1.030 0.4147 0511 0.248
2462 0-864 0.376 0.429 0.224
£ = o m = 0]
z zZ
5; = f.’re my = Mg

D 31083/1/Wt.80 K4 11/64 YL/CL




M=1-057

Division of halt—wing by Mach lines into regions A,B----H
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FIG.3
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