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SUMMARY

The note presents 20 power spectra of the veriical component cof atmose
pheric turbulence and 12 power spectra of ihe horizontal component measured on a
Canberra aircraft while flying at low altaitude, The spectra relate to various
types of terrain in U,K, and N. Africa, Comparative spectra are given for
different heights above ground withan the height band 200 to 1000 ft. Some
infermation is given on the associated weteorclogrcal conditicns,

The results are discussed briefly with a view to generslising the basic
shape of the spectra for the purpese of prediciing fatigue lcads., Comparison
1s made with proposed analytical expressions defaning the basic shape,
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1 INTRODUCT ION

The ncte presents power spectra cf the vertical component of atmospheric
turbulence obtained from measurements mede on an aircraft while flying in the
lowest 1000 ft of the atmosphere®, In some cascs power specira of the horizental
component of turbulence in the direction of flight are included. The range of
wavelength covered exterds from 50 to 8000 f't.

The spectra, which were obtained during an experimental investigation into
power spectral metheds of determining gust loads an aircraft, were net intended
to form a comprehensive set of data on their own, but rather to supplement more
extensive work going on an this faeld '3, They do, however, indicate scme
interesting trends = particuiarly with regard to the variation of spectral shape
with heights They are also of interest in ac much as they provide a direct
comparigsan of atmespheric turbulence in temperale and sub-tropical condaticns an
U.K. and N, sfrica respectively.

In order tc use power speciral metheds for determaning gust loads it is
first necessary to specify the power sopectrum of atmospheric turbulence in
general terms, preferably in as simple a form as possible. With thas purpose in
mind consideration 18 given to the reduction of the experamental power speclra
to a common form and an examinaticn is mnade of the fit of curves derived from
analytaical expressicns, some of which are in currcent useh.

The nete is confined to informticn on aimespheric turbulence, Infeormation
was also obtained on the resulling response of the aircraft in terms beth of
acceleration power spectre and of counts of acceleration levels exceeded. It is
thus pessable to ctudy the relation between the turbulence input and the aircraft
respense expressed in varacus foerms. It is propesed te treat this matter in a
separate ncte,

2 CUTLILIE OF . LTHOD

The aircraf't used was a standard Canberra B6., The velocities of the
at.ospheric airflow were measured in flight by the "direct method" in which the
velocity is determined from differences between the airflow past the aircraft
and the aircraft metaions relative to the pround, The velocity of airtlow along
the normal, fore-and-aft and lateral flight axes of the aircrafl't was measured by
means of a nose~probe with pressure scnsing corifices at 1ts heed (see Figs.?
and 2}. Lateral moasurements were not, however, analysed owing to suspected
inaccuracies in the gorrections associated with the Dutch roll, The motions of
the aircraf't were measured by free and rate gyros and by accelerometers, the
signals from which were integrated numerically to give velocity., Further details
of' the instrumentation and methed of mecasurement are given in Appendix 1,

3 FLIGHT CONDITIONS

The duraticn of sample chescn was 25 manutes (in a Few cases it was cut te
2 minutes) which corresponded to a run of 4% statute mles for flight at

*A physical descraption of the power spectrum of atmespheric {urbulence and
definitions of terms rciating to its prepertics will be found in Ref.i.
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300 kts E.A.S., the basic speed used for the trials, The wmeasurements were made
over set tracks in U.K. and N. Africa, the aircraft being flown at approximately
constant height abeve ground. Tor cormparative purpeses the heaghts chosen were
either 200, 400 and 600 ft above ground to correspend Lo "Operalion Swifter®
helghts5, or 200, 500 and 1000 f+t cerresponding to ihe heighis of the turbulence
measurements on lhe Cardingtonballoon cable®, In one flight the heaight was
reduced to 100 f't cver the flal desert., Further details of the method of
measurement are given in Appendix 2, Details of the flight conditions are
listed in Table 1.

31 Topography

The runs in U.XK, were mostly made in the vicinity of Cardington over
moderately flat agricultural land; the track avoided towns and viallages but
passed over occasiocnal farms and trees. Runs made in Sussex covered the same
type of agricultural terrain but the ground was considerably more rolling and
hilly. Runs in E, Anglia were over flat fernland and farming country.

In N. Africa runs were made from il Adem either over flat deserl or over
hilly desert near the ccast at Derna; the hilly desert was of rather an unusual
formaticn consisting of a plateau sharply eroded Ly wadas: these wadis were
mostly too narrew for the aircraft to follow their contour.

Runs were also made from Idris over flat cultivated desert. The N, African
runs were over selected parts of the routes used in "Operation Swnfter".

3,2 Meteorological condations

Observations of surface wind-speed and dairection, cleoud type and amount,
visibalaty, screen temperalure and relatave humdily, as made on an heourly basis
for synoptic charts, were cbtained for the hours closest to the time of flight
from the nearest metecrclogical staticns. These obzervations are listed an
Table 2. Besides these cbacrvations, cutside air lemperature was recorded on
the aircraf't i1n continucus trace form throughoul the runs. An extra "tcemperature
run" at 1000 £t was included when not already part of the programme, so that an
average lanse rate could be determined fiem the diffcrences in temperature bhetween
adjacent runs at 200 £t and 1000 £§., The averages ocbtained are listed in Table 2,

L DATA NEDUCTION

It is netl propesced to discuss this matter in detail. The oraiginal
recordings, which were in continucus itrace form, were digitised at discrete
intervals of 1/20 sec. After combining and integrating tae daigitised information
to give the required velocities of airflow, the power spectra were cbtained as
the Fourier transfomms of the auto-correlation functions, the computation being
carried out on DEUCE and uercury. A4 number of processes were included to refine
the accuracy of the spectral estimates; these included "pre-whitening" and
“hannlng”7. Forty estimates were obtained with a resolution of 0.2% c.pes. The
analysis was then repeated wath the digitised readings added in non-overlapping
groups of four to cbtain more refained data at the longer wavelengths. The
resolution was then 0.0625 C.p.S.



Lot Accuracy of meihod

The accuracy of the method 1= discussed in Appendix 3. TIor wavelengths
less than 2500 £t the 90,0 conf'idence lamits determined on the lines suggested
by Tukey7 lie 26% to 29% gi1ther side of the estimated power spectra., At
longer wavelengths the accuracy detericrates.

Check comparisons at darferent arrcraft airspeeds sheowed that the power
spectra diad nel vary signifaicantly with aaircraft speed; this indicales that the
meticns of the azircraft, which have different characterisitics at different
speeds, had been successfully eliminated. Checks were also made that the
resporise of the aircraft to the movement of the controls by the pilot was not
affecting the spectra. A check compariscn made between spectra cobtained from
concurrent measurements on the aircraf't and on a captive balloen cable showed
reasonable agreement6. These checks are discussed more fully in Appendix 3.

5 RESULTS

5e1 Presentation of results

Estamates for the individual power spectra of the vertical and horizontal
components of turbulence are plotted in I'igs.? to 41. Log-log paper 1is used 1in
conf ormity with usual aercnautical practice. The esiimates show a certain amount
of scatter and faired curves have been drawn for comparative purpcses. Compara-
tive spectra for dafferent heights, terrain and wind dairection are shown in
Figs.12 1c 19. Vertical and horazontal cemponents of turbulence are compared in
Figs.20 to 23, Spectra for lhe aircraft flown "hands on" and "stick free" are
compared in l'ig.2L and spectra for different airspeeds in TMag.25.

Characteristics c¢f' the turbulence cbtainable from the power spectra such
as the root mean square velccity, the scale parameber of the turbulence and the
index of the frequency wita which the powsr speclral density decreases at short
wavelengths are listed in Table 3. The rens. values are obtained by integrating
the power spectra over the waveband 10,000 to 10 ft. Scme extrapolaticn has
been necessary lo cover this waveband, which has been proposed as a standard for
the evaluation of r.n.s. velociiies of turbulence. The extrapolation has
invelved only small addations of the order of 3% to the rem.s. values for the
waveband covered by the weasurements. The scale parancter of the turbulence £
is determined from the formula £ = u/2x nos vwhere U 1s the mean airsvecd and n

15 the frequency at wiich the preduct of the frequency and ihe power spectral
density 15 a maxamum'Y.  In physical terms the scale parameter as defaned here
is the most common wavelength or eddy size divaded by 2%, Faired curves were
used both in the delermination of £ and of the freguency index p with which the
spectral density decreases at short wavelengtns; original spectral density
estimates were used in the determinetion of the r.m.s. values,

*In a number of cases, particularly when the spectra refer to norizontal
turbulence, no maximum occurs within the waveband covered by the spectrum,
implying that the scale parameter exceeds 8000/2x = 1300 ft.



In the dascussion which follows it 1s sometimes convenient tec treat the
ordinate of the power spectra as defining the energy content of the turbulence.
The reason underlying this usage is that the crdinate 1s propertional to the
square of the velocity and hence to the energy if the density is fixed.

5.2 Normalised spectra

5.2,1 Variation of basic shape with height

In order to study the basic shape of the spectra with a view to
generalisation, the spectra have been normalised by reducing them to a common
r.meS. value of 1 ft/sec. The spectra are classiafied in 3 classes of height:-
200 ft, 500 ft (thas includes spectra obtained at 400 and 600 £) and 1000 ft.
Considering first the vertical component (Fig.26) 1t 15 ummediately apparent
that there is a change in basic shape between 200 £t and 4000 ft, the spectra
relating to 500 f{ lying in between and to some extent overlapping the
other two classes, At long wavelengths the spectral density decreases with
decreasing heaght and at short wavelengths i1t increases, the crossover
occurring at a wavelength of about 1500 ft. In general the effect of such a
shift of energy from long to short wavelength would be to increase the nunber
of gust loads predicted by the power spectral method, the exact amount depending
on the freguency characterastics of the aircraft. Rough calculations indicate
that the amount 1s lakely to be significant and that a generalised form of power
spectrum which varies with height is desarable,

The effect of height on the horizontal component of turbulence in the
direction of flight i1s simrlar to that on the vertical component but much less
marked (F1g.27). 7The need here for a generalised form of spectrum which takes
account of height 1s less apparent,

He2e2 Comparison of basic shape of U,K. and N. Af'rican spectra

At any one height the nommalased spectra of the vertical cemponent of
turbulence are remarkably alike despite the variation in {opegraphical and
meteorological conditions under which they were cbtained (see Fa .26}, The
agreement is particularly clese for the U.K. spectra at 1000 £t (spectra were not
obtained at 1000 £t in N, Africa). At 500 ft slight differences can be detected
between U,K. and N. African spectra: the lotter are just starting to flatten at
long wavelengths in a manner similar to spectra at 200 £t. (The only N. African
spectra of this class which does not show this flattening relates to 600 ft.)

At 200 £t the effect of terrain and its interacticn with the metecrological
envaironment is becoming evident and the spectra are more variable in shape
particularly at long wavelengths. Within this variation it is impossible to
distinguish betwecn U.K. and N, African spectra.

5.2¢3% Compariscn with analytical expressions

Pigs., 28 to 30 show spectra of the vertical component of turbulence derived
from two analytical expressions compared with the experimental results. The band
covered by the normalised experimental spectra 1s shown hatched., The first
analytical expression which is in current use 1s?



Gi L{1+53 0? Lz)
G(Q) = N (1)
(1 + 07 L7)

where L the scale length i1s taken equal to the height above ground, {1 as the
angular wave numbcr (= 2%/M where X\ 13 the wavelength), and the expression is
normalised to glve a r.m,s. value of 1 ft/sec gver the same waveband as the
exverimental results,.

The secend analytical expression

2,52 Gi L tanh QL

G(Q) - (QL)5/5

(2)

18 rewritten here in a form slightly dafferent from the criginal suggested hy
Henry1o. Scale lengths of 620, 5,0 and 160 f{ have been chosen to give a good
fat at heights of 4000, 500 and 200 1 respectzvely, and the expression is
normalised as above,

It 1s apoarent that the sharply defined "lmee" of expression (1) 18 not in
general gustified by experamental results although 1t can provide a goed f1t 1n
a few cases; nor 15 there any Justification for the frequency index of -2 with
which the expressicn decreases at short wavelengths, Averape values of ihe
slopes defining the freauency index of the experunental spectra arei-

It above | Average Range Standard
ground | slope g devialion
i
1000 't i ~1e65 -tebh3 to -1,80 0,16
500 ft i "'1.68 "1.27 ‘tO “"1‘92 O'Zj
200 r& | .58 11,20 40 -2.05 | 0.32

These values are much nearer to ihe andex of ~5/35 of Kolmogoroff's sumilarity
theory than to an index cf -Z.

Expression (2) gives o much better fit than expression (1) both because
the curvature is more gradual and because it conforms with a frequency index of
~5/%, This expression may nct prove altogether satisfactory though, since 1t
gives 1ncreasimgly large values of spectral dencity at long wavelengths contrary
to expectation, Further experimenial cbservations of spectral density at
longer wavelengths are required to resolve this matter.

Houbolt,, Steaner and Pratt11 have suggested a modified version of
EXPression (15 such that the spectral density varies with a frequency index of
~-5/3 at short wavelengths, At long wavclenglhs the expression 1s, however,
st1ll very like expression (1) with the same rather pronounced "knec", which
does not in general {1t the experimental results.

-8 -



It 15 not consadered worthlwhile to discuss the fitting of analytical
curves to the power spectra of the horizontal component of turbulence, since
these spectra obey a simple freguency law throughout the waveband ¢bserved. The
result 1s that any analyticsl ourve, which decreases with an appropriate fre-
quency index at short wavelengths, can be made to fit if the scale of turbulence
is chosen long encugh,

5.3 Unnecrmalised spectra

So far only ncrmalised spectra nave been considered; a more complete
picture 1s obtained 1f the spectra are considered in their unnormalised form
which contains information on the intensity or r.m.s. velacity of the turbulence
a3 well as on the basic shape.

5.3.1 Comparison of vertical and horizontal turbulence

The relation between the power spectra of the vertical and of the herizon-
tal component of turbulence 1s strongly dependent on neight above ground.
Figs.20 to 22 show a remerksbly similar pattern in the effect of height on this
relation. At a height of 1000 ft the verticel spectra lie above the horizontal;
at 500 f't they tend to come together at long wavelengths, and al 200 ft end
below they cross over. Since the r.m,s. velocities are determined mainly by the
long wavelength energy this effect 1s reflected in a dccrease in the ratio of
s to S, with decreasing height, where 8 and s, are respectively the r.m.s.

velocities of the vertical and norizontal components of turbulence. This ratio
changes from a value greater than 1 at 100C £t to less than 1 at 200 't
(see Fig.31).

In general, the scale parameter of the horazontal component of turbulence
is greater than that of the yertacal component, This is in agreement with
earlier experimental results®, Quantitative comparison of the scale parameters
is not possible since that of the horizontal component 1s too large to be
determined from the experamental observations. For turbulence over flat and
slightly hilly terrain the scale parsmeter of the vertical component approxi-
mates to the height abovc ground, except for same cne-third of the spectra when
it 1s too large to be determinate (see Fig.32)s There 1s no apparent explana-
tion for these large scales in terms of the environmental parameters: the
influence of convective activity on the scale of turbulence is, however,
suspected to be complex12. Over hilly desert the scalc of the vertical
compenent is somewhat larger than over flat or slightly hilly terrain
{see Dig. 32},

5,342 Effect of environmentsl parameters

The emphasis sc far has been on the simlarity of spectra at any one
height. At 200 ft, however, some variation due io environmental parameters is
becaming apparent and the effect at this height of certain parameters on the
unnormalised spectra 18 now discussed. It should be noted that the cases
considered are few in number and results are therefore only indicative,



(1) Terrain roughness

Fig.17 shows comparative spectra of the vertical ccmponent of
turbulence for hilly desect and flat desert, As maght be expected the hilly
desert spectrum is the mere severe with a r.m.s. velocity of 3.8 ft/sec compared
with 2.2 ft/sec for the flat deserts The incrcase in spectral density cccurs at
all wavelengthe but 1s most marked at long wavelengths. Other spectra cbtained
over the hially desert also show high values of spectral density at long wave-
lengths (sec Fage13).

(1;) Wind directign relative to flight path

Comparative spectra from runs made up~ and downwind in L. Anglia, surface
wind 17 kts, and n Sussex, surface wind 14 kts, show lattle difference due to
wind directicn (Figs.18 and 19). The vertical spectra would have lain even
closer together if ground speed instead of airspeed had been used in converting
from time to space media. This suggests that the freguency characteristics of
the vertical compenent of turbulence are influenced by the spacing of tepo-
graphical features, Differences are too small and data tco few, however, for
this resalt to be conclusive,

Crosswind spectra on the other hand show a marked difference from up- and
downwind spectra (sce Fig.19 - results feor &, Anglia only since low flying
restricticns prevented crosswind runs in Sussex)s The energy at long wave-
lengths 1s considerably less for the crosswind spectra., It would be unwise,
however, to attribute this to the <ffect of wind direction without further
evidence; the runs were of necessity made cver different tracks and, although
the terrain was chosen to be as hemegenecus as possible, this ccould have
influenced the results.

6 CONCLUSIONS

Power specira of atmespheric turbulence have been obtained from aircraf't
measurcments in the heaght band 200 to 1000 't abeve ground, over varicus types
of terrain in U.K. and ¥, Africas, and in cenditions of neutral to moderate
atmospheric 1nstability; a sludy of thesec specira leads to the fellowing
conclusions i-

6.1 Norrmlised specira

(2) The basic shape of the pover specira cf the vertical component of
turbulence varies with height above greund, the preportion of long wave
(> 1500 {'t) to short wave energy decreasing with decreasing hoight. The
herizontal compenent shows the came trend but te a much less marxed degreec.

(ii) At any one height there 1s consaderable similarity in the basic
shape of the spectra despite the variation of tepographical and meteorological
conditions. Generalisation of the shapc of the spectrum in a form which takes
account of height appears practical. Variation in the basic shape of the
spectrum of the vertical component, due to the effect cf environmental parameters,
1s becoming more apparent, however, as the height decreases to 200 f't,

- 0 -



Appendix 3

two methods was well within the confiadence lamits. This as not a conclusive
check, however, since same differences, especially at long wavelengths, maght
have been expected; small dafferences were in fact indicated such as have been
obgerved by earlier exverimenters when comparing fixed pcint spectra with spectra
obtained travelling through the medaum?3,

INSTRU.IDNTAL AND STATISTICAL ACCURACY

The above exercises provide a rough cverall chieck of the eccuracy of the
method. Particular sources of inasccuracy are now discussed in rather more
detail,

Inaccuracies of two kinds are likely to occur: inaccuracies in the measure-
ments due to transducer, recorder and trace-reader lumtations and statistical
1naccuracies due to the fanite duration of the sample. Both kinds of inaccuracy
tend to be greatest at the low frequency end of the spectra. If wavelengths
longer than 2500 £t are excluded then the accuracy of measurement is probably
well within 104, while the 90% confidence limits determined on the lines
suggested by Tukey lie 265% to 29% either side of the estiamated power spectra.

At longer wavelengths 1t 1s dafficult to assess the accuracy. Instrument
errors arise through gyre drift and small veriations in the ig datum level of
the accelerometer whiach accumilate when integrated. Another source of error is
that the sample length 1s somewhat short to justify the extension of the
analysis to such long wavclengths, Nevertheless the results at long wavelengths
appear to indicate trends in a region which 1s becceming of increasing anterest
as aircraft speeds increase, and they have therefore been included although
quantitatively they should be treated with reserve,
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£t/ sec root mean square velccity of turbulence over waveband « 10 0,
used in analytical representation.
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APPENDIX 1
INSTRUMENT ATION AND METHOD OF MEASUREMENT
INSTRULGENT AT TON

The velocity of the airflow relatave to the aircraft was measured by means
of a nose-probe mounted on a 10 ft boom, The head of the prcbe consisted of a
steel hemisphere with five pressure sensing orifices, the pressures frow which,
together with the pressure from a static ring, activated inductive dafferential
pressure transducers, S.E. Laboratory type 70, fitted behind the orifices
(see F1g.2). The pressure transducers were Xept as cleose as pessible to the
orifices in order to minimise organ pipe rcseonances in the connecting tubes.

The accelerations of the aircraft at a peant near the aircraft c.g. were
measured with a Structures type 4 accelercmeter sensitive to nermel acceleraticn,
and with a specially designed combined accelerometer sensitive to lateral and
fore-and-aft accelerations., Lateral and fere-and-af't acceleraticns were,
nowever, found to be small and were not included an the analysis; nor were they
recorded excegt durang the early stages of the experiment. A standard type
IT 3-7-15, 10%/sec rate gyro was used to measure rate of patch and yaw and a
type IT 1-5-8 Pitch and Roll Indicator (free gyro) to measure angle of pitch,

This gyro was medafied so that the gravity erection could be switched off prior
to recording since it was thought that the erection device maght fced in spuricus
signals in turbulent conditions. Inatially a second gyro of special design, with
no pendulum erection, was used to check the IT 1-5-8 gyro.

Stendard methods of amplification and recording were used. Initially the
pressure iransducers were used in cenjunction with S.8. Laboratory modulators
but later they were used with Films and hquipment amplifiers, Signals were
recorded in centainuous trace fera on a i'1lms and Dquipment recerder and on a
Begudouin A135 recerder,

.l HOD §F MEASUREUENT

Meoasuremont of vertical turbulence

In deducing the vertical velocity of the bturbulent airflow account was
taken of the vertical translation of the aircraft and of the angle of pitch and
1ts rate of change. Means were provided for cerrecting beth for deflection of
the probe boom under 'g' and for oscallatory flexure of the beom; in practice
these corrections were found to be unnecessary, tne prcbe proving very stiff in
flexure, (natural still air frequency 36 c.p.s.). Rate of pitch was neglected
in the final analysis sance excluding this guantity made no signifacant
difference.

ifeasurement of herizontal turbulence

Although 1t was originally intended to obtain the power spectre of the
component of turbulence in the lateral directicn, this undertaking was
abandoned because of the prevalence of the Dutch roll. The yawing oScillations
in thas mode, which occurred at a frequency of about 1 cycle every 3% seconds
at an airspeed of 300 kts iL.A.8., produced such large differential pressures
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at the prebe tip that they dwarfed the required differential pressures from the
lateral turbulence. Although in theory a correction ceould have been made for
this effect, in practice it would have implied cbtaining the velccaty of the
turbulent axrflow as a small dafference of large quantities and the method was
considered invalid. Power spectra were obtained, hewever, for the herizontal
component of turbulence along the fore-and-aft axis of the aircraft by means of
a sensitive pitot-static arrangement feeding into an anductave pressure trans-
ducer. The large signal due to the steady airspecd was balanced cut clectrically
and only changes in airspeed recorded. It was assumed that all changes were due
to variation in the horizontal airflow and that the aircraft ground speed
remained sensibly constant. DBecause of the inertia of the aircraf't this assump-
tion as gustified at all but very low frequencies such as that of the phugoid
motion. At this frequency, which 1s of the order of 1 cycle every 50 seconds at
300 kts E,A.S., sea level, there 1s likely to be considerable error; the
corresponding wavelength of 25,000 f't, however, laies well outside the waveband
of B000 ft to 50 ft censidered in this ncte., Special steps were taken in the
analysis to minimise the spuricus daffusion of energy from very long wavelengths
into the waveband of interest,
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FLIGHT CONLITIONS

Measurements were taken during each run whale the aircraft was {lown on a
constant headang and at as near a constant awirspeed as pessible. Heaght above
ground was malntained approximately constant with the aid of the radio alti-
meter: in cases cf hilly or undulaling terrain this anvelved some manoeuvring
in order to follew the contours of the ground. No special instructions were
given to the pilot as regards centrol movements except for a few runs over
moderately flat terrain when he was asked to remove his hands and feet {rcm the
controls altogether. It was found that, provaded the aircraft was carefully
trimmed beforehand, 1t could be flown hands and feet off quite successfully fer
the entire run with only very occasional teuches on the stick to steady any
phugoid motion which developed.

When comparative spectra were obtained at different heights the runs
were repeated in the same darectaion over the same track in quick succession to
minimise variation in metcorological conditiens, Three such runs could be made
in about 20 minutes, Comparative runs upvind, downwind and crosswind were ade
as far as possible over homeogencous terrain; these runs could be carried out in
somewhat guicker successiaon than those at dafferent heighis., The comparative
runs for flat and hally desert were made within 30 manutes of each other.

Although most runs were made nt 300 kts E.A.S., on one cccasicn runs were
repcated at airspecds of 200, 300, 400 and 475 kts E.A.S, The duration in time
of the sample was kept constanl so that the runs at the higher speeds covered
mere terrain than those at lower specds. The ferrain was flat desert and
appeared to be homozeneccus so that the sane turbulence spectrum was expected
Trom all runs,
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APPRNDIX 3

ACCURASY OF METHOD

Checks were made that the spectra of wvertical turbulence did not vary
significantly either with airspeed - to some citent this checks that the
motions of the aircraft are being eliminated - or with the amount of control
exercised by the pilot.

EPFECT (F VARYING ATRSPEED

F1g.25 shows comparative pcwer spectra of the vertical component of
turbulence obtained at different airspeeds. The agreement between spectra 1s on
the whole quite good and within the confadence limits for wavelengths of less
than 2500 ft. At larger wavelengths, where rather more discrepancy might be
expected due Lo the finatce lengths of the somples the run at LOO kts has given
ratner high values of spectral density compared with the other runs, This does
not appear tc be due to a systematic errer with airspeed since the long wavew-
length values at 75 kts are in close agreement witn these at 200 and 300 kis.
Teken 4s a whole these results indicate that the meticns of the aarcraft are
being successfully elimnated.

EFFECT OF PILCT'S CCUTROL VWVECENTS

In theory ihe rcspense of the aarcraft due to the pileot's movements of the
controls sheuld not affect the turbulence spectra., Because of possible
inaccuracics, however, in the measurement of the aircraft motions and its
analytical treatment, 1t was considersd advisable tc check that the palot was
not feeding encrgy into the spectra. Couparative spectra, relating to flight
in which the aircrasft was flown "hands on" and "stick free" are shewn in
Pigse2h{a) and (b). There 1s lattle evideace to suggest that the pilot is
contributing in a positive scnse teo the turbulence spectra; at 500 £t the "hands
on" and "hands of f" spectra are ca.arable, while at 1000 £t the "stick free"
specirum shows a slightly greater cnergy content at all wavelengihs than the
"hands on" spectrum. This may be duc to incomplete ecliminaticen of the rather
marked phugcid metian developed during the "stick frec” run, Althecugh the wave-
length of this motien lies well outside the range of antcrest, some energy from
this waveleongth could, despite preventative processes in the analysis, have
diffused inte the waveband of interest.

In conclusion it appears that the pilot 1s not fceding in any significant
energy 1o the power spectra of the turbulence; on the contrary by checking the
phugoid motion 1t 1s probable that he i1s improving the accuracy of the
turbulence measurcments.

COMPARISON CF ATRCRAWT AND BALLOON CABLE INEASUREMENTS

When comparative measurcments of atmespneric turbulence were made on a
captive ballocn cable at Cardington and on the Canberra aircraf't flying past the
cable, agrecment between the power spectra of vertical turbulence ~btained by the
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two methods was well within the confiadence lamits. This as not a conclusive
check, however, since same differences, especially at long wavelengths, maght
have been expected; small dafferences were in fact indicated such as have been
obgerved by earlier exverimenters when comparing fixed pcint spectra with spectra
obtained travelling through the medaum?3,

INSTRU.IDNTAL AND STATISTICAL ACCURACY

The above exercises provide a rough cverall chieck of the eccuracy of the
method. Particular sources of inasccuracy are now discussed in rather more
detail,

Inaccuracies of two kinds are likely to occur: inaccuracies in the measure-
ments due to transducer, recorder and trace-reader lumtations and statistical
1naccuracies due to the fanite duration of the sample. Both kinds of inaccuracy
tend to be greatest at the low frequency end of the spectra. If wavelengths
longer than 2500 £t are excluded then the accuracy of measurement is probably
well within 104, while the 90% confidence limits determined on the lines
suggested by Tukey lie 265% to 29% either side of the estiamated power spectra.

At longer wavelengths 1t 1s dafficult to assess the accuracy. Instrument
errors arise through gyre drift and small veriations in the ig datum level of
the accelerometer whiach accumilate when integrated. Another source of error is
that the sample length 1s somewhat short to justify the extension of the
analysis to such long wavclengths, Nevertheless the results at long wavelengths
appear to indicate trends in a region which 1s becceming of increasing anterest
as aircraft speeds increase, and they have therefore been included although
quantitatively they should be treated with reserve,
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TaBLE 1 = Flight conditicons

Surface wvind

Flight & I'efsht | Alrspeed (DIrection Lapse
Date Run No, Location Terrain e kts of run pirection | Speed rate Ragarks
a.g8.1. | B.AS, | degrees degrees xgs | C000 fT
25/ 5160 685 0z |E1 “den 1111y desery 200 300 bl 113 210 17 1.25-6,2 Cenparative runs over=
05 Flat desert 200 00 276 260 15 2.5 flat and hiil,; desert
2916760 77 01 |E1l Aden Flat desert 200 200 276 350 16 2.5 Comparative runs at
o2 200 300 t » f i L airspeads ]
03 200 LOO ft n " n ! g
o4 200 | 475 " " " { =
t 0
27/7/60 0 02 |Cardington | Flat farmiznd 500 300 2h6 220 05 3.2 Coanarative runs at ¢ 2
03 1000 " U u U " 3 heiints i
ol 200 n 1 " n " i3
ot
0/ 8150 aly 01 |C1 Aden #1111y desert 200 300 2L6 370 b 245 Comparatlve runs at i 2
a2 100 n n n n n 3 helignts i g
05 600 ) T [ i n ] !—l
21/9/€0 99 02 {Susse4 Rolling farmland 200 300 S0 320 11 Jel3 Upuind and downwind |
a3 0 " 270 " " " runs, iiind 1
slightly across \
tracic, o
12/ 10/60 106 01 [Cardington | Flat farmland 1000 300 2L0 320 13 3.5 Runs at 3 heights )
02 500 " " " n " into «ind and
03 200 " " " " o crossJgind, Into g
o4 1600 " 305 " n " wind and eraoss— 3
65 500 " n " r " wind runs not §
06 200 n " * Bl " strictly comparable o F
Q>
Qf 7461 152 02 |Idris cultivatea desert 200 300 lot dot 06 3,75 Conparative runs at § =
03 100 " recorded | recorded i 5 hefgnts i\ - B
ol 00 " 3,10 o
ol ]
14/ 8761 160 01 |Sussex Rolling farmland 1000 300 270 a7 12 Hot Cemparative runs & 5
02 1000 " 0 ] " regorded | thands on! and RE’:
03 20 " 2% " " retick freef Cu
oL, 500 " 90 " W '%
1878161 162 01 |E. Ainglia }Flct fenland 200 306 230 280 i7 ot Directlion of runs E
02 200 " 100 " n recorded |relative to wind
03 200 " 010 " il varied .




TABLE 2 - Meteorological observations

Surface wind

|
3 R . Sereen . Lapse Nearest
P%lght N " Visibality tempera- Hum;glty rate CloudaiEOEZEEtype meteorclogical
Os pee irection Nailis ture oC (] OC/_,‘ 006 ft station
kts degrees
6l 02 15 330 1M1 2 &2 1.25-6.25% | 3/8 alto cu Cyrene
05 13 360 11 28 56 2.5% 1/8 alto cu El Adem
77 16 350 5% 30 30 2.8 N2l El Adem
90 5 220 10 18 73 2.8 3/8 cu increasing to | Cardington
6/8 cu 2800
7/8 n2lto stratus
25,000’
= 14 330 20 28 73 3.5 3/8 strato cu E1l Adem
99 11 320 11 13 72 3.75 1/8 cu 1800! Gatwick
1/3 alto cu 18,000'
106 13/14 320 8 11 S 2.45 2/8 cu increasaing to | Cardangton
L/8 cu 3000
/8 stratc cu 5000
L/8 alto cu 25,000
152 6 Not Not Not 2.75 N1l idrais
recorded recorded recorded | decreasing
to 3.1
160 12 270 22 17 63 Not 6/8 cu 2500" Gatwick
recorded 6/8 strato cu
22,000!
162 1% 280 ! 25 16 63 Not 2/8 cu 3000 Coningsby &
| recorded | 7/8 strato cu 4500' | Waterbeach

*Spot readings of temperature only.




TABLL 3 - Power spectra characteristics

yAnasoquing “jusuysiiqpisy 1 0404 10A0y ay3
0 Kiau01D3s 5,K152foN 49) L0 PUOISUT Ut PRIuUN

-

A

N¥EE
g 8o u‘f

Vertical component of Horazontal corponent | . .
turbulence of turbulence Ratio | Flight conditions
; 5 Height 'Surfece | ¥ind speed at
(¢ t}gec) ( fg) P (¢ t;lsle ) ¢ f‘f;’) b, E—E Location [f1 egl' wind he 1ght‘ of run
0 kis £4/sec
6,02 3,81 700 | -2,03 E L1 Adem 200 ¢ 17
05 2.19 70 1 -2.00 200 | 45
77.02 3,13 200 | -2.02 El Adenm 200 16
0,02 2.78 >4300 | =1.92 Cardington 500 5 10.02
03 2.94 >1300 | ~1.77 1000 " 10,03
Ol 2.8 200 | -1.83 ! 200 n 10.02
94,01 | 4.3 150 | -1.80 | El Adem 200 13
02 168 LBO | -1.76 00 o
05 LE—-§}-|- 1000 -1 . 92 600 "
2,02 2.97 80 | -1,39 Sussex 200 11
03 2.93 130 | -1.38 200 n
106.01 3.23 >1300 | =1, 2.70 >1300 | -1,52 1 1,20 | Cardirgton | 100C |13/1L 31.3
02 342 600 | -1.59 2.78 " " 1,23 500 n 29.58
03 3431 200 | ~1.46 3.27 " 1.3 1 0,89 200 " 27.4
oh 3.86 950 | -4 .80 2.72 " ~1.68| 1.46 1000 n 33,1
05 3.10 >1300 { -1.55 2.87 H ~1.65 | 4.08 500 " 31.2
06 1.95 70 | -1.20 2.55 " -1.401 C.73 200 " 28.5
152,02 330 270 | -1.59 2.59 " -1.481 1.29 | Idris 200 6
03 2,64 95 | -1.36 2.9l " 1,531 0.,8C 100 n
ol 3.87 500 | =1.76 2,91 " =1.571 1.33 500 "
160.02 2.81 >1300 | -1.53 Sussex 1000 12
OL| 2.80 10O | ~1.27 s0 | v
162,01 2.30 >1300 { 1.2 | 3.34 " -1.45! C.57 | E. Anglia 200 f 17
02 2.81 51300 | -1.24 3419 " ~1.42 1 0.88 " | u
03, 2.0 320 | =1.40 2.78 " -1.33 " 0,72 "o "
! ; . ; i
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POWER SPECTRA OF LOW LEVEL ATMOSPHERIC TURBULENCE MEASURED FROM AN
AIRCRAFT, Burns, A. April, 1963,

The note presentg 30 power gpectra of the vertical component of atmos-~
pheric turbulence and 12 power spectra of the horizontal component measured
on a Canberra alreraft while flying at low altitude, The spectra relate to
various types of terraln in UK. and N, Afrlca, Comparative spectra are
given for different helighta above ground within the helght band 200 to
1000 ft, Some nformation is glven on the assoclated meteorclogical
conditlions,

The results are a:scussed briefly with a view to generallsing the basle
shape of the spectra for the purpose of medicting fatigue loads. Compari-
son is made with proposed analytical expressions deflining the basic shape,
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POWER SPECTRA OF LOW LEVEL ATMOGPHERIC TURBULENCE MEASURED FROM AN
AIRCRAFT, Burns, A. April, 1963,

The note presents 30 power spectra of the vertical component of atmos-
pherie turbulence and 12 power spectira of the horizontal component measured
oh a Canberra alreraft while rlying at low altitude, The gpectra relate to
varicus types of terrain in U.K, and N, Africa. Comparative spectra are
given for different helghts above groimd within the helght band 200 to
1000 ft, Some informatlon 18 given on the associated meteorcleoglcal
conditions.

The results are discussed driefly with a view to generalising the basic
st.ape of the spectra for the purpose of predicting fatigue loads. Compari=-
son {s made with proposed analytical expressions defining the basic shape.
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PCWER SPECTRA OF LOW LEVEL ATMOSPHERIC TURBULENCE MEASURED FROM AN
AIRCRAFT, Burns, A. April, 1963,

The note presents 30 power spectra of the vertical component of atmos-
pherie turbulence and 12 power apectra of the horizontal component measured
on a Canberra alrcratt while tlying at low altitude, The spectra relate to
various types of terrain in U,K, and N, Africa, Comparatlve specira are
glven for difterent heights above ground within the helight band 200 to
1000 ft. Some informaticn is given on the assocliated meteorological
conditions,

The results are discussed briefly with & view to generallsing the basic
shape of the spectra for the purpose of predicting fatigue loads, Compari-
son is made with proposed snalytical expresslions defining the basic shape.
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