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SUMMARY

A review 1s presented of previous theoretical work faor the
prediction of shook-tube rumning times. A new analysis is then introduced
which attempts to avoid most of the restrictive assumptions of the previous
analyses which are shown to lead to large errors particularly at low shock
Mach numbers. The new analysis and the previous analyses are compared
with one another and with the existing experimental data., Further
experimental work is presented and compared in conjunction with the existing
experimental data with the results of the previous analyses and the present
analysis.

It is shown that there is a distinet improvement in the prediction
of shock-tube running times when the present analysis is used, particularly
at low initial channel pressures and low shock Mach numbers,

Suggestions are finally included for the extension of the
experimental work, and for the modification of the present analysis to
include such phenomena as real-gas effects, shock-wave attenuation, and
contact~region mixing.
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1. Introduction

It ias a matter of experience that the running time in a shock
tube can be much less than the predictions of simple theory based on an
jdeal (i,e, inviscid, non-conducting) perfect gas model, The rumning time
at some distance froam the diaphragm we define to be the time between the
arrival of the primary shock wave and that of the contact surface, or region,
at that distance from the diaphragm., In this statement we infer nothing
about the variation of the usual gas parametera during this time,

We shall later refer to gas models which are non-ideal, and by
this we mean gas models which allow for viscosity and heat conduction only.
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The term 'real gas' is applied only to gas models which allow for the

changes of molecular structure brought about by dissociation, ionization, ete.
Thus a perfect gas is understood to refer to & gas model in which the latter
'real-gas effects’' are not considered.

Various attempts have been made to account for the variation
between simple theory and sxperiment. Henshall! has estimated the corrections
needed for a real-gas model, and has shown, for example, that for a sheck
Mach number of 20 in air, the running time might be expected to be about 50%
of the predictions of simple theory. However, for a shock Mach number of 6
in air, the discrepancy between simple theory and Henshall's real-gas
calculations is approximately 156, whereas experimenters have reported running
times of the order of 70% less than the predictions of simple theory for
shock Mach numbers much lower than 6 for conditions where real-gas effects
are known to be negligibly small, Hence it appears that for low shock Mach
numbers at least, the solution to the rumning-time problem lies elsewhere.

More recently the attempts to predict shock-tube running times have
been directed to explaining the difference between experiment and ideal-gas
theory by appeal to boundary-layer theory. There are indeed many strong
indications that the explanation lies in the non~ideal properties of the
gases, Duff2, for example, has shown experimentally that the running Yime
can depend strongly on the initial channel pressure, and in fact the
experimental evidence shows a nearly linear relationship between the latter
two quantities for chamnel pressures less than 5 mm Hg with & shock Mach
number of 1+6 in argon. Duff then argues on dimensional grounds that for a
constant shock Mach number, and assuming that & laminar boundary layer
develops behind the shock, one may expect the ratio of rumning time to
initial channel pressure to be constant. This, then, leads to the linear
relationship between rumnning time and initial channel pressure suggested by
Duff's experiments. Duff further infers from investigations by Chabal and
Emrich? on boundary-layer transition in shock tubes, that the boundary layers
would be entirely laminar under the experimental conditions used by him.
Furthermore, work by Mairels? suggested that in certain cases the boundary
layers could be as much as 50% of the channel radius in thickness, This
suggests that a considerable portion of the shocked gas 1s entrained in the
boundary layer, and subsequently leaks past the contact surface because of
the velocity defect across the boundary layer. In this manner, it is
suggested, & considerable amount of the shocked gas mass flow is denied to
the region between shock wave and contact surface, so decreasging the
effective rumning time. This mechanism is now firmly established as
providing, at least in part, an explanation of the cbserved dependence of
running time on initial channel pressure, channel geometry, and so on.
Calculatlons wh%ch rely on this mechanism have been performed by Aniersonh,
Roshko? , Hooker”, and it is an essential part of the present analysis,

A1l haVE found at least qualitative agreement between their calculations and
experiment, However, guantitetively, previous investigators have not found
as good agreement between theory and experiment as would be desired.

In all the analyses, including the present one, the basic physical
model assumes & shock wave of constant strength propagating into the
stationary gas in the channel. The inviscid core of the shocked gas 1s
assumed to be terminated by a contact surface which remains planar, The
analyses are then concerned with estimating the loss of mass flow from the
shocked gas region which occurs at the contact surface, The validity of
this physical model is discussed later in Section 9 in the light of the
available experimental date.
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The analyses of Roshko and Hooker are outlined in Section 2, the
more important of the restrictions inherent in these analyses being briefly
discussed in Section 4 in the comparison between these analyses and the present
analysis. The present analysis is developed in Section 3 for both laminar
and turbulent boundary layers. Various corrections to the present analysis @re
outlined in Sections 6 and 7 to account for the effects of the finite bursting
time of the diaphragm and turbulent transition in the boundary-layer flow.
Hooker's analysis and the present analysia are compared in Section 8 with the

experimental data, including the data obtained in the present investigation
a3 outlined in Section 5,

2. A Review of the previous Theoretical Work

Anderson’t was the first worker to apply boundary-layer theory to the
better prediction of shock tube running times. His anaslysis is confined to
the model involving a turbulent boundary layer: this is perhaps valid for
normal shcock~-tube usage where moderately high initial channel pressures are
chosen, but mest of the experimental results for running time have been obtained
with low initial channel pressures and the boundary layer is consequently
predominantly laminar, However, he applied his work to only one specific case
of a shock of fixed Mach number, travelling intc a gas of only one initial
ehannel pressure. Furthermgre, we mey note that his method is essentially
similar to that of Roshko's® more general analysis made for a laminar boundary
layer.

Roshko's® solution is developed to be applicable to all tube
geometries, all initial channel pressures, and all shock Mach numbers. However,
it does involve some approximations whicg result in poor quantitative agreement
between theory and experiment. Hooker's™ anpalysis follows exactly the same
method as Roshke's, but adds corrective terms to those cbtained by Roshko,
thus improving the agreement between theory and experament. Since the two
methods are nearly identical we shall outline Hooker's method, indicating as
we proceed the steps at which Hooker's and Roshko's analyses differ.

Referring to Fig. 1, it is seen that Hooker and Roshko have
considered the flow relative to contact-surface fixed co-ordinates, the contact~
surface velocity in laboratory fixed co-ordinates being assumed to be the ideal
value vy . However, we note that in fact the contact surface moves faster than
U, , &as 1ls evident in the running times being shorter than those predicted by
ideal-flow theory. This assumption therefare introcduces one source of
quantitative error between theory and experiment,

Hooker writes the mass-flow rate m, moving past the contact surface
via the boundary layer as

Ibl
he = 27(73,—-/ elyhu(y)dy = 2xa(py.w5%) eee (2.1)

where p(y) and u(y) are the density and velocity respectively in the boundary
layer, and are functions of the distance from the wall ¥y, ¥y denoting the
outer edge of the boundary layer. The parameter & is the radius (or hydraulic
radius) of the chamnnel, whilst suffix w refers to conditions evaluated at the
channel walls, The equation (2.1) may be taken to define &%, the mass-flow
thickness of the boundary layer at the contact surface. In cbtaining the

integral/
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integral term of equation (2.1), Hooker has assumed that yb1/e << 1, and
this introduces a second restriction to his model.

Hooker now states that the boundary-layer mass-flow thickness &%
may be obtained by adapting an expression given in Ref, 8 to give

63 = ﬁ(“w-s/Pw'“ﬂ)% ... (2.2)

where the parameter £ 1is a constant for s particular shock Mach number, The
parameter ¢ 1s the boundary-layer development length up to the contact surface,
?r the distince at any instant of time between shock wave and contact surface

see Fig. 1).

From expressions @.1) and (2.2)Hooker shows that f may be written as

= [t -5 [ {25 1] e

where & 18 def'ined by

= by | 2 (e )]%- a

W/ (W) = (). cee (2.4)

It is to be noted that Ty, ia the density ratio across the shock wave whose
velocity in laboratory fixed co-ordinates is W, . The parameter x 1is the
distance behind the shock wave, The function f£(%) has been tabulated by
Mirela7, Zpl being the walue of Z evaluated at the edge of the boundary
layer.

Hooker notes that due to an error in transforming from contact-surface
fixed co~ordinates to shock fixed co-ordinates, Roshko obtained a different,
incorrect expression for g.

Hooker now writes that the mass contained between the shock wave and
the contact surface at any instant of time + 1s

£(t) yp1
m{t) ~ =a? pgé(t) + 2ra p(y,x)dy.dx . ves (2.5)
X=0 y=Q

In obtaining the expression (2.5) Hooker again assumes that Y /E << 1,
Roshko neglected the second, integral term in (2,5), which represents the mass
contained in the boundary layer between the shock wave and the contact surface.

The rate of change of mass flow between the shock wave and the contact
surface, cbtained by the differentiation with respect to time of equation (2.5),
mist be sgqual to the difference of the mass-flow rate through the shock wave
and the mass-flow rate out of the shocked gas region via the boundary layer at
the contact surface, Now assuming that at some stage the overall rate of change
of mass flow becomes zero, then the boundary-layer development length will have
reached a maximum value, {&pay, Say, and the running time subsequently will be

constant./
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constant, Using the transformation(2.4) Hooker shows that if one writes the
boundary-layer development length £ &as a ratio of £pax.

£
—_ = T ... (2.6)

&ma.x.

and the time taken, t, for this development as

wt e [ 1] = 2D

then X and T may be related by the expression

£(Zp1)
- 3X = [f(ébl)bi o J {tnﬁ—TE) + T2 2;:1) ] ... (2.8)

Hooker also shows that the maximum possible boundary-layer development length
£ can be expressed as

max,

a3

1o spay @ Prte
bpax., = — [ — . . ... (2.
L ( Pw) [Tpy-1]? Moy (2.9

Roshko, in neglecting the integral term mentioned previously, obteined the
relation for X and T,

1 1
-X = en(1-T%) + T2 cee (2.10)
Roshko, however, obtained the same expression for {£p.. -

Hence it is seen that Roshko's expression (2.10) represents a unique
curve for X and T, independent of shock Mach number, The dependence on
shock Mach number 1s then only implied in the expressions for &y,

Eequatlon (2.9)] and X through Ty, [equation (2.7)]. Hooker's expression
2.8 however, represents a set of curves for varigus shock Mach numbers, since
f(ztlj etc. are all dependent on shock Mach number,

It is to be noted that the analysis leading to the expression (2.3)
for B is based on the assumption that the boundary layer is similar in nature
to the flat-plate boundary layer with zero pressure gradient.

It is also seen that although Hooker's analysis is more comprehensive
than Roshko's analysis, both methods rely on epproximations such that as the
boundary layer thickens, these approximations became less valid and tend to lead
to overestimates of the rumming time. This may be seen more clearly by noting
that we may write the ratio £/¢p,, from (2,2) and (2.9) as

—i- = (i’%) . 4By [Taa-1F

Cpex. &

Clearly the ratic £/8p,, depends on shock Mach number, and for
a shock Mach rumber of 2 with y = 5/3, 1t is found that as £/fg.y - 1, then

5%
z
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However, for & shock Mach number of 6 with y = 5/3, it appears that
as 5/Zmax. -+ 1, then

QO #

1

65

fand

mi'on

Consequently it appears that as & - fpapy , the assumption of a
thin boundary layer is valid only for high shock Mach numbers, At the lower
shock Mach numbers the boundary layer may fill an appreciable part of the
channel and one may expect the above analysis to overestimate the running

time,

It is more nzeful to reduce the theoretical results into variables
which are readily measured experimentally, i.e. running time in terms of the
distence from the diaphragm.

Using the normal shock-wave mass-flow equation
ulsy = Wi(r?.i- 1)
equations (2,6) and (2.7) may be written as

T

£/tpax.

b4 W t/emax, Tas . eee (2.11)

Referring to Fig. 2, Hocker interprets this as

T = JE”/’6max.
X = (x' + &)/pax, Tos . (2.12)
Since W.t = x' + &,

Also, from the geometry of the (x',t) diagram, Hooker notes that
ihe running time +tg is

tp o= — . ve. (2.13)

This interpretation only assumes that the shock wave has constant speed, _
Roshko, however, further approximates by obtaining an underestimated value £
for the boundary-layer development length by writing

£ = ULt
Hence,

T = Efﬂmax.

X = x'/fpax, Tos.

It/
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It is seen that the above approximation of Roshko's becomes
progressively worse as the contact-surface velocity departs from w,. This
approximation is generally at its worst when the shock Mach number is low,
since at the higher shock Mach numbers wu, approaches W,, and the error for
£ > &pgx, 1is less important, Note that as & » €pax, s @accarding to the
analysis, the contact-surface velocity must approach W, .

For further details of the modifications by Hooker to Roshko's
initial analysis, the reader is referred to Ref.6. However, it is briefly
noted that the correlation between theory and experiment was greatly improved
by Hooker's geometrical interpretations of expressions{2.12) and (2,13), and
the retention of the integral term in expression (2,5). Yet even so, the
asymptotic approach of T -1 as X -+ o, or £ -+ &psx. shows conaiderable
disagreement with experiment for the lower shock Mach numbers. The reasons
for this will be discussed in Section 4 where Hooker's analysis is compared
with the present analysis,

3. The Present Anslvysis

3,1 General considerations

If we firstly assume only that the shock wave has constant speed,
then referring to Fig, 3, it is seen that as the boundary layer behind the
shock grows, the contact surface must accelerate to ensure continuity of mass

flow, Writing the contact-surface velocity as wy, we note that

w o= uf(x',t) vee (3.1.1)

and

il

u) W when x' =+t = 0.

Consequently, observations at a distance x' from the diaphragm
would reveal a running time +p and the boundary layer behind the shock would
have developed to some length x up to the contact surface. Now it follows
from the geometry of the (x',t) diagram of Fig., 3, that

X
tg = — vee (3.1.2)
LA
x' = x - x,
But,
E = tWi
Hence
x' = tWi - X, " e (3-103)

Hence, given any particular distance x' from the diaphragm, in order
to find the running time we only require to kmow the boundary-layer development
length =x, and the time taken for this development %,

A theoretical approach to the above boundary-layer problem has, in
part, been provided by Bernstein’., The latter's analysis proceeds by referring
to axes at rest relative to the shock, and calculates the boundary-layer

development/
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development length in terms of the transformed velocities in the inviscid core
of the channel flow. The problem entails modifying the conventional boundary-—
layer parameters, &%, 6, and H for the case of a moving wall. Because of
the velocity transformation involved in reducing the shock wave to rest, the
walls of the channel are now moving with speed W, relative to the shock fixed
axes,

3.2 The laminsr-boundary=-layer running-time analysis

Bemstein shows that for & laminar boundary layer, the development
length x may be related to the corresponding local inviscid core flow velocity
Ug, by the relationship,

a(x/a)

d(ue/ Ug 0)

w Yo
= Mg, RT, G-(-——-—) . ver (3.2,1)

Ug
The function G( —) is
U.eo

- Pe Qe
(- =)
He

G( Ug ) o Peop Yeq
e = . »

Ug

o

Pe. 1 T uy  ug/u aH
xl:(M-).(ﬁ+1+——z— _eo +lﬁa-1>:|.
Pe Ve 6 1o H  d(ug/ug)

eee (3.2.2)

The parameter f may be written as

TW 1 uw 2 1~w
9-072 I:O-AS + 0°55 — + 0°09 (y-1) Pr? M ( —- 1>:|
Te Ug

(- (Gl

e

e (3.2.3)

=l
1}

and
u,/u aH u Hi — H -1
e{eo = 1+(y—1)lfé+—-‘uﬁ—~—l:1-—_—(1+y—1]%)j|--—-j-'- 1T - —
R d(ue/ue o) (u1,.r ue)-1 H Hy

we (3.2.0)

Also note that

R = . san (3.2-5)
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Suffix e, refers to conditions immediately behind the shock wave, and these
may be celculated from the normel shock-wave relationships (see Appendix I).

Suffix w refers to conditions at the wall, and & 1s the hydraulic radius

of the channel.

_ Referring to the boundary-layer form parameter H, it is to be noted
that H denotes H evaluated for a moving wall, and suffix i refers to
Incompressible flow values,

It will be noted that there is no restriction on the boundary-layer
thickness, and that although there is no corrective term in the equation (3.2.3)
to account for the effects of pressure gradient on f, the pipe~flow momentum
equation which has been solved includes the effects of pressure gradients.

In order to provide a solution to the equations of Section 3.1, we
require the time taken for the boundary-layer development to take place, and
this may be written as

x
t:j
(3

Making use of equation (3.2.1) it follows that

dx
= . o e (5-2.6)
Ug

a " ue/ueo G Ug
t = . Rﬂ.Msitn.l.B d("—-) . ews (302.?)
U.eo 1 ue/‘l.leo ueo
It also follows from (3.2,1) and (3.2,7) that
x “ ue/ueo Ve
——_ = MsiTia ‘/‘ G'.d( —"""') *ea (302.8)
Ra y ueo
and
toug, w ue/ueo G Ug
— = My T, f . d( —-—) . .ee (3.2.9)
Ria ! ue/ﬁeo Ve,

Now although t is the actual time for the boundary layer to develop to a length
X, g, remains the gas velocity relative to the shock wave. Hence,

I

ue W U
= (Msi "'U;.ai)sd.-

Tt is shown in Appendix I, equation (A.1.1), that

+]

e X%l M%l + 1
g ) vee (3.2.10)
wo oyl
2 Mg

We/
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We mey now meke equations (3,1.2) and (3.1.3) non-dimensional faor

use with equations (3,2,8) and

(3.2.9) so that

x! tw, x toug Mg, a, x
R, & Re Ra R, & g R a
and
tp p 3 1
re Ra W
Hence,
trey 1 b
Ra Mg, Ra

Equations (3.2.8) and
University of London 'Mercury'

(3.2,9) have been integrated numerically on the
Computer to give:

100 x
— = X eee (3.2.11)
R, a
1041-‘.1160
— = T e (3.2,12)
Ra
8
T a T HS’. - X = X' LI ] (3.2.13)
U.eo
X
ﬁ--— = TR . - an (3.2.11")
S:I.
All these non-dimensional parameters, X, X', T, and T, are
evaluated as functions of ue/u and X' and Tp are plotted in Figs. 4a and

b for y = 7/5 end y = 5/3.

In the evaluation of

€0

By for the reduction of experimental data and

the prediction of the rumning time from theory 1t must be remembered that

5191E

ee. (3,2.15)

where/
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where suffix s refers to room temperature conditions, and p, 1is the initial
channel pressure,

3.3 The turbulent-boundary-layer running-time analysis

In his turbulent-boundary-layer analysis, Bernstein’ deduced a similar
relationship to (3.2.1) for x and u,.

2(x/3) R S B 7
o [&nain,:lz : F(:e_o) : cee (3.7.1)

Ug
The function F ( —-—) is

'u.eo

2/(n+1)

F( ue ) ueo 1 [ 1- (Peue/PeouEO)

ue 2J§ 2‘1.{-(!-13/“'9 0)

x[(l%-‘i) + ( P:::ZO -1 ) (ﬁ +1 - ue;ueo d(uquO) ):i . (3.3.2)

The parameter J may be written as

B o (2upfug) iy 7B N
5 - {(2‘;()_- ] E“:'(....-Q. (3.5.5)

P ™ Ug

“e/ueo af
Again , and R are given in (3,2.4) and {3,2.5).

H d(ue/ue 0)

Proceeding in the same manner as Section 3,2, it can be shown that

10t ue, " 2/(n#1) Ueflioo ue ( )
= 10A M ] . f . d ( "'_") = T [P 3-304
I{127(n+‘1 5; 8 *13 1 N e/ueo ueo

and

10'x o /(n+1) ue/Uey Ug i
Wg 10¢ ua%]z f P. d(-——) = X. vee (3.3.5)

1 Yeg
Similarly, we now define
L . T e (3.39)
R‘12/(11-1-1)-}‘; ve, 54
10° tpay X
If/(n‘”)g ) s, = T - the/ (3.3.7)
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The index n occurs throughout these equations since Bernstein
assumes & power-law velocity profile throughout the boundary layer, Although
the usual power-law assumption for steady flow is n = 7, work hy Martin!O
suggests that n = 5 may be a better approximation for the quasi-steady
shock~tube turbulent-boundary-layer problem, Consequently, equations (3.3.4)
and (3.3.5) have been integrated numerically using both power-law assumptions,
The constant ¢ in equation (3.3.3) is dependent on n, and has been taken to
be 6:20 for n=5 and 874 for n=7. A recovery factor of 0+89 has also
been assumed in calculating the density at the mean enthalpy, pp, and the
power-law temperature, viscosity relationship has been used so that w = 0°76.

The results of equations (3.3.6) and (3.3.7) are plotted in
Figs, ba-d, for y = 7/5 and y = 5/3.

L. A Comparison of the Present Analysis and Hooker's Analysis

Both the present analysis, assuming a laminar boundary layer, and
Hooker's analysis have been calculated for specific heat ratios of y = 7/5 and
and y = 5/3, The two enalyses are compared in Figs, 4& and 4b in terms of
the non-dimensional running time Tg and the corresponding non-dimensional
distance from the diaphragm X' wused in Section 3,2.

It is Immediately evident that for the low shock Mach numbers there
is considerable disagreement in the values of the asymptotes of TR between
the two analyses. For example, taking the extreme case of Mg = 1:6 and
y = 5/3 (Fig, 4b) it is seen that the asymptotic value of Tp according to
Hooker's anslysis is 2470, whereas the present analysis predicts an asymptote
of nearly one tenth of this value. Furthermore, the approach by X' +to the
asymptote is much more rapid in the present analysis, However, as the shock
Mach number increases, it is seen that the disagreement between the two theories
decreases,

The reasons for the varying discrepancies between the two analyses
appear to be twofold., Firstly, it must be noted that in carder to produce
the maximum possible running time, the inviscid core flow velocity must increase
from the ideal value of wy immediately behind the shock wave until the contact
surface is moving with the speed of the shock wave W, . This velocity increase
can be shown to be strongly dependent on shock Mach number. For example, for
& shock Mach number of 1+6, with y = 5/3, the fractional velocity change
(w, "lh)/%b required to produce a maximum possible running time is 1+12,
whereas for a shock Mach mumber of 6, with y = 5/3, the fractional velocity
change is only 0+37. This suggests that for the higher shock Mach numbers,
Hooker's analysis, relying as 1t does on the assumption that only small changes
in flow parameters occur, is more in keeping with the physical model, The
second point 1s that already menticned in Section 2, where it is shown that
at the higher shock Mach numbers the boundary layer occupies a much smaller
portion of the channel, Here again, Hooker's assumption of a thin boundary
layer is more appropriate to the physical model than it is for the lower shock
Mach numbers where the boundary layer is seen to be thick.

It is to be noted that otherwise the basic physical models far the
present analysis and the Roshko-Hooker analysis are very similar., In both
analyses a constant strength shock wave is assumed, generating a quagi-steady
boundery layer. However, the subsequent exercise then demands satisfying the
mass-Flow eguation in the shocked gas region and also the momentum eguation,
Bernstein's” analysis in fact solves these two equations simultaneously,
providing a solution which gives the variation of the inviscid core flow
velocity ue with the boundsry-layer development length x, The present
analysis is then concerned with calculating the time required for this

development/
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development to take place [cf. eguation (3,2.6)]. The Roshko-Hooker analysis
on the other hand only satisfies the mass flow equation, and in an approximate
form, The Bernstein analysis, however, does involve the assumption that the
value of the boundary-layer form parameter, H, may be taken to be the flat-
plate value, the argument being that H is insensitive to small variastions in
velocity profile. With the small pressure gradients involved this agsumption
is not likely to introduce significant errors.

The turbulent-boundary-layer analysis, obtained from equations
(3.3.6) and {3.3.7), is plotted in Figs, 5a - 4, for y = 7/5 and y = 5/3,
The turbulent-boundary-layer analysis camnot be compared with either the present
laminar-boundary-layer analysis or the Roshko-Hooker analysis in the X', Tg
plane since the parameter R, in the turbulent anelysis is raised to the power

2/(n+1).

It must be noted that although the behaviour of the steady compressible
laminar boundary layer is now fairly well understood, the behaviour of the
turbulent boundary layer is not so well defined., Consequently the use of
Bernstein'’s turbulent-boundary-layer analysis used in Section 3.3 is open to
gquestion, and the reader is directed to Bernstein's paper9 for further
discussion on this topic.

5. The Present Experimental Work

5.1 The apparatus

The channel of the shock tube used in the present investigation is
16 feet long and 1% inches square in internal cross-section. The channel haa
11 possible measuring stetions situated 1% feet apart which normally contain
barium titanate shock-wave detectors. The ocutput from these detectors could
be fed via thyratron trigger amplifiers to & Rank-Cintel decimicrosecond
chronometer and & Tektronix oscilloscops.

The draver used was 4 feet long and 3 inches 1,4, in section, the
driver pressures being measured with two Budenberg standard test gauges, one
reading G{2)400 p.s.i. gauge, the other reading O 50)2000 p.s.i. gauge. The
vacua uged in the chamnel were measured with two Wallace and Tiernan &bsolute
pressure gauges, one reading 0(0.5)100 mm Hg, the other reading 0(2)800 mm Hg.
For readings at high vacua an Edwards Pirani gauge was provided. A1l the
vacuum gauges were calibrated against an oil manocmeter,

The eontact-gurface detectors used in the investigation were those
degeribed by Bernstein12, and were simply glass rods with thin platinum films
baked onto the leading edges, and could be placed in any of the 11 measuring
stations, The films were supplied by constant current sources, the voltage
change produced by the heating of the platinum, when the shocked gas impinged
upon it, being fed through amplifiers to the cscilloscope.,

The diaphragm material used was Melinex, the diaphragm being
shattered by a plunger operated by a simple pawl mechanism.

5,2 The experimental results

A1l the running-time measurements were carried out in nitrogen,
the driver gas being hydrogen in the case of the Mg ~ 6 runs, and nitrogen for
the Mg = 3 runs, It was felt that the initial shock Mach mumber measured near
to the diaphragm might have more significance in the correlation with theory
than would the local shock Mach number,

Measurements/
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Measurements near the diaphragm were first obtained as & check
that the initial shock Mach number was close to either 3 or 6, Once the
channel and driver pressures were found to produce these initial shock Mach
numbers they were used throughout the subsequent experiments for the
particular initial channel pressure selected,

The raw resulis are presented in Figs., 6 - 9, It will be noted that
there is some scatter in the results, probably due to small variations in
driver and channel pressures and & varying quality in the bursting of the
diaphragms. The latter effect was minimised by daiscounting results where it
was seen that the diaphragm had not petalled cleanly. Since the more accurate
Wallace and Tiernan gauge was sensitive to ¥ mm Hg pressure changes, the
varying pressure effects were difficult to eradicate.

A limitation was imposed on the minimum channel pressure possible
for experimental measurements because of traiggering difficulties, For a
particular shock Mach number the size of the pulse given out by the barium
titanate transducers is proportional to the i1nitial channel pressure.
Consequently at the lowest pressures used (0-7 mrm, Hg) the sensitivity of the
trigger amplifiers was at a maximum, and the thyratrons then tended to be
triggered by stress waves in the channel walls due to the bursting diaphragm,
rather than by the shock wave,

6. A Correction for the Finite Bursting Time of the Diaphragm

It is known!? that the primary shock wave is nol 1nstantanecusly
generated at its full strength when the diaphragm begins to open. A conseguence
of the fainite bursting time of the diaphragm is that the shock wave accelerates
to approximately the strength indicated by simple theory through a series of
coalescing compression waves generaled at successive stages of the diaphragm's
cpening. A further consequence is that the contact surface accelerates from
rest over some finite time dependent on the diaphragm opening time. This
process is illustrated in Region A of Fig. 11. It 1s noted that in ihis region
there is considerable departure from the physical model used for the description
of running-time variations, This indicates that there might he some discrepancy
between the analysis and experiment at some small distance from the diaphragnm,
This, in fact, appears to be so, since the experimental curves of running-time
distribution along the channel of Figs. 6 -~ 9 show no indacation that the
experimental curve, if smoothly extrapolated, would pass through the origin,

Now if it is assumed that the shock wave and contact surface position
themselves in the (x',t) diagram without influence from the boundary layers also
generated in this process (this is reasonable since the whole flow field is
rapidly accelerating so that the boundary layers will be thin), then some
correction may be made to the analysis to allow for the finite bursting time of
the diaphragm.

It 18 seen from Fig., 11 that the model of the flow used in the
prediction of running time has an origin at 0', Here the shock-wave and contact-
surface trajectories, as observed at some station B, have been extrapolated
according to the present analysis to the point 0'. In other words, on the
basis of the measured running time at station B, the physical model gives the
origin of the shock wave and contact surface as being some distance, (X'A + OB),
from B. Consequently, it has been the practice in the experiments carried out
in the present investigation to measure the running time at some position
close to the diaphragm (but where the measured shock Mach number is that
predicted by simple theory, thus avoiding misleading running-time measurements
in region A), and then from the analysis of Section 3,2, calculating (x', + 0B).

Hence/
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Hence once x'p is known, it may then be applied to the predictions of running
time further along the channel, It is to be noted thet x'p should remain
constant, or nearly so, for one particular initisl pressure in driver and channel,
and one particular diaphragm thickness, provided the diaphragm always bursts

in the same clean manner,

It is to be noted that the correction x'3 may be positive or
negative as required, and that the method outlined above will subsequently be
referred to as laminar-boundary-layer analysis matching,

7. The Matching of Laminar- and Turbulent~Boundary-Tayer Running-Time Analyses

The analyses given in Sections 3.2 and 3,3 are based on boundary layers
which are either laminar or turbulent. It is of interest to examine the effect
on running time of tramnsition to turbulent boundary-layer flow, since transition
may have & marked effect on the running-time distributien along the channel.

On the agsumption that at some point in the growth of the laminar-
boundary-layer transition occurs, and subsequently moves with the shock velocity,
it is possible to match the two running-time analyses at the first occurrence

of transition, and compute the subsequent analytical running-time distribution
elong the channel,

An appeal to the quasi-steady flow model of Fig. 12a, where the shock
is at rest, shows that the inviscid core velocity, ue, is the same at either
side of the transition point 7, and that the virtual development length of
the turbulent boundary layer is a distance xr ahead of transition,

Examining the (x',t) plane of Fig., 12b, it s evident that there
must be continuity of rumning time through the transition point. That is to
say that the first particle set in motion by the shock wave experiences transition
at 7 and until then it has been at the extremity of a growing leminar boundary
layer; subsequently its trajectory is controlled by the growing turbulent
boundary layer. Consequently the contact surface desoribes the path Cf until
the point 7 is reached, whereafter the contact surface describes the path Cp.
It is also evident from Fig, 12b that the virtual origin of the turbulent
boundary layer is at Op, & distance x'r ahead of 7, (The reader is here
asked to note that the various symbols used in the subsequent argument are
defined in Fig, 12).

Assuming that the distance of the initial transition point 7 from
the diaphragm 1s =z, and 1s known, then the running time, tgp, at that point
is also known together with the corresponding value of ue/ueo. Consequently
x'p and tp_ may be calculated from the turbulent-boundary-~layer analysis,
rememberinthhat the value of ue/ueo is conserved through the transition
point 7. Hence the time 4 can now be caleculated since

t_l_ = tR_tRT . e (7-1)

With the assumption that the subsequent transition point remainsg at
a constant distance behind the shock wave, then it follows that +t; remains
constant for the remainder of the (x',t) diagram, if the shock is assumed to
have a constant speed throughout its motion., Now the turbulent-boundary-layer
analysis may then be used to calculate the running time tR(Tyrp) behini a
'virtual' shock 'S' at some distance x' Turp) from Op. Conseguently the
actual running time tp, experienced at some distance, x', from the diaphragm

is now
54
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tR'l - ti + tR(TURB) ' (7&2)
and the actual distance, xJ, from the diaphragm is given by
f - 1 - (]
xi -_— X (TURB) XT + XT » eas (7#3)

Again in this problem it is necessary to apply a correction for the
finite bursting time of the diaphragm as outlined in Section 6, so that the
relationship (7.3) may be modified to give

x = x'(TURB) - x% + x; * ;A . eee (7.4)
The decision as to where the transition point, if any, first ocecurs
in the experimentally obteined running-time distribution along the channel is
sometimes difficult to make. However, the rumnning-time distributions shown
in Pigs. 6 and 8 show quite striking departures from the predictions of the
laminar boundary-layer analys:s, even when matched at the first experimental
point. These departures seem to be much greater than could be expected due to
shock attenuation, and indeed the measured values of shock Mach number, for the
experimental points subsequent to the initial departure of experiment from the
analysis, show no rapid attenuation of the shock wave in this region.
Consequently the most likely reason appears to be the occurrence of transition.
Furthermore transition Reynolds numbers (see Appendix II) calculated on the
assumption that transition in fact does occur at the point of departure ggree
guite well with transition Reynolds numbers found by other investigatora-.

8. A Comparison of the Analysesz with Experiment

The running-time distributions along the channel obtained in the
present investigations, using nitrogen in the channel, are plotfed in
Figs, 6 - 9. All the analytical curves included in the comparison have been
matched to the first experimental points in accordance with the method of
Section 6. It is to be noted that generally the experimental points compare
favourably with the present analysis, but that there are, in some cases, marked
differences between the laminar-bhoundary-layer anslysis and experiment, even
when allowances have heen made for the finite bursting time of the diaphragn.

In the case of Mg ® 3°0 and p = 56 mm Hg (Fig. 6) it is seen
that there appears to be no increase in running time after approximately 8 feet
of the channel has been traversed by the flow. As has been argued in Section 7,
the most likely explanation of this 1s that transition has occurred in the
boundary layer. On this assumption the modified analytical curve 'to the
right' of the point r, which indicates the assumed transition point, has been
prepared using the method of Section 7. The agreement between experiment and
the modified analysis allowing for transition is seen to be greatly improved.
Furthermore, the transition Reynolds number R, calculated for the assumed
transition point (see Appendix II) is of the order to be expected.

The results for Mg, = 30 and p = 33 mm Hg (Fig, 7) show some
discrepancy with the present laminar-boundary-layer analysis at about 13 feet
from the diaphragm and calculations show that it is possible that transition has
also occurred at this point.

In the case of Mg =60 end p = 5 mm Hg (Fig, 8) the interpretation
is a little complicated by shock attenuation, A crude allowance has been made
for this by simply deducting from the present laminar-boundary-layer analysis

the/



- 18 -

the time between the arrival of the measured shock-wave trajectory and the
constant shock-wave trajectory postulated in the physical model (see Fig, 15).
This is essentially & linearisation of the problem and more will be said of

this later. Transition has also been assumed at 71, and the comparison betwsen
the modified analysis and experiment is seen to be good,

The remaining results for Mg =~ 6.0, that is for values of p of
3+5 mm Hg and 1+2 mm Hg (Fig. 9), show considerable scatter and general
disagreement with the matched laminar-boundary-layer analysis. It 1s felt that
the general disagreement with the analysis may be due to shock attenmation
and the scatter to Iinaccurate initial pressures and poor diaphragm bursta (veny
thin diaphragms were used in these particular runs and did not petal cleanly),

All the results obtained in the present investigation are plotted
in the X',Tp plane of Fig, 10a, and compared with the results of the present
Jaminar-boundary-layer analysis and Hooker's analysis. Poor agreement is to be
noted for the Mg, = 6+0 results, but for Mg = 3-0 the agreement is seen to
be good for both analyses, The experimental points at the region where the two
analyses begin to depart from one another tend to follow the predictions of the
present analysis.

Duff2 has measured the running time along a shock-tube channel of
radius 1+43 cm, He used argon as the channel gas at an initial pressure of
0-5 mm Hg, The driver pressure was adjusted for each experiment so that the
shock Mach number cobtained at the measuring station (the local shock Mach
number) was 1+6, His results are plotted in the X', Tp plane of Fig, 10b, and
it is seen that the agreement with the present laminar-boundary-layer analysis
is good, whereas Hooker's analysis predicts running times wvastly greater than
Duff''s results., Besides the measurements noted above, Duff also examined the
dependence of running time on initial channel pressure, He measured the running
time at a constant distance of 3+81 metres from the diaphragm, and kept the local
shock Mach number near to 1+6 by adjusting the diaphragm pressure ratio. His
results are plotted in Fig, 13b, in the tR/tRTH, P plane (they are also

included in the X', Tp plane of Fig, 10b) together with the predictions of the
present laminar-boundary-layer analysis and Hooker's analysis for shock Mach
mimbers of 1+6 and 2°0. The experimental results are seen to be in close
agreement with the present analysis for a shock Mach number of 1+6, Note that
as Hocker points out, the curves of tR/tR against p are not strongly

TH
dependent on shock Mach number.

Duff carried ocut a third set of experiments in which he measured the
running time at 3°81 metres from the diaphragm using a constant initial channel
pressure of 0-5 mm Hg with argon as the channel gas., In these experiments the
local shock Mach number was varied, the results being plotted in Fig, 14a. Here
again good agreement is obtained with the predictions of the present laminar-
boundary-layer analysis.

Hooker's results® obtained 1n argon are presented in the X', Tg
plane of Fig. 10c., He measured the rumnning time at 6-27 metres from the
diaphragm in a channel whose diameter was 3-95 cm, and covered a wide range
of pressures and local shock Mach numbers. The points plotted in Fig. 10c
have against them the measured local shock Mach number, and it is seen that it
is difficult to correlate these points with the anelytical curves. When
re-plotted in the tR/tRTH, 1 plane of Fig, 13a they tend to collapse onto
a mean curve, and in general agree reasonably well with the present analysis for
My, = 4*0., The slight dependence of the analyses on shock Mach number is here
even more striking.

Hookex/
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Hooker provides experimental results where the initial channel pressure
is greater than 5 mm Hg, but these results show considerable disagreement with
the analyses. It is felt that these results represent conditions in which &
partly turbulent boundary layer is exastent, and consequently the tR/tRTH’I%
plane has not been extended to include them,

Appleton and Musgrove19 have measured the dependence of running time
on initial channel pressure using air as the channel gas., The channel radius
was 1*77 in.and measurements were made at & distance of 6°32 ft from the
diaphragm, The local shock Mach number was arranged to be 5°0 for each
experiment, and the results are plotted in Fig, 13¢c. It is to be noted that
there 13 some discrepancy between the analyses and experiment, A possible
explanation is that the disphragm opening times were large, and this might
produce marked effects on measurements taken so close to the diaphragm,

A second set of experiments performed by Appleton and Musgrove
consisted of measuring the variation of running time with shock Mach number.
The initial channel pressure was 50 mm Hg, and the results are presented in
Fig. 14b, together with the predictions of the present laminar- and turbulent-
boundary-layer running-time analyses. It is seen that the experimental points
fall between the two at the lower shock Mach numbers, but begin to agree with
the turbulent-boundary-layer analysis with n = 5 as the shock Mach number
increases. The Reynolds number R has been calculated assuming that the
boundary~layer development length up to the contact surface x may be obtained
from the laminar-boundary-layer analysis of Bernstein (see Section 3,2)., It is
seen that R is not much greater than the usual values to be expected of the
transition Reynolds number R, when Mg, = 2¢0, Consequently it is possible that
a significant part of the boundary layer is still laminar when Mg = 2+0, and
so the actual running time might be expected to have a value scmewhere between
the predictions of the laminar- and turbulent-houndary-layer analyses, It is to
be noted that as the shock Mach number increases, so the value of R increases.
One might then expect the extent of the laminar boundary layer to decrease,
On this basis 1t appears that the actual running time should therefore tend to
the predictions of the turbulent-boundary-layer analysis as the shock Mach
numher increases, end this, in fact, 13 the case.

It should be noted that the predictions of the turbulent-boundary-
layer analysis with =n = 5 appear to fit the existing data betier than the
predictions where n = 7. Also the running time does not appear to depend on
the driver gases used.

9, A Discussion on the Validity of the Physical Model

The simplified physical model of the flow used in all the anmlyses
assumes a shock wave of constant speed, and also that the contact surface remains
a surface of discontinuity. That these assumptions are not generally true is
well known; +the shock-wave attenuates due to the boundary-layer growthﬁ , and
the contact surface, 1f 1t ever exists as such, rapidly spreads into a highly
turbulent mixaing region, Consequently, to provide an exact description of the
flow that exists in the shock tube, we should be obliged to solve the shock-wave
attermation problem and determine how far, if at all, the contact region extends
into the shocked gas flow. The solutions to the first problem of shock—w&vs 2.
attenuation, all based on linearisation methods, are discussed by Bernstein”:

A solution to the problem of contact surface spread has been provided by Hall1
again using a linearisation technique, assuming that the density difference
across the contact surface is small. Neither the solutions to the shock-wave
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attenuation problem, nor Hall's solution to the contact-surface mixing problem
compare well with the experimental evidence, except at very low shock Mach
numbers,

The problem of shock-wave attenuation coupled to the prediction of
running time is a daifficult problem to formulate, in that one requires to know
how quickly the boundary layer, particularly at the head of the contact region,
responds to changes in shock strength. A method for accounting for shock-wave
attenuation, which ignores the above point, hes been described previously in
Section 8, so that this method is very dafficult to Jjustify fully elthough it
provides a reasonable correction to the analysis in the case considered. It
should e noted that good agreement with experiment could be obtained by
simply ignoring the shock-wave attenuation effect and assuming that transition
occurred rather earlier (see Fig. 8). The method used to account for shock-
wave atbtenuation is based on the assumption that a1t will take some time for
the effect of the changing shock speed to reach the boundary layer at the
contact surface. The sketch of Fig. 15 explains what has been done. Time is
deducted from the predictions of the present running-time analysis, the time
deducted being the time between the arrival at a particular station of the
ideal constant-speed shock wave, and the arrivai atv the same station of the
shock wave of known measured speed. This method seems to provide an adéquate
small correction to the present analysis in the case of Mg = 6+0,

P2 = 5 mm Hg in nitrogen (Fag. 8). However, the above argument agpears to be
of very doubtful validity in the case of Duff's experimental data®, Duff
measured the running-time distribution along the channel, but arranged the
driver pressure so thatat whichever station he measured the running time, the
local shock Mach number was 1+6. Duff shows in his paper that the shock Mach
number near the diaphragm was often much higher than 1-6; in fact it was of
the order of 2. An attempt to correct the present running-time analysis far
this large amount of shock-wave attenuation led to very much smaller running
times than Duff's data shows. Conseguently, one is forced to the conclusion
that either the present analysis 1s lnaccurate in its predictions, or that the
boundary layer at the contact surface rapidly responds to changes in shock
speed in the circumstances of these particular experiments, One possible
argument is that in the inviscid core of the flow, the feedback of information
concerning the changing shock speed passes along the negative characteristiecs;
the velocity of the information is (u-a). Now 1f the shock Mach rumber is
high then the slope of such characteristics is high, since the Mach number of
the shocked gas flow increases with increase of the shock Mach number, However,
if the shock Mach number 1s low the slopes of the (u-a) characteristics are
smeller and here one might expect more rapid conveyance of information to the
contact region of details of changes of shock speed. The above argument does
not indicate, however, how quickly the boundary layer reacts to changes in
external flow conditions and this 1s ¢learly important. Consequently, it would
be of considerable interest to perform experiments not only in which the
running-time distribution along the channel would be measured, but also the
shock-wave sttenuation., In this mamner an (x',t) diagram could be constructed
which might reveal the response of the contact surface to changes in shock speed.

The problem of contact-surface mixing may be soluble by means of the
classieal turbulent transport theory, There is a change in momentum across
the contact region because of the change in density occurring there, so that
one may be able to show that there is & continuous change in mean density
through the contact region, and that the turbulent region will spreead, It
has bheen suggested14 that the problem of contact-surface spread may be explained
in terms of Tayler's analysis1 of the instability of discontinuities such as
the contact surface, Yet considering the large amount of turbulence generated
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by the bursting diaphragm it seems unlikely that a contact surface is even
initially formed and that the disturbances initially present in the flow may
be regarded as small, so that conditions for Taylor instability hardly seem
to arige,.

There remain two further points worthy of mention concerning the
validity of the assumed physical model. The first is that the model discounts
any effects due to the presence of the cold driver gas. That the driver gas
does effect shock-wave atteruation is known?, Consequently one might expect
to notice varations in running time due to the use of different driver gases.
This may in part explain the rather poorer correiation between the present
analysis and experiment in the case of the Mg, = 60 runs performed in the
present investigation, In the latter experiments hydrogen was used as the
driver gas, whereas with the Mg = 30 runs, using nitrogen as the driver gas,
the correlation between the present analysis and experiment was seen to be
generally good., In this respect it has been noted in Section 8 that the results
of Appleton and Musgrove {Fig. 14b) show no such dependence of running time
on the driver gas. However, only helium and ajir drivers were used, whereas
the use of hydrogen as the driver ges is known’ to have & much more marked
effect on shock-wave attenuation than helium,

The second point is that, in the present analysis, real-gas effects
have been entirely ignored. This 18 & reascnable assumption provaded that
the shock Mach number is lower than, say, Ms, = 6 but as is mentioned in
Section 1, Henshalll shows that at hagher shock Mach numbers real-gas effects
cannot be 1gnored. It is to be noted that both Roshko? and Hooker partially
deal with the presence of resal gases by the incorporation of a compressibility
factor in the equation of state.

A modification to the present analysis to include real-gas effects
is possible. A first approximation would be simply to calculate the condition
of the gas immediately behind the shock wave, using the real-gas tables
calculated by, say, Bernstein!®, Thereafter the variation of the gas parameters
in the inviscid care of the flow might be calculated assuming the simple 1deal-
gas isentropic flow equations, but using a value of y appropriate to the
conditions already calculated immediately behind the shock wave, Furthermore,
a second approximation might be effected, taking into account variations in
the atomic structure of the molecules in the inviscid core of the flow,
However, the inclusion of real-gas effects in the description of the boundary
layer itself, together with the above avproximations, would certainly make the
resulting running-time problem exceedingly cumberseme, The possibilaty of
solution to this latter problem, however, would seem to depend as much on the
si1ze and speed of existing computing machines as on any lack of lkmowledge of
the behaviour of real-gas flows,.

10, Concluding Remarks

It has been shown that the 'linearisation' methods of the previous
analyses used to predict shock-tube running times are no longer adequate when
the boundary layers are thick relative to the chammel radius., An alternative
analysis has been demonstrated which does not include some of the more
restrictive assumptions of the previocus analyses, and gives results in better
agreement with the experimental data. Corrections are explained to account for
the remaining discrepancies between the present anslysis and experiment in
terms of turbulent transition in the boundary layer, and the finite bursting
time of the diaphragm, The correlation of the present analysis with experiment
is then shown to be much improved.
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It is suggested that further work be carried ocut to show the
dependence of the contact-surface trajectory on the attenuation of the shock
wave. Also, it ia suggested that the structure of the contact region be
examined in detail.

As is noted in Section 9, the driver gas may have some effect on
the duration of running time, so that it may be worth while examining
experimentally the effect of using different gases, particularly hydrogen, to
produce shocked gas flows having identical initisl conditions,

The variation of rumming time might alsoc be examined experimentally
at high shock Mach numbers where real-gas effects begin to be appreclable. Ab
the same time the present analysis of Section 3 might also be repeated to
include the kind of real-gas approximations outlined in Section 9.

Since little experimental data are available on running times where
it is known that the boundary layer is entirely turbulent, it would be
of interest to perform experiments in which the boundary-layer flow conforms
to this condition,

Finally 1t is perhaps worth reiterating Hooker's point that since
the running times in shock tubes can be considerably less than the predictiona
of simple theory, the usual gas parameters of the inviscid core of the shocked
gas flow can be far from constant, Therefore care should be observed in the
interpretation of the experimental results so that the constancy of these gas
parameters is not necessarily taken for granted.
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11. Notation

%] speed of sound in region 1
Aj 3 speed of sound ratio ai/aj
a hydraulic radius of chennel = 2 x area/perimeter
E contact-surface trajectory
c constant relating to the turbulent-boundary~layer
veloclty~distribution power law
F function defined by equation (3.3.2)

T parameter defined by equation (3,2.3)
G function defined by equation (3.2.2)

H, Hy boundary-layer form parameters in stationary wall case =
suffix 1 denotes incompressible flow

H, Hy boundary-layer form parameters in moving wall case -
suffix 1 denotes incompressible flow

J parameter defined by equation (3.3.3)

£ distance betwesn shock wave and contact surface

M Mach number

i mass flow

n mass-flow rate

n index in turbulent boundary-layer power-law velocity profile
Py Prandtl number

Py, pressure in region 1

R Reynolds number

E shock wave trajectory

Ty temperature in region i
temperature ratio Ti/Tj

T non~dimensional time

t time
u velocity
usg velocity in region 1%
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velocity ratio ui/hj

wave speed into region 1

distance covered to transition peint
non-dimensional distance

boundary-leyer development length, including the development
length up to the contact surface

distance from wall of channel

constant defined by equation (2.3)
specific heat ratio

density ratio Pi/Pj
boundary-luyer displacement thickness
boundary~layer momentum thickness
function defined by equation (2.4)
dynaemic viscosity in region 1
density in region 1

transition point

transition-point trajectary
kinematic viscosity in region i

index used to define dependence of viscosity on temperature,

refers to quantities in region shead of primary moving shock wave

refers to quantities in region immediately behind primary moving
shock wave

refers to conditions immediately behind stationary shock wave

refers to corrections resulting fram the influence of
region A in Fig, 11

refers to conditions evaluated at the edge of the boundary
layer

refers to conditions at the contact surface
refers to conditions some distance behind stationary shock wave
refers to laminar-flow conditions

refers to values of properties evaluated at mean enthalpy
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w refers to wall conditions

8 refers to quantities measured at room temperature

84 refers to shock wave moving into region i

R refers to flow durations
TH refers to quantities evaluated from simple shock-tube theory
T refers to turbulent flow conditions

T refers to transition poant.

Note that Primes and Bars used with lengths refer to special lengths defined
individually.
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APPENDIX I

Some Useful Normal Shock-Wave Relationships

The tranaformed gas velocity behind the shock wave used in the
boundary-layer relationships of Sections 3.2 and 3.3 may be easily obtained
by remembering that, due to the velocity transformation used to reduce the

shock to rest in the transformed plane,

ueo

8y

It

W

s

= Vg,

= Ups.

The_value of 1, &s a function of Mg may be found in the standard
literature!/ on shock tubes and is

Therefore

Uy,

u
)

ay

1]

It may also be shown that

(3] o

Hence since

from (A.1.1) and (A.1.2)

Ty =

1
M31

vl
5

W, - 1
[: y +1 :‘.

2

M%i + 1

+1
L M,

4(1631-1'2'1><Z;—1n§1 +1)

M3 (y+1)?

The/

eee (A.1.1)

cee (A1.2)

eeo (B.1.3)
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The wall velocity in the transformed plane Uy 1is numerically equal

to the shock speed in the physical plane and so

uw = Hsiai-
Therefore
+1
Uy 12'— Mgsi
—— = _..:1_...___
U.eo %Hgi+ 1

from equations (A.1.4) and (A.1.1).

APPENDIX IX/

vee (AJ1.4)
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The Transition Reynolds Number

An attempt has been made by various investigators3 to correlate
transition phenomensa encountered in shock-tube problems with data obtained
from experiments carried out on flat plates in compressible boundary-layer
flow. It has been suggested that the significant length parameter required
for the formulation of a transition Reynolds number for the shock-tube problem
is the distance travelled by a fluid element before it encounters transition
in the boundary layer. It is also assumed that once transition hes ocourred,
the transition point is propagated with the speed of the shock; thus the
transition point remains a constant distance behind the moving shock wave,

It is seen in Fig, 16 that considering some fluid element 1lnitially
at rest in the region shead of the shock, the element remains at rest throughout
the time AB., A%t time B the element is assumed to be accelerated through the
shock wave to the ideal simple theory velocity of u;., The element then
traverses a distance w and encounters transition at +, the boundary-layer
development length at T Ddeing X .

The transition Reynolds number, R%, may now be defined as

Uy W
R = — - he (A.2.1)

where vy is the kinematic viscosity at the wall, With this model it is possible
to show from the geometry of the (x',t) diegram that

. LN
R, = s (1 -—) .o (4.2,2)

Vy Ug

o}

where we have also used the mass continuity equation through the shock wave:

ug, P2 = Wapr. cee (AL2.3)

It is more convenient to express v, in terms of quantities measured

ahead of the shock., Consequently if v
Ty = Ty
then
Hy = M

and remembering that the static pressure is conserved through the boundary layer,
it follows that

Hence/



Hence:

¥, x, AN
R = (1 - ——-) .. (A.2,4)
Wy ueo

where we have again mede use of the expression {A4.2,3).

The analysig resulting in the expression (A.2.4) for R was first
perf'ormed by Mirels!

It may be preferable to obtain & transition Reynolds number based on
the kinematic viscosity of the free stream, i.e.,

Ug W

R, = —. ... (4.2,5)

Va

It then follows, as before, that

- Ye Xt LN
RT = (1 - )
Va ueo

since Ha P1
vz - V:_ s T e T

Ha pa

= Ui, Tg‘)i i .

Then

_ U go Xy L
Ry = Co I'ai-Trja (1"—)-

W

o
Hence it follows that
i_r = R T:_n2+ 1. aew (A.2.6)
We may also write ET as
_ Us W
R = Rg o — —
T o v, &
where U &
0 w
Reo = = Mslga.'ﬂxzo
Va
Consequently
R, mnmh I(1-—). e (R22.7)
& ue

0

Tt will be noted that in the Figs. 6 and 8 where transition is assumed
to have ocourred, the transition Reynoclds numbers shown are evaluated making use
of (A.2.4), (4.2, 6) and {(4.2,7). The boundary~layer development length x, has
besn obtalned from the analysis of Section 3.2.
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