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SUMMARY 

A review is presented of previous theoretical work for the 
prediction of shock-tube running tunes. A new analysis is then introduced 
which attempts to avoid most of the restrictive assumptions of the previous 
analyses which are shown to lead to large errors particularly at low shook 
Mach numbers. The new analysis and the previous analyses are ccxnpared 
with one another and with the existing experimental data. Further 
experimental work is presented and compared in conjunction with the existing 
experimental data with the results of the previous analyses and the present 
analysis. 

It is shown 'chat there is a distinct improvement in the prediction 
of shock-tube running times when the present analysis is used, particularly 
at low initial channel pressures and low shock Mach numbers. 

Suggestions are finally included for the extension of the 
experimental work, and for the modification of the present analysis to 
include such phenomena as real-gas effects, shock-wave attenuation, and 
contact-region mixing. 
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Introduction 

It is a matter of experience that the zunning time in a shock 
tube can be much less than the predictions of simple theory based on an 
ideal (i.e. inviscid, non-conducting) perfect gas model. The running time 
at some distance fran the diaphragm we define to be the time between the 
arrival of the primary shock wave and that of the contact surface, or region, 
at that distance from the diaphragm. In this statement we infer nothing 
about the variation of the usual gas parameters during this time. 

We shall later refer to gas models which are non-ideal, and by 
this we mean gas models which allow for viscosity and heat oonductlon only. 

The/ 
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The term 'real gas' is applied only to gas mcdela which allow for +&a 
changes of molecular structure brought about by dxsscciation, ionisation, etc. 
Thus a perfect gas is understood to refer to a gas model m which the latter 
'real-gas effects' are not considered. 

Various attempts have been made to account for the variation 
between simple theory and experiment. Henshall' has estimated the corrections 
needed for a real-gas model, and has shown, for example, that for a shock 
Mach number of 20 in air, the running time might be expected to be about 5% 
of the predictions of simple theory. However, for a shock Mach number of 6 
in air, the discrepancy between simple theory and Henshall's real-gas 
calculations is approximately I%, whereas experimenters have reported running 
times of the order of 7036 less than the predictions of simple theory for 
shock Mach numbers much lower than 6 for conditions where real-gas effects 
are known to be negligibly small. Hence it appears that for low shock Mach 
numbers at least, the solution to the runnmg-time problem lies elsewhere. 

More recently the attempts to predict shock-tube running times have 
been directed to explaintig the difference between experiment and ideal-gas 
theory by appeal to boundary-layer theory. There are indeed many strong 
indications that the explanation lies in the non-ideal properties of the 
gases, Duff*, for example, has shown experimentally that the running time 
can depend strongly on the initial channel pressure, and in fact the 
experimental evidence shows a nearly linear relationship between the latter 
two quantities for channel pressures less than 5 mm Hg with a shock Mach 
number of I.6 in argon. Duff then argues on dimensional grounds that for a 
oonstant shock Mach number, and assuming that a laminar boundary layer 
develops behind the shock, one may expect the ratio of running time to 
initial channel pressure to be constant. Thrs, then, leads to the linear 
relationship between running time and initial channel pressure suggested by 
Duff's experiments. Duff further infers from investigations by Chabai and 
Emrich on boundary-layer transition in shock tubes, that the boundary layers 
would be entirely laminar under the experimental conditions used by him. 
Furthermore, work by Morels 7 suggested that in certain cases the boundary 
layers could be as much as 5$ of the channel radius in thickness. This 
suggests that a considerable portion of the shocked gas LB entrained in the 
boundary layer, and subsequently leaks past the contact surface because of 
the velocity defect across the boundary layer. In this manner, it is 
suggested, a consulerable amount of the shocked gas mass flow is denied to 
the region between shook wave and contact surface, so decreasing the 
effective running time. This mechanism is now firmly established as 
providing, at least m part, an explanation of the observed dependence of 
running lame on initial channel pressure, channel geometry, and so on. 
Calculations which rely on this mechanz.sm have been performed by Aniersonlc, 
Boshko5, Hooker , and it is an essential part of the present analysis. 
All have found at least qualitative agreement between their calculations and 
experiment. However, quantitatively, previous investigators have not fcund 
as good agreement between theory and experiment as would be desired. 

In all the analyses, including the present one, the basic physical 
model assumes a shock wave of constant strength propagating into the 
stationery gas in the channel. The invlscid core of the shocked gas 1s 
assumed to be terminated by a contact surface which remains planar. The 
analyses are then concerned with estimating the loss of mass flow from the 
shocked gas region which occurs at the contact surface. The validity of 
this physical model is discussed later in Section 9 in the light of the 
available experimental data. 



-4- 

The analyses of Roshko and Hooker are outlined in Section 2, the 
more important of the restrictions inherent in these analyses being briefly 
discussed in Section 4 in the comparison between these analyses and the present 
analysis. The present analysis is developed in Section 3 for both laminar 
and turbulent boundary layers. Various corrections to the present analysis are 
outlined in Sections 6 and 7 to account for the effects of the finite bursting 
time of the diaphragm and turbulent transition in the boundary-layer flow. 
Hooker's analysis and the present analysis are compared in Section 8 with the 
experimental data, including the data obtained in the present investigation 
as outlined m Section 5. 

2. A Review of the previous Theoretical Work 

Anders~n~ was the first worker to apply boundary-layer theory to the 
better prediction of shock tube running times. His analysis is confined to 
the model involving a turbulent boundary layer: this is perhaps valid for 
normal shock-tube usage where moderately high initial channel pressures are 
chosen, but most of the experimental results for running time have been obtained 
with low initial channel pressures and the boundary layer is consequently 
predominantly laminar. However, he applied his work to only one specific case 
of a shock of fixed Mach number, travelling into a gas of cnly one initial 
channel pressure. Furthermore, we may note that his method is essentially 
similar to that of Roshko's5 more general analysis made for a laminar boundary 
layer. 

Roshko's5 solution is developed to be applicable to all tube 
geometries, all initial channel pressures, and all shock Mach numbers. However, 
it does involve some approximations whit 

is? 
result in poor quantitative agreement 

between theory and experiment. Hooker's analysis follows exactly the same 
method as Roshko's, but adds corrective terms to those obtained by Roshko, 
thus improving the agreement between theory and experiment. Since the two 
methods are nearly identical we shall outline Hooker's method, indicating as 
we proceed the steps at which Hooker's and Roshko's analyses differ. 

Referring to Fig. 1, it is seen that Hooker and Roshko have 
considered the flow relative to contact-surface fixed co-ordinates, the contact- 
surface velocity in laboratory fixed co-ordinates being assumed to be the ideal 
value w . However, we note that in fact the contact surface moves faster than 
us, as is evident in the running times being shorter than those predicted by 
ideal-flow theorv. This assumntion therefore introduces one source of 
quantitative e&r between theoryand experiment. 

Hooker writes the mass-flow rate I& moving 
via the boundary layer as 

ybl 
m o ?L 26 

I 
P(YhdYhY = mP,.%q) 

0 

past the contact surface 

. . . (2.1) 

where p(y) and u(y) are the density and velocity respectively in the boundary 
layer, and are functions of the distance from the ~11 y, ybl denoting the 
outer edge of the boundary layer. The parameter a is the radius (or hydraulic 
radius) of the channel, whilst suffix w refers to conditions evaluated at the 
channel walls. The equation (2.1) may be taken to define SE, the mass-flow 
thickness of the boundary layer at the contact surface. In obtaining the 

integral/ 
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integral term of equation (2.1), Hooker has assumed that spbl/& <.c 1, ana 
this introduces a second restriction to his model. 

Hooker now states that the boundary-layer mass-flow thidmess SE 
may be obtained by adapting an expression given in Ref. 8 to give 

"*c = h+e/p,.ua 1; . . . (2.2) 

where the parameter /3 is & constant for a particular shook Mach number. The 
parameter .C is the boundary-layer development, length up to the contact surface, 
or the distance at any instant of time between shook wave and contact surface 
(see Fig. 1). 

Frm expressions e.l)and(2.2)Hooker shows that /Y may be written as 

. . . (2.3) 

where Z is defined by 

u/M-%4, = f’k). . . . (2.4) 

It is to be noted that I',, is the density ratio across the shook wave whose 
velocity in laboratory fixed co-ordinates is W, . The parameter x is the 
distance behind the shook wave. 
Mirels-/, 

The function f(g) has been tabulated by 
t;bl being the value of r; evaluated at the edge of the boundary 

layer. 

Hooker notes that due to an error in transforming from contact-surface 
fixed co-ordinates to shook fixed cc-ordinates, Roshko obtained a different, 
incorrect expression for p. 

Hooker now writes that the mass contained between the shook wave and 
the contact surfaoe at any instant of time t is 

e(t) Y-b1 
m(t) 2 79 p&(t) + 2%;; 

1 1 
P(Y,X)dY.~ . . . . (2.5) 

co y=o 

In obtaining the expression (2.5) Hooker again assumes that yblfi << 1. 
Roshko neglected the second, integral term in (2.5). which represents the mass 
contained in the boundary layer between the shook wave and the contact surface. 

The rate of change of mass flow between the shock wave and the contact 
surface, obtained by the differentiation with respect to time of equation (2.5), 
must be equal to the difference of the mass-flow rate through the shock wave 
and the mass-flow rate out of the shocked gas region via the boundary layer at 
the contact surface. Now assuming that at some stage the overall rate of change 
of mass flow beccmes zero, then the boundary-layer development length ~111 have 
reached a maximum value, &-. say, and the running time subsequently ml1 be 

constant./ 
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constant. Using the transformation(2.4)Hooker shows that if one writes the 
boundary-layer development length 8 as a ratio of emaxe 

c 
- ET 
c max. 

and the time taken, t, for this development as 

E x 

then X and T may be related by the expression 

-;x = 
f(cbl) 

f %A) - %,I 
tn(l-T$ + T& +[ 3FiJ T] 

. . . (2.6) 

. . . (2.7) 

. . . (2.8) 

Hooker also shows that the maximum possible boundary-layer development length 
c max. can be expressed as 

aa PIa 
.-. . . . 

bh-lla y 
(2.9) 

Roshko, in neglecting the integral term mentioned previously, obtained the 
relation for X and T, 

-$X = h(,-T') + T' . . . (2.10) 

Roshko, however, obtained the same expression for dmax.. 

Hence it is seen that Roshko's expression (2.10) represents a unique 
curve for X and T, independent of' shock Mach number. The dependence on 
shock Mach number 1s then only implled in the expressions for L,,. 

F 
equation (2.9)] and X through rai 
2.8) however, 

[equation (2.7)]. Hooker's expression 

f(&J etc. 
represents a set of curves for varipus shock Mach numbers, since 

are all dependent on shock Mach number. 

It is to be noted that the analysis leading to the expression (2.3) 
for ,3 is based on the assumption that the boundary layer is similar in nature 
to the flat-plate boundary layer with zero pressure gradient. 

It is also seen that although Hooker's analysis is more comprehensive 
than Roshko's analysis, both methods rely on apprcximations such that 8s the 
bwndary layer thickens, these approximations become less valid and tend to lead 
to overestimates of the running time. This may be seen more clearly by noting 
that we may write the ratio e/e,. from (2.2) and (2.9) as 

4.$* Pai- . 

Clearly the ratio E/e, depends on shock Mach number, and for 
a shock Mach number of 2 with y = s/3, 1'6 is found that as G/-6,,. + I, then 

6’ c 
z- I 
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6% 1 
- 25 -. 
a 5 

However, for a shock Mach number of 6 with y = 5/3, it appears that 
as C/e,. + 1, then 

6; 1 
--. 

a - - 65 

Consequently it appears that as 4 + &ax., the assumption of a 
thin boundary layer is valid only for high shock Mach numbers. At the lower 
shock Mach numbers the boundary layer may fill an appreciable part of the 
channel and one may expect the above analysis to overestimate the running 
time. 

It is more useful to reduce the theoretical results into variables 
which are readily measured experimentally, i.e. running tune in terms of the 
distance from the diaphragm. 

Usmg the normal shock-wave mass-flow equation 

%Gi = vi,@,,- 1) 

equations (2.6) and (2.7) may be written as 

T E e/&xx. 

x i w, t/e,,. l&i . 

Referring to Fig. 2, Hooker interprets this as 

. . . (2.11) 

Since T&.t = x’ + e, 

Also, from the geometry of the (x',t) diagram, Hooker notes that 
the rud.ng time tR is 

$ = d. . . . (2.13) 

This interpretation only assumes that the shock wave has constant speed. 
Roshko, however, further approximates by obtaining an underestimated value r 
for the boundary-layer development length by writing 

Hence, 
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It is seen that the above approximation of Roshko's becomes 
progressively worse as the contact-surface velocity departs from ~a. This 
approximation is generally at its worst when the shock Mach number is low, 
since at the higher shock Mach numbers 
-8 * ha,. is less important. 

u, approaches Wi, and the error for 
Note that as C + .?msx., ascarding to the 

analysis, the contact-surface velocity must approach &. 

For further details of the modifications by Hooker to Boshko's 
initial analysis, the reader is referred to Eef.6. However, it is briefly 
noted that the correlation between theory and experiment was greatly improved 
by Hooker's geometrical interpretations of expressions(2.12) and (2.l3), and 
the retention of the integral term in expression (2.5). Yet even so, the 
asymptotic approach of T -f 1 as x f co, or 4 + -eTmx. shows considerable 
disagreement with experiment for the lower shock Mach numbers. The reasons 
for this will be discussed in Section 4 where Hooker's analysis is empared 
with the present analysis. 

3. The Present Analvsis 

3.1 General considerations 

If we firstly assume only that the shock wave has constant speed, 
then referring to Fig. 3, it is seen that as the boundary layer behind the 
shock grows, the contact surface must accelerate to ensure continuity of mass 
flow. Writing the contact-surface velocity as 4 , we note that 

4 = tg(x',t) . . . (3.1.1) 

and 

U-J = u, when x'=t=O. 

Consequently, obsenratlons at a distance x' from the diaphragm 
would reveal a running time tR and the boundary layer behind the shock would 
have developed to some length x up to the contact surface. Now it follows 
from the geometry of the (x',t) diagram of Fig. 3, that 

x 
t”=-q . . . (3.1.2) 

x’ = x - x. 

But, 

x = twi 

Hence 
x' = twt - x. . . . (3.1.3) 

Hence, given any particular distance x1 from the diaphragm, in order 
to find the running time we only require to know the boundary-layer development 
length x, and the time taken for this development t. 

A theoretical approach to the above baxdary-layer problem has, in 
part, been provided by Bernstein 9. The latter's analysis proceeds by referring 
to axes at rest relative to the shock, and calculates the boundary-layer 

development/ 



-9- 

development length in terms of the transformed velocities in the inviscid core 
of the channel flow. The problem entails modifying the conventional boundary- 
layer parameters, 6*, 8, and H for the case of a moving mall. Because of 
the velocity transformation involved in reducing the shock wave to rest, the 
walls of the channel are now moving with speed K relative to the shock fixed 
axes. 

3.2 The laminar-boundary-layer running-time analysis 

Bernstein shows that for a laminarboundary layer, the development 
length x may be related to the corresponding local inviscid core flow velocity 
u,, by the relationship, 

. . . (3.2..1) 

The function G is 

v I- 
Pe ue 

“e 
G 

( > 

pe0 
( > 

UeO 
- = L - so ( :;o:y) x 

Pe, ueo 
x 

rc 

F Pw 
-1 

) ( 
. ri+l+--- 

uJ”eo ,fiH 
+@,-I . 

Pe ue 6 Pe ii a(UJueo) >I 

The parameter ? may be written as 

. . . (3.22) 

. . . (32.3) 

- 
U&e, tBi 

if d(u$ueo) 
= 1 + (y-l)Pe+ 

due 5i. 

(u&e)-1 ’ [ 
- Ii (1 + y-i abd,) ]2$ -l+e). 

Also note that 

. . . (3.2.4) 

qpia 
R&z----. . . . (32.5) 

cq 

suffix/ 



- 10 - 

Suffix e. refers to canditions immediately behind the shock wave, and these 
may be calculated from the normal shock-wave relat&onships (see Appendix I). 
Suffix w refers to conditions at the wall, and a is the hydraulic radius 

of the channel. 

Referring to the boundary-layer form parameter H, it is to be noted 
that Ei denotes Ii evaluated for a moving wall, and suffix i refers to 
incompressible flow values. 

Itwillbe noted that there is no restriction on the boundarg-layer 
thickness, and that although there is no corrective term in the eqation (3.2.3) 
to account for the effects of pressure gradient on F, the pipe-flow momentum 
equation which has been solved includes the effects of pressure gradients. 

In order to provide a solution to the equations of Section 3.1, we 
require the time taken for the boundary-layer development to take place, and 
this may be written as 

xax 
t= -. 

i 
0 ue 

Making use of equation (3.2.1) it follows that 

. . . (3.2.6) 

s ue/ueo G 
t = -. R+ Ms, TE i 

ue 
-a 

( ) - . 

UeO 1 due0 UeO 

It also follows from (3.2.1) and (3.2.7) that 

x Ue/“e o 

- = w  / La($) 
ha 

M&T,, 

. . . (3.2.7) 

. . . (3.2.8) 

and 

t-ueo 0 
- = ldb,T,, 

%a 
. . . (3.2.9) 

Now although t is the actual time for the bcsxdary layer to develop to a length 
x9 ueg remains the gas velocity relative to the shock wave. Hence, 

UeO 
= wi-ua 

= bus, -L) h. 

It is shown in Appendix I, equation (A.l.l), that 

UeO 
+lf?~ +I 

-= 

aL ti 
2 54 

. . . (3.2.10) 

w 
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We may now make equations (3.1.2) and (3.1.3) non-dime1~3ioml for 
use with equations (3.2.8) and (3.2.9) 80 that 

and 

Hence, 

tR4 1 x 
-=- 
4g 

.--=. 
Ma 4a 

Equations (3.2.8) and (3.2.9) have been integrated numerically on the 
University of London 'Mercury' Computer to give: 

Ia'X 
-zx 
4z 

. . . (3.2.11) 

Id t.ueo 
E T 

4a 
. . . (3.2.12) 

4 
T .--.MSL-X E X' . . . (3.2.13) 

Q0 
X 

Tit 
E TR . . . . (3.2.14) 

All these non-dimensional parameters, X, X', T, and T 
% 

are 
evaluated as functions of ue/ue, and X' 
4b for y = 7/5 and. y = 5/3. 

and Ta are plotted in xgs. J.+a and 

In the evaluation of I& for the reduction of experimental data and 
the prediction of the running time from theoxy it must be remembered that 

. . . (3.2.15) 

where/ 
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vrhere suffix s refers to row temperature conditions, and pi is the initial 
channel pressure. 

3.3 The turbulent-boundary-layer running-time analysis 

In his turbulent-boundary-layer analysis, Bernstein9 deduced a similar 
relationship to (3.2.1) for x and u,. 

d(fi) 
d("$ueo) 

= p&&12/(n+') . F ( f.f) . . . . (3.>.1) 

0 

The function F iS 

1 2/b+f 1 

UeO 

I- (PeuJPeoueo) 
=-- 

ue 2Jii c 
1 x 

2?f(Pe/Peo) 

x[(ap,-?) +( ‘;:I0 - 1 )(li + 1 - "co a,u;ue,)] . (3e3.2) 

The parameter J may be written as 

J = (3.3.3) 

ue/“e o aii 
Again 

E a(ue/Ueo) ' 
an.3 & are given in (3.2.4) and (3.2.5). 

Proceeding in the same manner as Section 3.2, it can be shun that 

= T . . . (3.3.4) 

and 

Idx 
I@ p&;I"'"". ufo F . d(E) E X. . . . (3.3.5) 

Similarly, we now define 

104x’ 4 

,2/(n+1)2; = T * T . % -x z X’ 

0 

. . . (3.3.6) 

l@tRBl X 

2/(n+l)s 
. . . (3.3.7) 

3 
The/ 
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The index n OCCURS throughout these equaticms since Bernstein 
assumes a power-law velocity profile throughout the boundary layer. Although 
the usual power-law assumption for steady flow is n = 7, work by Martini0 
suggests that n = 5 may be a better approximation for the quasi-steady 
shock-tube turbulent-boundary-layer problem. Consequently, equations (3.3.b) 
and (3.3.5) have been integrated numerically using both power-law assumptions. 
The constant c in equation (3.3.3) is dependent on n, and has been taken to 
be 6.20 for n = 5 and a-74 for n = 7. A recovery factor of 0.89 has also 
been assumed. in calculating the density at the mean snthalpy, P,,,, and the 
power-law temperature, viscosity relationship has been used so that o = 0.76. 

The results of equations (3.3.6) and (3.3.7) are plotted in 
Figs. 5a-d, for y = 7/5 and y = 5/3. 

4. A Comparison of the Present Analysis and Hooker's Analysis 

Both the present analysis, assuming a laminar boundary layer, and 
Hooker's analysis have been calculated for specific heat, ratios of’ y = 7/5 and 
and y=5/3. The two analyses are compared in Figs. &a and 4b in terms of 
the non-dimensional running time TR and the corresponding non-dimensional 
distance from the diaphragm X' used in Section 3.2. 

It is immediately evident that for the low shock Mach numbers there 
is considerable disagreement in the values of the asymptotes of TR between 
the two analyses. For example, taking the extreme case of Msi = 1.6 and 
y = 5/3 (Fig. 4b) it is seen that the asymptotic value of TR according to 
Hooker's analysis is 2470, whereas the present analysis predicts an asymptote 
of nearly one tenth of this value. Furthermore, the approach by X' to the 
asymptote is much more rapid in the present analysis. However, as the shock 
Mach number increases, it is seen that the disagreement between the two theories 
decreases. 

The reasons for the varying discrepancies between the two analyses 
appear to be twofold. Firstly, it must be noted that in order to produce 
the maximum possible running time, the Inviscid core flow velocity must increase 
from the ideal value of us immediately behind the shock wave until the contact 
surface is moving with the speed of the shock wave W,. This velocity increase 
can be shown to be strongly dependent on shook Mach number. For example, for 
a shock Mach number of 1.6, with y = 5/3, the fractional velocity change 
(WI - &))/u, required to produce a maximum possible running time is 1.12, 
whereas for a shock Mach number of 6, with y = 5/3, the fractional velocity 
change is only 0.37. This suggests that for the higher shock Mach numbers, 
Hooker's analysis, relying as It does on the assumption that only small changes 
in flew parameters occur, is more in keeping with the physical model. The 
second point 1s that already mentioned in Section 2, where it is shown that 
at the higher shock Mach numbers the boundary layer occupies a much Smaller 
portion of the channel. Here again, Hooker's assumption of a thin boundary 
layer is more appropriate to the physical model than it is for the lower shock 
Mach numbers where the boundary layer is seen to be thick. 

It is to be noted that otherwise the basic physical models for the 
present analysis and the Roshkc-Hooker analysis are very similar. In both 
analyses a constant strength shook wave is assumed, generating a quasi-steady 
boundary layer. However, the subsequent exercise then demands satisfying the 
ass-flow e uation in the shocked gas region and also the momentum equation. 
Bernstein's 9 analysis 111 fact solves these two equations siJsultaneouslY, 
providing a solution which gives the variation of the inviscid COI'e flow 
velocity u, with the boundary-layer development length x. The present 

analysis is then concerned with calculating the time required for this 

development/ 
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development to take place [cf. equation (3.2.6)]. The Roshko-Hooker anslysis 
on the other hand only satisfies the mass flow equation, and in an approximate 
form. The Bernstein analysis, however, does involve the assumption that the 
value of the boundary-layer form parameter, I-l, may be taken to be the flat- 
plate value, the argument being that H is insensitive to small variations in 
velocity profile. With the small pressure gradients involved this assumption 
is not likely to introduce significant errors. 

The turbulent-bolndarg-layer analysis, obtained from equations 
(3.3.6) and (3.3.7), is plotted in Figs. 58 - d, for y = 7/5 and y = 5/3. 
The turbulent-boundary-layer analysis cannot be canpared with either the present 
laminar-boundary-layer analysis or the Boshko-Hooker analysis in the X', TB 
plane since the parameter rC, in the turbulent analysis is raised to the power 
2/(n+l). 

It must be noted that although the behaviour of the steady compressible 
laminar boundary layer is now fairly well understood, the behaviour of the 
turbulent boundary layer is not so well defined. Consequently the use of 
Bernstein's turbulent-boundary-layer analysis used in Section 3.3 is open to 
question, and the reader is directed to Bernstein's papery for further 
discussion on this topic. 

5. The Present Experimental Work 

5.1 The apparatus 

The channel of the shook tube used in the present investigation is 
16 feet long and I& inches square in internal cross-section. The channel has 
II possible measuring stations situated 1; feet apart which normally contain 
barium titanate shock-wave detectors. The output from these detectors could 
be fed via thyratron trigger amplifiers to a Rank-Cintel decimiorosecond 
chronometer and a Tektronix oscilloscope. 

The drover used was 4 feet long and 3 inches i.d. in section, the 
driver pressures being measured with two Budenber 
reading 0(2)4.K p.s.i. gauge, f 

standard test gauges, one 
the other reading 0 50)2000 p.s.i. gauge. The 

vacua used in the channel were measured with two Wallace and Tiernan absolute 
pressure gauges, one reading 0(0.5)100 mm Hg, the other reading 0(2)800 mm Hg. 
For readings at high vacua an Edwards Pirani gauge was provided. All the 
vacunm gauges were calibrated against an oil manmneter. 

The contact-surface detectors used in the investigation were those 
described by Bernsteinl2, and were simply glass rods with thin platinum films 
baked onto the leading edges, and could be placed in any of the II measuring 
stations. The films were supplied by constant current sources, the voltage 
change produced by the heating of the platinum, when the shocked gas iwpinged 
upon it, being fed through amplifiers to the oscilloscope. 

The diaphragm material used was Melinex, the diaphragm being 
shattered by a plunger operated by a simple pawlmeohanism. 

5.2 The experimental results 

All the running-time measurements were carried @Jt in nitrogen, 
the driver gas being hydrogen in the case of the 16% = 6 runs, and nitrogen for 
the M,, s 3 runs. It was felt that the initial shock Mach number measured near 
to the diaphragm might have more significance in the correlation with theory 
than would the local shock Mach number. 

Measurements/ 
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hkasurements near the diaphragm were first obtained as a check 
that the initial shock Mach number was close to either 3 or 6. Once the 

channel and driver pressures were found to produce these initial shock Mach 
numbers they were used throughout the subsequent experunents for the 
particular initial channel pressure selected. 

The raw results are presented in Figs. 6 - 9. It will be noted that 
there is some scatter in the results, probably due to small variations in 
driver and channel pressures and a varying quality in the bursting of the 
diaphragms. The latter effect was rmnimued by discounting results where it 
Was seen that the diaphragm had not petalled cleanly. Since the more accurate 
Vfallace and Tiernan gauge was sensitive to% mm Hg pressure changes, the 
varying pressure effects were difficult to eradxste. 

A limitation was imposed on the minimum channel pressure possible 
for experimental measurements because of triggering dzfficulties. For a 
partxular shock Mach number -the size of the pulse given out by the barium 
titanate transducers 1s proportIona to the lnitlal channel pressure. 
Consequently at the lowest pressures used (0.7 mm Hg) the sensltivlty of the 
trigger amplifiers was at a maximum, and the thyratrons then tended to be 
triggered by stress waves in the channel walls due to the bursting diaphragm, 
rather than by the shock wave. 

6. A Correction for the Finite Bursting Time of the Diaphragm 

It is known" that the primary shock wave is not uutantaneously 
generated at its full strength when the diaphragm begins to open. A consequence 

of the fuute bursting time of the diaphragm is that the shock wave accelerates 
to approximately the strength indicated by simple theory through a series of 
coalescing compression waves Generated at successive stages of the diaphragm's 
opening. A further consequence 1s that the contact surface accelerates from 
rest over some finite time dependent on the diaphragm opening tune. Thu 
process is illustrated in Region A of Fig. 11. It 1s noted that m this region 
there is consulerable departure from the physical model used for the description 
of running-time variations. This indicates that there might be some discrepancy 
between the analysu and experiment at some small distance from the diaphragm. 
This, in fact, appears to be so, since the experxmental curves of xunning-time 
distribution along the channel of Fzgs. 6 - 9 show no indxation that the 
experimental curve, if smoothly extrapolated, would pass through the origin. 

Now if it is assumed that the shock wave and contact surface position 
themselves m the (x',t) diagram without influence from the boundary layers also 

generated In this process (this is reasonable since the whole flow field is 
rapidly accelerating so that the boundary layers will be thin), then some 
correction may be made to the analysx to allow for the finite bursting time of 
the diaphragm. 

It 1s seen from Fig. 11 that the model of the flow used in the 
predxtion of running time has an origin at 0'. Here the shock-wave and contact- 
surface trajectories, as observed at some station B, have been extrapolated 
according to the present analysis to the point 0'. In other words, on the 
basis of the measured runnmg time at station B, the physrcal model gives the 
origin of the shock wave and contact surface as being some distance, (X'p, + OB), 
from B. Consequently, it has been the practice in the experiments carried out 
in the present investlgatlon to measure the running time at scme position 
close to the diaphragm (but where the measured shook Mach number is that 
predxted by simple theory, thus avoiding misleahng running-time measurements 
in region A), and then from the snalys~s of Section 3.2, calculating (x'A + OB). 

Hence/ 
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Hence once x'A is known, it may then be applied to the predictions of inning 
time further along the channel. It is to be noted that x'A should remain 
constant, or nearly so, for one particular initial pressure in driver and channel, 
and one particular diaphragm thickness, provided the diaphragm always bursts 
in the same clean manner. 

It is to be noted that the correction X'A may be positive OT 
negstive as required, and that the method outlined above will subsequently be 
referred to as laminar-boundary-layer analysis matching. 

7. The Matching of Lardnar- and Turbulent-Boundary-Layer Running-Time Analyseg 

The analyses given in Sections 3.2 and 3.3 are based on boundary layers 
which are either laminar or turbulent. It is of interest to examine the effect 
on running time of transition to turbulent boundary-layer flow, since transition 
ms.y have a marked effect on the running-time distributipn along the channel. 

On the assumptian that at some point in the growth of the laminar- 
boundary-layer transition occurs, and subsequently moves with the shock velocity, 
it is possible to match the two running-time analyses at the first occurrence 
Of transition, and oompute the subsequent analytical running-time distribution 
along the channel. 

An appeal to the quasi-steady flow model of Fig. 128, where the shock 
is at rest, shows that the inv~cid core velocity, Ue9 is the same at ezther 
side of the transltion point T, and that the virtual development length of 
the turbulent boundary layer is a distance XT ahead of transition. 

Examining the (x',t) plane of Fig. 12b, it Is evident that there 
must be continuity of running time through the transition point. That is to 
say that the first particle set in motion by the shock wave experiences transition 
at T and until then it has been at the extremity of a growing laminar boundary 
layer; subsequently its traJectory is controlled by the grcming turbul& 
boundary layer. Consequently the contact surface describes the path CL unt?$ 
the point T is reached, whereafter the contact surface describes the path CT. 
It is also evident from Fig. 12b that the vx+xal origin of the turbulent 
boundary layer is at OT, a distance X'T ahead of T. (The reader is here 
asked to note that the various symbols used in the subsequent argument are 
defined in Fig. 12). 

Assuming that the distance of the initial transition point T from 
the diaphragm 1s x+ and IS tioutn, then the running time, tR, at that point 
is also known together with the corresponding value of ue/ueo. Consequently 
xk and. tp, may be calculated from the turbulent-boundary-layer analysis, 
rememberingTthat the value of ue/ue, is conserved through the transition 
point T. Hence the time 4 can now be calculated since 

tl = tR - tR, . . . . (7.1) 

With the assumption that the subsequent transition point remains at 
a constant distance behind the shockwave, then it follows that h remains 
constant for the remainder of the (x',t) bagram, if the shock is assumed t0 
have a constant speed throughout its motion. Now the turbulent-boundary-layer 
analysis may then be used to calculate the running time tR(Tm) behid a 
'virtual' shook '3' at some distance "'(mm) from OT. Consequently the 
actual running time d experienced at some dw.tance, x: , from the diaphragm 
is now 
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% = +% + tB(TURB) 

and the actual distance, xJ, from the diaphragm is given by 

. . . (7.2) 

xl = zqTuBB) -x$+x;. . . . (7.3) 

Again in this problem it is necessary to apply a correction for the 
finite bursting time of the diaphragm as outlined in Section 6, so that the 
relationship (7.3) may he modified to give 

. . . (7.4) 

The decision as to where the transltion point, if any, first occurs 
in the experimentally obtained. running-time distribution along the channel is 
sometimes difficult to make. However, the running-time distributions shown 
in Figs. 6 and 8 show quite striking departures from the predictions of the 
laminar boundary-layer analysis, even when matched at the first experimental 
point. These departures seem to be much greater than couldbe expected due to 
shook attenuation, and indeed the measured values of shook Mach number, for the 
experimental points subsequent to the initial departure of experiment from the 
analysis, show no rapid attenuation of the shock wave in this region. 
Consequently the most likely reason appears to be the occurrence of transltion. 
Furthermore transition Reynolds numbers (see Appendix II) calculated on the 
assumption that transition in fact dces occur at the point of departure 

3 gme 
quite well with transition Reynolds numbers found by other investigators . 

8. A Comparison of the Analyses with Experiment 

The running-time distributions along the channel obtained in the 
present investigations, using nitrogen in the channel, are plotted in 
Figs. 6 - 9. All the analytical curares included in the comparison have been 
matched to the first experimental points in accordance with the method of 
Section 6. It is to be noted that generally the experimental points compare 
favourably with the present analysis, but that there are, in some cases, marked 
differences between the laminar-boundary-layer analysis and experiment, even 
when allowances have been made for the finite bursting time of the diaphragm. 

In the case of 16, E 3-O and pi = 5.6 mm Hg (Fig. 6) it is seen 
that there appears to be no increase in running time after approximately 8 feet 
of the channel has been traversed by the flow. As has been argued in Section 7, 
the most likely explanation of this 1s that transition has ocourred in the 
boundary layer. On this assumption the modified analytical curve 'to the 
right' of the point T, which indicates the assumed transItion point, has been 
prepared using the method of Section 7. The agreement between experiment and 
the modified analysis allowing for transition-is seen to be greatly improved. 
Furthermore, the transition Reynolds number R, calculated for the assumed 
transztion point (see Appendix II) is of the order to be expected. 

The results for MS, E 3-O and pl = 3.3 mm Hg (Fzg. 7) show some 
discrepancy with the present laminar-boundary-layer analysis at about 13 feet 
from the diaphragm and calculations show that it is possible that transition has 
also occurred at this point. 

In the case of M&Y 6-O and pi = 5 mm Hg (Fig. 8) the interpretation 
is a little complicated by shock attenuation. A crude allowance has been made 
for this by simply deducting from the present laminar-boundary-layer analysis 

the/ 
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the time between the arrival of' the measured shock-wave trajectory and the 
constant shock-wave trajectory postulated in the physical model (see Fig. 15). 
This is essentially a linearisation of the problem and more will be said of 
this later. Transition has also been assumed at T, and the oomparison between 
the modified analysis and experiment is seen to be good. 

The remaining results for M,, = 6.0, that is for values of pi of 
3.5 mm Hg and I.2 mm Hg (Fig. y), show considerable scatter and general 
disagreement with the matched laminar-boundary-layer analysis. It is felt that 
the general disagreement with the analysis may be due to shock attenuation 
and the soatter to inaccurate initial pressures and poor diaphragm bursts I v-7 
thin diaphragms were used in these particular runs and did not petal cleanly). 

All the results obtained in the present investigation are plotted 
in the X',Tk plane of Fig. IOa, and compared with the results of the present 
laminar-boundary-layer analysis and Hooker's analysis. Poor agreement is to be 
noted for the hi,, = 6.0 results, but for Mbk = 3-O the agreement is seen to 
be good for both analyses. The experimental points at the region where the two 
analyses begin to depart from one another tend to follow the predictions of the 
present analysis. 

n 

DuffL has measured the running time along a shock-tube channel of 
radius 7.43 cm. He used argon as the channel gas at an initial pressure of 
O-5 mm Hg. The driver pressure was adjusted for each experiment so that the 
shock Mach number obtained at the measuring station (the local shock Mach 
number) was l-6. His results are plotted in the X', Tk plane of Fig. lob, and 
it is seen that the agreement with the present laminar-boundary-layer analysis 
is good, whereas Hooker's analysis predicts running times vastly greater than 
Duff's results. Besides the measurements noted above, Duff also examined the 
dependence of running time on initial channel pressure. He measured the running 
time at a constant distance of 3.81 metres from the diaphragm, and kept the local 
shock Mach number near to 1.6 by adjusting the diaphragm pressure ratio. His 
results are plotted in Fig. 13b, in the tB/tpTH, p1 plane (they are also 

included in the X', Tk plane of Fig. lob) together with the predictions of the 
present laminar-boundary-layer analysis and Hooker's analysis for shock Wch 
numbers of I.6 and 2.0. The experimental results are seen to be in close 
agreement with the present analysis for a shock Mach number of q-6. Note that 
as Hooker points out, the curves of tB/tkTH against pi are not strongly 
dependent on shock Mach number. 

Duff carried out a third set of experiments in which he measured the 
running time at 3.81 metres from the diaphragm using a constant initial channel 
pressure of O-5 mm Hg with argon as the channel gas. In these experiments the 
local shock Mach number was varied! the results being plotted in Fig. l&a. Here 
again good agreement is obtained with the predictions of the present laminar- 
boundary-layer analysis. 

Hooker's results6 obtained in argon are presented in the X', Tk 
plane of Pig. IOc. He measured the running time at 6-27 metres from the 
diaphragm in a channel whose diameter was 3.95 cm, and covered a wide range 
of pressures and local shock Mach numbers. The points plotted in Fig. 10~ 
have against them the measured local shock Mach number, and it is seen that it 
is difficult to correlate these points with the analytical curves. When 
re-plotted in the k&+H, &% plane of Pig. 13s they tend to collapse onto 
a mean curve, and 111 general agree reasonably well with the present analysis for 
M * = 4-o. The slight dependence of the analyses on shock Mach number is here 
even more striking. 

Hooker/ 
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Hooker provides experimental results where the initial channel pressure 
is greater than 5 mm Hg, but these results show considerable disagreement with 
the analyses. It is felt that these results represent conditions in which s 
partly turbulent boundary layer is existent, anh consequently the tR/tRTH, p, 
plane has not been extended to include them. 

Appleton and Husgrove'9 have measured the dependence of running time 
on initial channel pressure using air as the channel gas. The channel radius 
was d-77 inand measurements were made at a distance of 6-32 ft from the 
diaphragm. The local shock Mach number was arranged to be 5.0 for each 
experiment, and the results are plotted in Fig. 130. It is to be noted that 
there 1s some discrepancy between the analyses and experiment. A possible 
explanation is that the diaphragm opening times were large, and this might 
produce marked effects on measurements taken so close to the diaphragm. 

A second set of experiments performed by Appleton ma Musgrove 
consisted Of measuring the variation of running time with shock Mach number. 
The initial channel pressure was 50 mm Hg, and the results are presented in 
Fig. l&b, together with the predictions of the present laminar- and turbulent- 
boundary-layer running-time analyses. It is seen that the experimental points 
fall between the two at the lower shock Mach numbers, but begin to agree with 
the turbulent-boundary-layer anal@s with n = 5 as the shock Mach number 
increases. The Reynolds number R has been calculated assuming that the 
boundary-layer development length up to the contact surface x may be obtained 
from the ls@.nar-boundary-layer analysis of Bernstein (see Section 3.2). It is 
seen that R is not much greater than the usual values to be expected of the 
transition Reynolds number H, when Ma = 2.0. Consequently it is possible that 
a significant part of the boundary layer is still lsminar when M,, = 2.0, and 
so the actual running time might be expected to have a value somewhere between 
the predictions of the laminar- and turbulent-boundary-Myer analyses. It is to 
be noted that as the shock Mach number increases, so the value of H increases. 
One might then expect the extent of the laminar boundary layer to decrease. 
On this basis it appears that the actual running time should therefore tend to 
the predictions of the turbulent-boundary-layer analysis as the shock Mach 
number increases, and this, in fact, 1.5 the case. 

It should be noted that the predictions of the turbulent-boundary- 
layer analysis with n = 5 appear to fit the existing &ta better than the 
predictions where n = 7. Also the running time does not appear to depend on 
the driver gases used. 

9. A Discussion on the Validity of the Physical Model 

The simplified physical model of the flow used in all the analyses 
assumes a shook wsve of constant speed, and also that the contact surface remains 
B surface of discontinuity. That these assumptions are not generally true is 
well known; the shock-wave attenuates due to the boundary-layer growthl*, and 
the contact surface, rf it ever exists as such, rapidly spreads into a highly 
turbulent mixing region. Consequently, to provide an exact description of the 
flow that exists in the shock tube, we should be obliged to solve the shock-wave 
attenuation problem and determine how far, if at all, the contact region extends 
into the shocked gas flow. The solutions to the first problem of shock-wav 
attenuation, all based on linearisation methods, are discussed by Bernstein 9 9 
A solution to the problem of contact surface spread has been provided by Hall ::* , 
again using a linearisation technique, assuming that the density difference 
ecross the contact surface is small. Neither the solutions to ths shock-wave 

attenuation/ 
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attenuation problem, nor Hall's solution to the contact-surface mixing problem 
compare well with the experimental w~denoe, except at very low shock Mach 
numbers. 

The problem of shook-wave attenuation ccupled to the prediction of 
running time is a tif'ficult problem to formulate, in that one requires to know 
how quickly the boundary layer, partxularly at the head of the contact region, 
responds to changes in shook strength. A method for accounting for shock-wave 
attenuation, which ignores the above point, has been described previously in 
Section 8, so that this method is very difficult to justi@ fully although it 
provides a reasonable correction to the analysis in the case considered. It 
should 3e noted that good agreement with experiment could be obtained by 
simply ignoring the shook-wave attenuation effect and assuming that transition 
occurred rather earlier (see Fig. 8). The method used to account for shock- 
wave attenuation is based on the assumption that It will take scme time for 
the effect of the changing shock speed to reach the boundary layer at the 
contact surface. The sketch of Fig. 15 explains what has been done. Time is 
deducted from the prediotions of the present running-time analysis, the time 
deducted being the time between the arrival at a particular station of the 
ideal constant-speed shook Nave, and the arrival aT the same station of the 
shock wave of known measured speed. This method seems to provide an adequate 
small correction to the present analysis In the case of MR = 6.0, 
pi = 5 mm Hg in nitrogen (Fig. 8). However, the above argument aspears to be 
of very doubtful valxdity in the case of Duff's experimental data . Duff 
measured the running-time bstributlon along the channel, but arranged the 
driver pressure so thatat whichever station he measured the running time, the 
local shook Mach number was 1.6. Duff shows in hx paper that the shock Mach 
number near the diaphragm was often much higher than 1.6; in fact it was of 
the order of 2. An attempt to correct the present running-time analysis for 
this large amount of shock-wave attenuation led to very much smaller running 
times than Duff's data shows. Consequently, one is forced to the conclusion 
that either the present analysxs 1s Inaccurate in its predictions, or that the 
boundary layer at the contact surface rapidly responds to changes in shock 
speed in the circumstances of these particular experiments. One possible 
argument is that in the invxsoid core of the flow, the feedback of information 
concerning the changing shock speed passes along the negative characteristics; 
the velocity of the Information is (u-a). Now If the shock Mach number is 
high then the slope of such characteristics is high, since the Mach number of 
the shocked gas flow increases with increase of the shock Mach number. However, 
if the shock Mach number 1s low the slopes of the (u-a) characteristics are 
smaller and here one might expect mope rapid conveyance of information to the 
contact region of details of changes of shook speed. The above argument does 
not indicate, however, how quickly the boundary layer reacts to changes in 
external flow conditions and this 1s clearly important. Consequently, it would 
be of considerable interest to perform experiments not only in which the 
running-time distribution along the channel would be measured, but also the 
shock-wave attenuation. In this manner an (x',t) diagram could be constructed 
whhlch might reveal the response of the contact surface to changes in shook speed. 

The problem of contact-surface mxcing may be soluble by means of the 
classical turbulent transport theory. There is a change in momentum across 
the contact region because of the change in density occurring there, SO that 
one may be able to show that there is a continuous change in mean density 
through the contact region, and that the turbulent region will spread. It 
has been suggested14 that the roblem of contact-surface spread may be explained 
in term of Tsylor's analysis 13 of the Instability of disoontinuities such as 
the contact surface. Yet considering the large amount of turbulence generated 
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by the bursting diaphragm it seems unlikely that a contact surface is even 
initially formed and that the disturbances initially present in the flow may 
be regarded as small, so that conditions for Taylor instability hardly seem 
to arise. 

There remain two further points worthy of mention concerning the 
validity of the assumed physical model. The first is that the model discounts 
any effects due to the presence of the cold driver gas. That the driver gas 
does effect shock-wave attenuation is known 9. Consequently one might expect 
to notice variations in running time due to the use of different driver gases. 
This may in part explain the rather poorer correlation between the present 
analysis and experiment in the case of the 
present investigation. 

Ms, = 6-O runs performed. in the 
In the latter experiments hydrogen was used as the 

driver gas, whereas with the Msi * 3.0 runs, using nitrogen as the driver gas, 
the correlation between the present analysis and experiment was seen to be 
generally good. In this respect it has been noted in Section 8 that the results 
of Appleton and Musgrove (Fig. 14b) show no such dependence of running time 
on the driver gas. However, only helium and air drivers were used, whereas 
the use of hydrogen as the driver gas is known9 to have a much more marked 
effect on shock-wave attenuation than helium. 

The second point is that, in the present analysis, real-gas effects 
have been entirely ignored. This IS a reasonable assumption provided that 
the shock Mach number is lower than, say, Ms, = 6 but as is mentioned in 
Section 1, Henshslfl shows that at higher shock Mach numbers real- as effects 
cannot be Ignored. It is to be noted that both Boshkd and Hooker & partially 
deal with the presence of real gases by the incorporation of a compressibility 
factor in the equation of state. 

A modification to the present analysis to include real-gas effects 
is possible. A first approximation would be simply to calculate the conbtion 
of the gas immediately behind the shock wave, using the real-gas tables 
calculated by, say, Bernsteinl6. Thereafter the variation of the gas parameters 
in the inviscid core of the flow might be calculated assuming the simple Ideal- 
gas isentropic flow equations, but using a value of y appropriate to the 
conditions already calculated immediately behind the shock wave. Furthermore, 
a second approximation might be effected, taking into account variations in 
the atomic structure of the molecules m the inviscid core of the flow. 
However, the inclusion of real-gas effects in the description of the boundary 
layer itself, together with the above acproxircations, would certainly make the 
resulting running-time problem exceedingly cumbersome. The possibility of 
solution to this latter problem, however, would seem to depend as much on the 
size and speed of existing computing machines as on any lack of knowledge of 
the behaviour of real-gas flows. 

IO. Concluding Remarks 

It has been shown that the 'linearisation' methods of the previous 
analyses used to predict shock-tube running times are no longer adequate when 
the boundary layers are thick relative to the channel radius. An alternative 
analysis has been demonstrated which does not include some of the more 
restrictive assumptions of the previous analyses, and gives results in better 
agreement with the experimental data. Corrections are explained to account for 
the remaining discrepancies between the present analysis and experiment in 
terms of turbulent transition in the boundary layer, and the finite bursting 
time of the diaphragm. The correlation of the present analysis with experiment 
is then shown to be much improved. 
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It is suggested that further work be carried out to show the 
dependence of the contact-surface trajectory on the attenuation of the shock 
wave. Also, it is suggested that the structure of the contact region be 
examined in aetail. 

As is noted in Section 9, the driver gas may have scme effect on 
the duration of running time, so that it may be worth while examining 
experimentally the effect of using different gases, particularly hydrogen, to 
produce shocked gas flows having identical initial conditions. 

The variation of running tune m&t also be examined experimentally 
at high shock Mach numbers where real-gas effects begin to be appreciable. At 
the same time the present analysis of Section 3 might also be repeated to 
include the kind of real-gas approxunations outlined in Section 9. 

Since little experimental data are available on running times where 
it is lmown that the boundary layer is entirely turbulent, it would be 
of interest to perform experiments in whxh the boundary-layer flow conforms 
to this condition. 

Finally It is perhaps worth reiterating Hooker's point that since 
the running times in shock tubes can be considerably less than the predxtions 
of simple theory, the usual gas parameters of the inviscid core of the shocked 
gas flow can be far from constant. Therefore care should be observed in the 
interpretation of the experimental results so that the constancy of these gas 
parameters is not necessarily taken for granted. 
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11. Notation 

a i 
AU 

a 
z 
c 

F 
F 
G 

% Hi 

J 

-3 

M 

m 

m 

n 

pr 

Pi 

R 

i! 

Ti 

T1j 
T 

t 

u 

"i 

speed of sound in region i 

speed of sound ratio 4j 

hydraulic radius of channel = 2 x area/perimeter 

aontact-surface trajectory 

constant relating to the turbulent-boundary-layer 
velocity-distribution power law 

function defined by equation (3.3.2) 

parameter defined by equation (3.2.3) 

function defined by equation (3.2.2) 

boundary-layer form parameters in stationary wall case - 
suffix i denotes incompressible flow 

boundary-layer form parameters in moving wall case - 
suffix i denotes incompressible flow 

parameter defined by equation (3.3.3) 

distance between shock wave and contact surface 

Mach number 

mas.3 flow 

mass-flow rate 

index in turbulent boundary-18yer power-1Bw velocity profile 

Prandtl number 

pressure in region i 

Reynolds number 

shock wave trajectory 

temperature in region i 

temperature ratio Tihj 

non-dimensional time 

time 

velocity 

velocity in region i 

'ij' 
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'ij 

Wi 

v 

X 

x 

Y 

"i 

w 

Suffices 

i 

a 

0 

A 

bl 

c 

e 

L 

m 

velocity ratio ui/uj 

viave speed into region i 

distance covered to transition point 

non-dimensional. distance 

boundary-layer development length, including the development 
length up to the contact surface 

distance from wall of channel 

constant defined by equation (2.3) 

specific heat ratio 

density ratio pi/pj 

boundsry-lsyer displacement thiclmess 

boundary-layer momentum thickness 

function defined by equation (2.4) 

dynamic viscosity in region i 

density in region i 

transition point 

transition-point trajectory 

kinematic viscosity in region i 

index used. to define dependence of viscosity on temperature. 

refers to quantities in region ahead of primary moving shock w3ve 

refers to quantities in region immediately behind primary moving 
shock wave 

refers to conditions immediately behind stationary shock nave 

refers to corrections resulting fronn the influence of 
region A In Fig. 11 

refers to conditions evaluated at th? edge of the boundary 
layer 

refers to conditions at the contact surface 

refers to conditions some dlstanoe behind stationary shock wave 

refers to laminar-flow conditions 

refers to values of properties evaluated at mean enthalpy 

d 
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w refers to wall conditions 

S refers to quantities measured at room temperature 

Si refers to shook wave moving into region i 

R refers to flow durations 

TH refers to quantities evaluated from simple shock-tube theory 

T refers to turbulent flow conditions 

7 refers to transition point. 

Note that Primes and Bars used with lengths refer to special lengths defined 
individually. 
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APFJENDIX I 

Some Useful Normal Shock-Wave Relationships 

The transformed gas velocity behind the shook vmve used in the 
boundarg-layer relationships of Sections 3.2 and 3.3 may be easily obtained 
by remembering that,due to the velocity transformation used to reduce the 
shock to rest in the transformed plane, 

UeO = %-%, 

Le. 

UeO 
- = M 

s, 
-&,. 

k 

The value of &, as a function of Y,, 
literature'7 cm shock tubes and is 

may be Pamd in the standard 

Therefore 

ue 
y-l If,, + 1 2 

o= . . . . (A.l.l) 

It my also be shown that 

= A& = Gi = . . . 

M& (Y+l)" 
(A.l.2) 

Hence shoe 

~~CUD (A.l.1) and (A.121 

. . . (A.1.3) 

The/ 
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'The wall velocity in the transformed plane uw is numerically equal 
to the shock speed in the physical plane and so 

Therefore 

u, = MR%. . . . (A.1.4) 

from equations (A.1.4) and (A.l.1). 
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APPENDIX II 

The Transition Reynolds Number 

An attempt has been made by various investigators' to correlate 
transition phenomena encountered in shock-tube problems with data obtained 
from experiments carried out on flat plates in compressible boundary-layer 
flow. It has been suggested that the significant length parameter required 
for the formulation of a transition Reynolds number for the shook-tube problem 
is the distance travelled by a fluid element before it encounters transition 
in the boundary layer. It is also assumed that once transition has oocurred, 
the transition point is propagated with the speed of the shook; thus the 
transition point remains a constant distance behind the moving shock wave. 

It is seen in Fig. 16 that considering some fluid element initially 
at rest in the region ahead of the shock, the element remains at rest throughout 
the time AB. At time B the element is assumed to be accelerated through the 
shock wave to the ideal simple theory velocity of us. The element then 
traverses a distance w and encounters transition at T, the boundary-layer 
development length at T being x . T 

The transition Reynolds number, R,, may now be defined as 

RT = 

where vw is the kinematic visoos>ty 

YW 
- . . . (A.2.1) 
"w 

at the wall. .t .~ With this model it is possible 
to show from the geometry of the (x',t) diagram that 

R, = +-;: (I - :,' . . . (A.2.2) 

where we have also used the mass continuity equation through the shock wave: 

Ueo Pa = Kppl. . . . (A.2.3) 

It is more convenient to express vw in terms of quantities measured 
ahead of the shock. Consequently if 

Tw c! Ti 

then 

and remembering that the static pressure is conserved through the boundary layer, 
it follows that 

I4 
VW = -. 

pa% 

Hence/ 
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Hence: 

% = F 'hi (1 - >x . . . (1.2.4) 
0 

where we have again made use of the expression (A.2.3). 

performed by Nirelsll. 
The analysi resulting in the expression (A.2.4) for R, was first 

It may be preferable to obtain a transition Reynolds number based on 
the kinematic viscosity of the free stream, i.e., 

uaw 
iq = -. . . . (-4.2.5) 

t2 

It then follows, as before, that 

Than 

Hence it follows that 

ii, 
= R, T;z+ '. . . . (a.2.6) 

We may also write ET as 

ua w 
z 

T = Go.-, 
ueO 

where 

Consequently 

% 
= Id&!&% . . . (A.2.7) 

It will be noted that in the Figs. 6 and 8 where transition is assumed 
to have occurred, the transition Reynolds numbers shown are evaluated making use 
of (A.2.4), (A.2.6) and (A.2.7). The boundary-layer development length z+ has 
been obtained fram the analysis of Section 3.2. 
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