

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Atmospheric Turbulence Encountered by Comet 2 Aircraft Carrying Cloud Collision Warning Radar

by

Judy E. Aplin

LONDON: HER MAJESTY'S STATIONERY OFFICE

1964

PRICE 8s 6d NET

U.D.C. No.551.551:621.396.969.36 [AI] (42) Comet 2

C.P.No.713 June, 1963

ATMOSPHERIC TURBULENCE ENCOUNTERED BY COMET 2 AIRCRAFT CARRYING CLOUD COLLISION WARNING RADAR

Ъу

Judy E. Aplin

SUMMARY

Counting accelerometer records have been obtained of the turbulence encountered by R.A.F. Comet 2 aircraft, equipped with cloud collision warning radar, in 335,000 miles of operational flying largely on routes connecting the U.K. with Singapore.

It is shown that the Comet 2 met significantly less turbulence at all altitudes than the Comet 1 which was not carrying this radar, and that the reduction in the frequency of occurrence of gusts increased with gust magnitude. No gusts as great as 20 ft/sec were recorded by Comet 2 aircraft during the cruise.

Comparable data from U.S. aircraft have also been considered, and show a similar reduction in the occurrence of large gusts.

LIST OF CONTENTS

		LIST OF CONTENTS	Page
1	INTRO	DUCTION	4
2	INSTR	JMENI TION AND TYPE OF FLYING	4
	2.1 2.2 2.3 2.4	The Compound Counting Accelerometer Airspeed switch Barometric switch Type of flying and area covered	4. 4. 4. 4.
3	BASIC	AND PROCESSED DATA	5
	3.1 3.2	Basic data The data processing	5 5
4	DISCU	SSION OF RESULTS	6
	4•1 4•2	Overall variation of gust frequency with gust speed Comparison of intensity of turbulence for Comet 1 and Comet 2	6 6
	4•3 4•4 4•5	Variation of gust frequency with altitude for Comet 1 and Comet 2 aircraft The pilot's influence on accelerations recorded Comparison of British and American results with special reference to the effect of airborne radar	7 8 9
5	CONCL	USIONS	10
LIST (FREF	ERENCES	10
TABLES	5 1 to TRATIO	16 NS Figs. 1 to 13	12-24 -
DETACH	IABLE .	ABSTRACT CARDS	-
Table		LIST OF TABLES	
1	Esti: dur:	mated time in minutes spent at each speed and altitude ing initial climb and final descent by Comet 1 aircraft	12
2	Esti: dur:	mated time in minutes spent at each speed and altitude ing climb by Comet 1 aircraft	13
3	Esti: dur:	mated time in minutes spent at each speed and altitude ing descent by Comet 1 aircraft	14-
4	Esti: dur:	mated time in minutes spent at each speed and altitude ing cruise by Comet 1 airoraft	14
5	Esti: dur:	mated time in minutes spent at each speed and altitude ing initial climb and final descent by Comet 2 aircraft	15

- Estimated time in minutes spent at each speed and altitude 6 16 during climb by Comet 2 aircraft
- Estimated time in minutes spent at each speed and altitude during descent by Comet 2 aircraft 7 16

- 2 -

Table	LIST OF TABLES (CONTD)	Page
8	Estimated time in minutes spent at each speed and altitude during oruise by Comet 2 aircraft	17
9	Summary of acceleration data from Counting Accelerometer Mk.2 in Comet 1 aircraft	18
10	Summary of acceleration data from Counting Accelerometers Mk.4 in Comet 2 aircraft	19
11	Aircraft characteristics assumed	20
12	Representative values of acceleration/gust speed conversion factors, Comet 1 aircraft	20
13	Representative values of acceleration/gust speed conversion factors, Comet 2 aircraft	21
14	Gusts encountered on all routes by Comet 1 aircraft	22
15	Gusts encountered on all routes by Comet 2 aircraft	23
16	Altitude bands used in analysis	24
	LIST OF ILLUSTRATIONS	Fig.
Map of	the routes flown by Comet 2 aircraft	1
Monthl	y distribution of recorded flying time for Comet 2 aircraft	2
Variat: for C	ion of gust frequency with gust speed during climb and descent omet 1 aircraft	3
Variat: for C	ion of gust frequency with gust speed during climb and descent omet 2 aircraft	4
Variat Comet	ion of gust frequency with gust speed during cruise for 1 aircraft	5
Variat Comet	ion of gust frequency with gust speed during cruise for 2 aircraft	6
Overal Comet	l variation of gust frequency with gust speed for Comet 1 and 2 airoraft	7
Variat by Co	ion of gust frequency with gust speed during olimb and descent met 1 and Comet 2 aircraft	8
Variat and C	ion of gust frequency with gust speed during cruise of Comet 1 Comet 2 airoraft	9
Variat	ion of gust frequency with altitude	10
Ratio altit	of up and down gusts encountered by Comet 2 aircraft at different udes	11
Variat durin	ion of gust frequency with gust speed at different altitude bands og cruise by Comet 1 and Comet 2 airoraft	12
Variat cruis	ion of gust frequency with airspeed at different altitudes during a of Comet 2	13

- 3 -

1 INTRODUCTION

Counting Accelerometers have been installed in a number of airoraft to investigate the atmospheric turbulence encountered during flight, and results already published include those from B.O.A.C. Comet 1 airoraft¹. The present paper discusses results from two Comet 2 aircraft of the Royal Air Force Transport Command which were fitted with cloud collision warning radar. As the Comet 1 aircraft were not fitted with this equipment, comparison of the two sets of results will show any reduction in the turbulence encountered which is due to its use since, although slight differences may exist between the operation of B.O.A.C. and R.A.F. aircraft, past experience suggests that such differences should have little effect on the data.

A similar comparison has been made with some N.A.C.A. information from twin-engine short-haul transport arcraft², some of which were fitted with oloud collision warning radar and some of which were not.

2 INSTRUMENTATION AND TYPE OF FLYING

2.1 The Compound Counting Accelerometer

The type 4 Counting Accelerometer installed in the Comet 2 is a later version of the type 2 installed in the Comet 1, and a full description of these instruments can be found in an Instruction Leaflet³.

Briefly, the type 4 Counting Accelerometer consists of two units: the accelerometer unit, which is installed as near as possible to the centre of gravity of the aircraft and which responds to the aircraft normal acceleration, and the observer unit, which automatically counts the number of times given acceleration levels are exceeded and then photographically records the counter readings, airspeed, altitude and time at regular intervals.

2.2 Airspeed switch

To ensure that the accelerations recorded were true gust accelerations and not bumps in take-off, landing or taxying, the type 4 Counting Accelerometer was fitted with an airspeed switch, which switched on the instruments automatically when the airspeed exceeded 125 knots I.A.S. after take-off, and switched them off when the airspeed fell below 110 knots I.A.S. before landing.

2.3 Barometric switch

In the type 4 Counting Accelerometer the camera can be operated at two speeds. These are adjusted so that pictures are taken more frequently during climb and descent than during cruise. The change is controlled by a barometric switch and for these tests it was arranged that the camera should record at intervals of 4 minutes below 28,000 ft and at intervals of 11.6 mins above 28,000 ft. Because of the action of the barometric and airspeed switches the last interval before the camera changed speed or the recorder was switched off, may not be complete.

2.4 Type of flying and area covered

The two Comet 2 aircraft of Transport Command on which the Counting Accelerometers were installed, were flown mainly on routes from the U.K. to Singapore with very occasional flights to Africa, Australia or Christmas Island, as shown by the map in Fig. 1. These flights covered some 335,000 miles overall and were mainly training flights.

3 BASIC AND PROCESSED DATA

3.1 Basic data

The basic data are taken from two sources: the film record of the counter and instrument readings previously mentioned, and supplementary flight data sheets which are completed by the operators to give the date, time of take-off, duration and route of each flight, together with the weight of the aircraft at the time of take-off.

3.2 The data processing and results

The data are coded and transferred to punched cards for processing and details of the method of handling these have been given by Heath-Smith⁴.

During processing each interval is classified as belonging to one of the following flight conditions:

(a) Initial climb. The first interval of each flight.

(b) Final descent. The last interval of each flight.

(c) Climb. Any interval during which the aircraft increased altitude by 2000 ft or more.

(d) Descent. Any interval during which the aircraft decreased altitude by 2000 ft or more.

(e) Cruise. The remaining intervals.

The mean speed and altitude of each interval are taken to be representative of conditions throughout the interval, except for the initial climb and final descent records. For these the final airspeed and mean altitude were assumed for the initial climb intervals, and the initial speed and mean altitude for the final descent intervals.

The tables of Comet 1 results given in this note are the outcome of a recent rc-analysis standardising the altitude bands of Counting Accelerometer data, thus rendering them more directly comparable with the Comet 2 results.

The time spent at different speeds and altitudes is given for the initial climb and final descent in Table 1, the climb in Table 2, the descent in Table 3 and the oruise in Table 4, for the Comet 1 and similarly in Tables 5, 6, 7 and 8 for the Comet 2.

The acceleration data are arranged as the number of counts at the different acceleration levels in successive altitude bands, with the total recorded time

appropriate to each band and the corresponding estimate of statute miles flown; they are presented in Table 9 for the Comet 1 under the two headings of olimb and descent together, and cruise; and in Table 10 for the Comet 2 under the headings initial climb, final descent, climb and descent, and cruise. The initial climb and final descent acceleration records for the Comet 1 were not used since they included ground loads.

Tables 4 and 8 show that the cruise took place largely between 30,000 and 40,000 feet, particularly in the 33,500 to 36,500 ft band for the Cenet 1 aircraft, and between 35,000 and 42,500 ft, particularly in the 37,500 to 41,500 ft band for the Comet 2 aircraft.

The method of processing the acceleration counts to convert them into gust counts is the same as that used by Heath-Smith¹ involving the use of the discrete gust concept, with gust alleviation factors from work by Zbrozek⁵. The aircraft characteristics necessary for these calculations are listed in Table 11, and representative acceleration to gust velocity conversion factors are given in Tables 12 and 13 for the Comets 1 and 2 respectively. The resulting gust velocities are presented in Tables 14 and 15 in the same way as the acceleration counts in Tables 9 and 10.

The monthly distribution of the 744 hours of flying time recorded between June 1957 and August 1960 with Comet 2 aircraft, is shown in Fig. 2; but it was found that insufficient gusts had been recorded at the cruising altitudes to merit investigation of the seasonal, or geographical, variations of the turbulence intensity.

Table 16 is a list of the altitude bands into which the data were grouped, together with the code numbers used for them in the figures.

4 DISCUSSION OF RESULTS

4.1 Overall variation of gust frequency with gust speed

The variation of gust frequency with gust speed is illustrated in Figs. 3, 4, 5 and 6 by plotting the miles/gust against feet/second for each altitude band in the combined climb and descent data and in the cruise data from Comet 1 and Comet 2 aircraft. For this purpose, the initial climb and final descent records of the Comet 2 were amalgamated with the rest of the climb and descent.

In these four figures the general tendency is seen to be for the gust frequency to decrease with both altitude and gust magnitude, although it should be remembered that the small numbers of counts at the higher gust speeds make this end of the curves less reliable than the low speed end. If the upgust and downgust curves are compared on each figure, it is found that the ratio of upgusts to downgusts remains fairly constant in each altitude band.

4.2 Comparison of intensity of iurbulence for Comet 1 and Comet 2

The complexity of the four figures mentioned in the preceding paragraph makes comparison of the slopes of the Comet 1 and Comet 2 curves difficult, so the data from all altitudes were combined to give one upgust and one downgust curve for climb and descent, and a similar pair of curves for cruise, for each aircraft. Since they were not used in the Comet 1 analysis, the initial climb and final descent records were omitted for the Comet 2 for this comparison. The resultant curves are shown on Fig. 7 and the slope of the Comet 2 curve is seen to be steeper than that of the Comet 1 curve in each case.

The slopes of each pair of curves being similar, it was felt justifiable to simplify these results further by adding the upgusts and the downgusts to give one curve for the climb and descent of each aircraft, Fig. 8, and one for the cruise, Fig. 9. On these figures the slopes of the Comet 2 curves are considerably steeper than those of the Comet 1, indicating that the ratio of large gusts to small gusts is lower in the Comet 2 data.

The previous Comet 1 analysis¹ showed that all gusts greater than approximately 23 ft/sco were associated with cumuliform cloud. Since the maximum gusts encountered by the Comet 2 were between 15 and 20 ft/sec during oruise, and between 25 and 30 ft/sec during climb and descent, it would seem that the aircraft avoided nearly all the cumuliform cloud and its associated turbulence, due no doubt to the cloud collision warning radar with which they were equipped. Gusts of all magnitude were met far more frequently by Comet 1 aircraft than Comet 2 and a general conclusion could be drawn that the slopes of the Comet 1 curves in Figs. 8 and 9 are typical of atmospheric turbulence which includes that associated with cumulo nimbus, whilst the steeper slopes of the Comet 2 curves are representative of turbulence occurring in clear air, cirrus or stratus.

4.3 Variation of gust frequency with altitude for Comet 1 and Comet 2 aircraft

The frequency of occurrence of gusts greater than, or equal to, $7\frac{1}{2}$ ft/sec was plotted against altitude in Fig. 10 for both Comet 1 and Comet 2 aircraft. Both curves were drawn with due regard to 95% confidence limits calculated by a method given by Bullen⁶, but for greater clarity these have been omitted from the graph.

The choice of a particular gust velocity for this type of investigation is governed by two considerations, one of which is that the velocity should be low to give a relatively large number of counts. The other fact of importance is that a given acceleration counter of the counting accelerometer is actuated by gusts of different velocity according to the speed, altitude and weight of the aircraft at the time when the gust is encountered so, in order to ensure that for all but exceptional conditions of flight the estimated number of gusts is an interpolation of the recorded acceleration counts rather than an extrapolation, the gust velocity chosen should correspond to an acceleration greater than 0.2g, the lowest threshold of the instrument. The $7\frac{1}{2}$ ft/sec velocity satisfies these requirements for almost all conditions of flight for both Comet 1 and Comet 2 aircraft.

The climb, cruise and descent data from all routes were combined for Fig. 10 since results from low level cruise, probably recorded during stand-off and landing approach, were full to be really more typical of climb and descent rather than cruise, in that the pilot would be unable to exercise so much discretion in the avoidance of turbulence. Also, some cruise is probably included in the high altitude climb and descent records since, as described in section 3.2, the cruterion is a change of altitude of 2000 ft or more during one interval of time, and this is rather a small change for 11.6 mins flying.

As both Comet 1 and Comet 2 aircraft flew predominantly the U.K. to Singapore routes, these data represent a mixture of overland and oversea information. The Comet 2 initial climb and final descent records have been shown as single points on the graph, which indicate more and less severe gust frequency, respectively, than the rest of the low altitude data. A possible explanation of this difference lies in the fact that immediately after take-off many flight operations are performed in a very short space of time, whereas the corresponding operations prior to landing are spread over a much longer period, and so the associated accelerations will be condensed into the first few minutes of climb but distributed more widely throughout the descent.

Inspection of the curves indicates a steady decrease in turbulence with altitude up to about 35,000 ft for Comet 1 and 30,000 ft for Comet 2, although it should be noted that very few gusts were recorded between 17,500 and 33,500 ft with Comet 2 aircraft so that the curve through these four points is rather arbitrary. However, the general trend is for the gust frequency to decrease with altitude up to the region of the tropopause, and at all altitudes the curve for the Comet 2 lies above that for the Comet 1, the difference being roughly constant at the lower altitudes. The increase in turbulence at the higher altitudes shown on these curves is illustrated and discussed in greater detail in Fig. 12 and section 4.4.

Table 7 of the Comet 1 report¹ gives the counts occurring in cumuliform cloud and clear air as a percentage of those occurring under known conditions for average gust speeds and, interpolating, it is found that about 70% of the $7\frac{1}{2}$ ft/see gusts encountered under known conditions between 17,500 and 42,500 ft, occurred in oumuliform cloud. In this analysis the gust frequency of the Comet 2 between 29,500 and 41,500 ft was 30-38% of that of the Comet 1, indicating once more that the decrease in gust frequency was due to the avoidance of cumuliform cloud and its associated turbulence by use of the cloud collision warning radar on the Comet 2 aircraft.

4.4 The pilot's influence on accelerations recorded

When analysing the turbulence encountered by an aircraft, it is, of course, necessary to take into consideration the pilot's influence on the accelerations Perhaps the most obvious and direct effect of the pilot's handling recorded. of the aircraft is the increase in positive acceleration counts resulting from To illustrate this, and to investigate further the atmospherio manoeuvre loads. turbulence encountered by Comet 2 aircraft, the ratio of upgusts to downgusts for gusts of magnitude greater than, or equal to, $7\frac{1}{2}$ ft/sec was plotted against altitude on Fig. 11. For this purpose the climb and descent records were combined, and kopt separate from the cruise records, also where the recorded gusts or miles flown were too few to be considered significant, certain altitude bands were combined. During climb and descent at the lower altitudes, the ratio of upgusts to downgusts is seen to be relatively high, which is probably due to manoeuvring in the vicinity of airfields, with possibly some overland convective turbulence effect also?. At the higher altitudes, the climb and descent ratio tends towards the cruise ratio which shows slightly more positive counts than negative.

Another important consequence of the pilot's handling is that the aircraft is to some extent able to avoid certain types of turbulence. With aircraft not equipped with cloud collision warning radar, this avoidance is usually limited, particularly for continuous cloud, to climbing above it. On the other hand, pilots of aircraft which do carry this radar have a greater degree of freedom in their choice of avoiding action, as the extent of the cloud is known and a single cloud, or sparse cloud, will simply cause the aircraft to make a detour, changing altitude only when the cloud is known to be very dense.

It is to be expected then that this operating difference will have a direct effect on the turbulence encountered by the Comets 1 and 2 at their cruising altitudes. The Comet 2 data should show mainly the effect of the clear air turbulence which is known to occur at these high altitudes,^{9,9,10} over both sea as well as land routes, and which cannot be avoided since the cloud collision warning radar can give no warning of its presence. The Comet 1 results, in addition to this, should show the effects of increasing altitude in rough weather to climb above the storm clouds.

Accordingly, the increase in the frequency of occurrence of gusts in the region of the tropopause, noted on Fig. 10 for both Comet 1 and Comet 2 aircraft, was investigated in greater detail by plotting, in Fig. 12, the magnitude of gust against its frequency of occurrence, separate ourses having been drawn for each altitude band of the high level cruise.

It will be seen that the Comet 2 curves have the steep slope and total absence of big gusts previously associated in section 4.2 with clear air turbulence and it seems that the observed increase in gust frequency at these altitudes is an actual feature of clear air turbulence, which on the Comet 1 has become somewhat masked by the effect of convective turbulence.

Some U.S. results from high altitude turbulence measurements showed the same trend as these British data, and in their report¹⁰ Coleman and Steiner suggested that 'The increase in the amount of rough air at altitudes between 30,000 and 40,000 ft is probably due to the high winds and wind shears associated with jet streams which are normally prevalent at these altitudes for the mid-latitude area'

When an aircraft does encounter turbulence the pilot tries to alleviate its effects by reducing speed; this is illustrated in Fig. 13 which shows the variation of gust frequency with airspeed at each of the main cruising altitudes of the Comet 2, for gusts exceeding $7\frac{1}{2}$ ft/sec. This figure shows quite clearly that as the gust frequency increased, the airspeed decreased.

4.5 <u>Comparison of British and American results with special reference to the</u> effect of airborne radar

A comparison of the turbulence encountered by twin-engine short-haul transport aircraft with and without cloud collision warning radar, has been made by Copp and Walker² with Vgh and Vg records. The result of this comparison must be treated with some reserve since the recording periods for the aircraft with and without radar are not strictly comparable, being April, 1956 - May, 1957 with radar and October, 1955 - April, 1956 without radar, and other investigations have shown that the overall level of turbulence is likely to be much less for the winter than for the complete year^{11,12}.

If the mile/gust value was plotted against each gust magnitude for the U.S. data, as it has been for the Comet data in Figs. 8 and 9 of this report, the 'without-radar' curve would cross the 'with-radar' curve, since the aircraft with radar encountered more gusts of all magnitudes up to about 30 ft/sec, but fewer gusts of magnitude greater than this.

Assuming that the relative frequency of gusts of different magnitude does not change appreciably with the season, and the evidence supports this, then the effect of seasonal variation on either curve will be to move the curve up or down leaving its slope unchanged. Therefore, in the case of this U.S. data, the result of correcting for the seasonal variation on the 'without-radar' curve would be to decrease the mile/gust value at each gust speed and thus to lower the curve. The two curves would then be relatively similar to those given in this report.

5 CONCLUSIONS

The analysis of atmospheric turbulence data from Counting Accelerometers installed on Comet 2 aircraft carrying cloud collision warning radar, showed the gust frequency to be less at all altitudes than that encountered by the Comet 1 which was not so equipped.

The numbers of all gusts exceeding $7\frac{1}{2}$ ft/sec at the oruising altitudes for the Comet 2 were found to be about 30-38% of those for the Comet 1, i.e. the proportion found previously in the Comet 1 data to be associated with clear air, cirrus or stratus.

This avoidance of cumuliform cloud by use of the cloud collision warning radar also resulted in the frequency of occurrence becoming progressively less with increasing gust magnitude, and no gusts greater than 15 ft/sec were met during oruise by Comet 2 aircraft.

Comparable data from U.S. aircraft have been considered also, and these show a similar reduction on the occurrence of large gusts.

ACKNOWLEDGEMENTS

Thanks are due to the Royal Air Force for their help in the collection of these data.

LIST OF REFERENCES

No.	Author	Title etc.
1	Heath-Smith,	J.R. Turbulence encountered by Comet 1 airoraft. A.R.C. Current Paper No. 248, Nay 1955
2	Copp, M.R., Walker, W.G.	Analysis of operational airline data to show the effects of airborne weather radar on the gust loads and operating practices of twin-engine short-haul transport airplanes. N.A.C.A. Technical Note 4129 November 1957
3		Instruction Leaflet No. Structures 202 for Accelerometer, Counting type IT 6-1 Mk. 1, 2, 2A, 2E. 3. 3A. 4A. 4B and 4C

LIST OF REFERENCES (CONTD)

<u>No.</u>	Author	Title eto.
4	Heath-Smith, J.R.	The estimation of atmospheric gust frequencies from Counting Accelerometer records using the DEUCE computer. A.R. C. 20,921 October, 1958
5	Zbrozek, J.K.	Gust alleviation factor. Parts 1, 11 and 111. A.R.C. R & M 2970. August 1953
6	Bullen, N.I.	The sampling errors of atmospheric turbulence measurements. A.R.C. R & N 3063. May 1956
7	Burns, A.	Note on the relative numbers of positive and negative increments of acceleration experienced by an aircraft flying in turbulence. Unpublished M.O.A. paper
8	Clem, Le Roy H.	Clear-air turbulence from 25,000 to 45,000 feet over the United States. U.S.A.F. Air Weather Service Technical Report 105-147, January, 1958
9	Chambers, E.	Clear-air turbulence and civil jet operations. Journal of the Royal Aeronautical Society, September, 1955
10	Coleman, T.L., Steiner, R.	Atmospheric turbulence measurements obtained from airplane operations at altitudes between 20,000 and 75,000 feet for several areas in the northern hemisphere. N.A.S.A. Technical Note D-548 October, 1960
11	Taylor, J.	Fatigue loading actions on transport aircraft. International Conference on fatigue of metals 1956. Session 8, Paper 4.
12	Taylor, R.H.	Annual variation of flight loads recorded on Viscount airoraft by means of the Fatigue Load Meter. A.M.C. C.P.667. December 1962

Estimated time	in minutes	spent at	each	speed	and	altitude	during	initial	climb
HISTILLIVED VILLE	10 44144065	abe o no	CCC11	apeeu	ana	CI VI ILLUE	141 1115	ATTI VIGA	01.1100

and final descent by Comet 1 aircraft

					Al	titud	e abo	ve se	a lev	el (I	.C.A.1	1.) 1	n 100	Os of	feet	;						-
				·····	<u></u>		IN	ITIAL	CLIM	В								FI	NAL D	ESCEN	Т	
	00	C1	¢2	03	c 4	05	06	07	08	09	10	11	12	13	14	15	16	00	01	J2	03	
100 110 120 120 130 140 140 150 140 150 140 150 120 220 250 250 250	19 9 28 56 56 19 9 9 9	9 966 103 103 125 66 19 38 9	9 28 9 28 38 103 38 122 38 66 38 28 9 9	9 9 28 56 47 56 66 28 38 19 9	9 19 38 56 28 66 75 85 75 66 47 28 19	9 9 9 38 28 66 75 47 56 66 19	9 19 966 478 56 113 75	19 19 47 38 28 9 94 169 47	9 19 19 38 9 19 150 160 66	9 9 38 9 28 141 141 9	28 19 47 1 <i>3</i> 2 141 9	9 28 19 38 38 94 66	19 38 19 38 113 47	9 19 19 75 113 19	9 19 9 47	19 9 9 38	19 19 19 19	47 150 56 28	28 122 254 235 103 38 19 9	75 66 169 188 141 66 56 19 28 9 19	9 47 47 38 47 56 28 9 28 19 19	100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260
TOTAL	223	703	563	421	630	507	432	470	489	384	423	292	274	254	84	75	76	281	817	836	356	

Total initial climb: 6300 mins.

Total final descent: 2290 mins.

TIBLE 1

-

														41	titu	le a	bove	sea	lev	el (I.C.	L.N.) × ·	1000	ft														
-		00 C	71 0	020	3 04	. 05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
Indicated airspeed in knots 11 15 11 12 11 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 1	000000000000000000000000000000000000000		9	9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 19 28 28 85 75 85 19 9	19 103 113 141 47 94 19	9 19 9 28 75 132 94 75 56 19 9 9	9 19 47 9 75 169 103 132 85 38	9 9 19 141 47 235 85 28	9 28 56 160 169 207 66	9 19 66 66 132 188 28	9 19 28 56 235 132 19 9	19 28 66 244 160 19	19 19 85 282 141	66 141 207 103	9 75 113 320 47	66 301 357 75 9	9 103 235 254 28	9 66 66 376 244 19	9 103 451 235	28 141 498 132 9	9 244 592 28	9 56 367 442 38	19 66 667 320 19	66 677 357 9 9	9 169 733 179 9	254 959 66	38 517 790 113 9	9 761 479 85 9	9 94 865 555 56 28	75 667 273 19	160 733 141 19	160 423 150 28	19 85 235 94 38	9 103 47 9	9 47 9 19		9
TOTAL	Б	_	94	6 5	+ 64	366	536	534	686	582	695	517	507	536	546	517	564	808	629	780	807	808	873	912	1091	1118	1099	1279	1467	1352	1607	1034	1053	761	471	168	84	-	9

TABLE 2

.

,

Estimated time in minutes spent at each speed and altitude during climb by Comet 1 giveraft

Total climb: 24,969 minutes

TABLE 3 Estimated time in minutes spent at each speed and altitude during descent by Comet 1 aircreft

														Alti	tude	above	868	level	(1.0	A.N.) in	1000s	of f	eet															
	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	න	30	31	32	33	34	35	36	37	38	39
Indicated alrepeed in knots 100150 1300 10011 10001 10011000000	19 19 9 9 9	19 28 38 47 28	9 28 19 38 65 19 19	28 28 28 47 94 47 47 28 9	19 19 66 38 85 113 19 9	9 28 38 132 159 103 56 56 19	19 9 113 141 132 66 19 28 19	19 47 1130 75 75 94 85 38 9	9 19 75 122 188 122 56 94 85 38	9 47 85 66 132 94 141 38 9	9 19 28 103 94 122 113 75 66	9) 75 28 75 94 132 38	38 75 113 122 19 9	9 19 66 85 103 47 19	\$ 9 28 85 113 94 47 19	9 9 113 122 94 47 38	38 85 75 188 197 113	19 47 160 150 47 19	9 19 47 179 132 38 28	998732738 132738	19 56 207 273 75 9	9 38 75 197 179 28 9	9 66 207 226 47 19	9 28 66 169 301 85 28	38 188 254 75 19	9 28 75 141 310 28	9 85 160 207 47 9	19 19 275 320 66	28 56 273 301 94	19 56 404 235 75	19 85 282 367 56	9 56 536 301 28	19 94 310 338 9	56 451 451 28	9 28 320 282 28	9 47 169 141	28 66 66	19 66 28	9 47 19
TOTAL	74	160	198	366	3 68	610	555	705	808	621	629	470	376	357	413	432	696	442	452	564	639	535	574	686	574	591	517	697	752	789	809	930	770	986	667	366	160	113	75

Total descent: 20,526 minutes

<u>TABLE 4</u>

Estimated time in minutes spent at each speed and altitude during cruise by Comet 1 aircraft

				_					<u> </u>									A	ltit	ude	abov	re se	a le	vel	(1.0	.A.N	i.) 1	n 10	000s	of fe	et		<u></u>													
	00	01	02	03	04	05	05	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	3	1	32	33	34	35	36	37	38	39	40	41	42	43	44
110 120 130 140 150 150 160 170 160 170 190 20 20 20 20 20 20 20 20 20	9 19 19 19	9 47 122 141 19 9	19 28 19 9 19 38 9	9		9 9 9 19	9								19	19 19 19 19		73 19	9 9 9	9		9	9			9 9 9	999		19 9 28 85	19 19 160 94	9 19 94 733 216 9	4 4 42 187 56	7 7 3 14 0 27 7 9	28 47 113 119 763 530 47	19 179 207 3196 3872 536 9	47 179 527 4060 3703 676 28	47 235 809 4182 3853 508	18 84 150 827 4784 2960 272 9	19 65 216 1015 3976 1823 85	19 85 207 968 2340 761 19	28 132 630 1053 320	9 47 85 263 376 47	38 9 28 36	9	9	19
TOTAL	66	366	141	18	-	55	18	-	-	-	-	-	-	-	38	76	-	57	27	9	-	18	18	-	-	27	18	-	141	292	1039	296	0 50	347	8018	9220	9634	9104	7199	4399	2163	827	113	28	9	19

Total cruise: 61,214 minutes

- 14 -

<u>TABLE 5</u> <u>Estimated time in minutes spent at each speed and altitude during initial climb</u> and final descent by Comet 2 aircraft

			sltıtı	ide al	oove	sea]	level ((I.C.A	N.)	in 10	00s ot	f fee	t		
	.,		INI	FIAL (CLIM	3				FINA	L DES(THE			
		01	02	03	04	05	00	01	02	03	04	05	06	07	
Indicated airspeed in knots	100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250	4 3 20 10 3 4	2 21 25 43 85 125 21	2 4 6 8 22 54 12	8 19 11	4	8 16 33 42 33 38 11 2	7 21 24 65 11 3 5 9	5 1 3 4 8 3	2 4 2			13	12 9	100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
	TOTAL	47	322	108	38	4	183	145	24	8	-	-	13	21	-, , - -

Total initial climb: 519 minutes

final descent: 394 minutes

TABLE 6

Estimated time in minutes spent at each speed and altitude during climb by Comet 2 aircraft

ъ

														<u> </u>		AL	I TUDE	ABOV	e sea	LEVE	L (I.	C.A.N	.) IN	1000	s OF	FEET															
	03	04	05	06	07	0 8	09	10	11	12	13	14	15	16	17	18	19	20	21	.22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43
Indicated airspeed in knots 072 005 001 001 012 005 001 012 001 010 001 010 001 010 001 0000000000	1	4	4 7 21 4	4 21 80 26	11 19 61 43 5	4 9 36 59 53	4 8 33 39	29 72	4 4 53 50	7 85 55	10 67 63	43 33	8 75 50	4 81 66	4 82 62	8 112 44	4 69 64	4 105 64	44 92 5 2	4 11 122 64	9 107 71	129 78	4 146 83	4 125 69	10 8 124 38	8 208 64	5 170 23	16 2 7 3 24	43 248	131 272 45	86 226 21	33 72 97	15 82 176 141	93 128 58	10 163 106 36	21 158 80 24	9 53 177 78	10 37 59	12 34 88	23	27 14 15
TOTAL	4	4	36	135	139	161	84	101	111	147	140	76	133	151	148	164	137	173	188	201	187	207	233	218	180	280	198	313	291	448	333	302	414	279	315	283	317	106	134	23	56

Total climb: 7550 minutes

TABLE

Estimated time in minutes spent at each speed and altitude during descent by Comet 2 aircraft

ı.

																	ALTIT	UDE A	BOVE	SEA	LEVEL	{1.0	C.A.N	I.) I	N 10	00s 0	F FEE	T															
	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43
Indicated airspeed in knots 177 174 176 175 175 175 175 175 175 175 175 175 175	0 12 0 14 0 12 12 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 20 18 29 14 20 11	4 4 15 61 17 18	4 4 4 4 12 64 41 15 17	5 12 38 12 14 9	18 20 27 15 25 25	9 11 4 22 11 28 4	20 13 26 49 31 5	5 4 50 14	26 4 5 4 28 46 5 4	16 15 24 62	13 20 59 4	4 8 68 26	10 3 39 55 5	4 28 64	27 61	46 73 4	18 52 77	8 18 59	33 76	29 P2 4 4	38 97	48 42 4	4 8 19	28 63 4	24 78	10 81 19	51 78	65 85 14	45 72 11	90 111	12 134 53	14 68 11	26 103 66	52 77 42	18 165 22	26 200 45	70 147 38	12 122 214	51 177 12	101 141	60 4	13
TOL	u 42	123	123	168	90	130	89	144	77	122	117	96	106	112	100	88	123	147	85	109	109	135	94	31	95	102	140	129	164	128	201	199	93	195	171	205	271	255	348	240	242	64	13

Total descent: 5815 minutes

,

TABLE 8

.

.

,

.

Estimated time in minutes spent at each speed and altitude during cruise by Comet 2 aircraft

																			A	L/TI	TU	DES	AB	OVE	SI	LA :	LEV]	द्याः ((1.)	C.A	.N.	.) ;	x 1	000) FT														
	0	1	02	03	04	05	06	07	08	09	10	11	12	2 1	3 1	4 1	5	16 1	7	18	19	20	21	22	2	3 2	4 2	5 2	6 2	7 2	8 2	29	30	31	32	33	34	35	36	37	7	38	39	40	41	42	43	44	45
Indicated airspeed in knots 575575012 527557555 527555 527555 527555 5275 5275 575 5	0 2 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45089 4	3 12 48 28 13 4	8 12 8 4 9 3	3 8 4	9 4 4	3	3		4	3					3		5		5 12	48	4 10 12	4	. 8	4		5	7		3					13	12 50	50 166 177 48	107 354 101	23 23 216 930 282	143 863 1720 51	3 2 3 31) 14	28 71 36	219 1036 2772 35	16 308 4233 1 <i>3</i> 40	13 68 1708 3887 81	60 294 2234 643 12	13 13 38 70 432	72 33 43	12
TOTA	L 12	0 1	08	44	15	21	3	3	-	4	3	-		· -		3	-	5		17	12	26	4	25	12	2 10	0 11	-		3 -		-	-	-	13	62	441	562	1474	2777	48	84	4062	5897	5757	3243	566	148	23

Total cruise: 30,358 minutes

- 17 -

•

TABLE 9	

Summary of acceleration	<u>data from</u>	Counting	Accelerometers	Mk.	1 in Comet	; 1 aircraft

Flight	Altitude	Mean	Recorded	Statute	1				Nur	ber c	of tin	ies ea	ch ac	celei	atior	1 incr	ement v	vas exo	eeded	L						
condi-	band	alti→	time	miles						Ďov	m										Ū	р				
	feet	feet	min		1.32 8	1.22 g	1.12 g	1.02 g	0 .9 2 B	0.82 g	0.72 g	0.62 g	0.52 g	0.43 g	0.33 g	0.23 g	0.23 g	0.33 g	0.43 8	0.52 B	0.62 g	0.72 B	0.82 g	0.92 g	1.02 B	1•12 g
Climb and Descent (exolud- ing initial olimb and final descent)	0- 1,500 1,500- 3,500 3,500- 5,500 5,500- 9,500 9,500-13,500 13,500-17,500 17,500-21,500 21,500-25,500 25,500-29,500 29,500-33,500 33,500-37,500 37,500-41,500	1,000 2,600 4,600 7,600 11,300 15,700 19,600 23,600 27,600 31,300 34,800 38,400	83 458 1,164 5,016 4,351 4,333 5,121 6,363 7,754 7,753 2,902 197	838 1,497 4,130 20,723 20,863 22,737 28,401 37,063 47,329 50,199 20,699 1,538	1	1	1	1	2 1 1 1 1	2 3 1 3 2 2 1	6 9356 2 1	5 1 13 5 6 10 2 2 1 2 2 1 2	7 4 82 13 14 22 5 2 5 4	11 14 96 26 43 11 8 8 8	32 79 420 160 93 120 42 48 31 29	1 78 243 1,143 447 215 230 122 167 113 86 1	11 216 514 2,124 739 337 360 214 303 185 114 1	7 78 162 779 254 134 156 60 52 62 39	15 46 231 67 45 69 17 12 20 9	10 17 75 17 11 36 6 3	2 5 2 8 8 9 1 2 3 1	2 3 12 3 11 1 3	1 3 2 4 1	1 1 1	1	1
TOTAL			45 , 495	255,417	1	1	2	2	7	14	31	47	108	261	1,054	2 , 846	5,118	1,783	5 31	188	71	3 8	12	4	2	1
Cruise	0 1,500 1,500 3,500 3,500 5,500 5,500 9,500 9,50013,500 13,50017,500 17,50021,500 21,50025,500 25,500-29,500 29,500-33,500 33,500-37,500 41,500-45,500	900 2,100 5,000 6,000 15,100 19,200 22,600 28,600 32,200 35,400 38,600 42,800	432 159 55 18 171 54 45 45 17,114 35,157 7,502 56	1,134 521 204 77 876 272 243 3,036 121,442 260,273 57,985 436				1	1 5	1 8	3 15	6 23 3	2 1 10 51 10	21 3 2 4 20 125 13	157 27 8 1 7 78 403 57	413 95 42 - 6 1 15 274 916 168 3	675 122 74 1 28 13 29 343 1,234 310 8	219 38 27 6 5 1 14 89 432 106 2	41 6 4 1 10 20 171 29	15 1 2 4 5 9 77 11	5 2 2 7 43 4	3 2 1 6 31 3	2 18 1	1 8 1	3	2
TOTAL			61,214	446,499				1	6	9	18	32	74	188	738	1,939	1,840	939	286	124	63	46	21	10	3	2

1

.

Flight	Altitude	Mean	Recording	Statute				Number)f ti	mes ead	ch acc	elerat	ion in	cremen	t was	exceed	ed		
condition	range	feet	Uime mine	miles	- 4 1	1 -1 -0	-10		-0.6	-0 / 1	(+ 0	<u>-0.21</u>	0wn)	+0-3	+0-1	1+0-6	+0-8	+1_0	1+1+2
	1000	1000			-1+4	-1.02	-1.0	-0.0	-0.0		E	g	g	g	g	g	g	g	g
					>	-			<u> </u>	~ 7	12	76	1.0		5	1			
Initial	0 1,500	1,000	4/	200						2	81	712	1.00	158	30		2		
climb	1,500- 3,500	2,250	4,50	1,002				j '	2		7	33	435	11	2	17	-		
	5,500- 5,500	4,100	42	261			 	<u> </u>	<u> </u>					<u> </u>					
Final	0-1,500	580	328	897		ļ	1	1	11	2	6	57	132	22	5	2	ון	1	
descent	1,500-3,500	2,250	32	106			1		Į	1	1]	4	19	2	1	1			
	5,500-9,500	6,620	34	156				Ì		ļ			2	1^{-1}	 	<u> </u>	ļ	 	
Climb	0-1,500	:,000	42	108		ł		Į			1	8	33	5	2				
and	1,500- 3,500	2,510	250	822				1	1	1	23	80	180	1 55	10	1	1		
descent	3,500- 5,500	4,420	298	1,146		!	l	ł	Į	1	7	62	113	; 26	5				
	5,500-9,500	7,380	959	4,358						6	22	138	212	51	16	1	1	ł	
	9,500-13,500	11,540	940	4,669							2	44	62	· 15	2			1	
	13,500-17,500	15,640	931	5,005		1	ł					29	70	9		}		ł	
	17,500-21,500	19,510	1,112	6,375	•						2	0		4	, '	•		{	ì
Į	21,500-25,500	23,470	1,185	7,502		ļ	•	1				· 24	20	2		i	1	•	
}	25,500-29,500	27,500	1,411	9,001		1	1 1	1	1		4	1 26	1.0	د ح		\$		t	· 1
	29,500-33,500	35 610	2,000	16 205		1	i	1	1	9	35	107	121	<u>L1</u>	13		1		i
	37 500-11 500	30,200	1 925	15 2/1		1	1	3	1 1	20	80	222	254	80	33	. 7	3	1 1	1
ļ	41,500-45,500	42.620	156	1.233		{	1 .	1	;	1	3	6	12	2	1 1	1		1	
TOTAL	4112212		13,365	85,831		1	1	3	4	41	207	805	1179	294	86	8	3	1	
Crutse	0-1.500	1.000	120	335		1	1				1 1	12	F0	1 3				1	ł .
	1.500- 3.500	2,290	152	1.80		ļ		1			1 1	8	12	4	1	т (ł	ĺ
[3.500- 5.500	4,580	36	137		1		Į			1 1	6	15	4		i	1		
1	5,500-9,500	7,500	10	42			1	1			1	1	1 1		1	ł	1		
ł	9,500-13,500	10,000	3	13		, i	-		1		1					1	1		
	13,500-17,500	15,250	8	41		ł					1	Ì					ļ		
	17,500-21,500	19,290	59	326						1			4	1	1	1	1		
ł	21,500-25,500	23,120	58	352	1				1			1	1			1		1	
	25,500-29,500	27,000	3	20	İ	1		1	1		1		1			1	1		
1	29,500-33,500	32,800	75	603		-			1						1.		1	1	
1	33,500-37,500	36,250	5,254	42,428		1	1		1		2	48	56	10	4				
	37,500-41,500	39,610	20,600	166,688	ŧ	1	ļ	1		15	70	450	469	81	17	11	1		
	41,500-45,000	42,230	3,960	32,405		ļ		<u> </u>	1	$\frac{1}{7}$	29	149	259	1 09	1 15	11	_	- <u> </u>	
TOTAL			30,358	245,870		•	• • 7	1	1	22	104	· 674	687		36	2			1

TABLE 10 Summary of acceleration data from Counting Accelerometers Mk. 4, in Comet 2 aircraft

- 19 -

TABLE 11

Aircraft characteristics assumed

	Comet 1	<u>Comet 2</u>
Ving area:	2,015 sq ft	2,027 sq ft
Mean chord:	17.52 ft	17.63 ft
Aspect ratio:	6.60	6.51
Low speed value of slope of the lift curve for incompressible flow	4.80/radian	4.85/radian

T.ELE 12

Representative values of acceleration/gust speed conversion factors

COMET 1

	1		Gust	speed/ad	celerat	lon in f	t/sec/g		
Indicated	5	Sea level			25,000 f	b	1 2	+5,000 ±1	;
Lir speed (knots)			(AI)	craft we	eight (x	1,000 11	o)		
1	60	80	100	60	80	100	60	80	100
100	47.46	59.62	70.46	39.45	51.27	61.08	36.18	47-17	58.94
150	31.97	40.14	47-43	26.46	34.044	41.02	23.79	31.02	38.77
200	24.22	30.42	55.94	20.26	25.68	31.35	16.70	21.78	27.22
250 1	19.32	24.26	28.67	15.68	19.88	24.26	11.68	15.21	18.59

TABLE 13

Representative values of acceleration/gust speed conversion factors

COMET 2

Indianted				Gu	st/spee	d/accel	eration	ı ın ft/	'sec/g			
Air speed		Sea l	evel			25,0	00 ft		•	45,0	00 ft	
(knots)					Alrers	ft weig	ht (× 1	,000 lt)			
	60	80	100	1 20	60	80	i 100	1 20	60	80	100	1 20
100	47.41	57.81	68.36	79.88	39.31	49.85	60.84	71.29	35.20	45.90	57•37	67.33
150	31.93	38.93	46.03	53.78	26 .40	33.46	40.85	47.88	23.66	30.17	37.73	+ ' +•27
200	24.19	29.49	54.89	40.75	19.68	24.95	30.47	35.72	16.62	21.65	26.49	31 .08
25 0	19.30	23.53	27.81	32.50	15.23	19.80	23.57	27.64	11.62	15•14	18.50	21 .70

1 23 1

Flight	Altitude	Mean	Recorded	Statute					N: Ver	umber tical	of ti gust	mes ea speed	ch gus in ft/s	t spee sec E.	d was A.S.	exce (+Up,	eded -Down	n)		
condition	feet	feet	mins	mires	-40	-35	-30	-25	-20	-15	-10	-7±	+7±	+10	+15	+20	+25	+30	+35	+40
Climb and Descent (exclud- ing Initial Climb and Final Descent)	0- 1,500 1,500- 3,500 3,500- 5,500 9,500- 9,500 9,500-13,500 13,500-17,500 17,500-21,500 21,500-25,500 25,500-29,500 29,500-33,500 33,500-37,500 37,500-41,500	1,000 2,600 4,600 7,600 11,300 15,700 19,600 23,600 27,600 31,300 34,800 38,400	83 458 1,164 5,016 4,351 4,333 5,121 6,363 7,754 7,753 2,902 197	238 1,497 4,130 20,723 20,863 22,737 28,401 37,063 47,329 50,199 20,699 1,538	1	2	2 1	4 7 1 1 1 1	6 1 20 3 4 5 2	14 14 95 14 12 14 2 1	54 140 556 115 61 76 22 27 18 8	2 108 337 1228 343 148 156 67 82 53 28 -	13 291 636 2091 528 238 240 104 126 90 34	9 135 292 980 197 95 109 33 27 28 11	1 24 59 193 19 13 29 4 4 4	4 16 39 3 2 7 1 1	165	31		
TOTAL			45,495	255,417	1	2	3	15	42	172	1077	2552	4441	1916	350	74	14	4		
Cruise	0- 1,500 1,500- 3,500 3,500- 5,500 5,500- 9,500 9,500-13,500 13,500-17,500 17,500-21,500 21,500-25,500 25,500-29,500 29,500-33,500 33,500-37,500 37,500-41,500 41,500-45,500	900 2,100 5,000 6,000 15,100 19,200 22,600 28,600 32,200 35,400 38,600 42,800	432 159 55 18 171 54 45 451 17,114 35,157 7,502 56	1,134 521 204 77 876 272 243 3,036 121,442 260,273 57,985 436			1	1	9 1 8	83 1 2 8 29 2	353 32 23 5 49 169 16	653 82 84 - - 1 1 9 151 474 56 -	1100 109 139 - 6 7 1 18 174 564 114 2	549 37 59 5 2 11 57 208 29	125 11 1 3 9 52 3	25 3 3 18 1	6 1 2 2	1		
TOTAL		1	61,214	446,499			1	3	18	125	647	1511	2134	957	204	50	11	3	1	

<u>TABLE 14</u> <u>Gusts encountered on all routes by Comet 1 aircraft</u>

1 22 1

Flight	Altitude	Mean	Recording	Statute, wiles Number of times each gust speed was exceeded Vertical gust speed in ft/sec E.A.S. (+Up, -Down)																
condition	band feet	feet	time nins	miles	-40	-35	-30	-25	-20	-15	-10	-7±	+7 2	+10	+15	1+20	+25	+30	+35	+40
Initial climb	0- 1,500 1,500- 3,500 3,500- 5,500	1,000 2,250 4,100	47 430 42	200 1,882 195				1	1 3	5 15	23 89 4	42 235 17	49 396 24	29 160 7	8 24	3 6	2 2	1 1		
Final descent	0- 1,500 1,500- 3,500 5,500- 9,500	580 2,250 6,620	328 32 34	897 106 156	1	1	1	1	1	2	18 1	60 4	142 16 1	42 6	4	2	1	1	1	1
Climb and descent	0- 1,500 1,500- 3,500 3,500- 5,500 9,500-13,500 13,500-17,500 17,500-21,500 21,500-25,500 25,500-29,500 29,500-33,500 33,500-37,500 37,500-41,500 41,500-45,500	1,000 2,510 4,420 7,380 11,540 15,640 19,510 23,470 27,580 31,530 35,540 39,290 42,420	42 250 298 959 940 931 1,112 1,183 1,411 2,006 2,152 1,925 156	108 822 1,146 4,358 4,669 5,005 6,375 7,302 9,301 14,066 16,205 15,241 1,233				1	1	1 5 1	3 23 6 23 3 1 6 9 17 1	9 59 32 70 13 15 6 11 3 4 35 69 2	44 150 75 134 38 24 7 2 2 8 39 74 2	14 61 24 44 9 6 1 12 29 1	2 5 1 5 1 2 6	2				
TOTAL			13,365	85,831				1	3	11	95	328	599	201	22	4				
Cruise	0- 1,500 1,500- 3,500 3,500- 5,500 9,500-13,500 13,500-17,500 17,500-21,500 21,500-25,500 25,500-29,500 29,500-33,500 33,500-37,500 41,500-45,500	1,000 2,290 4,580 7,500 10,000 15,250 19,290 23,120 27,000 32,800 36,250 39,610 42,230	120 152 36 10 3 8 59 58 3 75 5,254 20,600 3,980	335 480 137 42 13 41 326 352 20 603 42,428 168,688 32,405						2 2 2 1 2	3 2 2 16 7	14 7 7 2 66 30	56 42 15 11 84 62	13 12 6 4 19 15	1					
TOTAL			30,358	245,870	ł	1	1	•	!	ⁱ 2	30	126	^{i.} 270	69	2	•	;	1		1

<u>TABLE 15</u> <u>Gusts encountered on all routes by Comet 2 aircraft</u>

<u>Altitude</u>	bands used in analysis
	Feet
00	0 - 1,500
02	1,500 - 3,500
04	3,500 - 5,500
06	5,500 - 9,500
10	9,500 - 13,500
14	13,500 - 17,500
18	17,500 - 21,500
22	21,500 - 25,500
26	25,500 - 29,500
30	29,500 - 33,500
34	33,500 - 37,500
3 8	37,500 - 41,500
42	41,500 - 45,500

TIBLE 16

FIG.I. MAP OF THE ROUTES FLOWN BY COMET 2 AIRCRAFT.

FIG. 2. MONTHLY DISTRIBUTION OF RECORDED FLYING TIME FOR COMET 2 AIRCRAFT.

FIG.3. VARIATION OF GUST FREQUENCY WITH GUST SPEED DURING CLIMB AND DESCENT FOR COMET LAIRCRAFT.

FIG.4. VARIATION OF GUST FREQUENCY WITH GUST SPEED DURING CLIMB AND DESCENT FOR COMET 2 AIRCRAFT.

FIG.5. VARIATION OF GUST FREQUENCY WITH GUST SPEED DURING CRUISE FOR COMET I AIRCRAFT.

FIG.6. VARIATION OF GUST FREQUENCY WITH GUST SPEED DURING CRUISE FOR COMET 2 AIRCRAFT.

GUST SPEED FOR COMET I AND COMET 2 AIRCRAFT.

FIG.8. VARIATION OF GUST FREQUENCY WITH GUST SPEED DURING CLIMB AND DESCENT BY COMET I AND COMET 2 AIRCRAFT.

FIG.9. VARIATION OF GUST FREQUENCY WITH GUST SPEED DURING CRUISE OF COMET I AND COMET 2 AIRCRAFT.

FIG.IO. VARIATION OF GUST FREQUENCY WITH ALTITUDE.

FIG.II. RATIO OF UP AND DOWN GUSTS ENCOUNTERED BY COMET 2 AIRCRAFT AT DIFFERENT ALTITUDES.

FIG.12. VARIATION OF GUST FREQUENCY WITH GUST SPEED AT DIFFERENT ALTITUDE BANDS DURING CRUISE BY COMET I AND COMET 2 AIRCRAFT.

FIG.13. VARIATION OF GUST FREQUENCY WITH AIRSPEED AT DIFFERENT ALTITUDES DURING CRUISE OF COMET 2.

A.R.C. C.P. No. 743	551.551: 621.396.969.36 [AI](42) Comet 2	A.R.C. C.P. No. 713	551.551: 621.396.969.36 [AI] (42) Comet 2
ATMOSPHERIC TURBULENCE ENCOUNTERED BY COMET 2 AIRCRAFT CAFRYING CLOUD COLLISION WARNING RADAR, Aplin, Judy E. June 1963.		ATMOSPHERIC TURBULENCE ENCOUNTERIL BY COMET 2 AIRCRAFT CARRYING CLOUD COLLISION WARNING RADAR. Aplin, Judy E. June 1963.	
Counting accelerometer records have been obtained of the turbulence encountered by R.A.F. Comet 2 aircraft, equipped with cloud collision warning radar, in 335,000 miles of operational flying largely on routes connecting the U.K. with Singapore.		Counting accelerometer records have been obtained of the turbulence encountered by R.A.F. Comet 2 aircraft, equipped with cloud collision warning radar, in 335,000 miles of operational flying largely on routes connecting the U.K. with Singapore.	
It is shown that the Comet 2 met significantly less turbulence at all altitudes than the Comet 1 which was not carrying this radar, and that the reduction in the frequency of occurrence of gusts increased		It is shown that the Comet 2 met significantly less turbulence at all altitudes than the Comet 1 which was not carrying this radar, and that the reduction in the frequency of occurrence of gusts increased	
	(Over)		(Over)
		A.R.C. C.P. No. 713 ATMOSPHERIC TURBULENCE ENCOUNTERED BY COMET 2 AIRCRAFT CARRYING CLOUD COLLISION WARNING RADAR. Aplin, Judy E. June 1963.	551.551: 621.396.969.36 [AI] (42) Comet 2
		Counting accelerometer records have been obtained of the turbulence encountered by R.A.F. Comet 2 aircraft, equipped with cloud collision warning radar, in 335,000 miles of operational flying largely on routes connecting the U.K. with Singapore.	
		all altitudes than the Comet 1 which was not carrying this radar, and that the reduction in the frequency of occurrence of gusts increased	
			(Over)

with gust magnitude. No gusts as great as 20 ft/sec were recorded by Comet 2 aircraft during the cruise.

Comparable data from U.S. aircraft have also been considered, and show a similar reduction in the occurrence of large gusts.

with gust magnitude. No gusts as great as 20 ft/sec were recorded by Comet 2 aircraft during the cruise.

Comparable data from U.S. aircraft have also been considered, and show a similar reduction in the occurrence of large gusts.

1

with gust magnitude. No gusts as great as 20 ft/sec were recorded by Comet 2 aircraft during the cruise.

Comparable data from U.S. aircraft have also been considered, and show a similar reduction in the occurrence of large gusts.

C.P. No. 713

Crown Copyright 1964

Published by HER MAJESTY'S STATIONERY OFFICE To be purchased from York House, Kingsway, London w.c.2 423 Oxford Street, London w.1 13A Castle Street, Edinburgh 2 109 St. Mary Street, Cardiff 39 King Street, Manchester 2 50 Fairfax Street, Bristol 1 35 Smallbrook, Ringway, Birmingham 5 80 Chichester Street, Belfast 1 or through any bookseller

> S.O. CODE No. 23-9015-13 C.P. No. 713