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A method is established on the basis of linearieed thin-wing theory for 
the calculation of pressure distribution, in steady supersonic flow, on wings 
of arbitrary planform with subsonic leading edges. An algebraic expression is 
derived by exact integration for the incidence contribution and a computational 
formula, based on Gaussian integration, is given for the general case including 
any prescribed camber and twist. 

For a uniformly cambered delta wing the results computed by this method 
check very closely against those obtained by aatkins' method, which is 
applicable in this special case. As illustrated by results computed for an 
uncambered ogee wing the method appears to give results of more general 
applicatjldn:than slender body or first-order piston theory, 
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1 INTRODUCTION 

The application of linearized theory to supersonic flow over wings has 
been widely developed and has led to satisfactory solutions of many features 
of aircraft design. However, for those aerodynamic and aeroelastic aspects of 
design which demand reliable estimates of lift distribution, existing methods 
are all subject to limitations end may give rise to difficulties or uncertain- 
ties in the general case. 

ilithin the limit of its range of application [A211- M2/ << 11 slender 
bcdy theory' can be applied to indicate the main trends of the aerodynamic 
properties of wings in supersonic flow. For speeds in excess of, say, M = 2.0, 
piston theory2 can provide useful and very simply derived results, especially 
in the approximate evaluation of aeroelastio properties. 

A formal representation of the problem of a wing in supersonic flow can 
be made in terms of a distribution of sources with strength proportional to 
local downwash, the effects being bout-de& by Mach lines. For a surface with 
supersonic edges the system can be formulated fairly simply, but complications 
arise in the case of subsonic edges, because the effective ereas include parts 
not on the wing, where the downwash is generally unknown. Tractable expres- 
sions have been derived for the computation of velocity potential and lift 
force at points on rigid and deforming wings of basically triangular planform 
in both steady and oscillatory states3,4r5. 

2 
general apprcach to the problem of subsonic edges was propounded by 

Evvard . Velocity potential at any point requires integration of the downwash 
velocity effect over the area enclosed by the Mach lines from the apex of the 
wing end the reversed Mach lines through the point under consideration. 
Evvard prescribes a portion of the wing area to cancel the effect of that part 
of the original integration area which lies outside the wing itself. 

In a development of this method Etkin' showed that this area cancellation 
could be improved by using a series of integration areas, of appropriate sign, 
defined by reversed Maah lines through the point and through successive inter- 
sections of these Mach lines with the wing edges. In the limiting case of 
sonic leading edges a single integration area gives the exact solution; for 
subsonic edges cne, two or more areas of diminishing influence may be used to 
achieve successive degrees of approximation. Evvard and Etkin calculate the 
velocity potential by numerical integration, end use numerical differentiation 
for pressure. 

Lees* describes a routine numerical procedure based on a matrix applica- 
tion of influence coefficients calculated for elements of an equispaced Mach 
line grid. He avoids numerical differentiation by line integration round each 
elementary panel. Downwash and pressure are assumed to have uniform mean values 
over each panel. 

In the present paper a convenient method is evolved for the application of 
a general solution of aerodynamic loadings on wings with subsonic leading edges, 
having arbitrary, specified planfcrm and downwash distribution. Using Etki.ns 
integration areas, it oan be shown that a useful range of shapes and Nach numbers 
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can be approximated quite closely by taking only two such areas. Under these 
conditions It is shown that an analytical formulation can be derived 
by dlfferentlatlon 111 the chordvnse direotlon of the integral eqression for 
the velocity potentlal. Tne resulting expressions for pressure distribution 
at any point 1s the sum of integrals of known functions over the appropriate 
areas. These integrals can be evaluated exactly for the contribution of 
incidence to pressure ,snd by Gaussian integration methods for the general o&se. 

The integrations have been programmed for the Mercury computer for the 
evaluation of pressure at points along chord lines on wings for which the 
leadIng edges may be specified as polynomial functions. For the same basic 
wing shape, different distrlbutlons of downwash are readily introduced. 

Confirmation of the accuracy of the methoti is accorded by very close 
agreement with :;'atkins' method, as given by Davied, which is applicable to 
the particular case chosen for the comparison. This was a uniformly cambered 
delta wing of aspect ratio I.0 at a Mach number of 2.0, for which the results 
may be interpreted in terms of an uncambered icing m steady pitch. 

An uncambered ogee ning of aspect ratio 1.0, used by Courtney and 
Ormerody, for the experimental determinat;lon of pressure distribution %:as also 
exenmed. Over the speed range considered - Mach numbers from I.4 to 2.8 - 
the present method appears to be more generally applicable than either 
slender-body theory or first-or&er piston thewy. 

Tine experlnental evidence is that leading-edge separation and vortex 
formation 1s a feature of each of the cases consi&red. Thus the degree of 
correlation betwon measured and theoretwally derived pressures cannot bo 
applied to the assessment of theories ilhioh thornselves assume, ,and are strictly 
applicable only in cases of completely attached flow. It is noted, however, 
that in those cases where separation effects are least (high speed, loci 
incidence, inboard) tho present method of computation gives results which 
agree quite well with obsarvod prussuros. i:%ile it is unsafe to generalise 
fromone example this LS at least an indication that, for practical purposes, 
the present method might be admissible and useful for cases which involve 
only small departures from conditions of attached flow. 

Summarising, the analytical and computational techniques described here 
should prove usefdlin the study of aerody;.lamic and steady-state aeroelastio 
propertzes of rnngs in suporso?lo fled, over the region Tihers llnearized tnin- 
wing the&y ii sppl&ble. For stability and tiynamics studies the computed 
pressure due to inod&; may be'used Zrectly to determine supersonic ning 
derivatives zrJ an& m+ downwashdistributionsproportional to longitudinal 
and lateralcor+linates may be applied to give 'q' and 'p' derivatives 
respectively: .. , 

2 BASIC i%UATiONS ---L-- ' 

\fJe assume a wing placed in supersonic stea* flow of free-stream 
velocity V, and choose a Ctirtesian coordinat e system with origin at the apex 
of the wing, x-axis dollg the centre linz of the wmg III the dlruction of the 
main stream flolr, y-axis in the starboard direction ana z-axis positive 
domrards . 
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The perturbation velocity potential at a point P(xo,yo) on the wing is 
then given by ~vvard as 

dXo,Yo) = - ; .---Ek-dxd3r- 

%I-- 
(x0 - z$ - $(yo -;7 

(1) 

where p = 
r-- 

M2 - 1 and dommrash velooity w(x,y) is V 2 for points on the wing 
surface. 

The area of integration is ehclosed by the reversed Maoh lines through P 
and Mach lines through the apex of the wing. In the case of subsonio leading 
edges the donnwash velocity is not known for that part of the ares. which is not 
on the wing, but Evvsd and Etkin7 have shonn that the integration area can be 
replaced by a system of areas on the wing surface . l:re*s ~~~2.i.~,...,which-are 
bounded by reversed Mach lines through P and through successive inzerseotions 
of such Kach lines with the wing edges, as shorm in Fig-l, msy be used for 
approximate odlculations. 

Etkin estimated that, for delta wings, good accuracy is obtained if the 
integration is taken over the first area oriLy, provided that p cot A 2 0.4, 
A being the angle of sweep-baok; and also that the inolusion of the second area 
is sufficient in most cases. 

For a near delta rring of aspcot ratio 1’0 at Mach numbers close to unity 
it is clear (Fig.la, M = l-2) that even'areas A 3&% 

are not negligible. At 
such Mach numbers, however, the flow would be transonio in character and the 
theory unlikely to be reliable. As Mach number is increased the secondary 
areas become smaller, and at M = 2.8 (Fig.lb) it can be seen that A2 is quite 
small for a typical slender wing. At a Mach number of about 4'1 the leading 
edge of this wing becomes supersonic and. A2 vanishes; here, however, we are 
approaching the l?;ypersonio regime, 

It will be seen from this that for slender &linrs in supersonic florr it 
nil.1 be necessary only to deal rrith the case of subsonic leading edges and that 
two integration areas <ii11 give * good approximation for M > 1.4, say. Under 
these conditions the equation for velocity potential becomes:- 
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The linearised form of Bernoulli's equation is 

P-P o+v!kfL 
P ax = 0. 

For a thin wing, the pressure difference between upper and. lower surfaoes 
may be written 

a! Pd - Pu = 2pv ax 0 u 

AC = pe - pu 
P 

4PV 
2 =+s. 

0 u 

Introducing characteristic coordinates (r,s) based on the Mach lines 
through the apex of the wing, we have 

r = + (x - BY) 

S = g (x t PY) . 

(4) 

(5) 

Transforming equation (2) into this system, we obtain 

dxo Y,) = *(r. soI 

= - $ [I, - I21 

where I, and I2 represent the integrals over areas A, and A2. 
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Now 

am ar am as -- 
= Z ;j;;+as ax 

Thus, we may write, using (&), (7) and (6a), 

ACp(xo Y,) = $ 
adxo, Y,) 

ax 
0 

+ 

2 a = -- 
[ 

-(I, - xpv are I*) + & (I, - 12) 
0 1 

(7) 

(8) 

or, on rearranging:- 

adx,,Y 1 
= -mp TX2 

: 

(8a) 
0 

= - y ACp(xo~Yo) * J 
Thus, to evsluate ACp we must determine partial derivatives, with respect 

to ro and so, of the integral expressions for *. 
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3 INTEGRAL JXPRESSION FOR AC 

Following the notation of Fig.2, and using the definitions in equation 
(64, we may write 

r2 92 
I2 = 

.i i 

a-,s) 
dr as . 

zi 
bo- dbo- s) . 

r=rl s=s 1 

(9) 

It will be seen from Fig.2 that r2 and s, are functions of ro, but that 

soJ rl 
and s2 are not. In differentiating with respect to ro, consider a point 

P,(t,so) passing to the limit at P(ro,sg), so that t is also a function of rO. 

We now differentiate the integral J,, defined by 

This becomes 10 

aJi 'I r1 af dr 
1 

ds " s1 
1 

T= J i 
dS 

t 
are *TV / 

f,(r,s,)dr -e f, (t,s)as 
t 0 i 

S S 
0 0 

,-r)//- \jso-9, Jt Jr,- r ,Jro-t ,J is,-5 
0 

In order to remove the singularity, this expression may be rearranged 
(Appendix 1) as:- 
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asI 
at z? rl w(r,spz 5 s1 

+G+qt yiGy-=< i I w(t.s)as . s $=-% c . . . (11) 

The equation of the port leading edge may bc written in oharacteristic 
coordinates 8s 

8 P 6(r). 

The slope at point R (Pig.2) is 

asl I = &(r,). 
arc 

Prooeeding non to the limit inhere t s r. so that dt/dr c + 1, ne have 

a1l 
Fc 

2l 
= Limt+rc arc 

sl 
1 

I 

dS r1 [W(r,s) - W(rc,s)ldr 6'bc) r1 W(r s )ar , , 
5 -- 2 

s G-p-5 i I 
r (rc - r)j'* + \I r Jro-r 

0 0 0 

s1 
1 

s 

w(ro,s)as 

-v, s 
. 

q-E 
0 

(12) 

Differentiation of the corresponding expression for 12 can be oarrid 
out airectly as there is no singularity. Noting that the starboard leading 
edge is given by 
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and that 

we have 

G’b, )g’(r,) s2 W’(r2,s)ds 
+ 

I 
2/ 

ro-r I 
2 3 

(13) 

G’b- 1 
r2 

+ -c- 
i 

W(r,s, b E;‘(s, )g’(r,) 
s2 d(r2,s)ds 

&Tr, GF -JE id- l 

(14) 
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In the same way, taking the limit in the s-direction, we obtain:- 

4.+ = 
[W(r,s) - W(r,so)lds 

0 (S"' sy2 

&'bo) 
s2 

+ i 
Wb-,,s)ds g'b, k'b,) r2 Nv2b _-.- 

lr -r 
1: 0 1 s 

1 F---c - 

(15) 

4, 0 A-=% r, \\I l 
i 

Combining equations (14) and (15) 
calculation of pressure differenoe:- 

we obtain as the final equation for the 

s1 

i 

Nro,s)ds , s2 r2 

- 6,jroy r, so 

( , 1 
f&-G + ’ s, r, (r,-:)‘; T%?s)‘/~ Ii 

g'bJ r2 

J 

W(r,s, h- g'b, k'bo) s2 

i 

W(r,,sb 

+~sO- r, JTF - $2-5 s, IF 

dr '1 [W(r,s) - 
-qr- j 

W(r,so)lds g'b,) sl ri(r, ,s)ds 

ro-r s i 
0 

(so- s)3'2 +zl-- so K=~ 
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4 PRESSURE DISTRIBUTION DUE TO INCIDENCE 

when calculating the pressure distribution over a cambered and twisted 
wing at incidence according to linearised theory, the contributions of camber, 
twist and inoidence may be calculated separately and the results superimposed. 
The pressure distribution due to incidence is calculated per radian with 
v - = 1. v This leads to a considerable simplification of equation (16), sinoe in 
that case W(r,s) - W(ro,s) = 0 and W(r,s) - W(r,so) = 0 so that the two double 

integrals over the area A, vanish. The other integrals can be evaluated 

exactly. We thus obtain for the pressure distribution due to incidenoe:- 

+ I- 
i 

' 6 ts,)tzl(pO)] z + (1 - gt(soll;~ 

i 2 1 

. 

-_ 

+ I g'(r,)g'(so) - 1 ]";;; \l" + [ 1 - 
2 

g'(r,)g'(so) ]fB. 
-8 8 0 2 

-0. (17) 

This is all we have to calculate for a wing without camber or twist, or in 
determining the contribution of incidence in the general case. 
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5 WERICAL EVALUATION OF TIE INTEGWS - 

The integral3 of equation (16) were evaluated by Gaussian integration 
rrhioh involves only the summation of terms oontainingV(r,s) at selected 
integration points, The double integrals are oalculated as repeated single 
integrals. 

5.1 Integral3 for the integration area A, 

TO evaluate the first integral of equation (16) RB make the 
transformation 

r -r 3 -3 

u=--b V =o 
r -r' 3 -3' 

0 1 0 1 

that is, IIC make the coordinates non-dimensiond with the sides of the area A,. 
This gives 

and no obtain 

31 
I 

i 
as 

c- - 
2 

3 
f-p 

0 

J8-5 
1 

=--cl 
2 

i 
0 

r = r o - (r. - r,)u, dr = - (r. - r,)du 

"[W(r,s) - W(ro,3)ldr 

s 
r 

(r. -r)3bp 

0 

' 

~+$$q 

[W(ro - (ro-r, h,s 
?,z.k(so.. 2tLL!5!-@- 

s,)v)-:i(r 3 -(3-s,)v)]du 

u3F 

’ %“-(ro -r,)u,so - (so - 31 )3)-w(ror “om cao- ‘qjxk I1 a’ 
3/2 

---- 
U 

!Che wilues for the integration point xi rind the ooeffioients Hi were 
taken from Mineur" based on a formula given on page 289 



J q 

I = \jb-a [Ho F(Xo) + . . . . . + Hn F(X$ 

'k 
= a+ (b-a)<k,vhcrcxk=l -4,. 

5.2 Integrals for the integration area A2 

In this case we make the coordinates non-dimensional with the sides of 
the area A2 and put 

rl - r s, - 9 
u = , v -; . 

rl - '2 s1 - s2 

This gives r = rl - (r, - r2)u 

dr = - (r, - r2)du 

and r -r = 
0 b. - r,) + b, -  r2)u l 

We apply this transformation to the evaluation of the double integral 

s2 r2 
1 
-2 J J 

W(r,s) dr cl.3 

s1 rl 
(so- s)"~ (ro- r)3'2 

1 1 / 

= 4 (r,-r2)b,-s2) 
I 

ii 

W r - , (r,-r2)u, 54, - du dv (s,-s2)v 

+ 0 0 [(so-s, 1 (s,-s2M”2 I (PO-r, (r,-r2)43’2 1 + 

n 

= $ (r,-r2)(s,-s2) 
--B -"I 

22 GiGk 
W r,- (r,-r2)zi, s,-(s,-s2)zk 

. 

l(s 
i=l k=l 

,-s2)ekt(~o-s,)]"2 i(r,-r2)zi+ (ro-r,)13'2 
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The values of Gi and si were sdlso taken from Mincur 11 , based in this ease on 
a different formula given on pace 263 

b 

J = F(Xh 
a 

I = b-;d [Go F(Xc) + . . . . . + G n F(X,)l 

,, + a b- “)‘i, 
$= T+--y--w 

where zk = 1 
- %. 

The values for xi, Hi, e. and Gi as used are given in Table 1. 1 

5.3 Numerical expression for AC 

With Gaussian integration applied to all integrals of equation (16) tho 
final formula for the calculation of pressure distribution including camber 
and twist becomes the expression given in equation (18) on pages 17 and 18. 

This expression Rith n = 6 was programmed for the Mercury computer for 
wings of arbitrary planform, the leading edgo being given by a polynomial 
equation. With the valua n = 6, there are s integration points in each area 
for every point. It thus provides automatically for greater accuracy near 
the leading edge since the same number of integration points arc used for 
smaller areas. 

In the programme, the oal.culation is aarried out for points along chord 
lines equi-distant in Cartesian coordinates and is so arranged that only the 
downwash distribution has to be added for each new case of camber or twist. 

As the lpading edges are usually specified in Cartesian coordinates, 
formulae are given in Appendix 2 for evaluation of the terms g'(r,) etc. 
without requiring to express the equations for the leading edges explicitly 
in oharaoteristic coordinates. 
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kd 

i=l k4 

k=l 

k=i i=l 

; b,-s2)(r,-r2) f ;- GiGk +- 
w I-,-(y-r )z 

2 i’ 'I- b, - s2) Sk 

- 
i=l k=l 

lb, - s2bk+ (so- 5, )I 3’2 I(r,-r2)zi+ (ro-r,)p 



(r -7.. )z 
GiGk I( 

w r, - 
1 2 i' '1 - (s,- s2)\ 

id k=l 

k=l k=l 



6 APPLICATION 

The analytical expreksions given above for the direct evaluat'ion of 
aerodynamic loading represent a convenient application of lineerized thin-wing 
*eory. A degree of approximation is adopted in so far as the formulation i8 
based on Etkin's construction limited to two integration sreas. The justifi- 
cation for this was discussed qualitatively in Section 2; it is now of interest 
ta compare results with exact theory in a simple case where this oan be con- 
veniently applied. For a more general case, the results of the present method 
mfty be compared with other available theories to illustrate the measure of 
dlvergenoe. 

6.1 Cambered delta wing 

As a typical case, a cambered delta wing of aspect ratio 1-O in steady 
pit&J $ = F 

( > 
was examined at a Mach number of 2*0. Results were computed 

0 
by the present method and by the method established by Watkins 314 
by Davied. 

and applied 
Spanwise and chordwise distributions are shown in Figs.3 and 4. 

The correspondence is very olose. 

6.2 msmbered ogee wing 

To illustrate the application of the method to 
9 

wing with curved 
leading edges, the model used by Courtney and Orncrod was chosen. This is an 
unoambered ogee configuration of aspect ratio I.0 and with leading edge 
equations:- 

y =’ St p.5; +($ -  0.5($] l 

In Figs.5 and 6 spanwise and chordwise pressure distributions are shown 
according to the present formulation of llnearized thin-wing theory for 
M = l-4, 2-O and 2.8. Even at the lowest speed the difference between the 
present method and slender-body theory is appreciable. The divergenoe becomes 
greater at higher speeds, as would be expected from the restrictions imposed 
by the assumptions of slender-body theory. At the highest speed, the uniform 
pressure loading according to first-order piston theory does not give as 
useful an indication of local loadings as do the results based on the present 
method. 

Flow visualization had. shown separation from the leading edges, with 
vortex formation, at eaoh of the speeds and inoidenoes quoted in Figs.5 and 6, 
the effects being most marked at lower speeds and higher incidenoes. Further, 
the centre section was relatively thick. Strictly speaking, therefore, 
linenrized thin-wing theory cannot be applied, nor the experimental values 
used to assess variants of linearized theory. However, the experimental points, 
taken from Courtney ad Ormorod's paper, show that the present theory provides 
a useful indication of pressure distribution in regions least affected by 
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separation effects (inboard, high speed, low incidence). Since separation 
must affect pressure distribution to a greater or lesser extent at all points, 
it is not safe to generalise from this one case: the extent to which the con- 
ditions may depart from the basic thin wing and attached flow assumptions for 
the present method still to give useful results could be established only by 
comparison with experiment over a wide range of conditions. 
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APPENDIX 1 

m!OVAL OF SINGULARITY FROM DOUBLE INTEGRAL 

(IO), 
In order to remove the singularity in the double integral of equation 
consider the integral 

2 
ds 

rl + w(t,s)ar 

d (,r- I s -9 't (1, - .)3" 

s1 at =T 1 
w(t.s)as L 

S 
,r5;1=9 

0 
r;‘:5 -.j+l 

= -$ f;is:‘y+~ ’ /- --- 
0 qso- s 

;y$. 
O h\lro- rl s 0 

Therefore, 

s1 rl f$+ W(t,s)dr s1 
1 dS = _- 
2 so JifE t (Zo-r)312 + % 1 i i 

w(t,s)as 

\&, v l 

Substitution in Equation (IO) then leads to the expression Liven in 
Equatim (11). 
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AFmNDIX 2 

CALCULATION OF TANGENTS AT POINTS OF INTWSECTION 

The equation of the leading edge is usually given in Cartesian 
coordinates. We therefore want to express the vslues of g'(r,) etc. in terms 
of the equation in Cartesian coordinates without working out the equation of 
the leading edge explicitly in characteristio coordinates. 

Let the equation of the starboard leading edge be 

y = a0 + a, x + a2 x2 + n . . . + a x = n h(x) 

or replacing y by its equivaletd in characteristic coordinates 

s-r) = i is- g(s)] = h(x) . 

Differentiating with respect to s we get 

On the leading edge x = s + g(s)] so that 

; 11 - g'(s)] = h'(x) g iI + g'(a)] 

therefore 

The port leading edge is given by -y = h(x), which leads to 

r- 8) q i {r-g(r)] = h(x) . 

Differentiating with respect to r we get 

g’(r) = ,$+i$+j . 
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Appendix 2 

Thus g'(r) and g'(s) are expressed in terns of h'(x), but we must be careful 
to refer to the right points since h'(x) contains r as well as s of the point 
in question, The point P does not lie on the leading edge, but rp = rR = r. 
and sp = sQ = so (see Fig.2). Henoe g'(ro) refers to the tangent at R; 
similarly g'(so), g'(r,), g'(s,) f re er to the tangents at Q, T and U 
respectively. 
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TABLE1 

Intepration points and interpolation 
coefficients-for Gaussian integration 

1 
i(= k) xi Hi 

I !!a. 1 Gi 

1 0*015683 0.4.98294 0.0337652 0.085662 

2 0*135300 0.466985 0.1693953 0~180381 

3 0~3&942 0.406335 0*3806904 O-233957 

4 0.592750 0.320157 0-6193096 o-233957 

5 0.817428 0.213879 s 0.8306047 0~180381 

6 0.963431 / o-094351 O-9662348 0~005662 
I 
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I V 

(9 INTEGRATION AREAS M= I.2 

(b3 INTEGRATION AREAS M=2*8 

FIG. I. INTEGRATION AREAS FOR A TYPICAL OGEE WING. 



FIG 2. NOTAT ION FOR COMPUTATION. 
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complted rOI‘ an Wombered wee AiW Che mthod ap~+ars to Blve regllts 
of more Benem aPplicatlon than slender body or first-order piston 
theory. 

D 82985/1Mt.59 IQ 12/63 XL & CL 





C.P. No. 703 

0 Crown copyrtght 1965 

Prmted and pubbshed by 

HER MAJESTY’S STATIONERY OFFICE 

To be purchased from 
York House, Kmgsway, London w c 2 

423 Oxford Street, London w.1 
13.4 Castle Street, Edmburgh 2 

109 St. Mary Street, Cardiff 
39 Kmg Street, Manchester 2 

50 Farfax Street, Bristol 1 
35 Smallbrook, Rmgway, Bwmmgham 5 

80 Chichester Street, Belfast 1 
or through any bookseller 

Prrnted m England 

C.P. No. 703 
S.O. Code No. 23-9015-3 


