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SUNMARY

A method is established on the basis of linearized thin-wing theory for
the calculation of pressure distribution, in steady supersonic flow, on wings
of arbitrary planform with subsonic leading edges., An algebraic expression is
derived by exact integration for the incidence contribution and a computational
formula, based on Gaussian integration, is given for the general case including
any prescribed camber and twist.

For a uniformly cambered delta wing the results computed by this method
check very closely againat those ocbtained by Watkins' method, which 1s
applicable in this special case. As illustrated by results computed for an
uncambered ogee wing the method appears to give results of more general
applicatidn®than slender body or first-order piston theory.
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1 INTRODUCTION

The application of linearized theory to supersonic flow over wings has
been widely developed and has led to satisfactory solutions of many features
of aircraft design. However, for those aerodynamic and aeroelastic aspects of
design which demand reliable estimates of 1ift distribution, existing methods
are all subject to limitations and may give rise to difficulties or uncertain-
ties in the general case,

Within the limpit of its range of application LA2|1- M2| << 1] slender
body theory! can be applied to indicate the main trends of the aserodynamic
properties of wings in supersonic flow. For speeds in excess of, say, M = 2:0,
piston theonyz can provide useful and very simply derived results, especially
in the approximate evaluation of aercelastic properties.

A formal representation of the problem of a wing in supersonic flow can
be made in terms of a distribution of sources with strength proportional to
local dowrwash, the effects being bounded by Mach lines, Yor a surfacse with
supersonic edges the system can be formulated fairly simply, but complications
arise in the case of subsonic edges, because the effective areas include parts
not on the wing, where the downwash is generally unknown., Tracteble expres-
sions have been derived for the computation of velocity potential and 1ift
force at points on rigid and deforming wings of basically triangular planform
in both steady and oscillatory statesds4s5,

% general apprcach to the problem of subsonic edges was propounded by
Evvard®, Velocity potentisl at eny point requires integration of the downwash
velocity effect over the area enclosed by the Mach lines from the apex of the
wing and the reversed Mach lines through the point under consideration.

Evvard prescribes a portion of the wing area to cancel the effect of that part
of the original integration area which lies outside the wing itself,

In a development of this method Etkin? showed thaet this area cancellation
could be improved by using a series of integration areas, of appropriate sign,
defined by reversed Mach lines through the point and through successive inter-
sections of these Mach lines with the wing edges. In the limiting case of
sonic leading edges & single integration ares gives the exact solution; for
subsonic edges one, two or more areas of diminishing influence may be used to
achieve successive degrees of approximetion. Evvard and Etkin calculate the
velocity potentiel by numericel integration, and use numericel differentiation
f'or pressure.

Lees8 deseribes a routine numerical procedure based on a matrix applica-
tion of influence coefflocients calculated for elements of an equispaced Mach
line grid, He avoids numerical differentiation by line integration round each
elementery penel. Downwash and pressure are assumed to have uniform mean values
over each panel.

In the present pzper & convenient method is evolved for the application of
a general solution of aerodynamic loadings on wings with subsonic leading edges,
having arbitrary, specified planform and dowrwash distribution. Using Etkins
integration areas, it can be shown that a useful range of shapes and Mach numbers
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can be approxamated quite closely by takang only two such areas. Under these
conditions 2t is showm that an analytical formulation can be derived

by differentiation in the chordwise direction of the integral expression for
the velocaty potential, The resulting expressions for pressure distribution
at any point us the sum of integrels of known functions over the appropriate
arcas. These integrals can be evaluated sxactly for the contribution of
ancidence to pressure and by Gaussian integration methods for the general case.

The integrations have been programmed for the Mercury computer for the
evaluation of pressure at points along chord lines on wings for which the
leading edges may be specified as polynomial funections, For the same basic
wing shape, different distrabutions of dowmwash are rcadily introduced.

Confirmation of the accuracy of the method 1s accorded by very close
agreement with Yatkins' method?, as gaven by Daviesd, which is applicable to
the particular case chosen for the comparison, This was e uniformly cambered
delta wing of aspect ratio 1+0 at a Mach number of 2+0, for vhich the results
may be interpreted in terms of an uncambered wing in steady pitch,

An uncambered ogee wing of aspect ratio 1:0, used by Courtney and
Ormerod% for the experimental determination of pressure distribution was also
examined. Over the speed range considered - Mach numbers from 1+4 to 2:8 -
the present method appears to be more generally applicable than either
slender-body theory or {irst-order piston theory.

The experimental evidence is that leading-cdge separation and vortex
formation 1s a feature of each of the cases considered. Thus the degree of
correlation between measured and theoretically derived pressures cannot be
applied to the assessment of theories which thomselves sssume, and are stractly
applicable only in cases of completely attached flow. It is noted, however,
that in those cases wherc separation effects arc least (high speed, low
incidence, inboard) the present method of computatron gives results which
agree quite well with observed pressures., while it is unsafce to generalise
from cne example this 15 at least an indicataion that, for practical purposes,
the present method might be admissible and useful for cases which involve
only small departures from conditions of attached flow.

Summarising, the analytical and computational techniques described here
should prove useful in the study of aerudynamic and steady-state aseroelastio
properties of wings in supersonic flow, over the region whers linearized tnin-
wing thedry is applicable. TFor stability and dynamics studies the computed
pressure due to incidence may be’used directly to determine supersonic wing
derivatives . and m ; dovmviash @istributions proportional to longitudinal

and lateral coordinates may be applied to give 'g' and 'p' derivatives
respectively.

L

2 BASIC BQUATIONS |

We assume a wing placed in supersonic steady flow of froe-stream
velooity V, and choose a Certesian ccordinate system with origin at the apex
of the wing, x-axis along the centre linc of the wing an the dircction of the
main stream £lou, y-axis in the starboard direction and z-axis positive
downwards,
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The perturbation velocity potentiel at a point P(x Y, ) on the wing 1is
then given by Evvard® as

1 C dx g
¢(xo,yo) = -z jij‘ w(x.y) y: - (1)
2 2 2
J(x, =% -8y, -3
a
where B = M2 -~ 1 and downwash velooity w(x,y) is V Bi for points on the wing

surface.

The area of integration is enclosed by the reversed Mach lines through P
and Mach lines through the apex of the wing. In the case of subsonic leading
odges the downwash velocity is not_known for that part of the area which is not
on the wing, but Evvard® and Etkin/ have shown that the integration area can be
replaced by a system of areas on the ving surface, Arcas ityhn bz, .., which-are
bounded by reversed Mach lines lhrough P and through successive interseotions
of such Nach lines with the wing edges, as shovm in Fig,1, may be used for
approximate calculations,

Etkin estimated that, for delta wings, good accuracy is obtained if the
integration is taken over the first area only, provided that B cot A 2 04,
A being the angle of sweep~back; and also that the inelusion of the second area
is sufficient in most cases.

For a near delta wlng of aspeot ratio 1+C at Mach numbers close to unity
it is clear (Fig.ia, M = 1'2) that even’ areas Ay and AL are not negligible, At

such Mach numbers, however, the flow would be transonic in character and the
theory unlikely to be relisble, As Mach number is incrcased the secondany
areas become smaller, and at M = 2°8 (Figs1b) it can be seen that A is quite

small for a typical slender wings At a Mach number of about 4.°1 the leading
edge of this wing becomes supcrsonioc and A vanishes; here, however, we are
approaching the hypersonio regime,

It will be seen from this that for slender winegs in supersonic flow it
will be necessary only to deal with the cass of subsonic leading edges and that
two integration areas will give a good approximation for M > 1*4, say., Under
these oconditions the equation for velocity potential becomes:~—

4 u(xay) 8x dy 1 w(x,y) dx dy
o(x ) = -ﬂff t R

J(XOQ-X)2 - Bz(yo-y)z ]f\/'x -%)% - 8%y, -5)°

ese (2)



The linearized form of Bernoulli's equation is

P-p,
5 2.vE = o0, (3)

For a thin wing, the pressure difference between upper and lower surfaces
may be written

P, - P
. L_u _ Lkfde
or ACP = — = ¥ ( :L . (4)

Introducing characteristic coordinates (r,s) based on the Mach lines
through the apex of the wing, we have

r=%(x—f3y) ]

; (5)
8 = g% (x + By) » J

Transforming equation (2) into this system, we obtain

olx, v,) = &(r,s)

"‘MH Jkgir-si)c(l: d-ss) "MH \/lzf-ri)«)i: d-ss) ©

- 7:1? [1, - 1,] (62)

where I1 and I2 represent the integrals over areas A1 and A2.



Now

B_Q%ﬂ

ax
_ 2% or 9% 2s
= 3¢ ox ' 3s ox
M tod ad
= 2p|:r+ s]' (7)
Thus, we may write, using (4}, (7) and (6a),
ap(x,¥.)
4 o’ Yo
AGp(xo yo) v ox
o [aczn(ro,so) , a@(ro,so):\
pv aro aso
2 ) )
= T XV [aro (1) - Tp) + s, (1, 12)] (8)
or, on rearranging:-
R W e\ S S B
ar  ~ or_ +(Bs-as - T ar. * 3s
o o o o o
39{x,¥,)
. - Yol S
- (88)

_ 1By
5 Acp(xo: ¥, o I

Thus, to evaluate ACP we must determine partial derivatives, with respect

to r, and By of the integral expressions for 2.



3 INTEGRAL EXPRESSION FOR ACD

Following the notation of Pig.2, and using the definitions in equation
(6a), we may write

I = 1 81 W(I‘,S) ir ds
1
rar, s=s J(ro"’r)(so-s) >
(9)
W(F’S)
I. = .
i r=r, Js \/(r -r)(s ~-s) o de J

It will be seen from Fig,2 that T, and s, are functions of s but that

850 Ty and s, are note In differentiating with respect to T consider a point
P1(t,so) passing to the limit at P(ro,so), so that t is also a function of r .

We now differentiate the integral J 4 defined by

r

s r s
J. = 1 f1 }N(r,a) dr ds = e f,(r,s) dr ds .
1 { s \/(ro-r)(so-—s) [ '/ 1

0

This becomes1

3 r 3
1

r, 1 1
oJ, af, dr  ds, it
ar_ [ dsf dr T [ f1(1‘;31)d1“ - I / f1(t,s)ds
0 o o . o
t 1
© o
51 r‘] —_-1. r1 d. S
- lf ds W{r,s) dr dr / W(I‘:S ) dl“ dr f . ds
= - 5 j oo _ 3/2 -
so !;80 8 t (r r) JS 3 % 0

eas (10)

In order to remove the singularity, this expression may be rearranged
(Appendix 1) as:-



S, r, [%(r,s) - %ﬁ- W(t,s{] ar

I _1f ds 0 .
aro 2 r———-s ] (1" - I‘)3/2
ao o] £ o]
ds1 r dt 5

E vy

o 1t Vro - Vro T

- 1 ‘el
. &ro j. W(r,si)dr - dro f 'th,s!ds
8
8

vee (11)

The equation of the port leading edge may be written in characteristic
coordinates as

s = g(r)
The slope at point R (Fig,2) is
ds
-t = g
ar = 8 (ro)'

Proceeding now to the limit vhere t

i

r, so that dt/dro + 1, we have

ol od
— = Lim
or_ trr or
0 o o
5 r, r,
] j~1 is (W(rys) = w(r_,s)lar  g'(r ) j‘ W(r,s,)ar
s - - +
2 Vs - 8 (r - r)3‘/2 Vs = s r_ -7
3, 0 Xy 0 (o 1 T, o

. (12)

Differentiation of the corresponding expression for I, can be ocarried
out directly as there is no singularity. Noting that the Starboard leading
edge is given by



r = gs)
dr2
—— — L]
and that W, - g (31)
we have EI-‘-% = Ef"% "dil
dro ds1 dro
- 1 1
= g'(s,)g'(r,)
and we find
s
2 Fa
E?- ~ l / / W’(I‘ S)d.I‘ ) g (I‘ f \I(I‘ S )dI‘
or, 2 ,\fs -8 (r -r)z'/2 \/ro—r
(s,)8'(x) 2 W(r,,s)
g'{s,)g'\r Wir,,s)ds
i / 2 (13)
[y -1 5§ -8
,\/ e} 2 Sy r\f—o
Thus,
or_ = ar ar
) 0 o
51 I‘
1 j ds / [W(rys) - u’(r ,s)]dr g'(r Ww(r, 8, yar
=73 - _ 3/2 5.~ 5 ] -
85 %o Sro (ro r) ,\s ® T~ ¥
8 8
1 2
4 W(ro,s)ds 1 ds W(r.s)dr
- +— e ——
=~ 2 T 372
'r-r J 5 =8 s =8 (r-r
o 15§ 1\/ o g, Yo
o 1
g
g:(ro) ] W(r,s1)dr g (s )g! (r ] W(rz,s)ds (1)
+ ————e N
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In the same way, taking the limit in the s-direction, we obtain:=-

r ]
3 L[ ar [ [H(r,e) ~W(rs)as  g'(s) W(r1,s)ds
-m —— = -
3s, 2 ] r -1 [ (3-8)3/2 r-r \ls-s
r [+] 5] "]
o o
r, T, 8,
La f W(r,s )ar LA j dr ] W(r,s)ds
— — *2 —— _e\ /2
8™ 3y ’\jr £ r1\’ors1 (sos)
o
B2
g'(s ) W(r,,s)ds  g'(r,)g'(s ) W(r,s,)dr
+ 0 1 _ 1 o] / 2 (15)
[P s T T =1 ’
VRIS Y 87 % 57 %2 r, NTTE

Combining equations (14) and (15) we obtain as the final equation for the

calculation of pressure difference:-

p-- ax

c e D) - W(e,lar e(r) ! W(ne e
BN Bl Bl =
so Nf o 0 Ao 1 ro o
S S
1 W(r, ’s)ds L1 ¥(r,s)dr ds
Jro = Ty s{ NER "2 «1[ .1/ (rc—r)3/2 (30-5)1/2
] 25 )ar  @'(s))e(z) / wcrz,sms
\‘ 7 NTo Vo 54 J%7®
-Jé ? 3 7‘ [w(r,s) - W(;;;o)]ds , g (so) 7 vf(r1,s)ds
r '\F;- 8, (80_8) '\Fo-r‘l 8, ’\,E‘_OTET
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r

s I‘2
f ﬁf(r,s )ar L1 ] ] W(r,s)dr ds_7_
*2 (ro-r)1/2 (30'3)3 :
%y T

0

Fo

g'(s /~ (r1,s)ds g (r Je! (s } ]- W(r,s Yar
o

. (16)
W R e AT

4 PRESSURE DISTRIBUTION DUE TO INCIDENCE

when calculating the pressure distribution over a cambered and twisted
wing at incidence according to linearized theory, the contributions of camber,
twist and incidence may be calculated separately and the results superimposed.
The pressure distribution due to incidence is calculated per radien with
W
vE
that case W(r,s) - W(ro,s) = 0 and W(r,s) - W(r,so) = 0 so that the two double

= 1, This leads to a considersble simplification of equation (16), since in

integrals over the area A1 vanish. The other integrals can be evaluated

exactly. We thus obtain for the pressure distribution due to incidence:-

BR . . B 2
4 s Vv  ox

1
to

2
le]
no

n

[1 - g'(x) }\(—_; SEIBEICRE }

r —-r
0

Jr -T

+{1 = g'(s,)g'(r,) iﬁé;:ii +{1-g'(s) [f:jif%
{ Je= b))

n 0 2 ! e} 1

¥ [5'(r1)g'(so) B 1} %;8;;;% + {1 - g'(ry)e'(s) oo hy
ﬂso-sz o] 2

ses (17)

e
[+:}

i
w

This is all we have to calculate for a wing without camber or twist, or in
determining the contribution of incidence in the general case,
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5 NUMERICAL EVALUATTION QF THE INTEGRALS

The integrels of equation (16) were evaluated by Gaussian integration
which involves only the summation of terms containing W(r,s) at selocted
integration points, The double integrals are ocalculated as repeated single
integrals,

51 Integrals for the integration area A1

To evaluate the first integral of equation (16) we make the
transformation

r -1 3 = 3
u——ug—-_, v:_?.-—gu_,

r =-7r 8 = 8

0 1 o] 1

that is, we meke the coordinates non-dimensional with the sides of the area A1.
This gives

r = ro-(ro-r,l)u, ar = ~(r, -7z )
and we obtain
T4

s
1 [1 is f [W(r,s) - W(ro,s)]dr
8 =8
s o
0

L d T
2 (ro _r))/a

o]

1 tors . -
5.5 [ av (ro- 1)f [‘«I(ro—(ro-r1)u,so (50-31)v) d(ro,so (so s_i)v)]du
2
0

T

1
!
[y
<
=
7
o
I
9-‘
-
\-.Q

- n 1 -
1 Yg = s, sz f [W(ro -(ro -r1)u,so- (so ~3, )ﬁ{)w’vf&ro,so— (So_f'1)_xl_c)]du
2 u372
0

A 2 2 B H .
== E r -I‘1 ZJ Z ?;Ef(ro_(ro- ‘r‘i)xi’so_(so- H'1 )xk)-‘:!(ro,so-(so— 81):’&{3'
k=1 i=1

The values for the integration point Xy and the coefficients Hi wers

taken from I&*I:i.m-u:r'r| based on a formula given on page 289
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b
f EX) ax
A Afb-x
I = (b-a [Ho F(Xo) *eesse + H F(Xn)]

X, = &+ (b= a)gk ; vhere x = 1 -E K

5.2 Integrals for the integration area A2

In this case we make the coordinates non-dimensional with the sides of
the area A, and put

2
. r, -r ’ . s, - 8 .
I‘1 - I‘2 31 - 52
This gives r = r, (r1 r2)u
dr = - (r1 - rz)du
end r,-T = (ro - r1) + (r1 - rz)u .

We apply this transformation to the evaluation of the double integral

S5 Tp

1 f / W(r,s) dr ds
5 (s =)/ (z -0y
51 I'1 o o

11
‘ W\F (r -T, u, 8, - (51-52)%) du dv

1
= - ( - )( = )
2 \FTTR/NB TS, Z j {(s,-5,) + (8,=8,)7} 1/2 {(z,r,) + (r1-r2)UI3/2

[a]

ik {(3 -8 )z + (s .&11)}-?75 {(r1_r2)2i+ (ro'rﬁ)ij/z

= % (r,=r,)(s,~3,) oy G.C W( - (mymp)es 31-(31-82)21‘)
5 D) %

i=1
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The values of G, and z, were also taken from Minour11, based in this case on

a different formula given on page 263

b

J = f F(X)ax

a

H
|

Lzt (6 P(X) + veres + 6 F(x)]

+ a (b~ &)t
xkb2+2€]E

where zk =1 - ék.

The values for Xs Hi, zy and Gi as used are given in Table 1,

5«3 Numerical expression for qu

With Gaussian integration applied to all integrals of equation (16) the
final formula for the calculation of pressure distribution ineluding camber
and twist becomes the expression given in equation (418) on pages 17 and 18,

This expression with n = 6 was programmed for the Mercury computer for
wings of arbitrary planform, the leading edge being given by a polynomial
equation, With the value n = 6, there are 3 integration points in each arce
for every point, It thus provides autcmatically for greater accuracy near
the leading edge since the same number of integration points are used for
smaller arecas.

In the programme, the ocalculation is earried out for points along chord
lines equi=-distant in Cartesian coordinates and is so arranged that only the
downwash distribution has to be added for each new case of camber or twist,

Az the leading edges are usually specified in Cartesian coordinates,
formulae are given in Appendix 2 for evaluation of the terms g'(ro) etc,

without requiring to express the equations for the leading edges explicitly
in characteristic coordinates.
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.-LL-

_(P.
ﬁ’r—r [Z ka\r’s_(s-s)xk)
-%ii i-Wr-(r--r)x,s - (s -s)xk/ (ro, so—(so-s1)xk>}:}
i=1 k=1
%D \E"ﬁ(‘"(r-(r"r)’ae )
L2,
k=1
_%EE%L r-(r —r)x,s-(s-—s)xk>-w(r«-(r —r)x,s)}j}
k=1 i=1
NS W(r1-(r1-r2)zi, 31-(31—32)zk>

1
+ 35 (s, =8 )(r, - r,) ) GG



—8L-

— - (z, - r)z,s -(3_5))
_ -8, = 1,) <r1 1 1 17 5o/ %
2 ZJZI 1k{(s-—-s)zk+(s —8)11/2{(r-r)z +(r—r)}3/2

k=1
(r,~1.) = W( -(r r)z,s) ( 8, -{s s)z)
- gt(e,) M2 Y g T\ L VRS 5) ke 5
° 5 =S5 — ]:‘ r Z. /§ - -
NDRETS 21 {(r =)+ (r, -1z} (—*% {(s,=5,)% (5, 5,)2,} /2
( (,s (s-s)z.)
+ |(r) ‘(S 2 1 1 271
& Vo8 ,\’r -r, %41 1+(s1-52)zi§1/2

(r, = 7,) Zn . W<r1—(r1-r2)zi, sg)

Y iGrg-ry) + (ry - s}

+ g'(s Jg'(r,)

. (18)



6 AFPPLICATION

The analytical expre%siona given sbove for the direct evaluation of
agrodynamic loading represent a convenient application of lineerized thin-wing
theory. A degree of approximation is adopted in so far as the formulation ia
based on Etkin's construction limited to two integration aress. The justifi-
cation for this was discussed qualitatively in Section 2; it 1s now of interest
to compare results with exact theory in a simple case where this can be con~
veniently applied. For a wmore general case, the results of the present method
may be compared with other available theories to illustrate the measure of
divergence.

61 Cambered deltas wing

As a typlcal case, a cambered delts wing of aspect ratio 1:0 in steady

pitch (% = %ED was examined at a Mach number of 2:0, Resulta were computed

o
by the present method and by the method established by Watkin.*za'-ﬁ’lF and applied
by Daviesd, Spanwise and chordwise distributions sre shown in Figs.3 and 4.
The correspondence is very close.

6.2 Uncambered ogee wing

To illustrate the application of the method to g wing with ourved
leading edges, the model used by Courtney and Ormcrod” wes chosen. This is an
uncambered ogee configuration of aspect ratioc 1:0 and with leading edge

equations:-
, 5_
y = 05—+ -0-5(-"->J.
[0 &) 0

In #igs.5 and 6 spanwise snd chordwise pressure distributions are shown
according to the present formulation of linearized thin-wing theory for
M =1+4, 2:0 and 2+8, Even at the lowest speed the diff'erence between the
present method and slender-body theory is appreciable. The divergence becomes
greater at higher speeds, as would be expected from the restrictions imposed
by the assumptions of slender-body theory. At the highest speed, the uniform
pressure loading according to first-order piston theory does not give as
useful an indicetion of local loadings as do the results based on the present
method,

Flow visualization had shown separation from the leading edges, with
vortex formation, at each of the speeds and incidences quoted in Figs.5 and 6,
the effects being most marked at lower speeds and higher incidences. Further,
the centre section was relatively thick. Strioctly speaking, therefore,
linearized thin-wing theory cannoct be applied, nor the experimental values
used to assess variants of linearized theory. Howsver, the experimental points,
taken from Courtney ard Ormorod's peper, show that the present theory provides
a useful indication of pressure distribution in regions least affected by
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separation effects (inboard, high speed, low incidence). Since separation
must affect pressure distribution to a greater or lesser extent at all points,
it is not safe to generalise from this one case: the extent to which the con-
ditions may depart from the basic thin wing and attached flow assumptions for
the present method still to give useful results could be established only by
comparison with experiment over o wide range of conditions.
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LIST OF SYMBOLS

A1,A2 integration areeas

C. = (p-po)/%pvz, pressure coefficient

a6, = (py-p,)/3pV"

Gi,Hi integration coefiicients

M Mach number

P pressure

r,s characteristic coordinates, defined in equation (5)
r = g(s) equation of starboard leading edge

s = g(r) equation of port leading edge

v free stream velocity
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APPENDIX 1

REMOVAL OF SINGULARITY FROM DOUBLE INTEGRAL

In erder to remove the singularity in the double integral of equation
(10), consider the integral

94 T gri W(t,s)dr
1 ds o]
2 — 3/2
g, \‘So s 4 (xy=r)
%4
dt W(t,s)ds 1 oo
dr<:> [s =8 Jr—r \]r-t
3, AlTo o 1 N'p
31 31
__ 4t 1 ] H(t,8)ds | 4t 1 / #(t,s)ds
dr — 3 -— T dr_ o -—
° »\’;o b S :\Fo—“s © nToT Ty s, ,\/?0—3
Therefore,
*
it 1 ] W{t,s)ds
dr
o ro-t S, ,Jso-s
% o %:f—w(t,s)dr %
_ A ds_] 0 L&t 1 / W(t,s)ds
! = _n3/2 Tar o *
so dso S % (ro r) ° ATy r1 So So S

Substitution in Equation (40) then leads to the expressicn given in
Equatien (11).
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APPENDIX 2
CALCULATTON OF TANGENTS AT POINTS OF INTERSECTION

The equation of the leading edge is usually given in Cartesian
coordinates. We therefore want to express the values of g'(ro) etecs in terms

of the equation in Certesian coordinates without working out the equation of
the leading edge explicitly in characteristic coordinates.
Let the equation of the starboard leading edge be

2 n
Y = 8 48 X+a,X 4. ta X = h{x)

or replacing y by its equivalent in characteristic coordinates

3 (e-r) = §le-e(e)} = n(x) .

Differentiating with respect to s we get

ax
da

g'(s)} =

1
Rk

g5

On the leading edge x = % {s + g(8)] so that

(-] = n(x) & (14 ()]

- 1
therefore g'(a) = : " ﬁﬁ’ i .

The port leading edge is given by =y = h(x)}, which leads to

=i~

% (r-8) = % {r-g(r)} = h(x) .

Differentiating with respect to r we get

\ 1_~ Bh'
o) = TEE -
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Appendix 2

Thus g'(r) and g'(s) are expressed in terms of h'(x), but we must be careful
to refer to the right points since h'(x) contains r as well as s of the point
in question. The point P does not lie on the leading edge, but rp=Ip =T

o
and sy, = 8q =3, (see Fig.2). Henoe g'(ro) refers to the tangent at R;
similarly g'(so), g‘(r1), g‘(s1) refer to the tangents at Q, T and U

respectively.
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Integration points end interpolation
coefficients for Geussian integration

TABLE 1

i(=s x) Xy Hy 2, Gy
1 0-015683 04,9829, 0:0337652 0-085662
2 0+135300 0+466985 0+1693953 0-180381
3 O 34042 0+406335 0+ 3806904 0-233957
& 0:532750 0.320157 0+6193096 0-233957
5 0+8174.28 0213879 08306047 0-180381
6 0+9634.31 0+09435 0+9662348 0+085662
- 26 =
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