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SUMMARY

An earlier paper1 gave expressions for the drag of a hody with its
trailing edge lying in a plane normal to the direction of {low at infinity.
The present Note extends these results to a body with its trailing edge in
the form of any smooth closed twisted curve. In particular it covers swept

trailing edges whose angle of sweep may be variable.
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1 INTRODUCTION

In Ref.1 the drag of a body with a straight trailing edge was found to
be equal to the drag of a body enlarged by the displacement thickness &%
(called the displacement body or sometimes the distorted body) together with
a term which was expressed as an integral taken round the trailing edge. For
thin wings or slender bodies this integral was written as the sum qN + B
where

2+H--M2
)
vezfe(@ e
V2-+w
E = [DzDA*dO' .
U
o0

The meanings of the symbols is the same as in Ref.1 and will be given
again in the List of Symbols.

In this Note we obtain the corresponding results for a trailing edge
which is swept by an angle A (which need not be constant along the span).
The values of N and & are

uD 2+H—M2-JtanA
I‘T:Z/@-;) cos A do
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the subscript b referring to values inside the boundary layer and e to values
outside it. The subscript D refers to inviscid flow about the original
undistorted body and a bar over a quantity means that the value due to inviscid
flow over the displacement body is to be taken.

The result is obtained by a momentum balance method as before. If the
wing is thin and the cross-flow is smell it is approximately true that the
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inviscid drag of the displacement body is equal to the inviscid drag of the
body itself; to the approximation involved in this assumption we may write

N = 2 [ ® cos A do ,

This is the extension of the simple formula of Ref.1 to swept trailing
edges.

2 THE CONTROL SURFACE

We surround the body by a cylinder of radius r, sufficiently large to
include all of the body, with a plane end normal to the main stream at the
front or sufficiently far upstream of any shocks there may be at the front.
At the back the end of the cylinder is closed by a surface 5' generated by
lines L normal to the trailing edge and to the direction of flow at infinity,

where the velocity is qn. (We shall write "normal to U " when we mean
[oce)

"normal to the direction of flow at infinity".) These lines are taken all
round the trailing edge. This edge need not necessarily be a curve in one
plane but it may be a smooth curve in space but not curved in such a way that
the lines L intersect in points inside the boundary layer. Outside the
boundary layer the surface S' may be any simple surface containing the

curves A and B in Fig.2.

An attempt is made in Fig.1 to draw this surface, but it is not easy
to represent this three-dimensional figure on paper. All tie straight lines
on the rear surface are not only ncrmal to the trailing edge but also normal
to q”. In Fig.2 we show the surface S' projected on to a plane normal to qm.

The curve A is the outside of the cylinder, B is the section of S' by the
edge of the boundary layer, C is the section by the displacement surface and
D is the trailing edge. These curves are to be considered to be on S'; we
only show their projections for ease of drawing. In Fig.2 the surfaces 53’
S and S_ (the parts between the curves) are also surfaces on 5'. Velocity

L 5

components will be taken as follows:~ u parallel to q”, w parallel to a

line L, and v normal to u and w, in a right handed system. The flow outside
the boundary layer is taken to be the same as inviscid flow outside the dis-
placement surface. The local angle of sweep A at a point P is defined to be
the angle between the tangent plane T to the surface S' at P and the plane
normal to qx. The surface S' i1s not a developable surflace and so the tangent

plane to it is different at different points of L., Hence A varies not only
as we move along the trailing edge (because of varying sweep) but also as we
travel across the boundary layer. The last variation in the value of A will
be of order &, the boundary layer thickness.
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Provided a suitable convention as to the sign of A is employed it can
be shown that the velocity component normal to the surface, that is, normal
to T, is u cos A - v sin A, It may be pointed out that on the trailing edge
90° - A is the angle between the tangent to the trailing edge and qm. This

is the easiest way to find A when the trailing edge is a twisted curve in
space,

As in Ref.1 we assume that the flow outside the boundary layer is the
same as inviscid flow over a body thickened by an amount &%, the displacement
thickness. This body we call the "displacement body" or the "distorted body".

3 MOMENTUM BALANCE

We denote by the subscript b values inside the boundary layer, and a
bar over any quantity denotes its value for flow over the distorted body, that
is the displacement body.

Conservation of mass through the cylinder gives

- dd -,- -
/' Py qw as - /‘ P qx'ég as - /’ p(u cos A - v sin A) dS
S, S, 33

-‘/ Pv(ub cos A = 2 sin A) @5 = 0. (1)

The drag force on the body will balance the flux of momentum in the U
- o0
direction of the fluid leaving the cylinder. Hence the drag D is given by

= 2 - 33 -
D = / (poo+p°°U°°) ds-/ PU 3o uds
S

1 Sy

_[ {5005A+§(ﬁcosA-;sinA) G}ds

S3

S +S

N
-‘[ {pb + p (u cos A - v, sin A) ubj as - p;S(B)
L5 '

where Py is the base pressure and S(B) the projected area of the base on a

plane normal to q”- qx§ is the velocity potential.
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Multiply equation (1) by U _and subtract from equation (2) end we have,
o0

writing u' =u - U
o0

D = [ poodS-[ EUOO—B—QG' as-f (5 cos A+§ﬁﬁ' cos A-:o-fu-z' sinA) ds
S

or
S1 82 3

-[ (pbcosA+pbubuécosA-pbvbuésinA)dS

-S
55
- pB S(B) .
Now
f p a8 = [ P cosAdS+[ poocosAdS+pooS(B)
o0 o0
S
4 53 S5
and hence
B o= I+ dg+d ¢ (e _-py) 8(B) ,
where
- - a Qi ut
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— - by 1] - 1] s
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S
55
@, = P-p,s @ = Ep,U



assumlng that the pressure remains constant throughout the boundary layer,
that is, 128 is equal to p, or differs from it by a quantity of order §.

This assumption will be discussed in Section 6. For convenience we shall
drop the term (p - Py ) 8(B). It may be inserted at any stage if required,

that is, if the body has a base.

4 THE VALUE OF I3 + J45

We may write

J3 = - ]’ Kas = -'[ Kds + /. Kds .

S3 s5+84 84

In this equation we may give the part of the integrand over 84 any value

we wish; we shall give p, p, U and v their values due to inviscid flow over
the distorted body. These are not their true values since SA is inside the
boundary layer. Thus we have

|[ Kds

5

]

/ (qu cos A + puu' cos A - pvu' sin A) aS .
),

If on S, we replace T by ﬁ » P by E and V by ;e the error is of order 8.
Since SLF is of order & we may make this substitution in the integral with

error of order 6 Hence we have

= 2
J3+J45=-[ KdsS + g N + 0(8%)

S
S3+5,
where
N = P -0 v u' a3 - ' + ' g3
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S
S+55
- ]' (q Ep cos A + Eeﬁeﬁé cos A = 5 5 ﬁ sin A)as
S5



= [ {Pb “b(ae"“b) + 5é(§e Ge-pb ub)j cos A 4aS
iy (= = .\3 .
i[ {Pb Wb(ue‘ ub) - ue(Pe Ve~ Py Wb)j sin A 48

- P < 3 uf S

f (q o, €08 A+p, u ulcosA=p v oulsin A) as . (5)
S
° 2

We shall neglect all quantities of order & .

At this stage we ignore the change in A across the boundary layer, and
give it the value it has on the surface %tself. Here the error in A is of
order & and so gives an error of order &<. We obtain

= Peae peueué
N = 2 S ® cos A do+ 2 — (A% - &%) cos A do
D PooUoo D PooUoo
b5 5! 5 G 5 v
-2[ 5 0,5 sinAdo‘—Qf 6929<A'*--_-95*> sin A do
D PooUoo D PooUoo ue
- Ep 8* cos A do (6)

where

/Equation (7)
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In calculating these "thicknesses" we may if we wish, replace Ge by u

and similarly for other symbols with subscript e. This is in accordance with
usual boundary layer practice; although it is not satisfactory to do this at
the trailing edge in subsonic flow it is probably sufficiently accurate in

supersonic flow, when there is not such a great difference between Ge and Upe

We show in Appendix 1 that if the cross-flow is small A* - &% ang
At* - (Ve/ﬁe) 8* are small. Both of these are multiplied by ﬁé =U - ﬁe which

is also small for thin wings and slender bodies. We shall ignore these terms.
A* - 8% was taken as zero in Ref.?1 without comment. Ue shall also replace
ﬁe etc. by up etc. with error of order &. Hence the crror in N will be of

order 2. We finally obtain

2
- P p :
N=2/ DuD@cosAdo--zf-—D—u%uQ@msinAda-[ 0, A% cos A do .
D paJﬁo D Pm}Lo D

ees (8)

In the last term we have replaced 6% by A*,



For slender bodies we have approximately

|
p 2uD
—= = 1 =M -ﬁ— ’
Peo oo
2 u! v2+w
c = - - ’
P q” U2
o0
and so we may write in such a case
N = N+E
where
u! 5
N = 2[9{1+ﬁ2(2+H-M -J tanA))cosAdo‘ (9)
oo J
5 2
u +H-M"~J tanh
- 2]@(@ cos A o
Vo +W
E:[ DZDA*cosAdO'. (10)
'p Y
In these equations we have written
®12

A%
H=@

-

J is small if the cross~flow is small, and indeed J tan A is likely to
be small, even if the sweep is large, since @12 may be expected to behave

like & sin A cos A, where £ is a small quantity related to the cross-flow,
especially in the case of a swept wing. In such a case we may write

2+H—M2

u.
N = 2[@(@ cos A do (11)
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and if we are content with a larger error term we may write
N = 2.[ ® ces A do (12)

and ignore E; +this result is obtained from equations (9) and (10) by ignoring
terms of order & uj, that is of order S(uD- u).

5 TOTAL DRAG

We have

fwl |
1}
—
N
+
oy
+
[

= 12 - / Kds + qN .

The sum of the first two terms gives the drag of the displacement surface
(assuming that it has a base pressure Rm) that is, the U component of p = P

integrated over the displacement surface; hence we have the general result
that the_drag is equal to that of the displacement surface together with an
amount qN, where N is given by equation (6). For slender bodies with small
cros?-f%ow N may be replaced by N + E where N and E are given by equations (9)
and (10)}.

Finally to a rough approximation N may be written as in equation (11)
and less accurately still we may ignore the difference between the drag of
the body and that of the displacement surface. To the order of approximation
involved in this last assumption we may say, in a manner anslogous to what we
did in Ref.1, that the total drag of the body is equal to the inviscid drag

of the body together with a term g N1 where

N, = 2/@cosAdcr (13)

<

taken round the trailing edge. This is the formula corresponding to
equation (25) of Ref.1.

6 DISCUSSION

Doubts have been expressed about the validity of assuming the pressure
to be constant across the boundary layer, as is done in this paper and was
done in Ref.1. It has been suggested that this is not true, for instance,
in two-dimensional subsonic flow near to the trailing edge bocause of the
result 3p/d% = pbicub, kK being the curvature of a streamline. If one assumes

-1 =



that the curvature is finite, then this equation shows that tle pressure change
across the boundary layer is of order & and so may be ignored in our equations,
since in these the pressure occurs multiplied by a quantity of order &.

However there is on the surface a sharp turn in direction of flow and so there
is an infinite curvature at the trailing edge. This, however, is at a place
where u is zero. Further out as u, increases k decrcases rapidly so that it

may well be true that pbxcub is nowhere large. Moreover, in supersonic flow

the fluid near to the wall is hotter and the density lower so that in places
where k is large the density is small as well as - This should give a

reduced effect in supersonic flow compared with that at lower speeds. There
seems to be only one attempt to asscss the effect of curvature near to the
trailing edge and this is due to Spence“, but unfortunately it does not seem
possible to extend this work to flow where the boundary layer is partly
subsonic and partly supersonic. In subsonic flow Spence found the pressure
difference across & turbulent boundary layer to be

pule

(g-1)""

where T is the trailing edge angle and w = 2=~ (1/n). However it is of course
by no means certain that this analysis goes over into supersonic flow. If,
however, this result does apply in the supersonlc case our expression for N
in equation (8) has an appearance of precision which is not Justlfled, since
the error in the last term in equation (8) will be of the same order as the
term itself.

Thus until the matter of the pressure change across ti:e boundary layer
can be cleared up we are not justified in making a statement any more precise
than that given at the end of Section 5. This may not at present be a serious
limitation in view of the fact that most applications at present involve thin
wings and slender bodies, and of the fact that no great precision is yet
possible in calculating turbulent boundary layers.

The amount of practical use that may be made of the prescnt theory is in
scme doubt. In practice shock waves often occur somewhere along the chord of
the wing and not merely at the leading and trailing edges. This would not
invalidate the general theory but would probably render it of no practical
value. If the tralling edge is subsonic it would seem incviiable for shocks
to appear on the wing surface, since in such & case the lach cone at a given
point on the trailing edge will include some part of the trailing edge down-
stream of it.

The method described here may possibly be of some practical use if the
Mach number is high enough for the trailing edge to be supcrsonic, or in a
case where the only shocks present are at the leading and trailing edges.

7 CONCLUDING REMARKS

The main result of this paper is that, to order &, the drag of the body
is equal to that of the displacement body, together with a term gqN, where N is
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given by equation (6). This form is scarcely of practical value, and may
indeed have an appearance of precision which cannot be justified, and so
various approximations and assumptions lead to less accurate values; the
simplest but least accurate of the results is that the total drag is equal to

2q/®cosAd0‘

taken round the trailing edge. Whether the assumptions are justified or not
needs testing by experiment, but it would seem essential that there be no
shocks except at the leading and trailing edges. Thus the method will not
apply to transonic flow or to wings with subsonic trailing edges.
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A edge of control surface
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APPENDIX 1

THE VALUES OF A* - &% AND A'* - (v_/u_) 6%

Lighthill3 has shown that if streamline coordinates & and n are taken
such that the line elements along and perpendicular to the external stream-
lines are h_ dE& and hn dn respectively, then

g
g
6:;:-_-,55"‘——'[-;'—}1— ;—-/‘ peUgth an
pe £ n 7
where
° Pug 6Pu
8E = /= (1 - bU a, & = /. _Dﬁﬂ az , (12)
. Pe n Peg
e} o
and UE’ ug are the external and internal components of velocity in the stream-

line direction and un is the component normal to the streamlines. Un is of

course gero. Now

and we have

W = uE cos a - un sin a
ue = UE cos o
Ve = UE sin o
vy = ug sin a + un cos q

where a is the angle between the external streamlines and U . Hence
o0
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(u cos oo-u sin a,)
A*:/[?-Pbg L :Idé=5+6ntanc.,

UE_, cos a g
)
and so
5 |3
1
* o /% o —_ .
A 8* = 8 tana+peUE§hn aﬂ[ Peo Ug hg 8nd€ (15)
o

If the cross-flow is small, 571 is also small and hence so is A* - §%,

We also have

8 P (u sin a+u_ cos a

AtE - /E'__e__ b & n az

u Pe U&‘, cos a
o
= t 6. -5
an q £ -
and so
A% o £ 8% - - § +—-—§'-13—&-—/PUh6dn- (16)
ug n peUEhn on (e '€ 8

This is small if 6?'] is small.

In equations (6) both of the small quantities (15) and (46) are
multiplied by ué which is small for thin wings or slender bodies. In such a

case, therefore, we may ignore the products. If the cross~flow is not small
it is still true that A* - 6* is smaller then the boundary layer thickness,
and the approximation of equation (12) must hold since it was cbtained by

ignoring terms of order Guﬁ.
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