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An earlier paper' gave expressions for the drag of a body with its 
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1 INTRODUCTION 

In Ref.1 the Grag of a body with a straight trailing edge was found to 
be equal to the drag of a body enlarged by the displacement thickness 8* 
(called the displacement body or sometimes the distorted body) together with 
a term which was expressed as an integral taken round the trailing edge, For 
thin wings or slender bodies this integral was written as the sum qN + qE 
where 

Z+H-M2 

2 2 v +w 
E= D 

I o6 
DA*acr . 

L U2 

The meanings of the symbols is the same as in Ref.1 and will be given 
again in the List of Symbols. 

In this Note we obtain the corresponding results for a trailing edge 
which is swept by an angle A (which need not be constant along the span). 
The values of N and Z are 

cos A do- 

2 2 

J 

v +w 
E = D 

U2 
D A* co9 A ac 

00 

where 

H= A*/0 , J = 0,2/o , Fe$ Q,2 = 
J 

pb+e- 'b> ac s 

0 

the subscript b referring to values inside the boundary layer and e to values 
outside it. The subscript D refers to inviscid flow about the original 
undistorted body and a bar over a quantity means that the value due to inviscid 
flow over the displacement body is to be taken. 

The result is obtained by a momentum balance method as before. If the 
wing is thin and the cross-flow is small it is approximately true that the 
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inviscid drag of the displacement body is equal to the inviscid drag of the 
body itself; to the approximation involved in this assumption we may write 

N = 2 0 cos A do- ) 
. 

E = 0 . 

This is the extension of the simple formula of Ref.1 to swept trailing 
edges. 

2 'l!HEi CONTROL SURFACE 

We surround the body by a cylinder of radius r, sufficiently large to 
include all of the body, with a plane end normal to the main stream at the 
front or sufficiently far upstream of any shocks there may be at the front. 
At the back the end of the cylinder is closed by a surface S' generated by 
lines L normal to the trailing edge and to the direction of flow at infinity, 
where the velocity is U -. (We shall write "normal to U," when we mean 
"normal to the direction of flow at infinity".) These lines are taken all 
round the trailing edge. This edge need not necessarily be a curve in one 
plane but it may be a smooth curve in space but not curved in such a way that 
the lines L intersect in points inside the boundary layer. Cutside the 
boundary layer the surface S' may be any simple surface containing the 
curves A and B in Fig.2. 

An attempt is made in Fig.1 to draw this surface, but it is not easy 
to represent this three-dimensional figure on paper. All the straight lines 
on the rear surface are not only normal to the trailing edge but also normal 
to u . In Fig.2 we show the surface S' projected on to a plane normal to U . 
The yurve A is the outside of the cylinder 

00 
, B is the section of S' by the 

edge of the boundary layer, C is the section by the displacement surface and 
D is the trailing edge. These curves are to be considered to be on S'; we 
only show their projections for ease of drawing. In Fig.2 the surfaces S 

3’ 
Sq and S5 (the parts between the curves) are also surfaces on S'. Velocity 
components will be taken as follows:- u parallel to U , vi parallel to a 
line L, and v normal to u and w, in a right handed sys:em. The flow outside 
the boundary layer is taken to be the same as inviscid flow outside the dis- 
placement surface. The local angle of sweep A at a point P is defined to be 
the angle between the tangent plane T to the surface S' at P and the plane 
normal to U . The surface S' is not a developable surface and so the tangent 

plane to itoo's different at different points of L. I-Ience A varies not only 
as we move along the trailing edge (because of varying sweep) but also as we 
travel across the boundary layer. The last variation in the value of A will 
be of order 6, the boundary layer thickness. 
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Provided a suitable convention as to the sign of A is employed it can 
be shown that the velocity component normal to the surface, that is, normal 
to T, is u cos A - v sin A. 
9o” 

It may be pointed out that on the trailing edge 
- A is the an&o between the tangent to the trailing edge and U . This 00 

is the easiest way to find A when the trailing edge is a twisted curve in 
space. 

As in Ref.1 we assume that the flow outside the boundary layer is the 
same as inviscid flow over a body thickened by an amount W, the displacement 
thickness. This body we call the "displacement body" or the "distorted body". 

3 MOMENTUM BALANCX 

We denote by the subscript b values inside the boundary layer, and a 
bar over any quantity denotes its value for flow over the distorted body, that 
is the displacement body. 

Conservation of mass through the cylinder gives 

s Pw u, as - dS - 
s 

p'(G cos A - G sin A) d.S 

% s3 

0% 
cos A - v b sin A > dS = 0. (1) 

The drag force on the body will balance the flux of momentum in the U 
direction of the fluid leaving the cylinder. Hence the drag D' is given by 

00 

5 ET J (P~+P~ Ui) dS - 
J 

F uw$z ii as 

sl s2 

-1 c PcosA+';(;cosA-;sinA 

s3 

-1 i pb + pb(t+, cos A - vb sin A> 
%j 

? dS - pBS(B) 

Sl;tS5 

where pB is the base pressure and S(B) the projected area of the base on a 

plane normal to U . 00 U 3 is the velocity potential. cm 

- 5- 



Multiply equation (1) by U, and subtract from equation (2) and we have, 
writing 5' = U - U co 

-1 (pb cos A + pb t I.$ 00s A - pb Vb I$ Sill A) dS 

s4+s5 

- pB S(B) . 

Now 

s 
p, dS = 

s O" 
p cos A as + 

J 
poo cos A as + p S(B) co 

s1 s3 s4+s5 

and hence 

ij = 12 + J3 + J45 + (P,' P,) S(B) , 

where 

(2) 

J3 = - 
J 

(qCpcOsA+F;;' cosA-p;;'sinA)dS = - 
s 

K&3 9 (3) 

s3 s3 

J45 = - J (9 5 
P 

cos A + p, ub “;, cos A - p vb ~0 ' sin A) dS , (4) 

s4+s5 

SE 
P 

= 5-p , q = +p,u: , 
ca 
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assuming that the pree=Q oUuze remains constant throughout the boundary layer, 
that is, pb is equal to p, or differs from it by a quantity of order 6. 

This assumption will be disoussod in Section 6. For convenience we shall 
drop the term (p -pB) S(B). It may be inserted at any staf;o if required, 
that is, if the body has a base. 

4 THEVALUE OF I + J 
45 

We may write 

J3 = - 
s 

KdS = - KdS + 
s 

Kas . 

s3 s4 

In this equation we may give the part of the integrand over S 
4 

any value 
we wish; we shall give 5, p, c and 3 their values due to inviscid flow over 
the distorted body. These are not their true values since S is inside the 
boundary layer. Thus we have 4 

J KdS = 
I 

(gcp cos A + F'; f\' cos A - FGc' sin A) dS . 

s4 s4 

If on S4 we replace '; by Ge, F by Fe and 7 by GC the error is of order 6. 
Since Sk is of order 6 we may make this substitution in the integral with 
error of order 6*. Hence we have 

J3 + J45 = - I Kas + qfi f o(s2> 

s3+s4 

where 

qiG = 
J 

(FeGe~i cos A - pe?e"i sin A - pbt+,$ cos A + p,,vb~ sin A) dS 

s4+s5 

-i 
(9 cp cos A + p ii iif e e e cos A - p 

- s5 

-e;eci sin A)dS 
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= i c pb uJ$Ge- ut$ + ;;cp, ce - pb UJ‘j cos A as 

* s. +s- 
-4 !J 

) 
7 

- C;(pe Ge- pb wb): sin A as 
J 

- 
i 

(q Cp cos A + P, Ge GE! cos A - p, fe ;A sin A) as . (5) 

slz J 

We shall neglect all quantities of order h2. 

At this stage we ignore the change in A across tho boundary layer, and 
give it the value it has on the surface itself. Here the error in A is of 
order 6 and so gives an error of order 62. We obtain 

me- 

k = 2 0 cos A do- + 2 
J 

pe"eui cAc- sq) 

D poo": 

cos A aG 

52 sin A do - 2 sinA&- 

cos A ac 

where 

/Equation (7) ' 
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6 
p, ce a* = I (P, ie - Pb %) az: 

D 
(7) 

In calculating these "thicknesses" we may if we wish, replace i 
by % 

and similarly for other symbols with subscript e. This is in accordaE2e with 
usual boundary layer practice; although it is not satisfactory to do this at 
the trailing edge in subsonic flow it is probably sufficiently accurate in 
supersonic flow, when there is not such a great difference between i,i and e %* 

We show in Appendix 1 that if the cross-flow is small AC: - 6" and 
A'* - (Ve/Ce) 6* are small. Both of these are multiplied by c' = U - ii which 
is also small for thin wings and slender bodies. We shall ign:re theseeterms. 
A* - S* was taken as zero in Ref.1 without commerlt. 
Se etc. by u,, etc. with error of order 6. 

T1e slSL1 -so replace 
Hence the error in N will be of 

order S2. We finally obtain 

ii = 2 J PDuD2 2 0 00~ n a0‘ - 2 

D &o"~ s 

PD%% * 

D Pm': I2 
sinh do-- 

J 
cp A" cos A do- . 

D 

. . . (8) 

In the last term we have replaced 6* by A*. 
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For slender bodies we have approximately 

= - C 
P 

2 ur; 
T- 

2 2 
_ VD +"D 

u2 ' 

and so we may write in such a case 

ii = N+E 

where 

J c U’ 

N = 2 0 1 + $ (2i.H-M2-~ tan n) 1 cos h aa 
00 J 

2+H-M2-JtanA 

$ = 
i 'D 

2 2 
v +w D 

U2 
D a* 

co 

cos A do . 

(9) 

(10) 

In these equations we have written 

J is small if the cross-flow is small, and indeed J tzn A is likely to 
be small, even if the sweep is large, since 0,2 may bo e;:pcctcd to behave 
like E sin A cos A, where E is a small quantity related to the cross-flow, 
especially in the case of a swept wing. In such a case we may write 

2+H-M2 
cos A do (IQ 
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and if we are content with a larger error term we may write 

N = 2 
J 

0 ccs A do (12) 

and ignore E; this result is obtained from equations (9) and (10) by ignoring 
terms of order 6 L$, that is of order 6(uD- U ). 00 

5 TOTAL DRAG 

We have 

D = I2 + J3 + Jh5 

= 
I2 - KdS+qE , 

The sum of the first two terms gives the drag of the displacement surface 
(assuming that it has a base pressure p ) that is, the U component of p - p 

co 00 
integrated over the displacement surface; hence we have the general result 
that the-drag is equal to that of the displacement surface together with an 
amount qN, where N is given by equation (6). For slender bodies with small 
cross-flow N may be replaced by N + E where N and E are given by equations (9) 
and (10). 

Finally to a rough approximation N may be written as in equation (11) 
and less accurately still we may ignore the difference between the drag of 
the body and that of the displacement surface. 
involved in this last assumption we may say, 

To the order of approximation 
in a manner analogous to what we 

did in Ref.1, that the total drag of the body is equal to the inviscid drag 
of the body together with a term q N, where 

N, = 2 0 cos A du 

taken round the trailing edge, 
equation (25) of Ref.1. 

This is the formula corresponding to 

6 DISCUSSION 

03) 

Doubts have been expressed about the validity of assuming the pressure 
to be constant across the boundary layer, 
done in Ref.?. 

as is done in this paper and was 
It has been suggested that this is not true, for instance, 

in two-dimensional subsonic flow near to the trailing edge because of the 
result ap/az = pb K. I$ K, being the curvature of a streamline. If one assumes 
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that the curvature is finite, then this equation shows that the pressure change 
across the boundary layer is of order 6 and so may be ignored in our equations, 
since in these the pressure occurs multiplied by a quantity of order 6. 
However there is on the surface a sharp turn in direction of flow and so there 
is an infinite curvature at the trailing edge. !l!his , however, is at a place 
where % is zero. ?W-ther out as ub increases IC decreases rapidly so that it 

may well be true that pb" < is nowhere large. Moreover, in supersonic flow 
the fluid near to the wall is hotter and the density lower so that in places 
where K is large the density is small as well as ub' !Ihis should give a 

reduced effect in supersonic flow compared with that at lower speeds. There 
seems to be only one attempt to assess the effect of curvature near to the 
trailing edge and this is due to Spence2, but unfortunately it does not seem 
possible to extend this work to flow where the boundary layer is partly 
subsonic and partly supersonic. In subsonic flow Spence found the pressure 
difference across a turbulent boundary layer to be 

where '5 is the trailing edge angle and w = 2-(2/7c). however it is of course 
by no means certain that this analysis goes over into supersonic flow. If, 
however, this result does apply in the supersonic case our e>qression for N 
in equation (8) has an appearance of precision which is not justified, since 
the error in the last term in equation (8) will be of the same order as the 
term itself. 

Thus until the matter of the pressure change across t:!e boundary layer 
can be cleared up we are not justified in making a statement any more precise 
than that given at the end of Section 5. This may not at present be a serious 
limitation in view of the fact that most applications at present involve thin 
wings and slender bodies, and of the fact that no great precision is yet 
possible in calculating turbulent boundary layers. 

The amount of practical use that may be made of the present theory is in 
some doubt. In practice shock waves often occur somewhere along the chord of 
the wing and not merely at the leading and trailing edges. This would not 
invalidate the general theory but would probably render it of no practical 
value. If the trailing edge is subsonic it would seem inevitable for shocks 
to appear on the wing surface, since in such a case the Zach cone at a given 
point on the trailing edge will include some part of tie trailing edge down- 
stream of it. 

The method described here may possibly be of some practical use if the 
Mach number is high enough for the trailing edge to be supersonic, or in a 
case where the only shocks present are at the leading and trailing edges. 

7 CONCLUDING RJDM?XS 

The main result of this paper is that, to order 6, the drag of the body 
is equal to that of the displacement body, together with a term qN, where N is 
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given by equation (6). This form is scarcely of practical vdue, and may 
indeea have an appearance of precision which cannot be justified, and so 
various approximations and assumptions lead to less accurate values; the 
simplest but least accurate of the results is that the total drag is equal to 

2 q 
J 

0 cos h ac 

taken round the trailing edge. Whether the assumptions are justified or not 
needs testing by experiment, but it would seem essential that there be no 
shocks except at the leading and trailing edges. TIIUS the method will not 
apply to transonic flow or to wings with subsonic trailing edges. 
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APPENDIX 1 

'THE 'VA.LUES OF A" - b* AND A'* - (ve/ue) 6:; 

Lighthill has shown that if streamline coordinates c and q are taken 
such that the line elements along and perpendicular to the external stream- 
lines are h 

E 
d& and hq dq respectively, then 

where 

and %’ % are the external and internal components of velocity in the stream- 

line direction and u 
q 

is the component normal to the streamlines. 
url is Of 

course zero. Now 

and we have 

y0 = uE cos a - uq sin u 

U = u cos a 
e E 

V 
e = vina 

vb = u5 sin a + uq co9 a 

where a is the angle between the external streamlines and U . Hence co 
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s cos u-u sin a) 
A* = 

J[ 
l- 

P&g 
UE cos a 1 G=6g rl + 6 tan a , 

0 

and so 

A* - 6* = 6 tan a + 
T 

05) 

If the cross-flow is small, bT is also small and hence so is A* - 6*. 

We also have 

6 
At-s = 

e 
-- 

ic 

p,(l.& sin a+u cos a 

U p, UC cos a 
a 

e 

0 

and so 

(16) 

This is small if 6q is small. 

In equations (6) both of the small quantities (15) end (16) are 
multiplied by ui which is small for thin wings or slender bodies. In such a 

case, therefore, we may ignore the products. If the cross-flow is not small 
it is still true that A* - 6* is smaller than the boundary layer thickness, 
and the approximation of equation (12) must hold since it was obtained by 
ignoring terms of order 6%. 
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