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SUMMARY

The applicsbility of inviscid-flow models to non-cavitating or
cavitating flow pest a normal plate is discussed. A new inviscid
model 1s developed, with the aim of predicting features such as
cavity length better than previous models. Experiments on air flow
past a plate are described and the results compared with those of
the theory. Finally the few experimental results availsble for
cavitating flow are discussed,
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1. INTRODUCTION

The two-dimensional flow past a normal flat plate 1s rerhaps the
simplest bluff-body flow, being symmetrical and having fixed separation
points. In 1tself this flow 1s of little practical interest, since few aero-
¢r hydrodynamical devices have parts consisting of flat plates brozdside to
the stream, However i1t 1s useful to try and cobizin a thorough understanding
of the flat-plate flow, to throw light both on industriar aercdynamic
problems, such as wind lcads on chimney stacks, and also on cavitating liquad
flcws, such as occur with fully cavitating hydrofoils or propellers,

The flow past a fiat plate with cavitation is nct radically different
from that without, because in both cases the pressure is roughly constant for
some distance downstream of the plate along the mean-flow streamlines, such
CD 1in Pig.1, passsing through the edges of the plate. This constant pressure
18 usually close to the wapour pressurs, the lovest pressure achieved anywhere
in the flow £ield, when cavitation occurs, though with non-cavitating flow the
pressure on the centre line of the wake Just downstream of the plats can be
mich lower than that along CD., In either case, however, along the stream-
line through €, the pressure downstream c¢f the initial constant-pressure
portioen CD rises t1ll 1t reaches the free-stream value far downstream.

In non-cavitating flow the average pressure along CD, and corres-
pondingly the drag coefficisent, are not known a priori. Therefore 1f they
could be predicted theoretically 1t would advance our understanding of the
problem, as 1t would also i1f we could fully account for the fluctuating
features of the flow, The fluctuations, involving unsteady force compeonents
on the body, are associated with the pericdic shedding of vortices to form
something like a Karman vortex street in the wake, though at the higher
Reynolds numbers these voriices are turbulent and the shedding 1s not
perfectly regular, These unsteady effects occur when the checoming stream
itself is steady, but 1t would also be useful to find cut what happens when
the oncoming stream 1s gusty, unsteady in speed and direction, like the

natural wind.

In cavitating flow with extensive vaporous cavitation, the cavity pre-—
sure 1s known a priori, being almost equal to the vapour pressure, and hence
the drag coefficient 1s also appreximately known, The streamwise extent of
the cavity, however, 1s not known, and 1t would be useful to understand what



determines 1ts position of closure. This 1s because hydrodynamical devices
invelving fiow cavities are unlikely ito operate successfully unless the
cevilles terminate well downstream of their solid surfaces. If this condition
18 not met, serious buffeting will probably occur, somewhat similar to the
compressibility buffet an mircraft may experience at transcnic speeds,
Cavitation buffet arises from the unsteady prccesses of entrainment

at the downstiream ends of cavities. These processes are probably related to
the tendency, mentioned sbove, for unsteady vortex shedding to occur behind a
bluff body. A detailled undersianding of them, however, can prokably cnly be
gained with the help of experiments.

The present paper desecribes contributions towards solving some of the
above problems. The extent to which steady, inviscid-flcw models are sppli-
cable to the real flows 1s discussed. A new 1inviscid model 1s developed,
w2th the aim of predicting features such as cavity length better than previous
mocdels. Experiments on air flow past a flat plate are described, and the
results compared with those of the thecry. It 18 intended also to investi-
gate experimentally cavitating water flows past a plate: these experimsnts
will, 1t 1s hoped, form the subject of a later paper.

2, THE APPLICABILITY CF INVISCID-FLOW MODELS

In the real flow past a flat plate, the mean-flow streamlines through
the plate edges must, as shown an Fig. 1, return to the axis of symmetry
downgstream. If, however, one were to calculate the inviscid flow past the
beundary ABCDEF cof Fig. 1, 1t would probably not be very similar %o the
real flow because 1n reality fricticnal effects are important along and near
DEF. However, 1t may be possible to cbtain a fair representation of ihe
real flcw 2, 1n the i1nviscid-flow model, the streamlines springing from the
plate edges are such that the pressure 1s constant along them for some
disvance downstream of the plate, and 1f they meet certain other conditions
discussged below, These streamlines through the plate edges are called
"free strecamlines" because their shape 1is initially unknown, and part of
the mathematical probiem 1s to find 1t. This approach 1s an extension of
the classical Kirchoff solution, 1n which the pressure everywhere along the
free streamlines 18 postulated to be constant, egual to the pressure in the
undisturbed stream.

As was puinted out asbove, the real flcw 1s not steady, even when the
crncoming stream 1g, because in nhon-cavitating flow there :s something like
a vortex street in the wake, and this 1s also probably trus downstream of
the cavity in cavitasing flow.1 Faig. 2 shows the real flow schematically.



The vorticity centres indicated are continually being generasted behind the
plate in air flow and behind the cavity in cavitating liquid flow. They move
downstream relative to the plate at less than the free-stream velocitv. The
lines CF, C'F' represent the limits of frietional effects, Bernouilli's
equation being satisfied outside of them, whereas i1nside there i1s a loss of
total head. The flow between CF and C'F' 1s, at least over the downstream
regions, subject tc large, gquasi-periodic fluctuations, and there may perhaps
be apprecishle fluctuations outside of CF and C'F'., Define coordinates x
and ¥ as in Fig. 2, with the origin at B, the centre of the face of the
rlate. Buppose the separation t between lines CDE, C'D'E' 1s equal to

Ve N
the wake displacement thickness 6%y, given by [ (1 - uEE; dy. Here
-ye Pty

suffix e denctes conditions at the edge of the region of frictional effects,
{(z.e. along CF, C'F'}, and p 18 the time-mean density, constant every-
where 1n incompressible air [low, and in the liguid-phase region of liguid
flow, but virtually zero within a vaporous cavity. Further, u 1s the

time -mean X-component of velocity, and the integration 1s carried out at
constant x. Then we may hope that 1f we could calculate the steady inviscid
fiow over the boundary ABCDE, so defined, it would resemble, roughly at any
rate, the time mean of the actual flow cutside the frictional wake region.

The above assumption mey be Justified by the following considerations.
The entrainment angle between the mean-flow streamlines and CF 1is likely to
e quite small near €, so that since the inclination of CF to the x axis
is large here, the streamline direction will be approximately that of CP.
But c¢lose behind the plate, u will be very small, so that 6fwza 2ye, and
the directions of CD and CF will be virtually the same. (For cavitating
flows indeed CF wi1ill probably coincide with CD for a considerable
distance.) Thus the inviscid model will have approximately the correct
streamline 1inclinstion near the edges of the plate. Furthermore, since the
velocity returns to 1ts free-stream value far downstream outside of the wake,
continuity counsiderations show that here the streamlines in the inviscid
model will be displaced outwards relative to their positions well upstream
of the plate by the same smount as in the real flow, It is, however,
arguable that 1f we sre primerily interested in the flow failrly near the
prlate, the displacement condition downstream 1s of small importance.

When the problem was considered initislly, it was hoped that 1t would
be possible to find the flow past & boundary such as ABCDE, defined by a
number of disposable parameters. It would be specified that the pressure
must be constant along the initial portion CD of CDE, but in non-
cavitating flow this pressure would be 1nitially unknown. Likewise down-
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stream 1t would be spscified that t = &% - %CDé, where Cp 1s the drag
coefficient and & the plate height CC': this condation follows from momen-
tum considerations since the momentum thickness and dasplacment thickness of
the wake become the same downstream. Other parameters would be left disposable,
and 1t was hoped 1o be able to match the resulting pressurs distribution along
CDE tc 3 boundary-layer type of solution for the wake., However the large
fluctuations associlated with the vortex~street type of formation, and the
corresponding large pressure differences across the wake 1n the y—-direction,
make 1t 1mpossible to perform thilis matching procedure at all accurately. The
g1tuation would be better for cases where the x axis 1s a solid boundary,
namely for flows past spoilers, where the vortex street i1s large suppressedz’B.
Since, however, practical Iindustriegl-aerodynamic or cavitating-flow cases
usually involve free wakes, solutions for spoilers are perhaps c¢f limited use-~

fulness.

Although the matching procedure discussed above cannot be carried out
sccurately, 1t 1s st1ll possible to improve on sxisting free-streamline
theories 1n which the base or cavity pressure coefficient is the sole dis-
posable parameter. For a given value of this parameter, the drag coefficient
18 predicted to be virtually the same by all the models, except for unrealis-
t1cally high base suctions which no real flow could sustain. However the
predicted cavity shapes vary widely. Thus Pig. 3 shows three different
models for flow past z normal flat plate, drawn roughly to the same scale for
a pressure coefficient (p - po)/2pup of about -1.25 1in the cavity. In the
first model, due ito Rlabouchinskyu3 the flow re-attaches symmetrically to
an artificial image plate introduced at the end of the cavity. The combina-
tion of the two plates has zero drsg and the ultimate wake thickness 1s zero,
The second model, that of the re-entrant jet, has been discussed by a number
of workers. (See Ref. 5, where a bibliography 1s given). Here 1t 1s
supposed that a jet of fluid passes upstream through the middle of the
cavity and vanishes at the plate, This of course 1is an unreal feature, though
1t has some similarity to the spray often thrown forward inside real cavities.
As in the Riabouchingky model, therse 1s a stagnation pcint behind the cavity.
However 1n effect the downstream wake thickness i1s slightly negative:
streamlines finish up nearer to the centre line downstream than they started
upsiream, dus to the fluid removed i1n the re-entrant jet. The third case
in Fig. 3 18 sometimes called the wake-dissipaticn model, but 1s perhaps
better described as the parallel-streasmline model, It has been developed 1n-
dependently by =everal people, 1ncluding Roshko6 and Gerber and McNownT.
Here the downstream wake thickness 1s net zero. The pressure is 1nitaally

constant along the streamlines springing from the plate edges, until they



become parallel to the axis of symmetry: Ffrom this point on the direction of
the free streamlines remains coastant and the pressure rises t1311 1t asymp-
totes downstresm to the free-stream value, This featurc of the model has been
singled out by Blrkhoff8 ag rendering 1t more applicsble than the other two
models to non-cavitating wakes., By amplication the zero or effectively
negalive downstream wake thickness of these other models 1s presumably con-
sidered to be no disadvantage in arplications to cavitating flows, and
according to Ref. 9, several wocrkers have attempted to find a model for cavi-
tating flows with & cusped, closed cavaty as i Fig., 4. The purpose of the
cusp 15 to avoid the stagnation point of the Riabouchinsky or re-entrant Jet
models. However whilst the time-average streamlines passing through the
edges of the plate in a real cavifating flow may perhaps, as sketched in

Fig., 1, have a shape something like the cusped cavity of Fig. 4, the solution
for the ainviscid flow past such a boundary would differ considerably from the
real flow, as was nointed outl above, Just downstream of the cavity the
process of entrainment of vapour from the cavity probebly exerts & large re-
tarding force on the liquid: this entrainment will be balanced by vaporisa-
tion from the liquid boundaries of the cavity nearer 1o the plate, Thus there
18 likely to be slow-moving izguid just behind the cavity and a far from zZero
displacement thickness in the shaded region of Fig. L4, The wake continues to
be thick downstreamn, as 15 required by the momentum bhalance, which, as stated

earlier, shows that downstream

é*W -3 %CDCS aeaw (1)

Woodsﬁo has developed & free streamline model with a finite, non-zero,
wake thickness downstream, in qualitative accordance with equation (1),
However he made no attempt to satisfy that eguation guantitatively, merely
using the Twmite-thickness conditicen to narrow down the choice of analyti-
cally convenient specifications of the pressure on the downstream portions

of the free streamlines,

Eguation {1} 1s not sirictly true for an inviscaid vortex-street model
of a wake, where the velocities are assumed not to asymptote to uy, down-~

gtream, The voriex street 13 shown in Fig. 5, If the circulation of each
K

vervex is K, the average x—component veloc:ty between ihes rows is - 2

relative to the fluid at 1nflnlty11

Hzace the averaze value of 0%  1s kh/auy, s0 according to eguation (1)
the drag D should be pxhug/a. In fact

s, whilsd outside the rows 1t 1s zero,



where u, 1s the velocity of the vortices 1n the street relstive to ths
fluid at infinity. But for ths stable confipgurstion of trail » = 0,281=a
and K = 2~"2auS so that

Since uS/'uO 15 typlically about 1/4, D does not daffer greatly from
pkhug/a. Hence the wake displacement thickness will not be seriously mis-
calculated by equation (1), even 1f vortex~street features are present in

the wake.

These features can, however, give rise to considerably reduced
pressures near the wake centre line as compared with the edge of the wake,
The filow in an inviscid trail is steady with respect to axes moving with
the vortices, Consider & point W, as in Fig. 5, midway between a vortex:
of one row and an adjacent one of the other row, Here, relative to the
fluid at infinity, the x and y component velocities are both of magni-

velocities at W are therefore of magnitudes ke - 5}5 and Kk/a,

g

tude K/a, Relative to axes moving with the vorilces, the component
whilst outside the street tne velocity is k/(2¥2a). Hence if the pressure

at W s Py Bernouilli's equatio: reguires
2
1 K2 . _ 1, K2
Py T 2Pg3 {(1 232) + 1J = Do *+ 2P F53

Hence the pressure coefficient

. = fwl %o Wl
oW TOuZ a?u3 N2)*
= .2 __ w» _2Kh
But Cp = TouZs a1, 0

from the previous paragraph, so that
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For a flat plate, therefore, in non-cavitating flow with CD w2,

pr = -1,3 82/n2, Thas csn lead to a pregssure coefficient in the middle of
the walke of the order of -Q.4, since the trail adjusts 1tself so that the
lateral spacing h of the vortex rows is nearly twice the height & of the
plaie generating the trail. This explaine the low pressures measured on the
centra line of the wake of a two-dimensicnal aormal f£iat plate in the experi-

ments of Refs., 2 and 12 and of Section 4 below.

All this means that no steady inviscid-flow model can hope to give an
accurate time-average of the resl flow over the complete field, including the
wake, However, 1T frec-streamiine models are used with disposable parameters
chosen so £8 to mateh the external f£low, in a necessarily crude way, to the
wake flow, then at least we may hope that they will indicate correctly the
order of magnitude of the cavity length, No clear indicstion of this is
provided by the existing models of Fig. 3, siace the parallel-streamline
model predicts & very much shorter cavity than the others, 1T we define the
cavity as extending over the region of constant pressure. The next section
therefore attempts to develop a more adeguate model,

3. TPOSSIBLE NEW FREE-STREAMLINE MODELS

We expect to cbtain scme resemblance to the sctual flow with a model
zn which 1, the distance apart of the free streamlines, 1s equal to the
waks displacement thickness G*W. The value of t far downstream will
thus, from eguation (1), be approximately equsl to the plate height & for
& filat plate in non-cavitating flow wzth GD about 2, When there 1s an
extensive cevity the base suction will be relatively less than in non-
cavitating flcow, =and Cp will be less than 2. Thus then the downstream
velue of 1 will be less than &8, We therefore look for a model in which
the free streamlines, afier springing outwards from the plate edges,
partizlly neck 1n, and then turn parallel to each other to form & wake of
finite downstireem thickness, equal to or less than the plate height 8,

Fig. 6 shows a representation in the so-called hodograph plane of =
Tfree-streamline model which can meet these conditions. The full line is
the streamline ABCDE of Fig., 2 plotted in terms of the velocity compon-
ents v and v The cecordinates are u and -~v, or ¢ cos 6 and
-¢ 81n 2, where g 18 the fluid speed and & 1s the streamline



inclination to the x axis, Thus far upstream, at A, u =1u, and 8 = 0.
At the stagnation point B, u=v =0, or g =0, and along AB, 0O = 0.

Along BC, 9 = g, the streamline angle abruptly changing from 0 to g
ow

at B, At C and along CD the pressure is constant at some value hel
the pressure in the free stream, so g = Nu,, where N 18 a constant
greater than 1, and CD 1s part of a circle 1n the hodograph plane,
Finally along DE the pressure returns teo its free-gtream value, 1.e. g
returns to u,, and the flow angle © returns to zero.

Other streamlines of the flow, outside of ARCDE 1in Fig. 2, would map
in the hodograph plane to lines 1nside ABCDE, as 1ndicated by the dotted
line 1in Fig. &. This method of representation forms the basis of the very
old-established theory for Iree-streamline problems, whose praincilples are
now recapitulated briefly as foliows. The shape of the free sireamlines is
rnatially completely unknown in the physical plane of Fig. 2, hut known
for the portion CD 1in the hodograph plasne: this, of course, 1s the reason
for using the hodograph plane, Denote by =z the complex ccordinate
X + 1y 1n the physical plane, by v the complex cocrdinate u - iv or
qe-la in the hodograph plane, and by w the complex potential ¢ + 1,
where ¢ 1is the potential function end ¥ the stream function, zero, let
us say, on ABCDE. Then 1t may be shown (zs in Ref. 13) that ¢ and
satisfy Laplace's egquation in the hodograph plane asg well as in the
physical plane, Thus 32¢/du? + 32y/3v?® = n, for example. This means
that equipotentials and streamlines map 1n the hodograph plane as a grid of
lines {curved in general) intersecting at right sngles, and 1f they are
plotted for wvanishingly small equal increments of ¢ and ¥, the elements
of the grid are sgusres, Moreover ¢ and Y satisfy Laplace's equation
in any eguation derived from the hodograph plane by & process of conformal
transformation since, by definition, in such a transformation the grad
elements remain squares except at isolated singular points. Suppose, by
a suiltable sequence of transformations, that the line ABCDE of Fig. 6 can
be mapped to a straight line, the real axis in a plane of complex co-
ordinate &, say. Then w = Je, where J 1is a constant, satisfies
Laplace's equation in this plane together with the boundary condition that
the streszm function Y 18 zero on ABCDE, Hence by a process of 1nversion
the flow may be Tound in the hodograph plane, and from this, in the
Physical plane, since

dw
dz

]
for

1
(=
pF
il
<

so that n o= [ dw .



We now apply these principles to the case of Fig. &, making the
transformstions shown in Fig. 7. To remove the right angle at B in Fig. 6
we square V. In the v? plane the coordinastes of A,E ere (ug, 0) and
gince all the flow at infinity crowds into this point we invert about it,
1.2, map on to the plane of (w2 - ug)"‘. In the process of inversion a
circle remains a circle, so that CD is gtill circular, Shifting the
origin to the centre of the cireular are CD we obtain the * plane, de-
fined by

’ 1 N4ug - v2
Moo= ogETITnz TOIRERTIITE T O vE T TaETUEECOTYRE eee (2)
vET-Tug T (A - Tug e -"ug ) (§* =717

Applying the Joukowskil transformation to this we transform to the plane of
A o+ N4/[(W4-1)%ufn], 1o which the circular arec CD becomes a strailght
line, The point H on CD at which the flow sngle 0 is zero is now =
singular point, sc we shift the origin to H and multiply by -1 to obtain
the ¥ plane, defined by

(w2 + 1) (w2uz - v2)”

cee (3)

Taking the sguare root remoyes the singularity at H, making ABCHD
straight in the plane of ¥®. The remaining, hitherto undefined, portion
DE of the boundary streamline may take various forms, dictated by
analyticel convenience,

1
Cne feirly simple assumption for DE 1s that in the %% plsne it is
a straight line perpe?dlcllar to AD, Suppose (h, 0) =are the coordin-
ates of D in the X2 plsne. Then shifting the origin to D, and

'
squaring, makes ABCDE a straight line in the plane of & = (%% - h)z.
Thus
1 2
W:J(xz-h) .. (L‘-)
1s the soluticn we rsquire, and
- & _ [ 1dwdy ar
z = f v - f Y dy ar av Y ee (5)

Now from eguations (2) to (4)
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dr  _ 2V
- r
@ (v - ug)”
a 04 N4(V2 - 'ng)
a% = =] 4 e Cesme——— = =1 4 =
(H* - 1) ugr? (W*ug - v2)

i

and dw i - l&)
dx %

1
ey
-t
+
1
]
]
I
i
]
1
1
1
1
]
|
|
!
1
1
1
I
[
1
]
!
1
1
1
1
1
!
\
§
]
|
|
1
1

(N2 + 1)(N?u3 - v2)

g0 that (5) bacomes

1 i
1K(v? - uf)2(N*u3 - v2)°? N4 p
z = —2Jf L ity il | - St zidv
° (N*ug - v2) (v2 - ug)
cee (6)
1
hug (N4 - 1)2
where K = ——g5—577 e ()

In the g#bove discussion we ?ave agssumed that the point D at which
the right angle occurs in the x2 plane of Pig., 7 corresponds to a point
on the circuler-arc section of the hodograph. However if h or K 1s
large enough, the right angle in the x* plane may correspond in the
hodograph plane tc a point between F and G in Fig., 8, where ©O = —5»
or even to a poant between G and E, where © = 0, In these latter
cases, therefore, F rather than D represents the downstream end of
the 1p1itial consitant-pressure portion of the free streamline., As K — oo,
D approaches K, and we obtain the Risgbouchansky case of Fig. 3. 0n the
other hand 2f X = 0, D coincides with the point H at which 6 = 0,
agd the case reduces to the parallel-streamline model of Fig. 3., Since
%2 =h at the point D by defination,

K = ij-=w—eee—— Attt st x
(v2 - ug)3(m*ug - v2)?

where suffix D denotes conditions at D, If D 1is between H and F,
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Vp = Nu°<cos O i sin 6D>, go that

2N sin ©
K = - -- D

(N4 + 1 - 2N2cos 29

L
F

D)
and K 1lies between 0 for O, = 0 and 2N/(N2 + 1) for Oy = -%.

If D is between F and &, vy = [lipl 80 that

K = =-——=- TS T
(n2 + 1)2(N* + n2)7

and K lies between 2N/(N? + 1) for n, =N at F, and 1 for
ny =0 at G, If D 1s between G and E, v, = nu,, 80 that

N2 - _n®
—_—— - -
(1 - n2)Z(N4 - n2)?

and K lies between 1 for ny = 0 8t G, and infinity for ny -~ 1
at &.

Ajong BC, 9 = g and ¢ = nug, where 0L n <N, q being zero
G

at B and Nu, at

n 1 1
_ 27 K(n2+1)2(N44n2) 2V __ 1 _ ___N*_ __
x=0,y= u3 / [1 * N2 4+ n® J[(n;+1)2 (N4+n2)2}dn ree (8)

. Hence v = -inu, and from (6)

Similar relations are also valid along FG 1f the hodograph contalns
any portion of this line, i.e. if K > 2N/(N2+1). Then ¥ = inu, along
FG and

N 1 1
_ - 2J K(n241)2(N4+n2) 2\ (__ 41 ___ _ __ N4
X = XF, y STF + ug [1 + Na + I12 (n2+1 )2 (N4+n2>2 dl’l -n e (9)

n

Equations (8) and (9) can easily be integreted numerically and if we put
the plate height & of Fig. 2 equal to unity, so that at C ¥y = Yo = %,
(8) defines J/ul in terms of N and K by an expression of the form

§ = s I .. (10)
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We assume the pressure of the rear face of the plate to be uniform,
equal to that on CD or CF, so from Bernouilli's eguation the drag

coefficient

yC
—_ .j._ 2 . 2)(1:{
Chp = A (N n
Q

and mey readily be evaluated., Similarly by putting v = my,, 0<n<1,
in (6) we may find x as a function of n, c¢r in other words the
presgsure distribution, along the streamline AB approaching the plate
and also along the part @D of the free streamliine if KX > 1 so that D
lies between G and E, Along CD, or along CF 1f K > 2N/(N2+1),

Y = Nuoe—ie. Hence

1
1 1 —m2 - z
JK(V2 - uf)E(Nhug - v2)E  ax[(m4 + 1)e7210 - jaqq 4 o410

2 —_ 2 - —
N2u3g v N(4 216)
But 4+ o710 _ 267210 Log 28
and 1 - e—“216 = 231 sin © e—i8

sg that
1 1 1
iK{v2 - ug)Z(N*ug - v2?)? K(N* + 1 - 2N2cos 26)°7
""""" NEGg =792 "7 % TR I e
along CD or CF, Likewiss
S 1. - A [__m 1 1
= = TtTIhTez T T
(N%uZ - v2) (v2-ug) ug (2 216) (n2e 219 1)2
_ 22({N* - 1)sin ZQQEi?__
- 2
ud(N* + 1 - 2N2cos 26)
since e“uie -1 =-21 sin 26e_216. Hence (6) becomes
L
2

LT N N R s O D P -

1
_ LhI(w4 - 1)N f {1 . B(N2 + 1 - 2NZcos_28)2 sin 26_cos_6_49
2N 8in © (N4 + 1 - 2N2¢os 26}2

0
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snd .

) 1
L(N4 - 1)N 2 E(N4 4+ 1 - 2N2cos_26)2| __sin 20_sin 6_d46
Y=Y, T TRy 1 4 SRt tsn ST

6
vee (119

along CD or CF, These expressilons can again be integrated numerically
and from (10) 1t follows that they are of the form

_ A Q%_i_g_g%ﬂ 8)
x = TR TIE RN
1, B(N 6% + K D(N,8)
v z B(RS R R BN

Finally consider the porition DE of the boundary streamline, Here
q ané © are both variable, and we have to use the relation ¢ =0 to
define g or n = gfu, in terms of 6. From equations (3), {(4), and (7).,

gsince ¥ 1is the imaginary part of w, we reguire

;f[ 1(W2ug - v2) }2
- T ———-—-1 - K| = 0
(v2 - ug)?(N*ug - v3)®

along ABCDE, Thus if

_________ gr———mmee———r = ¢ + di cee (12)

where ¢ and & are real,
e(d + K) = 0.
Along ABCD, ¢ = 0, and along DE

d = -X ee. (13)

[V

1
If {n%cos 20-1+in®sin 26)%(N*-n2cos 26-1n2sin 26)% = e + f1 1t follows

from (12) that
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¢ = [e(N2 - n2cos 20) - f n2s1in 28] /(ké) e (14)
and d = [£(N? - n2cos 20) + e n2sin 26} /(ké) eae (15)
.l 4
where k = (n* + 1 - 2n2cos 20)2, ¢ = (N® + n* ~ 2N“n2cos 26)°

ese (16)

1 1 E
Also, since (r *is)2 = j%[(vr2 + 82 + )2 £1(Wr? + 82 - r)z},

2
1 1
e = %[(k + n2cos 20 - 1)2(£ + N* - n2cos 26)2 +
1 E
+ (k - n2cos 26 + 1)2(¢& - N* + nZcos 26)2} ces {17)

1 X
n2cos 26 + 1)%(£ + N* - n2cos 20)° -

]

1l
-+
—
i
M
1

end

1 1
- (x + n2cos 26 - 1)2(¢ ~ N* + n2cos 28)2] ... (18}

A simpie programme has been written for the ACE computer of Mathematics
Division, NPL, to determine e, f, ¢, and 4 for any assumed values of n
and €. Thus for a gaven value of K, 6(n) can be found by cross-plotting
the results for each value of n, The general form cf the relaticnship is
as shown in Fig., 9. For K < 2N/(N?+1) the path DE will be as (a), and
along it n will in many cases decrease monotonically as © 1increases
from -6, to zero. For oN/(K241) < K< 1, +the pasth DE w1ll be as (b),
and n will i1nitially decrease as © Ilncreases above -BD (whieh 1s

ﬂg), and may become less than 1, Thus the pressure may rise above that

in the frse stream. Further increase of 0 will cause 1n 1o incresse
agarn tall it reaches a maximum, greater than 1., Then finally n will
decrease agair to 1 as ©6 tends to zero, For K > 1 +the path DE will
be st112 more complicated, as {c). Here n will initielly be less than 1
and eD zera., As © TDbecomes negative along DE n will increase. The
meximum negative angle will he reached et the point D', whiech 1s on the
envelope of the intersections of the dotted lines for 0 < n < 1. Along
DD' the appropriate values for n will be thocse for the dotted curves of
least slope. Then the path will return along DID'E, the appropriate values
for n now being initislly those for the dotted curves of grestest slope,

and subsecuently those for the s0l1d curves. Thus n 1ncreases to a
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meximm greater than 1 and fanally decreases again to approach 1 ag 6 =0,
The corresponding streamline shapes in the physical plane are sketched on
the right of the diagram,

For the dowmstream part of DE, where © increases towards zero and
n decreases to 1, 8 will become small, much less than n*-1, and 1t
follows then from (13} to (18) that

o . - K@iz 1)2/2(n* - p2)202 coe (19)
ne(n + W) (W - 1)

The computer resalts however give @ all aloeng DE and also give the

corresponding values of c¢. MNow =z = |aw/v and from (3), (4), (7)), (12)

and (13), = = -J(N2+1)/c?/[(N2-1)ug]. Hence along DE

and v

|
)
4
—y
=
N
|
—
b
4]

¢ being zerc at D. These equations can be integrated numerically once
® snd n have been found as functiors of ¢2, fFar downstream where
=1 and 6 << n%®-1 1t follows from (14) to (19) that

92 - sin © 02 4+ 112
¢TI TI@RETEIY 4 T 7 'K(i&ﬁ—:‘T (n? - 1)°/2
Hence
_ _ _2JK 0 2(W2 + 1) H z
(y)n:ﬂ + & YE - ug { NQ -1 ] & re . (20)

where & 1s emall and yg 18 half the ultimate wake thickness, From
equctaon (1), since we have put & = 1, +the ultimate wake thickness
srould be %GD. In general this will not be equal 1o 2yE as calculated
from the skbove ernalysis, bul for any given value of N there will be
equality for one value of K, which may therefore be taken 4o be the
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correct one,

The above sclution may be termed the converging-streamline model to
distinguish it from the models of Frg. 3, though as pointed out above both
the parallel-streamline model and the Risbouchinsky model may be obtained
from it as special cases by putting K = 0 and o respectively and
abandoning condition (1) for the downstream wake thickness. It is however
not the only possibl? model with a partially necking-in wake., We assumed
sbove that in the %2 plane in Fig. 7 the line DE 18 straight and per-
pendicular to AD., Another analytically man§geable posaibility would he to
assume that the streamline pattern in the %2 plane 1s that corresponding
to & uniform stream parallel to AD combined with, on AD produced, &
gsource whose strength and position are such as to make D a stagnation
point, as in Fig. 10. BSuch a flow would then be characterised by three
parsmeters, (1) the velocity ratioc N on CD, (i1) +the maximum nega-
tive flow angle defining the position of D, and (iil) the source
strength., The equation corresponding to (i) for the complex velocity po-

tential would be
1 %
v o= (s -n) e u [ ] B . (21)

For an infinitely strong source, which would have to be situated at an
infinite distance to th? right on Fig. 10 to meke D a stagnation point,
the 1ine DE 1n the x® plane would be straight, perpendicular to AD,
and the case would reduce to the converging-streamline model. For a
source of zero str?ngth situated at D, the line ADE would alresdy be
straight in the x* plane, and the case would reduce 1o the Riabouchinsky
model, The forms taken by DE in the hodograph plane would resemble
thogse sketched in Fig. 11, where a, b, ¢, =and d show respectively the
converging-streamline model, a strong source case, a moderate source case,
and the Riabouchinsky model, As with the converging-streamline model 1t
would not be very dafficult to determine the shape of the constant-yressure
portion CD of the free streamline for this source model. However the
determination of the downsiream shape DE would be diffacult, since the
condition ¢ = 0 c¢btailned from (21) would be very complicated, Unless,
therelfore, comparison with experiment shows that a three-parameter method
is essential to give an sdeguate representation of real flows, 1t would
not seem to be worthwhile pursuing this source model further,

The converging-streamline model satisfying the downstream wake-
thickness conditicn has been evzaluated for two cases, N = 1,5 and 1.2,
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Results are shown in Figs 12 and 13 in comparigson with those for the
Rigbouchinsky and parallsl-streamline models, For ¥W = 1.5, CD = 2,00,
irrespective of K, 8o that the downstream wake-thickness condition is

¥g = 0,50, This was found to be satisfied with D between H and F in
Fig, 8. the flow being of the form (a) of Fig., 9 with K = 0,596 and

eD = ~18°., For N = 1.2, Cp = 1.27, again irrespective of K, 50 that
Vg = 0.32, & condition requiring D to be between F and G in Fig. 8,
the flow being of the form (b) of Fig., 9, with X = 0,998, For N = 1.5
the angle GD represents the maximum convergence towards the centre line,
and persists only over a very short region. Well downstream of D the
gtreamlines converge only very slowiy towards the axis, as 158 1mplied by
equation (20). It is worth noting that the results in Fige 12 and 13 for
the parallel-streamline model show a considerably shorter region of constant
rressure than the calculations of Roshko6, though they agree with the
resulis of Gerber and MoNownT. Apparently Roshke made an error in his
analysis, The compsrison of the converging-streamline results of Figs 12

and 13 with experiment is discussed below,
li. EXPERINMENTAL RESULTS FOR FLOW IN AIR

There ere few experimental results for flow past & normal flat plate
either in cavitating or non-cavaitating flow. In the air-flow experimenis
of Fage and Johansen1J+ detailed messurements were made close to the plate,
but they did not extend far downstream, Likewise Fail, Lawford, and Eyre12
were primarily concerned with finite aspect-ratio plates, and made no
detalled measurements for the two-dimensional case. Accordingly it was
declded to make some new measurements in the 7 £t wind tunnel of Aero-
dynsmics Davision, NPL, This tunnel has a working sectilon spproximately
7 't square in cross section, with fillets in the corners, A steel bar,

7 £t long, 2.5 inches in width, and 0.73 in thick was mounted centrally in
the tunnel broadside to the flow with its length horizontal, The aip-
speed was 80 ft/sec giving a Reynolds nurber based on the 2.5 1in dimension
of asbout 1.1 x 10%., At such Reynolds numbers the flow in the wake is
turbulent, and the drag coefficient is sbout 2, We hoped to find, there-
fore, some correspondence with the models of Fig. 12, where Cp 18 also 2,

The mazin series of experiments consisted of traversing a static-
pressure tube behind the bar or plate by means of a traverse mechanism
mouwrited on the tunnel flior, The static tube used was of the spade—-shaped
type due to Girerd and Guienne15, as shown 1n Fig. 14. It was made from
hypodermic tube flatiened and honed at the end, Its advantages are theat
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the mesasured holes are near the tip and also that the pressure it records

1g 1nsensitive to cross flows in the plsane of the ti1p edge and the tube axis.
For the present experaiments 1t was used with 1ts axis parallel to the un-
disturbed stream and its tip edge vertical. This perrmitted the static-
prescure fisld behind the plate to be mapped without fairst making detarled
flow-direction measurements, &s would heve been necessary with a conventlonal
stetic tube which nceds to be aligned with the local flow. Despite the
divergence of the streamlines from the axis in the close vicinity of ths
plate and their convergence further downstream, the fixed-direction static
tube used should give only small errors., Moreover 1t should perhaps give a
more correct mean value of the pressupee i1n the fluctusting flow than =
conventional tube, since the fluctuations in the flow direction are primarily
in a vertical plane and should have relabively little effect on the readings.
By contrast, a conventional tube 1s affected by direction fluctuations as

well as by pressure flucituations.

Results of the measurements are shown in Fig. 15 1n the form of plottings
of the lines of constant pressure. The unit of length is the 2.5 in dimension
of the plate., In the corresponding theoretical case of Fig. 12, GP is
initially equal tc -1,25 along the free streamlines through the plate edges,
and 1t can be seen that the predicted free-streamline shapes near to the
plate are indeed broadly similar to the -1.25 isobar in Fig., 15. If how-
ever one were to plot the free streamlines of Fig. 12 on to Fig. 15, and thus
determine the pressure distributions in the real flow along lines whose
coordinates are the same as those of the theoretical free streamlines, the
resulting pressure distributions would not resemble very closely the theore-
tical distributions of Fig. 12, though the discrepancy would be emallest
for the converging-streamiine model, In the real flow low pressures persist
a long way doenstream near the axis. Thisg 1s due tec the voriex-street
ef'fect discussed 1in Section 2, where 1t was pointed out that agreement be-
tween theory and experiment can only be expected outside the region of
frictional effects. The limits of this region were found experimentally
by traversing a pitot tube across the wake. PFar from the axis the pitot
presgure 18 the same ag 1n the undisturbed stream but within the wake there
135 a loss of pitot pressure, The dotted boundasry in Fig. 15 is whers
appreciable pitot losses were first detected when traversing the probe to-
wards the sxis. Ideally, therefore, only the pressure field outsids this
boundary should be compared with the predictions of the theories. However
1t weuld be very laborious to evaluate the theoretical pressure field in
thesge outer regions,



19

A few spot measurements were made with a yawmeter to determine mean
flow angles. The maximum recorded angle of convergence towards the axis was
at x = 1.6, ¥ = 0.70, and was 19°., This, as it happens, 1s close to the
maximum cohvergence angle of 18° i1n the converging-streamline model of
Fig. 12, though agein, at such a position within the regron of frictionsl
effects, agreement between theory and experiment 1s not necesgarily to be

expected.

Thus we can only say that the converging-streamline model is probably
g rather better representaticn of the real fiow than the cther two models.
It seems polntless investigating any more complicated models in the hope of
getting st1ll better agreement since it 1s impossible to make any very
precise comparisons with eXperiment unless one 1s prepared to go tc the
great laboar of computing the pressure distribution over the outer regions
of the flow field.

If we provisionally accept the conclusion that the converging-sireamline
model 15 an adeguate representation of rezl non-cavitating turbulent-wake
flow past a plate, we sti1ll cannot claim to have provided a complete theore-
tical selution of the problem, since we do not know theoretically what the
vase pressure ought to be. Thus N, the velocity ratic on the upstream
part of the free streamline in Fig, 12, 1s & parameter assumed in the calecu-
letions. For smaller assumed vaiues of N, the constant-pressure region of
the free streamlines 1s predicted to be longer, as can be seen from Fig. 13.
Physically this length at constant pressure must correspond to the length
required before occasional violent incursions of lumps of fluid to the
central regions of the wake can take plasce, If, therefore, one could con-
sider theoretically the amplification of the instabilities 1n the separated
shear layers, 1t might be possible, using the converging-streamline model,
to predict the drag coefficient. However such an instability theory is
beyond the powers of the author,

It 15 simpler to consider a case with a long splitter plate along the
centre line of the wake behind the plate, as in Fig., 16. Here the large-
scale eddying motions should be mostly suppressed. The flow in the shear
layers springing from the plate will be turbulent at sufficiently high
Reynolds numbers and then, if there are no large-scale eddies, the shear-
layer thickness s should 1increase approximately linearly with distance
doewnstrearm as shown, Suppose that the veloecity just outside the shear layer
1s u,, and that i1t 1s wu, between the layer and the splitter plate, The
latter velcocity will be negative since there will be reversed flow, but
probanly |u2| w1ll be much less than wuy. If the boundaries of the shear
layer are taken as the points where (u-u,)/(u;-u,) 1s equal to C.05 and
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0.95, the thickness s of the layer should be approximately egual %o 0.18%
sceording to results of Reichardt presented 1n Fig, 23.3 of Ref. 17. We

may plausibly assume that the centre 1ine CD of the shear layer should co-
incide with the constant—-pressure part of the free streamline a5 calculated
according to the converging-streamline model for the experimentally observed
base pressure, Further 1t 1s reasonable to suppose that in the real flow
the pressure will remain constent until the inner boundary of the shear layer
strikes the plate,since upstream of this point the air hetween the shear
layer and the gplitter plsaste will be fairly slow-moving. Hence we should
have yp = O.O9XD for the corresponding converging-streamline model. This
will only be true for one veloclty ratio N, Thus for the case N = 1.5 of
Fig. 12,where CD = 2.00, Tp = O.?1xD, whilst for the case N = 1.2 of
Fig., 13, where CD = 1.27, yp = O.1hxD. It appears, then, that N should
be & little less than 1,2, so that the theoretically predicted drag coeffici-
ent for a normal f£lat plate with a long splitter plate would be about 1.2,
The expcrimental result of Ref. 18 1s CD = 1,38, The discrepancy hetween
this and the predicted value 1s probably not excessive 1n view of the crude
way in which the turbulent shear-~layer zanalysis has been combined with the
invigcaid converging-streamline model, In particular the analysis seems
dubigus where, as in Fig, 13, the free streamline 1s predicted to have a
portion normel to the axis. However the experimental measurcments show that
the maximum rate of decrease of displacement thickness occurs =2t about 8
rlate hsights downstream of the plate, and 2t 18 precisely here that the
vertical part of the free streamline occurs in Fig. 13. Thus the experi-
mental flow pattern 1s 1n reagonable harmony with a converging-streamline

model whose drag coefficient i1s net far from the correct value.
5., CAVITATING FLOWS

Strange though 1% may seem, hardly any experiments have been done on
cavitating liquid flow past a normal two-dimensional plate. The only results
known to the =uthor are ilhosc preserted in the excellent paper of Relchardt19,
and in the mcore recent psper of Wald2o. Rezchardt shows measurements of the
ratio of the maxisum cavity width to the plate height, plotted as a functaion
or cavitation number ¢, which 1s egual tc minus the pressure coefficient
in the cavity. In our notation ¢ = N2-1, If N i1g very close toc 1,
equal tc 1 + a, o = 20, Fquation (8) then shows that for a plate height

of unity (yc = )
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The lel[t~hand side here 1s (W+%)/16. Further, since N*+1-2N2cos 20 =
L{s1n206+¢2), where the term In a? 18 retained since sin6 may be zero,
equetion {11) shows that at the point of maxamum cavity thickness, where

6 = 0,

X
2
2 -
y = y, - 18%¢ f 2 san?8a(ein 8) oo g o g
° 16(sin?6 + o?)
0=0
Vi
- §(£-‘+ W)_a. as o =+ O.

Hence the ratio of the plate height fo the maximum cavity thickness 2y 1is

+ 70
P o= re = LQ_E%ELQ .. (22)

for the parallel-streamline case X = 0. Similarly for the Riabouchinsky
case KX - ®, it follows from (11} tha!t at the point of maximum cavity

thicknsss
%
y = y - 1&JEa fz e G{s1020)
© us 16(sm28 + a2)3/2
=0

r o= o, = (poElo ... (23)

Fig. 12 of Reichardt's paper shovs that for o in the range 0.035 to 0,10,
the graph of r as a function of ¢ 1s approximately a straight line of
slope glightly less then 1, from equations (22) and (23) 1t would there-
Tere seem that the Risbovchansky model represents the maximum cavity thick-
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negs more accurstely than the parallel-streamline model, For low valuss of
o, the meximum cavity thickness accerding to the converging-streamline model
w1ill be practically the same as n the Riabouchinsky model, EHence
Reichardt's experiments are at lesst not inconsisient with the converging-
streamline model, However Waid's experiments appear at first sight to con-
tradict zt.

Reichardt's resulis were obtained 1n a free-jet tunnel in which the
upper and lower boundaries were free, and the lateral boundaries were formed
by parallel walls, The Jet cross sectiion was 15 x 20 cms, and the heights
of the plates used were 0,5 and 1.5 mm. Thus 6/h, where h is the tunnel
height, did not exceed 0.01, Waid's experiments were done in & solid-wall
tunnel of crass section 14 x 2.9 ins, with a plate height of 0.375 in, sO
that 6/h = 0,027, For a given cavitation number Waid's configuration
would have been subject to much greater blockage effects than Reichardt's,
both because of the greater relative model size snd because a solid-wall
tunnel 18 worse in 1ts effects on cavity size than an open-jet one, as can
be seen from Fig. 4 of Ref. 21, Wsid found that at high cavitation numbers,
i the region of 1, the cavity wldth agreed with the predictions of the
Riabouchinsky model for unrestricted flow, hut at lower cavitation numbers,
in the region of 0.5, the cavity was wider than predicted by the
Risbvouchinsky model. 0On the face of 1t, the results at high cavitation
numbers seem te show that the Riabouchinsky model is to he preferred to
the converging-stream]ine model, which at such cavitation numbers predicts
a rather thinner cavity. However 1t 1s not clear how much Waid's results,
even at the high cavitation numbers, were sffected by tunnel tlockage, which
was certainily very important for ¢ = 0.5, It would therefore be useful to
do further experiments with very small models, perhaps in a slotted-wall
tunnel., These should extend %o high cavitation numbers to discriminhate
between the Riabouchinsky and converging-streamline models, We hope to be
able to do such experiments in the fairly near futurs,

6. CONCLUDING REMARKS

One of the purposes of the present paper has besn to stress the limi-
tations inherent 1n free-streamline models ag representations of real
flows, A fully accurate representation 1s tooc much to hope for, but it
would sszem that the way towards an improvement lies in tsking more adequate
account of the physical processes operating in the wake, The converging-
streamline model proposed only does this in the most elementary way,
insoffar as 1t represents correctly the displacement thickness far down—

A
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stream. N.overtheless 1t seems to give a rather better representation of
non-cavitating £flow than 18 given by the parallel-streamline model or the
Risbouchinsky model, For cavitating flows there i1s some limited evidence
thet ut very low cavitation numbers both the Rigbouchinsky model and the
converging-streamiine model are satigfactory. To discriminate between the
two models experiments at higher cavitation numbers are needed. It may then
possibly turn out that neither model repressents the real flow very closely
over the whole range of cavitation numbers, The physical arguments presented
in Section 2 above, that the wake should be treated as having a downstream
thickness related to the drag, will, however, remain valid, and to cbtain

an mproved model a1t will be necepsary to try and satisfy some of the other
conditzons imnosed by the physical processes occurring in the wake, This
w1ll reguire meore complicated models with converging wake streamlines,
However the effort required to develop such models does not seem to be
worthwhile until and unless experaiment proves 1t to be desirable,

7. LIST OF SYMBOLS

defined by eguation (12)

¢

Cq drag coefficient D/(£pu3d)

Cp pressure coefficient (p-po)/(%pu3)

a defined by equation (12)

D drag per unit span

e defined by equations (16) and (17)

f defined by eguations (16) and (18)

J consiant of dimensions length x (velocity)® defining scale
of frec-streamlire model

X constant related to amount of necking-in of free stream—
lines for convergent-streamline model

S a/u,

N n  on upstream part of free streamline

P pressurs

Po undisturbed free-stream pressure

a fluid speed

r ratio of plate heaght to maximum cavity thickness

t separation of free streamlines as 1in Fig. 2
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Xx-component velocity

undisturbed free-stream velocity
y—component velocity

complex potential ¢ + 1V

axial distance downstream of centre of plate
transverse distance from x-axis

X + 1y

N -1

plate height as in Fig. 2: taken to be unity in much of
the analysis

wake-displacement thickness

flow inclination to x axis

strength of vortices in vortex street
complex quantity defined by equsation (2)
- 1V

density

eavitation number, N2 - 1

velocity potential

complex guantity defined dby equation (3)

stream function
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FIGI MEAN-FLOW STREAMLINES IN FLOW
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FIG2 THE WAKE FLOW
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FIG 4 CUSPED CAVITY

FIG5 VORTEX STREET
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