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1. Introduction 

It is known that leading-edge separation occurs on 
wings of low aspect ratio at incidence, particularly when 
the leading edge is sharp; in consequence, the steady aero- 
dynamic forces are non-linear with incidence. There is a 
corresponding effect of mean incidence on oscillatory deriva- 
tives, as experimental data192 have already shown. 

For pitching oscillations of small amplitude and 
frequency about zero mean incidence, measured values of the 
damping derivative at low speeds are usually in satisfactory 
agreement with values as calculated by linear lifting- 
surface theory3. This remains true for yvings of low aspect 
ratio, as shown by Firs. 11 and 12 of Ref. 4 for delta 
(A = I) and gothic TA = 0.75) planforms. Furthermore, 
the comparisons of the measured1 and theoretical values for 
the gothic viing, reproduced in Fig. 1, show that slender- 
wing theory is inadequate. 

In steady incompressible flow, the overall forces at 
high incidence can be estimated theoretically by using 
Gersten's5 mathematical model of the flow (Fig. 2) as the 
basis of a non-linear theory. In Ref. 6 this vortex model 
is used in conjunction with Multhopp's7 linear theory for 
steady flow, to give a numerical method for wings of arbitrary 
planform. Although the vortex model fails to provide the 

comparisonsk 
load distri ution on swept wings with separated flow, the 

betlieen calculated and measured lift and pitching 
moment indicate that in this respect the non-linear theory 
is a decisive improvement on linear theory for wings in steady 
flow, The non-linear effects grow as aspect ratio demreases 
and become important for the delta (A = 1) and gothic 
(A = 0.75) wings at fairly low incidences. 

Clearly me need a theoretical method of calculating 
pitching derivatives, which allows for mean incldenoe. An 
extension of the lifting-surface method of Ref. 6 to low- 
frequency pitching oscillations is now in preparationg. This 
can also be regarded as an extension of the linear oscillatory 
theory of Ref. 3, compatible with Gersten's5 vortex model. 
The basic equation is set out in Section 2, -vhile Section 3 
sunnnorizes the steps of the calculation in matrix notation. 

In the final Section 4, comparisons of the oscillatory 
lift and pitching moment are made for the gothic wing tested 
by Bristol Aircraft Limited in Ref. 2. These experiments 
support the use of a theory in which effects of frequency 
and amplitude of oscillation are ignored, and they go some 
way towards justifying the assertion, that pitching deriva- 
tives should show a linear dependence on mean incidence, 
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2. Basic Theory 

A non-linear lifting-surface theory for wings in slow 
pitching oscillation can be developed with the aid of 
Gersten's simplified model of steady incolflpressible separated 
flop (Pig. 2). The trailing vorticity is supposed to be 
convected from the wing in planar sheets inclined at half the 
instantaneous angle of incidence, i.e. 
wing surface. 

&[u + e(t)], to the 
It is possible to derive an expression for the 

upwnsh at the wing, in lvhich cts, ~128, 
order terms are neglected, but cr.2 

uv, e* and higher 
and ae are included as 

T/e11 as the linear terms in a and 8. In fact the non- 
dimensional vring loading is written as 

4 = 4,a + .C,,a* + Re (z,'CIa + z,,aS,,)e 
[ 

iwt 1 , . . . (1) 

ahere 
T 1 

a is the mean incidence, 
are complex quantities. 

0 = Re[O,eiwt], z, and 

Let the Yving describe pitching oscillations of smpli- 
tude e2 and angular frequency w about an axis 
where c is the geometric mean chord. 

x = h:, 
Then the boundary 

conditions at the wing surface require that the upwash angle 

- Re 
i( 

1 . . . (2) 

over the planform S. In Ref. 8 it fill be shown that the 
upwash angle 1s related to the wing loading in equation (1) 
by 

w - = & U (8,~ + C,,aa)K(x - x', y - y')dx'dy' 

S 

a a2 - - --_ 
8 ay2 4,a(x - x')dx' 

> 

(2, + T,,a)rc(x - x', y - y')dx'a.y' 

(2, + ??,,a) - xl, y - Y')dX, dx'ay' 

S 

- ~okxl~ 
U 

a a2 (i 
X 

- 8 375 4,(x - x')dx' eoeiWt , 
-m )I 1 . . . (3) 
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where 

K(x-x', y-y') = &r5 , + --___ -Li~xl..._~____ -T , 
[(x-x')2 + (y-y')21" 3 

It can be seen thnt equation (3) involves four distinct 
operators 

Al+?] = - & e(x' ,y')K(x-x' ) y-Y')dX'dy 

S 

Bid] = - & 4(X', y') K(xo-x', y-y')& 

Di&] = - -& $55 C(x' , y) (X-X')%X 

. . . (4) 

The first of these, .4[d], arises in steady linear lifting- 
surface theor 

;r 
and is fully discussed in Ref. 7. The 

operator Bl.6 together with A[8{, forms the basiB of 
Ref. 3. The t&d, C{e] is derived from Qersten's model 
of steady separated flow k-d, together with A 81, forms the 
basis of Ref. 6. The remaining operator, DIE I is peculiar 
to the unsteady non-linear theory and will be discussed. in 
Ref. 8. 

3. Solution in Matrix Notation 

In terms of the operators of equation (4), equations (2) 
and (3) combine to give 
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= a + Re 
c 
(1 + iv& - ivh)f&eiwt 1 , . . . (5) 

where 4; = x/O and the frequency parameter v = G/U. The 
steady and oscillatory parts of equation (5) become respectively 

At?,] t A[8,,]a - Cje,]a = 1 . . . (6) 

and 

- iv(B[z,] t ?3[?,,]a - Di?,]a) = 1 t iv(t;-h). . . . (7) 

In a collocation method, equations (6) and (7) are replaced 
by sets of equations and the operators (4) are treated as 
matrices. Then the right hand side of equation (6) becomes 
a column 
collocat,ioP~~iXt~: ’ 

representing unit values at specified 

equation (7) becomes 
Similarly the right hand side of 

(1 - ivh)ja,] t iv[a,], 

where Ia,] denotes a column of values of c = x/S at the 
specified collocation points. 

Equation (6) leads to the steady solution of Ref. 6, 

141 = l%la + l~,,la2, . . . (8) 

where 
I&,] = A-‘ia,] - 

* le,,l 3 k”CIP,,j i 

Similarly the real parts of I? ] 
by set ling v = 0 in equation 
and 214,,]. 

1 7)) 
and IZ, ,] , determined 

Hence we may write 
are respectively 14, ] 
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. . . (9) 

where the real quantities Ie:i and IG,l remain to be 
chosen so that equation (7) is satisfied identically to 
f lrst order in v. Thus 

= B[4,] + 2B&,{or - D[~,]cx - hfa,l + [cx,~. 

. . . (IO) 

The terms independent of c1 in equation (10) lead to the 
linear solution of Ref. 3 

It then folloms that 

[b;,] = A-‘C)&J] + 2A-‘Bie,,] - A-ID!&,], . . . (12) 

where !e,l, h,l and Ie:l 
and (11). 

are given in equations (8) 

The unsteady part of the non-dimensional wing loading 
in equation (1) is expressed as 

. . . (13) 
where 6 = de/at. The pitching derivatives are then derived 
from the lift and moment integrals 

l .t (14) 
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4. Comparisons with Experiment 

s on several sharp-cd5ed models Oscillatory cxpcriment (* = 0.75) 
of the same Gothic planform are described in 
R&s. I and 2. The earlier mensurcments of Ref. 1 were mnde 
on two uncambered models of diffcrcnt maximum thicknesses 
(0.082 cr and 0.050 cr) by observing the decay of pitching 
oscillations about each of three axes h = 0.11-99, 0.724, 
0.949: only the dampin derivative was obtained. The later 
mcasurcments of Ref. 2 on another uncambered model of the 
smaller maximum thickness 0.050 cr were carried out by 
forced pitching oscillation about two axes h = 0.499 and 0.949; 
the results are presented as complete sets of pitching and 
heaving derivatives for the axis h = 0.724. The effects of 
amplitude and Prequcncy parameter on the pitchln5 dcrivatlvcs 
are small and within experimental error, but significant 
erfccts of mean incidence are found. Relative to the leading 
apex the planform 1s defined as follows: 

leadin edge x = x4 = c, [I - '/-1-(y/s)] 

trniliny ed5e x = xt = cr 
t . . . (15) 

semi-span s = &c r 
mean chord c = 2C 3 1~ 

where cr denotes the root chord. Calculations for this 
planform have been made with 7 spanliise and 3 chordwise 
collocation stations, i.c. 12 collocation points on the half 
wing. 

The results in Figs. 18 and 19 of Ref. 2 include static 
measurements of lift and pitchin moment about the nxio 
x = hE = 0.724:. The coefficients 

. . . (16) 

from experiment and from equation (8) are compared in Fi5. 3. 
The two sets of experim_ntal data correspond to some previous 
balance measurements ('A) about the axis h = 0.724 and a 
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mean (x) from the v&nVt,unnel balance measurements of Ref. 2 
about the two axes h = 0.499 and h = 0.949. The graphs 
of CL against a and Cm show ho\< greatly the non-linear 
steady theory of Ref. 6 improves on the results of linear 
theory. 

As we have already seen in Fig. 1, the linear pitching 
damping r"rom the theory of Ref. 3 is in good agreement with 
the various experimental results from Refs. I and 2 for a 
zero mean incidence. Also shol;m in Fig. 1 is a less satis- 
fnctory curve from slender-wing theory, which gives 

-2 8 =+lCA 

-z- = 8 w(2.3 - h) 

-in 0 = hA(0.7 - h) ’ 

-m* 0 = +xA(1.5 - h12 

. . . (17) 

It is important to realise how wide of the mark this 
attractively simple linear theory can be, even for an aspect 
r&i0 as low as A = 0.75. 

Relating to the gothic planform, Figs. 12, 13, 20, 21, 
40 to 42 of Ref. 1 show little consistent effect of yre- 
quency parameter over the available range o<v = WC/u < 0.7, 
but there are indications of a systematic dependence of 
-m* on a. The values of the pitching damping for a = 20° 
arg plotted against axis position in Fig. 4. The formula (13) 
corresponding to the non-linear theory of Ref. 8 represents 
a significant improvement on the linear theory of Ref. 3 for 
the experlmental range of oxis position. For the rearmost 
axis h = 0.949, hol.:ever, the new theory is not entirely 
satisfactory. The nature of this deficiency becomes clearer 
l'rhen both lift and pitching-moment derivatives are considered. 

Figs. 10 to 13 of Ref. 2 give the four derivatives for 
the pitching axis h = 0.724; the full curves against mean 
incidence adequately represent smoothed experimental values 
for any frequency parameter in the range O<v<O.?. The 
lift derivatives -zC and -26 of equation (14) are 
presented in Fig. 5, the experimental points (x) corres- 
ponding to the full curves in Figs. 10 and 12 of Ref. 2. 
For zero mean Incidence the stiffness derivative -zC shoivs 
satisfactory agreemen t with equation (17) from slender-wing 
theory and with the non-linear lifting-surface theory which 
for a = 0 reduces to Ref. 3; non-linear theory and 
experiment sholv fairly consistent large effects of a, and 
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values of -se at ct=l5" are more than double those at 
a = 0. On the other hand, the cross damping derivative 
-z 6 is less satisfactory. Only fair agreement is obtained 
between linear theory and experiment at a. = 0, and slender- 
wing theory gives a serious overestimate; moreover, linear 
theory, giving -zi, = 0.711 for all a, SCtXlS preferable 
to the non-linear theory in this case. The direct deriva- 
tives -me and -mG of equation (14) are presented similarly 
in pig. 6. Both dcrivativcs show fair agreement between 
theory and experiment at a = 0, except that slender-wing 
theory greatly overestimates the pitching damping. Non- 
linear theory and experiment show identical cffccts of a on 
-m*. For both pitching-moment derivatives the non-linear 
thzory offers a marked improvement on the linear theory of 
Ref. 3. 

5. Concluding Remarks 

Theoretical and experimental considerations point to 
large effects of mean incidence on oscillatory pitching 
derivatives for wings of moderate to low aspect ratio. FOP 
incompressible flow, a significant advance on linear lifting- 
surface theory has been made by means of Gersten's simplified 
model of separated flow, although it is recognised that this 
model is unrealistic and unreliable for the prediction of 
load distribution. The use of a theory for slow pitching 
oscillations is not too restrictive, since the experiments 
indicate that frequency effects are small. Although the 
calculated values of -z 6 for the gothic wing leave scope 
for further improvement, the other three pitching derivatives 
show a fairly good agreement between experiment and non- 
linear theory. It is intended to examine the consequences of 
modifying the elementary vortex sheets of Gersten's model to 
represent rolled-up vortex elements. 
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