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SUMMARY

In applied mathematics, many problems which are describable by the
two-dimensional Laplace equation reduce to the determination of a conformal
transformation between some prescribed region and one of standard shape.

In such problems, it is a common practice to use simple subsidiary
transformations in such a way that the final mapping to be determined is
between a near-circle and a circle. The theory of Theodorsen (Ref.1) is
then, as often as not, applicable.

In the belief that, simple as it is, Theodorsen's method should
be available "off the shelf" as a standard computer programme, the author
has prepared this note which might serve as the basis of such a standard
routine, The particular programme reproduced in the Appendix is for a
Ferranti Pegasus. Possibly the only point of serious mathematical interest
in the paper concerns the rearrangement of the integral equation to make it
amenable to the numerical techniques employed.

1. Notation and Conventions

Z complex variable in the plane of the near-circle

el’”ie point on the near-circle

y=y(6) the function which follows from the prescribed shape of the
near-circle.

The ori§in in the Z-plane is assumed to be chosen so that the
deviation of ¥(6) from some constant valuc is, in some sense, roughly a
minimum.

It is convenient, though not necessary, for the scales in the
Z-plane to be chosen so that the average value of (8) is roughly zero.

Only shapes for which ¥(8) is a single-valued function are
considered, and for which %(0) has continuous derivatives of all orders.

z complex variable in the plane of the oircle

ew+i¢ roint on the circle whose radius is therefore ey
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0 and ¢ are bolh used, according to the context, as independent variables,
though they sre, of coturse, functionally related.
Any var.able, when regarded as a function of 8, is denoted by a
lower—case letter; and when one of ¢, by an upper-case letter.

Thus, for example, ¥(¢) = ¢(0).

B(p) 2 e(6) = ¢ - 8, in which 6 and ¢ take oorresponding
values. Thus ® = 0(¢) = ¢ -E(¢) and ¢ = ¢(8) = 0 + e(8).

Op = n = m/28, m o= 0,1,2,000y, N ~1.

Suffix m on a functlon denotes its value at Oy or ¢
according to context.

(£)ps (f)R, (f)C denote, respectively, diagonal, row and column
matrices whose elements are the 2N values f = £(0p)y m = 0,4,250se,
2N - 14,

(C) & 2N x 2N matrix, the conjugate mairix operator
(D) a 2N x 2N matrix, the differential matrix operator
(A)g = (1 1 1 ..., 1)/2N, the mean-value matrix operator.

It is recgquired to map the regions exterior to the two closed
boundaries so that

dz

— 3+ 1 as - w eee (1)
dg

Fig.1 illustrates some of the notation.

2 Poisgon's Inteprels
Consider a function f£(z) expansible in the region |z l 2 e? as &
a o
Laurent series > ap 2™, and denote by £(¢) its value at z = o *-F,
g
n=1
Cauchy's foruwula, when applied 1o the region between the circle
|z| = R, R> ¥ and the circle lzl = eY indented outwards at
°V+i¢ as shown in Fig.2, glves in the limite R > « and &6 -+ 0
1 2% 1 p2n tmg
£(g) = == r{g)a¢ + -—[ £(t) cot — dt, ees (2)
2r 4 g 2 d 4 2

where the Cauchy prinoipal value of the last integral ia taken,

on/
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On taking the mean value over 0 < ¢ < 28 of Equation (2) we have

2%
/ £{¢)ap = O eer (3)
0
and hence, from (2},
1 .2z -
£(4) = ——f £(t)cot —— at e )
exd 2
Ir £(g) = u(¢) + iv(g) )
then the imaginary part of Equation (4) gives
1 2% t
-v(g) = - —/ u(t)cot --—1 at, ees (6)
ox Jg 2
while the redl part of (3) gives
2n
f u(g)dg = O, vee (7)

0

3. TheoAorsen's Theory

The transformation between the two regions shown in Fig.{ 1s written
in the form

log(g/z) = f£(z). eee (8)

From Equation (1), f(z) » 0 a3 2 > w» and 1t is assumed that £(z)
satisfies the same conditions as the function in Section 2.

With the values % ¥ na e *?  on the boundaries,
Equation (8) may be rewritten as
¥ -9 - 1(¢-8) = value of f(z) on the oircle |zl = e ess (9)
and thus, from f£quations (6) and (7),
1 n t-¢
¢ - 08 E(g) = -—f ¥(t)cot —— dt .o (10)
ox J, 2
and
1 2n
¥ = —-/ ¥(¢)dg. eee (11)
2r do

These are the two central equations in the mapping problem, put in
terms of the unknown function ¥{¢) rather than the kmown function ¥(8).
The form of Equation (10;, rewritten as a non-linear integral equation for
e(8) and involving ¢(0), is familiar enough, but is not particularly

amenable to iterative solution,

The/
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The modulus of the transformation on the boundaries is easily obtained
from Equation (8) as

dg _ e*(e)_@ [14_[*;(0)]9 I%

A—

dz 14£1(0)

ees (12)

The whole problem may be summarised thus: given ¢(8), find e(0)
and ¥ from a solution of Equations (10) and (11), and hence evaluate the
required |d§/ﬁz‘. But we must next discuss the practical side to the
question.

Yo The Practical Problem and its Solution Outlined

It is possible, of course, to go further than was implied in the
preceding paragraph. TFor example, once ¥(¢) and E(¢) are known, Cauchy's
formula will give the value of f(z), and hence the transformation, over the
whole domain., In most practical applications, however, the greatest
interest 1s attached to conditions on the boundaries and we shall in fact
confine ourselves to these.

In practice also, ¥(6) will almost invariably be specified as a
set of numerical values rather than a closed function, and we suppose that
¥ is given at M points, 8 = O, r = 0,1,2,....{M = 1). For the
numerical solution of the problem, however, it is necessary to work in terms
of equally-spaced values of & (and of ¢), and therefore to interpolate
values for ¥ at 2N equally-spaced velues of 6, Each problem may
suggest its own preferred method of interpolation, but the present author
would normally use a Fourier-series interpolation. Thus, if M is even
and equal to 2N, we take

N-1
¥(6) = &, + ;;ﬂ (A cos n + Bysin n@) + A, cos N® eee (13)
n=1

while if M is odd and equal to (2N + 1), a further term, say
Ay,q005(N+1)8, may be added to the series in (13).  The coefficients A, and

are evaluated so that the series takes the given values of ¢ at the
points 8., whereupon values at the 2N points

8 = 0 = m/N, m = 0,1,2,0c..(2N~1) eee (14)
are calculated at which
¥ o= Y = ¥(6y). vee (15)

This interpolation is very easily programmed, and a Pegasus programme is
available,

It is assumed henceforth that the 2N values ¥, are known, and
that it is required to determine the peints on the circle which correspond
to © = 6, and the value of |dZ/dz| at those pointa.

But/
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But if equally-spaced values of © specify the given function 1,
equally-spaced values of ¢ are needed for the computation of the singular
integral (10)., Now the standard first approximation to Theodorsen's theory
takes ¥(0) = ¥(8) and E(p) = e(¢); but we aim at a solution of
pre-specified error and so we need to relate more exactly values at
equally-spaced © to values at equally~spaced ¢. The simple equations
which now follow are the only novel feature in this paper and we may remark
that they arise solely from the exigencies of computational methods.

The suffix m will be used on ¢ in the same way as 1t is on 9,
namely

$p = mMN, m = 0,14,2,....(2N-1), eeo {16)

Thus, O; = ¢p. It is, of course, jimportant to appreciate that the suffix
m, when attached to functions, does not denote correspondence: thus in
general e, £ E; and Vo 2 ¥p. In fact, for ¢, we have the following
equations:

¥ = ¥(gn) = ¥(én - E(dn)) = ¥(¢y - E ), ees (17)
and a Taylor expansion of this gives
Yy = ¥ + (- Ep)" win)/h: vee (18)
n=1
in which wgn) = [dn¢(0)/ﬁﬂn]e=em and is regarded as known.

Equations (10) and (18) now become simultaneous equations for the
2N-dimensional vectors (¥_) and ( ) and here we assume that the obvious
iterative procedure - star%ing with ET¢m) as a first approximation .to (Tm),
calculating (Em) from (10) and hence a better approximation for (Tm) from
the first so-many terms of (18), and so on - will converge. Nevertheless
further study of alternative iterations might well be rewarding in terms of
rapldity of convergence.

Now that (E,) may be thought of as known, ¢
from the Equation

ex = €(8y) = E(6p +€(0)) = E(6, + ey), eee (19)

n may be determined
which, in expanded form gives

1

(o2 fat ... (20)

Em

1

-

+
e

o]
Il
-

in which Eén) = [a“E(¢)/a¢“]¢=¢ and is regarded now as known. An

iteration between the two sides ofmthe Equation, starting with B, as the
first approximation to e, uses almost the same process as that for the
solution of (18); thus, part of the computer programme can be used equally
for Equations (18) and (20), and it is probably better not to use the formal
solution of (20) in series.

The/
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The solution to the mapping problem has been found in terms of the
equally-spaced values Op and the derivative |dé/dz | follows at once from
Equation ?12).

5e Numerical Methods

Theodorsen's original treatment of the problem was based on
Fourler representations of ¥ and E. Thus,

¥(0)

N
74 zij(Ancos ng + B,sin ng),

o= & eee (21)

E(¢)

I

N
2;’(Ansin ng - B cos ng).
n=1 .J

His treatment, however, involved the determination of the Fourier
coefficlents end in this respect the comprehensive formulae discovered by
Wa.tson3 (1945) were & great advance. The full power of these formulae was
exploited by Thwaites2 (1961) who developed a matrix technique highly
suitable for electronic computers. The reader is referred to the latter
paper for details; here we only summarise the results needed for the present
problem.

Using the matrix notation described in Section 1, we may write

®), = (€)@, e (22)
(E(z))c

@) = Wyv), e (2)

where (C), (D) and (A); are matrices which may be calculated once and for all
from Watson's formulae. These three Equations -~ and others derived from them,
such as the obvious extension of Equation 223) to the calculation of higher
derivatives - are exact when ¥($) and E($) are representable by the

finite Fourier series 121) and the matrices are the appropriate size.

(0)(8), o (23)

[

The two fundamental Equations, (10) and (18), may thus be written
In matrix form as follows:

By = (©)®)g ee (25)

(%),

13

(g + ) LERIEDN(Me/at, cer (26)

n=1 '

and the iteration already described in Section 4 is very simply carried out with
a matrix interpretive scheme such as that for Pegasus. The coefficients

(-D) (#)C/hl remain, of course, as constant colum matrices throughout the
iteration,

Once/
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Once (¥) is determined, ¥ is calculated by the matrix
equivalent of (11), namely

¥ o= (a)(¥); vee (27)

Also, (e)c follows from the iteration of Equation (20), and (e')c as
(D)(s)c. The modulus of the transformation can then be calculated from
Equation (12),

A Pegasus programme for the complete procedure, starting from a
table of values of ¥ at equally-spaced values of 0, is described and
glven in full in the Appendix. It uses the Automat Scheme which is a
combination of the standard Autocede and Matrix Interpretive Schemes. It
was found that little advantage in machine time is gained by adjusting the
number of terms in the expansions (18) and (20) according to the accuracy
required in each case, and so the final programme is set to include first
eleven terms of these series, . This number of terms was determined partly by
the intuitive conviction that no physical problem is likely to arise which
would require more terms for the desired accuracy, and partly by the maximum
number of points it is thought would normally be used around a contour. The
storage capacity of Pegasus I is just adequate for 40 points and the programme
input (on TAPE B) specifies this number of points.

The second number n0 on the TAPE B input determines the final
accuracy in the convergence of the iteration of Equations (18) and (20);
more precisely the iterations cease when the norms of the vectors in
successive iterations are equal to n0 binary places.

6. An Example

To test the accuracy of the numerical analysis, one wants to choose
a shape for which the transformation, while being exactly calculable, is not
reducible to the finite Fowrier se~ies (21). An amusing and highly suitable
example is a circle whose centre is not at the origin of co-ordinates.
For this, as a final outcome, the derivative | d%/dz | on the boundary is
exactly unity.

In the notation of Fig.3,

¥(08) = log /1 - 6%sin®6 - & cos o}, eee (28)
e(0) = - sin* b sin 6], een (29)
¥(8) = % logi1 + 8® - 28 cos ¢}, ees (30)
i 6 sin ¢
E(¢) = - tan [1-6cos¢} oee (31)
and ¥ - 1. eee (32)

It may be verified, of course, that ¥(¢) and E(¢) are conjugate functions;
also that | d%/dz| as given by Equations (12), (28) and (29) is unity.

In/
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In any particular case, 1t is very difficult to disentangle,
theoretically, the inaccuracies due respectively to the finite number of terms
taken in the Taylor series (18) and (20), to the approximations of Watson's
formulae, and to the degree of accuracy specified in the iteration. But for
a glven degree of accuracy, say of 4/5 significant decimal figures corresponding
to & value of n0 of 15, there is a value of 2N, the total number of points,
beyond which it is not profitable to go. This is shown up in the following
Table in which it is clear that, to the degree of accuracy specified in the
iteration, 20 polnts are quite sufficient.

50 2N = Number of Points

:: 10 20 40

0 0-3953 09939 0-9999
1 4+0037 1+0000 10000
2 09981 0+9999 0+9999
3 0+9996 10001 1+0001
L 10021 1-0000 1-000Q
5 0+9972 1+0000 4+0000

Table of rounded values of | az/dz | for the case of a circle
displaced by a third of the radius (for which the exact value is unity), the
iterations ceasing at an accuracy of 4/5 decimal places.

For this special case of the displaced circle it has been found that,
with 4O points (and with the firs: ten terms in the Taylor series), values
correct to at least eight decimal places are obtainable., When theref'ore one
considers that, in most aeronautical applications, errors of 0-1% are acceptable,
it is thought that the programme developed here will be adequate for most cases.
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APPENDIX

The programme which follows uses the AUTOMAT scheme which has
been developed at Southampton University as a combination of the Autocode
and the Mailrix Interpretive schemes for the Ferranti Pegnsus.

It is applicable to a function ¢(8) which is given at an even
number of equally-spaced values of © +through the period 2n; thus it is
assumed that an interpolation procedure has initially been carried through,
as suggested in Section 4 of the paper.

The tapes required for the main tape recader are, in order:

(1) the AUTOMAT scheme;

(11) a Matrix Interprective scheme preset parameter tape, giving the
value of 2N, +the number of points to be taken}

(144) the programme tape given below;
(iv) an Autocode data tape given the valuc of 2N;
(v) an Autocode dnta tape, 1listing the values of Y.
For the second tape reader, an autocode data tape is required carrying a
single number, namely the number of significant binary digits required in
the iterations,
The outputs from the progromme are, in turn, ¥(¢), E(¢), £(0)
and | az/daz|.
An outline flow diagram is also given,

AT



PEGASUS AUTOMAT

2]
N
THEODORSENS TRANSFORMATION Notas
Kumber of
Jy0g90=1
matrix Jsia

dnstruc-{6" 168

C7060 Completion of (C) and (D) matrices.

(100,241X1)%100 (C) from location 100;

Oq060

(1700,241%X1)%1700 (D) from location 1700.

07303

L%glgilx:)*gsoo Read in_¢(8), from location 3300,

4300,341XT }*3940
(2200,1%341)x{1100,341X1)748 H¢]l in looation 48.
F97!°!
s e — - -

10 [Og060 Calculation of (=1)"3(" /n! if n28 = ©

(1700,241X343)x(3300,241X1)>3300

O7obo or B /n} if n28 = 1

(2a)x{3840,941X1)%3300

09101 from lacation (3260 + 40n},

15 |(r00,341%241)x(3940,241X1)73980
31986,241X1) %4020 Caloulation of 10 terms of series for

§4oao.z4:/;x ss4o.a4tx=;*394o

31980,241/)x(3030,241%X1 )% 4020
4930,341/ ) (3380,341X1)> 4060 v(p) Af nB =0
$940,241/)+4(4060,241/)23940
31980,241/)x(4030,242%X1)P4020 or (6) if n28 = 1

4020,341/)x(3420,241%5)24060
(3940,343/)4(4060,241/)33040
(s980,241/)x(4030,241%1)> 4020
4030,343/)%(3460,241X2)74060
3940,341/)+(4060,242/)73940 from location 3940,
3980,341/)x(4030,241X1 )P 4020
4030,241/)x(3500,341X1)> 4060
(s940,2412/)+(4060,242/)>3940
3980,241/)x(4030,24%X2 )% 4030
4030,241/)x(3540,341X1)24060
(s940,342/)+(4060,341/)03940
(3980,241/)x(4020,241X1)? 4030
(4020,341/)x(3580,341%1)74060
(3940,341/)+(4060,342/)23940
(3980,241/)x{4030,241X1)> 4020
4030,342/)x(3620,341X1 )% 4060
3940,341/)+(4060,241/)%3940
(3980,341/)%(4030,341%X2 )3 4020
4030,341/)x(3660,241X2)>4060
3940,341/)+(4060,341/)23040
3980,245/)x(4020,342X1)? 4020
4030,343/)x(3700,241X1 ) 4060
(3940,341/)+(4060,341/)73940
be342/)4{2400,241/)%2940

3940, IXS4TTX(3040,341X1 /749 ¢l or € | in location L9,







62

66

68

Q7101
(1940,341X2)%0

Print  ¢). .

(5o 1X241)x(3940,241X2)%99
6 x 99’*
99 130

Print ¥,

T};oo.z4xxx)93z
(100,241X23413)x(1940,841%X2)%1300
(3300,341X1)%n

Print E(¢),

{3380,241IX1 )71 40
(3300,341x1)73940
(3940.z4xxr)?3980 )
3340,2 Xis140,242X1)>1e0
{ ‘ })+( 173

1+ (¢'Y in location 100,

[l in locetion 48,

0,341 180,341/ )>100
z;;oo,xngz)x(;;oo.z4:x:J*4a
Ti01

Print &{(8).

%1942;3&1113*3 ( Y578
1700,341% X L34IXI )
130,241/)3050,2000 0180 0

07101

(330,3412X1)%e

Print iggédz[. -
.

7to0t
(3940,341/)%3980
Jré

I

J 330
Jrog90
J8

w rrrer—raa

II

Initial Orders.

sSTOP

Vor=—g
vI=ARCCOSYA

UawTAPE Read in 2N

First order to be obeyed.

——
e

Consatants

in location

vi=la/a
naevy
ni=Pa
vywiyr/Ua
VsutiygXa
vém: /3

n1=TAPEB

Read in iteration sccuracy

L I e

=
S~
n
=
N

fowmns

430(so+n3)-:
n3-n3+x
*4.02003

Vioomg
v{t00+73)mo
vVIjooma
v{17004n3 )=o
ViowDy
L Lt |
vig=—i
3)012=COTVIS
Bawny~nsg
*2,V1tm~g
v(too+ns)=o
>6
3)v(z004ny )=vrafvg
6Jv(1oo+ny)m~v (100403}
Via=ViaXviz
v{z7004n3 )mv1s /2
v{zyoo+ng}u-v(1y00+ns)
vVirmenyg
ViosUto4l y
Aye=ng+tr
+1,m15n

et

1=nT===================================

Unit matrix from location 50,

Calculation of first ocolumnas

of (C) and (D) matrices,







Ha=flx

N8nyx
3)9(:eo+ﬂ3)-9(99+ﬂ3)
v(z700+ns )uv (16994n3)
NggmMmg=ny

Asrmfigts

*M7108,1

nE=ns+t

fizsng+ng

>3 ,.82>013

Completion of (C) end (D) matrices,

‘UIZOO-O e T TR

*M7103,6

fig8mo

Set for iteration of ¢(¢).

19)ngmy
fiageo

fizomo

fizrmso

vrtmr
17)%11,n38m0
Viame/us:
>38
11)vzamer fyse
18)>M71e3,10
fizomnjot4o0
fl31mngr+40
Ray=Ms 41
UrgaPride
%17.:o>ﬂ3

5)>15,ns8m1
*M7103,18
7)214,V48m0049

14)916,N38w%
*Mr103,48
Na8wmg
219

Calculation of (~1)"¢'") /n! if n28 = 0
or KM /n! if n28 =1,

Iteration for ¥(¢), cessing when
inner products are unchanged to
n0 binary significant figures,

S —

15)9Nq9203,68
*7

16 }vgg=EXPUgg
*Mr10s,62

ngeo
a4)ﬂ:o-Exrv(:4o+n3)
Viowvio /U
v::-SQRTvtloo+n3)
ViowlioX¥11
v(sz0¢ng)=vr0/v(1804ns)
ns=ngdt

*24,N1>08

*H7103,66

Iteration for €(6).

— —— — o _. i

Caloulation of |df/ae|.

mmg

(»0)
IRTZTLLTLILLTLELLES
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Outline flow diagram

Imtially: set the number, 2N, of values oflp which are given,N being even. Set associated cohstants such as 17 N, /N, /N, m/2N.
Set also the number of significont figures required for convergence of iterations. Read inthe given values of ‘llf and store as the column matrix (III)C

{

The remaining rows, j =2,

].i even

Calcuiate and store the elements of mean-value,differential and conjugation matrices, respectively (Ag) =(Ai),(D)=(Di' ), (C)=(C;_j); 1, =42, __.2N
Aj = 1/2N; Dy =D,y 1= 0; Dj ;= (1)} 3 cot[(i-1) 7/2N], i #L2N; Cj (=0, i odd; Cj = -(I:/N) cot [(i-1) 77/2NJ
2N, of (D) and (C) are given by the fact that the two matrices are circulants.

Calculation and store, for n £ (O, of.

(— D)n(?jb‘)cln!

(D) (E)e/n!

First [time

Y

Second |time

Set n = -
(flnl-l)c= (#‘)c

Set n=|
(fn—l)c = (E)C

l

l

Store (f,|)
[—.=(D)(flnl-l )./ 3

Store (fp),
=(OXfn—1). /0

ini< 10 l

l

e

Increase (nl by |
Change sign of n

inl |> IO

Note =% joins the two subroutines containing almost analogous calculations, and

Increase n by |

(P)c

Calculation and store of

or

(E)c

Second [time

Set n =|
(el)c = (E)c

(fn)e = (€n)c

(fn+|)c = R.H.S. of
equation (20)

Set nJ= |
(P))e = @F)e
!
Increase
n by |
(fn)c = (kpn)c t
(En). = €)n)c
(fn+|)c =R.H.S of
equation (26)
.
inll=1 11 f: t'li“'?': :i::'l
Ly specC
(D)= (frer)e ionificont
(E)e = CXP)e figures
P = (A (q")c

g

Y

€)= fn4

(€’)g= (D)(G)C

I)c

d€ .
I s l from equotlon(lz)w

a full programme would take advantage of this
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mapping to be determined i1s between a near-circle and a
circle. The theory of Theodorsen (Ref.i1) 1s then, as
often as not, applicable.
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