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In applied mathematics, many problems which are describable by the 
two-dimensional Laplace equation reduce to the determination of a conformal 
transformation between some prescribed region and one of standard shape. 
In such problems, it is a common practice to use simple subsidiary 
transformations in such a way that the final mapping to be determined is 
between a near-circle and a circle. The theory of Theodorsen (Ref.1) is 
then, as often as not, applicable. 

In the belief that, simple as it is, Theodorsen's method should 
be available "off the shelf" as a standard computer programme, the author 
has prepared this note which might serve as the basis of such a stsndard 
routine. The particular programme reproduced in the Appendix is for a 
Ferrsnti Pegasus. Possibly the only point of serious mathematical interest 
in the paper concerns the rearrangement of the integml equation to make it 
amenable to the numerIcal techniques employed. 

I. Notation and Conventions 

z; complex variable in the plane of the near-circle 

.J'+ie point on the near-circle 

$=*(e) the function which follows from the prescribed shape of the 
near-circle. 

The ori 
$(8 $" 

in the Z-plane is assumed to be chosen so that the 
deviation of from some constant value is, in so88 sense, roughly 8 
minimum. 

It is convenient, though not necessary, for the scales in the 
k-plane to be chosen so that the average value of $(e) is roughly zero. 

Only shapes for which $(O) is a single-valued function are 
considered, and for which b(0) has continuous derivatives of all orders. 

z complex variable in the plane of the circle 

F+i$ e point on the circle whose radius is therefore ey 

e/ 
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0 and # are both used, according to the context, as independent variablea, 
though they are, of course, functionally related. 

Any variable, when regarded 88 a function of 8, is denoted by a 
lower-cane letterj and when one of $, by an uppercase letter. 
Thus, for example, Y($) = Y(e). 

ftti meE(e) = # - 6, in whioh 6 and # take oorreeponding 
values. e: 8($) = $ - E($) and $ = $(e) - 0 + c(0). 

e m = & = n&!N, m = 0,1,2,..., 2N - I. 

Suffix m on a function denotes its value at em or $ 
aooordine to context. 

@ID, (f&, WC denote, respectively, diagonal, row and column 
matrices whose element.8 are the 2N values 
2i-l - I. 

f, m f(Om), m = 0,1,2,..., 

(C) a 2N x 2N matrix,, the conjugate matrix operator 

(D) a 2N x 2N matrix, the differential matrix operator 

(A& m (1 1 I . . . . . 1)/2N, the mean-value matrix operator. 

It is required to map the regions exterior to the two olosed 
boundaries so that 

a 
-+I Cl.8 z-03 . . . (1) 
da 

Pig.1 illuotrates ~otze of the notation. 

2. Poisoon's l~tcgrals 

Consider a function f(z) expansible in the region 
a 0 - 
Laurent series %I 9 2-n and denote by f(4) its value at e D eF+i$S . 

II=1 
Cauchy's formula, when applied to the region between the oircla 

!z', by;,+ R > ip and the circle 1 el = e' indented outwards at 
+i as ahown in Fig.2, gives in the 1imitE R + = and 6 -L 0 

f(4) = -1 
I 

% 
f($)d$ + .i 

I 

t-# 
2zf(t) cot- at, . . . 

2n 
(2) 

0 2Jt 0 2 

where the Cauchy prinoipsl value of the last integral is taken. 
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On taking the mean value over 0 s # $ 2% of Equation (2) we have 

and hence, from (2), 

f(#) = .L 
I 

2n t4 
fyt)cot - at 

2n 0 2 

If f&l = u(#J) + iv($) 

then the imaginary part of Equation (4) givea 

- v(6) = - ; 
I 

h t-4 
Il(t) - at, 

0 2 

while the real part of (3) gives 

I 

2-x 
u(#)d# = 0. 

0 

3. Theo%rsen's Theory 

. . . (4) 

. . . (5) 

. . . (6) 

. . . (7) 

The transformation between the two regions shown in Pig.1 is written 
in the form 

log(zyL) = f(s). . . . (8) 

From Equation (I), f(z) + 0 as z + m and it is assumed that f(z) 
satisfies the same cond.itIons as the function in 3ection 2. 

With the values L: = e*+l' and s = ey+i4 on the boundaries, 
Equation (8) may be rewritten as 

Ip - T - i(#-9) = value of f(z) on the oimle 1 zj = e' 

and thus, from Squations (6) and (7), 

l . . (9) 

4 - 8 a E($) = -L 
I 

2n t-4 
'P(t)cot- at . . . (IO) 

a:, 2 
and 

. . . (11 

These are the two central equations in the ,mapping problem, 
terms of the unknown function lp($) rather than the known function $ 0). t) 

ut in 

The fom of Equation 
~(0) and involving 

(10 
$(0 , 1 

, rewritten as a non-linear integral equation for 
is familiar enough, but is not particularly 

amenable to iterative solution. 
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Ihe modulus of the transfomation on the boundaries is easily obtained 
from Equation (8) as 

% $je)-F If+[v(e)l’ 15 
- te 
de h-E’(0) 

. . . (12) 

The whole problem may be summarised thus: given $(8), find E(C) 
and g from a solution of Equations (10) and (II), and hence evaluate the 
required b&z\. But we must next discuss the practical side to the 
question. 

'4. ‘Ihe Practical Problem and its Solution Outlined 

It is possible, of course, to go further than was Implied in the 
preceding paragraph. For example, once Y(6) and E(#) are known, Cauchy’z 
formla will give the value of f(z), and hence the transformation, over the 
whole domain. In most practical applications, however, the greatest 
interest is attached to conditions on the boundaries and we shall in fact 
oonfine ourselves to these. 

In practice also, $(C) will almost invariably be specified as a 
set of numerical values rather than a closed function, and we suppose that 
4 is given at Y points, 6 = Or, r = 0,1,2 ,.... (M - I). For the 
numerioal solution of the problem, however, it is necessary to work in terns 
of equally-spaced values of B (and of #), and therefore to interpolate 
values for Jr at ZN equally-spaced values of 0. Eaoh problem may 
suggest its own preferred method of interpolation, but the present author 
would normally use a Fourier-series interpolation. Thus, if Y is even 
and equal to ZN, we take 

N-1 

d(e) fi h + 
7 

&COS ne t +3in ne) t k+p0~ Ne **. (13) 
-I 

n=l 

while if Y is odd and equal to (2N t I), a further tern, say 
ANtlcos(Ntl)g, may be added to the series in (13). The coefficients An and 
G are evaluated so that the series takes the given values of $ at the 
p0int.8 er, whereupon values at the 2N points 

e = em = ICC+, m = 0,1,2,....(2~-I) 0.. (14) 

are calculated at which 

9 = or, = d&J. .a. (15) 

This interpolation is very easily programmed, and a Pegasus progr-e is 
available. 

It is assumed henceforth that the Xi values $n are known, and 
that it is required to determine the points on the circle which correspond 
to B = Cm and the value of 1 d?/dzI at those points. 

But/ 
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But if equally-spaced values of tl BpCCifJ’ the given function $, 
equally-8 aced values of 6 8re needed for the computation of the singular 
integral 10). 7 Now the stf&ard first approximation to Theodorsen's 
takes g(e) = Y(e) and E($) = ~(6); but we aim at a solution of 

theory 

pre-specified error and 80 we need to relate more exactly value8 at 
equally-spaced 8 to values at equally-spaced #. The simple equation8 
which now follow are the only novel feature in this paper and we may remark 
that they arine solely from the exigencies of computational methods. 

The suffix m will be used on $4 in the same way as It is on 8, 
namely 

tin = m/h, m = 0,1,2,....(2N-1). . . . (16) 

ThUS, em = &. It is, of course, important to appreciate that the suffix 
m, when attached to functions, doe8 not denote correspondence: thus in 
general cm f Em and Jr, f Ym. In fact, for 4, 
equations: 

we have the following 

Y, = Yh,) = S(&, - E(h)) = +(v+,, - Em), 

and a Taylor expansion of this gives 

*.. (17) 

oa 
‘pm = & + z t (- Ed” p/n! . . . (18) 

n=l 
in which $p) = [dn46')/denle=e and is regarded as bown. 

m 

Equation8 (10) and (18) now become simultaneous equation8 for the 
ZN-dimensional vector8 (Y ) and 
iterative procedure - star%ng with 

( and here we e88ume that the ObviOu8 
as a first approximation.to (Ym), 

calculating (Em) from (IO) and hence a better approximation for 
the first so-many terms of (IS), and so on - will converge. Nevert;kies? 
further Study of alternative iteration8 might well be rewarding in terms of 
rapidity of convergence. 

Now that (E,,,) 
from the Equation 

may be thought of 88 known, Ed may be determined 

Em = 4e,) = E(e, + de,)) = E(e, + ~~1, 

which, in expanded form give8 

. . . (19) 

+ 
Em = Em + >, 

(8m)%(n)/n! m . . . (20) 

n=l 

in which E$$ = [dnE($)/d$n]~3(, and is regarded now 88 known. An 
iteration between the two sides ofmthe Equation, starting with Em a8 the 
first approximation to 
solution of (18); 

Em uBe8 abO8t the Same process as that for the 
thus, part of the computer programme can be used equally 

for Equation8 (18) and (ZO), 
solution of (20) in series. 

and it is probably better not to use the formal 
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The solution to the mapping problem has been found in terms of the 
equally-s 

T 
aced values 

Equation 12). 
em and the derivative 1 dZ/ds 1 follows at once from 

5. Numerical Methods 

Theodorsen's original treatment of the problem was based on 
Fourier representations of Y and E. Thus, 

N 
y(e) = v + 

z 
' (&cos n# + B&n n#), 

ml 
. . . (21) 

N 

a#) = 
z 
-’ (An sin n# - Bnoos n#). 

ml 1 

His treatment, however, involved the determination of the Fourier 
coefficients and in this respect the comprehensive formulae discovered by 
Watson 3 (1945) were a great advance. The full power of these formulae was 
exploited by Thwaites2 (1961) who developed a matrix technique highly 
suitable for electronic computers. The reader is referred to the latter 
paper for details; here we only s ummarise the results needed for the present 
problem. 

Using the matrix notation described in Section 1, we may write 

WC = (C)WC . . . (22) 

(EC') jc = (D)(E) c . . . (23) 

(v) = (A),@)c . . . (24) 

where IC), (D) and (A), are matrices which may be calculated once and for all 
from Watson's formulae. These three Equations - and others derived from them, 
suoh as the obvious extension gf Equation 23) to the calculation of higher 
derivatives - are exact when Y($) snd E $) t are representable by the 
finite Fourier serm21) and the matrices are the appropriate size. 

The two fundamental Equations, (IO) and (la), my thus be written 
in matrix form as follows: 

(E& = (C)(Y)C, OD WC = (H, + [(E)Dl”(-D)n(S)c/n!, . . . (26) 

n=l , 

and the iteration already desoribeci in Section 4 is very simply carried out with 
a ma$rix interpretive scheme such as that for Pegasus. The coefficients 
C-D) ($1 /d 
iteratiok. 

remain, of course, as constant column matrices throughout the 
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Once (19) is determined, 
equivslent of (II), namely 

q is cslculatedby the matrix 

q = (A)R(Y)C. . . . (27) 

Also, (~)g follows from the iteration of Equation (x)), and (cog as 

(D)(+ The modulus of the transformation can then be calculated from 
Equation (12). 

A Pegasus programme for the complete procedure, starting from a 
table of values of Jr at equally-spaced val;les of 8, is described end 
given in full in the Appendix. It uses the Automat Scheme whioh is a 
combination of the standard Autocode and Matrix Interpretive Schemes. It 
was found that little advantage in machine time is gained by adjusting the 
number of terms in the expansions (18) and (20) according to the accuracy 
required in each case, and so the final programme is set to include first 
eleven terms of these series. , This number of terms was determined partly by 
the intuitive conviction that no physical problem is likely to arise which 
would require more terms for the desired accuracy, snd partly by the maximum 
number of points it is thought would normally be used around a contour. The 
storage capacity of Pegasus I is just adequate fez 4.0 points and the programme 
input (on TAPE B) specifies this number of points. 

!Che second number n0 on the TAPE B input determines the final 
accuracy in the convergence of the iteration of Equations (18) and (2O)i 
more precisely the iterations cease when the norms of the vectors i.n 
successive iterations are equal to n0 binary places. 

6. An Example 

To test the accuracy of the numerical analysis, one wants to choose 
a shape for which the transformation, while being exactly calculable, is not 
reducible to the finite Fourier se-ies (21). An musing and highly suitable 
example is a circle whose centre is not at the origin of co-ordinates. 
For this, as a final outcome, 
exactly unity. 

the derivative 1 wds 1 on the baundnry is 

In the notation of Fig.3, 

t(e) = log $T-xzo - 6 008 e], . . . (28) 

e(e) = - sin-1 16 sin e], . . . (29) 

u(e) = 3 log{1 + sp - 26 00s (b], 0.. (30) 

E($) = - tan-i 
c 

6 sin qi 

1 - 6 cos ys 3 
. . . (31) 

and v = I. . . . (32) 

It may be verified, of oourse, that Y(#) and S(#) are conjugate functionsi 
also that 1 adz \ as given by Equations (12), (28) and (29) is unity. 

w 
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In any particular case, it is very difficult to disentangle, 
theoretically, the inaccuracies due r-es ectively to the finite number of terms 
taken in the Taylor series (18) and (20 P , *to the approximations of Watson's 
formulae, and to the degree of accuracy specified in the iteration. But for 
a given degree of accuracy, say of 4/5 significant decimal figures corresponding 
to a value of n0 of 15, there is a value of 2N, the total number of points, 
beyond which it is not profitable to go. This is shown up in the following 
Table in which it is clear that, to the degree of accuracy specified in the 
iteration, 20 points are quite sufficient. 

50 2N = Number of Points 
- 
'x 10 20 4.0 

0 0.9953 o-9999 o-9999 

I 1.~37 1~0000 la3oo 

2 0*9984 O-Y?99 0.9999 

3 o*9996 1~0001 l~oa31 

4 1'0021 1-0000 1-0000 

5 o-9972 I~OGOO I~KXJO 

Table of rounded values of 1 dZ/dz 1 for the case of a circle 
displaced by a third of the ndius (for which the exact value is unity), the 
iterations ceasing at an accuracy of 4/5 decimal places. 

For this special case of the displaced circle it has been found that, 
with 40 points (and with the first ten terns in the Taylor series), values 
correct to at least eight decimal places are obtainnble. When therefore one 
considers that, in most aeronautical applications, errors of 0.1% are acceptable, 
it is thought that the programme developed here will be adequate for most cases. 

7. Acknowledgment 
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APPENDIX 

The programme which follows uses the AUTOMAT scheme which has 
been developed nt Southampton University as a combination of the Autocode 
and the MatrFx Interpretive schemes for the Ferranti Pegasus. 

It is applicable to n function Y(S) which is given at an even 
number of equally-spaced values of 0 through the period 2?r; thus it is 
assumed that on interpolation procedure has initially been carried through, 
as suggested in Section 4 of the paper. 

The tapes required for the min tape rcadcr are, in order: 

(i) the AUTOMAT scheme; 

(ii) a Mntrix Interpretive scheme preset pnraaeter tripe, giving the 
value of 2N, the number of points to be taken1 

(iii) the progr’nmme tape given below; 

(iv) an Autooode dntn tape given the value of ZN; 

(VI an Autocode data tripe, listing the values of bm. 

For the second tape render, no autooode data tape is re&rea cnrrying a 
single number, namely the number of significant bi.narJ digits required in 
the iterations. 

The outputs from the programme are, in turn, Y($), E($), s(0) 

and 1 dt;/dz(. 

An outline flow dia@am is also given. 

AT 



N” 
THEODORSENS TRANSFORIMTION 

PEGASUS AUTOMAT 

07060 
(:oo,r4rx:h.o 
07060 

10 07060 
(:70o.t4rxr4r~x(3$oo~~4~x~~~ss9o 
07060 
(rr~x(3~4o.r4:Xr)~ssoo 
0710: 

Completion of (C) and (D) mtrioes. 
(C) from 10oatlon 100; 

(D) imm lmation 1700. 

Calculation of (-I)"#(")/*! if na P 0 

or W/n! If I228 = 1 

from location (3260 + 4on). 

calou1ation af 10 te?.?ds of series ior 

9(e) if nz¶=o 

or E(8) if Ilzs i/ 1 

from 1ooation 3940. 





48 

62 

66 

68 

07xor 
(;lp40rr4xXrbo -- 

(go.rxa x)Xo94o.a4xX~)*99 
!6):(99f+99 

I 

940.84 XI) 0 
7oo.r4rxr 11x(39 o.a4xxrl~reo 

‘?+ 1 r6o.r4r/)+ 3e,r4z )*x60 
07ro1 

(s940..4:/)*398o 
516 

I 
J goo 
J7090 
J6 

STOP 
-- 

uo-‘I 
Vx=AACCOSv~ 
vr-TAPE 
VjW8/8 
m-v3 
nr-v8 
v4wt/va 
Vpv4Xl 
v6=r/v. 

ma in 2N 

r&JTAPEEl 
no-n3 

haa in it0rnti.20 aOcura~+ 

--- 
n -0 
+ u(p+ngh 3 
nynf*x 
l .+.nx>ns 

-- ---- -. -- 
vxoo-0 

0 (xoO*n8 l-0 
V1700~0 
u ( x 700+m I=0 
v1o-v4 
n3-: 
VXI~‘X 
xbrr-COTfJx* 
npnx -nj 
*8.0~1--1 
u(x00+n3h 
l 6 - 
.h?(z4O+n3bvI~/uS 
6)uf~oo+n4)-~~xootn3) 
wxPvx1xvtI 
v(xp0+njbvx8/8 

u(x700+n4bv(z700+n~) 
VIf’-VXI 
vlo-vIo+v4 
7!3”“3+’ 
+I ,vdna 

print &). 

Print 5. 

Print E(9). 

1 + (#'IS in location 100. 
-JJEU In laoatlon 48. 

Print E(6). 

Print i dC/dsi. 

Initial Orders. 

Firs+. order to be obeyed. 

Constants 

n In 1a:ation 
2N 
N 
N 
2N 
n/ZN 
V/N 
1/a 

+ 

: 

4 
6’ 

II 

2 
1 

unit matrix from lwation 50. 

Caloulation of first 001umM 

of (C) end (D) matrhea. 





1 Completion of (C) and (D) matrl~sr. 

W7103.6 

no8lo 

-- 
x1. hs--x/vxx 
18bll7:~3,~0 
n30-nj0+40 
ngr-n3r+40 
n3-n3+t 

Set for iteration or ,(+). 

Caloulatlon of (-l)"#(")/rI! if r&8 D 0 

or iv/n: if n28 = i. 

5bz5,n~8=1 
3~7103.~5 
7b14,048-•049 
v4-v49 

Iteration for *@I), ceasing when 
i~er pr0a00tO -0 urnhanged t0 
n0 binary signiiioant figures. 

x6)~99=ExPv99 
l U7~03,69 
ng=0 
s4h0*xwo(r40*n3) 
vro-vre/v 9 
vrrr-SQfrv :00+n3) t 
v10-v:0xv11 
v(~s~+n$bvm/v(r8o 

::;y&l, 
el7ro3.66 

I cai00iati0n 0f 1 g/as1 . 
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