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SUMMARY

The problem of predicting the mean velocity on streamlines
through the pre-asymptotic turbulent free shear layer in two-dimensional
incompressible flow is resolved into two parts. The linearized
momentum equation in terms of a generalized axial co-ordinate go is

30lved in the usual way. A relation between go and the distance from

the separation point is then established analytically in contrast to the
previous use of empirical expressions. -

It is shown that except in the region close to separation the
velocity on the streamlines can be predicted by the simple approximation
proposed by Kirk,
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1. Introduction

Attempts to derive a mathematical model of the supersonic flow
past a backward-facing step or in the wake of a blunt trailing-edge wing
moving et supersonic speeds have drawn attention to the problem of
predieting the velocity of fluid along specified streamlines in the free
shear layer forming the boundary between an external quasi-inviscid flow
and a region of semi-dead air. For the purposes of analysis an
idealized system is examined in which the pressure is everywhere constant
and, since there are assumed to be no solid boundaries downstream of the
origin of mixang along which external forces could be sllowed to act, the
total momentum of the flow is conserved. Within the conservation of
total momentum however there is a continuous exchange of momentum due to
the mixing proceas between the layers of fluid moving at different
velocities., Air initially at rest in the dead-air region is entrained
and gathers momentum at the expense of the retardation of air originating
in the free stream., As the flow proceeds downstream more and more fluid
comes under the influence of the mixing phenomenon and the width of the
shear layer increases steadily; but the width remains small compared
with the distance from the origin making the shear layer a boundary-layer
type problem with large transverse gradients.

In general mixing is initiated when the stream separates from a
solid boundary and a boundary layer will have developed upstream of the
separation point, Thus at 1ta origin the shear layer has a non-zero
thickness and the velocity profile of the initiel boundary layer, and iun
the turbulent ocase the distribution of turbulent shear stress also,
represents an important boundary condition placed on the subsequent
development of the layer. The flow in the early part of the mixing
layer, (see Fig.B), is dominated by the transition fram velocity profiles
of a boundary layer type to those corresponding to fully-developed mixing
further downstream, and in this region the thickness of the Initial boundary
layer presents a reference dimension which determines the scale of
succeading velocity profiles,

As the flow proceeds downstream the influence of the initial
disturbances in the shear layer decays and at very large distances from
separation the characteristio dimension loses its significance with the
velooity profiles approaching similarity. The existence of this
asymptotic form has led to the formulation of the usual simplified flow
model in whioch the thiockness of the layer is zero at its origin and
similarity of the velocity profiles is assumed throughout. This model
implies a higher order singularity at the separation point insofar as there
must be a discontinuity in velocity as distinet from one in velooity
gradient, but any difficulties in the solution are purely local as is the
case of the flow in the boundary layer near the leading edge of a plate,

In the laminar case D, R. Chapman1’2 has derived exact
solutions of the momentum and energy equations to describe the velocity
and temperature distributions through the asymptotic mixing layer for Mach
numbers in the subsonic and supersonic ranges, In the turbulent case solutions

of/



-l -

of the mean velocity field in incompressible flow have been obtained by
Tollmien3 using Prandtl's mixing length hypothesis, and by Gortlerd who
made use of the virtual viscosity concepi, good agreement with experiment
being achievedb,6,  Abramovich? has developed Taylor's vorticity
transport hypothesis to examine the effect of heat transfer through the
asymptotic turbulent shear layer for Mach numbers up to 1.0. Experiments
at supersonic speeds®> 9510 have shown that the mean velocity profiles
differ little in form from those at low speeds and the only effect of
increasing Mach number appears to be a decrease in the rate of spread of
the shear layer. Korst et alll have used the error-function velocity
profile (Gortler's first approximation)} as the basis of their
calculations at supersonic speeds.

A laminar free shear layer growing from zerco thickness at
separation has been approacted experimentally only with difficulty?C and it
is not easy to conceive of a set of conditions which would promote a
fully-developed turbulent shear layer with zero initial thickness. In
most practical cases a boundary layer of finite thicknmess has already
developed upstream of separation and the velocity profiles in the
separated layer undergo a transition from the initial form to their
asymptotic similar form far downstreams. The effects of the initial
boundary layer on the laminar shear layer have been discussed briefly in
Ref.12 and the corresponding problem in turbulent flow has been
considered by Korst et alll and Kirk13, Korst's method, which is
treated in more detail by A. J. Chapman and Korstll, is based on the
solution of a linearised momentum equation and leads to the derivation
of velocity profiles in the initial part of the shear layer in terms of
a generalized streamwise co-ordinate. No attempt was made to predict
theoretically an expression connecting this co-ordinate and the distance
from the separation point but an empirical relation of a form suggested
by Paild was found to agree well wath low speed measurements.

The present exercise sets out to establish, on an analytical
basis, a relation between the generalized position parameter and the
physical space co-ordinate, which is in agreement with the observations
of A. J. Chapman and Korst near the separation point and which is valid
to infinity downstream. This information is then used together with the
existing solution of the momentur equation to compute the velocities
along typical streamlines an the shear layer,

A simple method of predicting the characteristics of the
pre-asymptotic shear layer was proposed by Kirk13., It was suggested
that the real mixing layer could be replaced by an equivalent layer
growing over a greater distance from zero thickness. In this way
reference could be made to all the results for the asymptotic shear
layer and the effects of the finite initial thickness translated into
nothing more than a linear shift of the origin., It will be shown that
except in the region close to the separation point Kirk's method yields
values of velocity which are in close agreement with calculations using
the present analysis,

The/
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The present work represents ar attempt to investigate certain
basic principles of the turbulent free shear layer developing from an
initial boundary layer at separation., The analysis considers an
incompressible flow model for simplicity but there appear to be no
grounds for assuming that the onset of compressibillity factora has any
large effect on the turbulent mixing process and 1t would seem that
there is some prospect that the general conolusions of the work would

find an application in the treatment of the turbulent shear layer at
supersonio speeds.

2. The Momentum Egquation

The momentum differential equation for the incompressible
free shear layer at constant pressure has the same form as that of the
attached boundary layer and can be written

du ou or
Pu"*""‘l' PV‘—-‘* = — 0-0(1)
ax oy oy
It has been shown12 that the equation may be reduced without serious
loss of accuracy to the form

du or ( )
P . = e— LR 2
‘R ax oy ’

where up is a fixed reference velocity usually taking some mean

velue between the velocities at each edge of the shear layer. In

laminar flow the shear stress r 1is known at once in terms of the

local velocity gradient and the coefficient of viscosity p which

is a property of the fluid, For the turbulent case we make use of
Prandtl's virtual kinematic visocosity hypothesis

Ju
T = pS —y 000(3)
oy

where & is not a property of the fluid but is some functlon of x.
The assumption that & does not vary with y is kmown to lead to
satisfactory phenomenological descriptions of the flow field but it
must not be forgotten that it is an entirely artifiocial concept and
has no physiocal backingG.

From (2) and (3) we obtain
Ju o%u

— = €& —, evells
® 0x dy )



and making the transformation

X

E
g = ] -— dx 000(5)
o
we have finally
du *u
——— = —--;- - .-.(6)
13 9y

This equation will be recognised as the classiocal one-dimensional
diffusion equation for which standard solutions are availablel?,

The problem thus resolves itself into two parts, the first being to
solve equation (6) together with the appropriate boundary conditions
and the second to interpret the function € with a view to deriving
some plausible relation between £ and x.

3. Solution of the EBguation

Equation (6) is parabolic and the velocity field throughout
the free mixing layer will be defined once we specify the velocity
profile at the separation point., At E = 0O let

u = uo(y) for O0<y<ew

u = 0 for -w<y<O.

The solution is then given by

1 = 3
ulE,y) = — [u,,(a) o) o, veel?)
VR
y
where Z = ;J__é. ese(78)

In order to obtain a convenlent reference length for the solution
we may define the thickness 6 of the initial boundary layer, and
the boundary conditions can then be written

u, {y) for E

it
]

u

o 0, 0<y<bd

Yo

u, for £ = 0,08<y<m

where u, is the free stream velocity.



The solution then becomes

u 4 4
s@y) = 20 et -2 )] v = [ u@ 0w, )

S
where Z_,o = ""'2‘/—_- . cse (89.)
£

It remains to specify the velocity profile, uo(y), in the initial

boundary layer. For the turbulent case the %-th power law profiles
1

(1)
1 = 1u —
EANE

are known to be a good empirical fit to measurements, with m +%aking
values ground 7. Substituting this information into equation (8)
we have

u 1 a ¥
wo= — = f1serr(x-2)]+ fzﬁ’a‘“ e~ %) 4, ...(9)
u ° 1

vEz®°

[

Thus the solution of the velocity field is determined in terms of
generalized co-ordinates Z  and %, where ;/Zo = y/5 and the

relation between ;o and x remains to be found.

The integral in equation (9) is difficult to evaluate in
closed form for large values of m but A, J. Chapman and Korst14 have
carried out graphical integrations to compute the velocity profiles
for values of go between 1 and 5, As ;0 -+ 0, i.e., at infinity
downstream, the velocity profiles approach similarity in the single
parameter Z:-

w = £(1 + erf 2). .++(10)

This equation is identical to Gortler's 1st approximation. This

fact may be used to give some assessment of the accuracy of the
present method. Gortler's 1st approximation is known to be in good
agreement with the measured mean velocity profile in the asymptotic
mixing layer at least near the centre of the layer but with some
deviation towards the edges. The present method is oconsidered to be
of sufficient accuracy to establish overall trends but is not intended
to yield quantitative data which is accurate to better than a few
percent.

The/



-8 ~

The computation of velocity profiles in the shear layer can
be simplified if an approximation is made to the initial boundary-layer
profile to enable a closed solution to be obtained. It is known that
linear profiles of the form

¥y
u* = 1 L l 1 _ — s e 1
. ( o (11)
with O < A < 1, can be chosen to resemble the ;g-’th power curves fairly
closely, and for m = 7 the value A = ':* appears reasonable

(see Fig.1). It is not necessary to retain the same thickness for the
two profiles and in the present analysis we allow the thickness &' of
the linear profile to vary such that the same momentum thickness is
preserved., For m = 7 and A = % we obtain

' = 0.933 8§
which also specifies that

ZJC') = 0'935 go‘ 100(12)

By substituting equation ({1) into equation (8), we determine the
velocity field in the mixing layer in the form

w = {1+ erf %) -gl:(1 —E—)Ierfz-erf(é-éé)}

1
o

-»/7::;' [e"f - oy }] cee(13)

We see from Fig.2 that for values of ?‘:‘o smaller than about 2
it is not possible to distinguish between the velocity profiles computed
from equation (13) and those obtained from graphical solutions of
equation (9). Near the separation point then we mst retain the correct
initial conditions but further downstream we see that it is possible to
use an approximate set of boundary conditions without significant loss of
asceuracy. Fig.2 also serves to demonstrate that the calculated velocity
profiles are in good agreement with the measurements of Ref.14.

4. The Function €

We now face the problem of specifying the variation of €
with x in order to determine the relation between the generalized
streamwise parameter &, and the physical cow-ordinate x.

Let/
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Let us first recall Prwndtl's discussior of the virtual
kinematio viscosity concept (see Ref.18, e.g.). The mixing Tength
hypothesis of turbulence had led to expressions tor the virtunl
kinematic viscosity in the form

du

oy

A

E = &°

ees(14)

where ¢ was the mixing lengih. For free turbulent flows Pr .odtl
suggested that the size of the fluid elements which are caused to move
in a lateral direction by the turbulent mixing process is of a
comparable order to the width b of the shear layer, and furthir that
the fluid elements experience an overall velocity gradient which s
proportlonal to the maximum velocity difference across the layer
divided by b. Hence in the present context ~quation (14) could be
modified to

£ = J‘Cibuf_3 vea (1)

where K, is some constant to be found.

Recopnaizing that the asymptotic turbulent mixang layer grows
linearly with the distance from its orwigan, Gortler was able to write

1
E = —Ll-;:; uex 090(16)
and from equations (5) and (7a), taking u = %ué’*

oy

é = =— --o(17)
X

where/
*Korst19 takes = u_ but scales the value of & +to correct

e
for this so that equation (16) becomes

1
E = ———1u X,

20 °©

This anterpretation of up is retained by A. J. Chapman and Korst

find an empirical relataon for & din the pre—asymptotic shear layer.
For this reason their quoted wvalues of the constant e appearing in that
relation must be halved to be consistent with the more general convention.

il

who

Chapman and Korst are not correct in writing L for
laminar flow where of course *nr kinemati.c viscosity values cannot be
scaled accordingly (see Ref.12, €ege)s
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where o is a oonstant related to the rate of spread of the shear layer,
and which has a value at low speeds of approximately 12. (Ref.6.)

In the practical case when the shear layer grows not from zero
thickness but from an initial boundary layer at separation, the linear
variation of € with x oan no longer be expected to apply and we seek
some more representative expression. Pailb suggested that the linear
relation could be generaliszed by some power law of the form

n

e = so(-z) «ee(18)

where L is some convenient characteristic length (e.g., the boundary-layer
thickness at separation). A, J. Chapman and Korst were able to show that
for short distances downstream of separation eguation (18) was a good fit

to their measurements (Fig.3) if n %ook the value 0,7 and €, Was a

oconstant whose value depended on the shape of the initiasl boundary-layer
profile. A relation of this form suffers however from the disadvantage
that it can be valid only for a limited distance downstream and Pal
recognised that for any value of n different from unity the condition

at infinity ocould not be satisfied. In the present investigation we
require an expression for € which is conslstent with the observations of
Chapman and Korst near the separation point and whioch is valid to infinity
downstream,

By definition
X g
g = ] — &
o %R
and 8
L = =
[} NE
Hence eliminating E we have
| L X g
—_= — | —ax .ea(19)
% 8% 4 v

Now introducing an expression for € in the form of equation (15) and
taking uy = -&‘ue, we can write

1 8 rx

= = —:- b dx .. .{20)
Lo & 4

and solving this equation formally for x

o IN
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1
()
-— = [ ;ﬁ °
& b, &b

]

eeel(21)

The constant K1 may be determined by reference to Gortler's problem.

Consider a turbulent mixing layer starting from zero thickness at
separation and developing to a thickness b' in a distance 0‘6/2;0.

From equatioas (15) and (16) the virtual kinematloc viscosity is given by
1 ob
[ = Kb.u = _u(_) ...(22)
1
= 40,9 e ;o

from which we have

6
. ees(23)

hog b

Substituting this expression for K into equation (21) and remembering
that gob' is a oonstant we obtain

x 1
)

= ———, ees(2h)

i}

where
A 1 ' 1
—_ f“o -‘_;.)d(z;). o (2a)

The problem is thus reduced to one of finding the ratio of the thickmess
b of the real shear layer to the thickness b' of a shear layer
developing over the same distance oﬁ/zo from zero initial thickness
acoording to equation (10). In the asymptotio case considered by
Gortler the question of the definition of the mixing layer thickness did
not arise since the velocity profiles were similar, and the constant K
was in any case related to a second constant o which could be measured
directly. In the present context however the velocity profiles are
essentially dissimilar and it is possible to define the thickmess in a
number of ways; it will be shown that the various definitions of b lead
to different forms of the relation between ;0 and X.

(a)/
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(2) The first attempt interprets b as the physical thickness of
the shear layer measured between the stations where the veloclty is 0,04
and 0.99 of the free-stream velocity. The variation of this thickness b
with ;o can be found from the velocity profiles computed in the

previous section:-

b 1
5 7 (Bur0.99 = Gurco.0r) ses(25)
[+
and b 3,29
-_— . ao.(253)
b b4

(s

Fig.3* shows that the values of x found by this method, curve "a", are
everywhere too low, the term A in equation (24) being too large, by
almost a factor of 2, to agree with the experimental points., Further
calculations considering the thickmess of the shear layer between stations
where the velocity is O.1 and 0.9 of the free-stream velocity ylelded
values of x which were only marginally better.

(b) The second attempt was to interpret b as the momentum
thickness of the mixing layer, ©, defined by

e = ]m u*(1 - u*)dy. vee{26)

In this case the ratio b/b' is given by

b 2] =
—_ = —— 2.5[ u*(1 - u*)dz. .-.(27)
b? e

asympt —

The variation of x with 2_’,0 predicted by this method is
dillustrated by curve "™" in Fig.3, and again it is seen that the
values of A are larger than is required to agree with the
measurements.

(¢) It is apparent from these two experiments that the
identification of b with either the physical thickness or the
momentum thickness of the shear layer does not lead to an adequate

description/

*The distances are plotted as ratios of 6 instead of & for consistency
with the subsequent analysis; for the boundary-layer profile

u* = (y/&)é,e = -%:2-8.
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desoription of the variation of the virtusl kinematio viscosity with =x.
Now in the origainal arguments from which equation (15) was derived the
thickness b was introduced as a measure of both the mixing length and
the  overall veloolty gradient across the layer. 1% would seem
plausible then to retain a velocity gradient in the expression for € in
place of a thickness factor and we posit a relation of the form

K, u,
€ ves(28)

(a“')
In the present analysis we compute the representative velocity

gradient on the curve 4 = 0O where it is close to its maximum value.
As in the previous cases the constant K, oan be expressed in terms of

the conditions in the turbulent shear layer growing from zero thickness
and we obtain the fbllowing equation for A:-

]38{1 ..,/;( ::2 } a(g- ) . cee(29)

(3]

From equation (8) we have

ou* il 2
r,;(.__. - o5 ___1_f “ 4. e++(30)
9% /a0 LN

Values of x computed using equations (24), (29) and (30) are shown
as curve "o" in Fig.3 and it is seen that this curve is in good
agreement with the experimental points. If we oan now show that the
present relation between x and go satisfies the conditiona far

downstream we shall feel some confidence in using it for our later
calculations.

At large distances from separation, i.e., for small values
of %, equation (30) can be expanded as a power series

du* A A
ﬁ(—'u—' = 1 -"2+—°“" eve oo-(31)
3% %0 15 29
and ou* 1 ; za
[. [1 -"J_K( ° }d-('—) = ___0_ .___O 4+ aee .Q.(32)
3400 N2,/ 15 &

This/
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This equation approaches zero, and hence the guantity A tends to a
defipite limit, as }; + 0. Our caloulstions indicate that for small
values of ;

A z, &
-g = 0'(0.222‘-—2+"-°-"00t)

15 87
and therefore x o 2;9 ;4
— =1 "—-(1 - 00222 ;0 Fo—— ¢ -.Q}(Fig.l'-) l"();)
L) g 15 87

o
Thus in the limit at infinity downstream

X

(42
‘6" = z‘ ...(34)

whioh 18 the correot asymptotic value,

We have then the complete solution of the mean velooity Pield
which 13 in agreement with measurements near the separation polnt and
which converges to the oorrect form at infinity.

Korst et 9.111 indicate a method of finding the displacement
effect of the shear layer with a view to determining a y-scale relative
to the streamlines in the external flow., Our present analysis is
mainly oconcerned with the computation of the velocities along streamlines
in the layer and the precise location of a partioular streamline is of no
irmediate concern. 1% must be pointed out then that the illustration of
the flow field in Fig.8 shows the shear layer relative to intrinsic
co—ordinates and the absolute y-scale can be derived only by specifying
boundary condlitions in the free stream.

5. [The Velocity Along Certain Streamlines

We are now in a position to use the foregoing results to compute
the velocity along streamlines through the shear layer. In the present
analysis it will be convenient to define a stream function ¢ such that

1 oy 1 9y
U 5 oy ¥V & =—, ...(35)
p oy p 3x
Consider first the streamline *ll defined by
o
T e

where #(h is some streamline in the free stream outside the shear
layer./
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layer, WM is a streamline since the integral. on the right-hand side

of equation (36) is a constant for all x from considerations of the
conservation of momentum.]

It can be ghown that the velocity uﬁ on this "median”
streamline ﬂfm is a funotion only of the shape of the velocity profile.

In the asymptotio mixing layer the veloolty profiles are similar, hence
the velooity uf is constant (equal to ut, say) and Yy 18 then

termed the constant-velocity streamline. The value of u; depends

fairly oritically on the profile shape; calculated from the profile
given by Tollmien's meothod the value is 0,58, whereas Gortler's 1st
approximation leads to a value of 0.62.

Tracing the streamline *{rgl back into the pre-asymptotic region
of the shear layer, the veloocity Uy departs from its conatant value u;

on account of the dissimilarity of the velocity profiles. At the
separation point uﬁ is a function of the initial boundary-layer profile,
1

and for profiles of the form u* = (y/6)@ the value of wi 1is glven by

.
g - (=) )

n+2

and for m = ?, Uﬁ = 00760

The fall of uﬁ through the pre-asymptotio mixing layer from

this value at separation can be computed from numerical integrations of
the velocity profiles. From equations (35) and (36), for any station x

h h

f utdy = [ u* dy 000(58)
Iy -
where the ordinate h is outside the layer. With Yy determined
from equation (38) the velocity ufj is known at once from the velooity
profile. The wvariation of the velocity along the median streamline is
illustrated in Fig.b.

The median streamline ﬂ!u can be used as a convenient datum

from whioh to measure the stream fumction and we may define a
non-dimensional variable

¥ - ‘l’M
pu,0

™ = , vee(39)

where © is the momentum thickness of the initdal boundary leyer.
Consider the form of equation (36) at the separation point, if Y
is the dividing streamline

¥y
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'&h = q’u = [ u*ay ...(24-0)

and thls may be written

%
Wt = LD (1 - w)ay
= pub; see(31)
% = -1, o--(‘-l-z?

Thus we obtain the well-kmown result that the mass flow between the
median streamline, as we heve termed it, and the dividing streamline ia
proportional to the momentum thickness of the initial boundary layer.

The variation of the velocity, dﬁ, along the dividing

streanline is shown in Fig.5, and this diagram illustrates the lmportant
significance of the two streamlines ¢* = 0 and ¥* = ~1, The
veloocity on the median streamline approaches its asymptotic value olosely
at dlatances froam separation equal to 4O or 50 times the momentum
thickness (4 to 5 times the boundsry-lsyer thickness), while the velocity
on the dividing streamline has by then reached no more than 80% of its
asymptotic value, Thus even when the veloolty profiles oclosely resemble
the simijar asymptotic form the velocity u’]") may still be distinct from
ita final value,

The velocity profiles at several streamwise stations in the
shear layer, in terms of the non-dimensional stream function ¥* are
shown in Fig.6. [The square of the velocity, rather than the absolute
value, is plotted to preserve the linearity of the profiles near
u* = $.] The effect of the initial boundary layer on the velooity on
& number of streamlines is shown in Fig.7. It is cbserved that at a
fixed distance from the separation point increase of the initiagl
boundary-layer momentum thickness causes & rapld change in the velocity
on all the streamlines except those close to the median streamline
¢* = 0.

6. The Method of Kirk

Kj.rkw suggested that some distance, x, downstream of
separation the turbulent shear layer behaves in much the same way as an
equivelent layer developing from zero thickness over a greater distance
x+x's It was assumed implicitly that over the distance x' the
equivalent mixing layer attains a momentum thickness © equal to the
momentum thickness © of the real boundary layers Thus the origin of

mixing of the equivalent layer is at a distance x' upstream of the
real/
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Teal separation point where x' is proportional to 8. To Gortler's
first approximation the mgmentum thickness of an asymptotlc turbulent
shear layer increases as 35 th of the distance from the origin and hence
Kirk's arguments lead to

I' = 309. c-.(l{“})

The velooity profiles in the equivalent mixing layer are
similar and the u* ~ y* curves can be cbtained from equation (10)
by simple quadrature:-

A

x +x'
1" = j u’dzo ooo(ul-)

Sore data computed by Kirk's method are presented in Fig.7, and it is
seen that for values of x/0 greater than 80 (8 boundary-layer
thicknesses) the velocity along the dividing streanline is in good
agrecnent with the values predicted by our analysis. For the
streamlines in the lower-velooity part of the shear layer, for

¥* < -1, the agreement is good much nearer to separation,

[+

7« Conclusions

The mean velocity fleld in the two-dimensional turbulent
free shear layer developing from an initial boundary layer at
separation has been solved using the linearized momentum equation,
Reference has been made to the work of Korst and others in which
solutions of the equation were found in terms of a generalirzed axial
co-ordinate ;0 which was related to the distance from the

separation point x by an integral equation involving the virtusl
kinematio viscosity €.

In contrast to the previous work in which an empirical
expression was found to describe the variation of e with x, and
hence of Z_’,o with x, the relation between Z ° and X has been
established as part of the aolution. This relation is in agreement
with the measurements of A. J. Chapman and Korst near the separation
point and also satisfies the conditions at infinity downstream.

The present analysis has been used to compute the velocity of
fiuld along certain streamlines through the shear layer. It is found
that except in the region close to the separation point the wvelocities
ean be predicted satisfactorily by the simple approximation proposed by
Kirk.
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