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The problem of predicting the mean velocity on streamlines 
through the pre-asymptotic turbulent free shear layer in two-dimensional 
incompressible flow is resolved into two parts. The linearised 
momentum equation in terms of a generalized axial co-ordinate z. is 
solved in the usual way. A rel.atLon between co and the distance from 
the separation point is then established analyticdly in contrast to the 
previous use of empirical expressions. - 

It is shown that exoept in the region close to separation the 
velocity on the streamlines osn be predioted by the simple approximation 
proposed by Kirk. 
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1. Introduction 

Attempts to derive a mathematical model of the supersonic flow 
past a backward-facing step or in the wake of a blunt trailing-edge wing 
moving at supersonic speeds have drawn attention to the problem of 
predicting the velocity of fluid along specified streamlines in the free 
shear layer forming the boundary between an external quasi-inviscid flow 
and a region of semi-dead air. For the purposes of analysis an 
idealised system is examined in which the pressure is everywhere constant 
and, since there are assumed to be no soLd boundaries downstream of the 
origin of mixing along which external forces cbuld be allowed to act, the 
total momentum of the flow is conserved. Within the conservation of 
total momentum however there is a continuous exchange of momentum due to 
the mixing process between the layers of fluid moving at different 
velooitles. Air initially at rest in the dead-air region is entrained 
and gathers momentum at the expense of the retardation of air originating 
in the free stream. As the flow proceeds downstream more and more fluid 
comes under the influence of the mixjng phenomenon and the width of the 
shear layer increases steadily; but the width remains small compared 
with the distance from the origin making the shear layer a boundary-layer 
type problem with large transverse gradients. 

In general mizd.ng is initiated when the stream separates fran a 
solid boundary and a boundary layer will. have developed upstream of the 
separatio3 point. Thus at its origin the shear layer has a non-zero 
thickness and the velocity profile of the initial boundary layer, and in 
the turbulent case the distribution of turbulent shear stress also, 
represents an important boundary condition placed on the subsequent 
development of the layer. The flow in the early part of the mixing 
layer, (see Fig.8), is dominated by the transition fran velocity profiles 
of a boundary layer type to those corresponding to fully-developed mixing 
further downstream, and in this region the thiokness of the initial boundary 
layer presents a referenoe dimension which determines the scale of 
succeeding velocity profiles. 

As the flow proaeeds downstream the influence of the initial 
disturbances in the shear layer decays and at very large distances from 
separation the characteristio dimension loses its significanoe with the 
velooity profiles approaching similarity. The existence of this 
asymptotic form has led to the formulation of the usual simplified flow 
model in which the thiokness of the layer is sero at its origin and 
similarity of the velocity profiles is assumed throughout. This model 
implies a higher order singularity at the separation point insofar as there 
must be a disoontinuity in velocity as distinct from one in velooity 
gradient, but any difficulties in the solution are purely looal as is the 
case of the flow in the boundary layer near the leading edge of a plate. 

In the laminar case D. R. ‘2 Chapman has derived exact 
solutions of the momentum and energy equations to describe the velocity 
and temperature distributions through the asymptotic mixing layer for Mach 
numbers in the subsonic and supersonic ranges. In the turbulent case solutions 
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of the mesn velocity field in incompressible flow have been obtainedby 
Tollmien using Prandtl's mixing length hypothesis, and by G%tle& who 
made use of the virtual visoosity concept, good agreement with experiment 
being achieve&6. Abramovioh7 has developed Taylor's vorticity 
transport hypothesis to examine the effect of heat transfer through the 
asymptotic turbulent shear layer for Mach numbers up to 1.0. 
at supersoxri.o speeds8,9,'0 

Experiments 
have shown that the mean velocity profiles 

differ little in form from those at low speeds and the only effect of 
increasing Mach number appears to be a decrease in the rate of spread of 
the shear layer. Korst et ~~11 have used the error-function velocity 
profile (G&tler's first approxxddon) as the basis of their 
calculations at supersonio speeds. 

A lsminar free shear layer growing from zero thiola7ess at 
separation has been appmeckEa experimentally only with difficulty~ and it 
is not easy to conceive of a set of conditions which would promote a 
fully-developed turbulent shear layer with zero initial thickness. In 
most practical cases a boundary layer of finite thickness has already 
developed upstream of separation and the velocity profiles in the 
separated layer underg0.a transition from the initial form to their 
asymptotic similar form far downstream. The effects of the initial 
boundary layer on the larmnar shear layer have been discussedbriefly in 
Ref.12 and the corresponding problem in turbulent flow has been 
considered by Korst et 6111 and Kirkl3. Korst’s method, which is 
treated in more a&al. by A. J. Chapman and Korstl4, is based on the 
solution of a linearised momentum equation and leads to the derivation 
of velocity profiles in the initial part of the shear layer in terms of 
a genexxlised streamwise co-0rtinat.e. No attempt was made to prediot 
theoretically an expression connecting this co-ordinate and the distance 
from the separation point but an empirical relation of a form suggested 
by Psi.15 was found to agree well mth low speed measurements. 

The present exercise sets out to establish, on an analytical 
basis, a relation between the generalised position parameter and the 
physical space co-ordinate, which is in agreement with the observations 
of A. J. Chapman and Korst near the separation point and which is valid 
to infinity downstream. This information is then used together with the 
existing solutz.on of the momentum equation to compute the velocities 
along typical streamlines 111 the shear layer. 

A simple method of predicting the characteristics of the 
pre-asymptotic shear layer was proposed by KirkIs. It was suggested 
that the real mixing layer could be replaced by an equivalent layer 
grotig over a greater distanoe from zero thickness. In this way 
reference could be made to all the results for the asymptotic shear 
layer and the effects of the fxnxte initial thickness translate& into 
nothing more than a linear shift of the origin. It will be shown that 
except in the region close to the separation point &k's method yields 
values of velocity which are in close agreement with calculatxons using 
the present analysis. 
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The present work represents an attempt to investigate Certain 
basic principles of the turbulent free shear layer developing from an 
initial boundary layer at separation. The analysis considers sn 
incompressible flow model for simplicity but there appear to be no 
grounds for assuming that the onset of compressibility factors has any 
large effect on the turbulent mixing process and it would seem that 
there is some prospect that the general conoluaions of the work would 
find an application in the treatment of the turbulent shear layer at 
supersod. speeds. 

2. The Momentum Equation 

The momentum differential equation for the incompressible 
free shear layer at constant pressure has the same form as that of the 
attached boundary layer and can be written 

au au al 

p”G+pv- = -- ay ay 
. ..(I) 

It has been 12 shown that the equation may be reduced without serious 
loss of accuracy to the form 

. ..(2) 

where t is a fixed referenoe velocity usudly taking some mean 
value between the velocities at each edge of the shear layer. In 
Ldnar flow the shear stress T is known at once in terms of the 
local velocity gradient and the coefficient of viscosity p which 
is a property of the fluid. For the turbulent case we make use of 
Prandtl's virtual kinematio visoosity hypothesis 

au 

T = 5’ 
. ..(3) 

where E is not a property of the fluid but is some function of X. 
The assumption that s does not vary with y is laxwm to lead to 
satisfactory phenomenological descriptions of the flow field but it 
must not be forgotten that it is sn entirely artifioial concept and 
has no physioal backin&. 

From (2) and (3) we obtain 

. ..(4) 
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and making the transformation 

I 

X.2 
F;sl -ax 

0 "a 
. ..(5) 

we have finally 

au a% 
- = -* 
aF; W 

. ..(6) 

This equation will. be reoognised as the ola.%iocil one-dimensional 
diffusion equation for wbioh stsdard solutions are availablel7. 
The problem thus resolves itseU into two parts, the first being to 
solve equation (6) together with the appropriate boundary oondltions 
and the second to interpret the funotion s with a view to deriving 
some plausible relation between 4 and X. 

3. Solution of the Equation 

Equation (6) is parabolio and the velocity field throughout 
the free dxing layer will be d.efFned once we speoiry the velocity 
profile at the separation point. At & = 0 let 

u = u,(Y) for O<y<r 

u = 0 for -.P<y<o. 

The solution is then &.ven by 

1 * 
uk,~) = - u,(a) 0 

4% d 
-(a-d da) 

Y 
z = -. 

24-E 

In order to obtain a convenient reference length for the solution 
we my define the tbiokness 6 of the Mtislboundary layer, and 
the boundary conditions oan then be written 

U 0 = uo(y) for & = 0, 0 -c y < 6 

U I u 0 e for c = 0, 6 < y < - 

where ue is the free stream velocity. 

. ..(7) 

. ..(78) 
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The solution then becomes 

where 

&,Y) = 2 [I 
1 % 

2 
+ -=rf(Z - r,)l +s 

VI I 
U,(a) e-(a-c)‘&, . ..(a) 

0 

. ..(&I) 

It remains to specify the velocity profile, uc(y), in the initial 
boundary layer. For the turbulent case the & th power law profiles 

.I L 
Yrn 

u = u 
e ( 1 s 

are lmown to be a good empirical fit to measurements, with m taking 
values E&round 7. Substituting this information into equation (8) 
we have 

u I 
u* = - P ~[l+erf(t;-t;o)l+ 

I 
‘a’ e-(a-t;‘da. . ..(Y) 

u e 
4% z” o 

Thus the solution of the velocity field is determined in terms of 
genemlized co-ordinates L;o and c, where uzo = y/S and the 
relation between cc and x remains to be found. 

The integrd. in equation (9) is diffioult to evaluate in 
closed form for large values of m but A. J. Chapman and Korstl4 have 
carried cut graphical integrations to compute the velocity profiles 
for values of Go between 1 and 5. As GC + 0, i.e., at infinity 
downstream, the velocity profiles approach similarity in the single 
parameter Z:- 

u* = &(l+erfz). . ..(lO) 

This equation is identical to Gijrtler's 1st approximation. This 
fact may be used to sve some assessment of the accuracy of the 
present method. G&tler's 1st apprcdmation is luwwn to be 111 good 
agreement with the measured mean velocity profile in the asymptotic 
mixing layer at least near the centre of the layer but with scme 
deviation towards the edges. The present method is considered to be 
of sufficient accuracy to establish overall trends but is not intended 
to yield quantitative data which is accurate to better than a few 
peroent. 
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The computation of velocity profiles in the shear layer can 
be simpld'zed if an approximation is made to the initial boundary-layer 
profile to enable a dosea solution to be obtained. It is Imown that 
linear proflles of the form 

I$ = 1-A 1-Y 
( 1 6’ 

with 0 < L < 1, can be chosen to resemble the&h power curves fairly 
closely, and for m = 
(see Fig.1). 

7 the value h = $ appears reasonable 
It is not neoessary to retain the same thickness for the 

two profiles and in the present analysis we sllow the thickness 6' of 
the Lnear profile to vary such that the same momentum thickness is 
presemed. For m = 7 and A = : we obtain 

6' = 0.933 6 

which also specifies that 

g; = 0.933 r;,. 

By substituting equation (11) into equation (8), we detenoine the 
velocity field in the mixing layer in the form 

. ..(12) 

We see from Fig.2 that for values of 5, smaller than about 2 
it is not possible to distinguish between the velocity profiles computed 
from equation (13) and Ihose obtained from grapbicdl solutions of 
equation (9). Near the separation point then we must retain the correct 
initial conditions but further downstream we see that it is possible to 
use an approximate set of bounm oonditions without tignificant loss of 
accuracy. Flg.2 also serves to demonstrate that the calculated velocity 
profiles are in good agreement with the measurements af Bef.14. 

4. The Function E 

We now face the problem of specifying the variation of E 
with x in order to determine the relation between the generalieed 
streamwise parameter Go and the pbyaioal co-ordinate x. 

Let/ 
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Let us first recall Pruldtl's discus.-lor of the virtual 
kinematic viscosity concept (see Ref.18, e.g.). The mixing It-ngth 
hypothesis of turbulence had led to exprcsslons t'or the vlrtu.d. 
kinematic viscosity in the form 

- au 
E = 8” - 

I I ay 
. ..(14) 

free turbulent flows PrS,dtl where C was the mixing lenpth. For 

suggested that the size of the fluid elements whsfch are cause? 1.0 move 
in a lateral direction by the turbulent mixing process is of s 
comparable order to the width b of the shear layer, and furth~~r that 
the fluid elements exper>.mce an overall velocjty gradient whi~.t: IS 
proportiond to the maximum velouty difference across the lsycr. 
divided by b. Hence in the present context +-(lustion (II+) coulrl be 
modified to 

E = K, b u e 

where K% is some constant to be found. 

. ..(-I") 

Reco{~u.ing that the :~symp'toti~. turbulent mxung layer crows 
lxnearly with the d.ist:u~ce from 1%:. o~-~@n, G&tl.er WRS able to .d.te 

. ..(16) 

and from equations (5) and (7a), taking % = he,* 

2:2 . ..(17) 
x 

where / 
--_-_____________-__------------------ 

*Korst" t&es 
for thzs so that equation 

yt = ue but scales the value of E to correct 
16) becomes 

This xderpretatlon of "R is reL:lmed by A. J. (.hapman and Korst 14 who 
find an empzrxal relalzon for E in the pre-asyaptot-Lo shear layer. 
For this reason their quoted values of the constant E 0 appearing in thnl 
relation must be halved to be consistent tith the more general convention. 

Chapman and Korst are not correct in writing I+ = ue for 
laminar flow where of course 'UC kinematLc viscosity values cannot be 
sdLed nccoraingLy (see Ref.12, e.g.). 
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whem u is a oonstant related to the rata of spread of the shear layer, 
and which has a value at low speeds of approximately 12. (Ref.6.) 

In the practioal oase when the shear layer grows not from eero 
thiohess but from an initial boundary layer at separation, the linear 
variation of E with x osn no longer be expect&to apply and we seek 
some more representative expression. Pail5 sllggestedthatthe unear 
relation couldbe generalisedby some power law of the form 

xn 
E es - 

0 O L 
. ..(18) 

where L is some oolrpenient characteristic length (e.g., the boundaq-layer 
thickness at separation). A. J. Chapman and Worst were able to show that 
for short distanoes downstream af separation equation (18) was a good fit 
to their measurements (Fig.3) if n tookthevslueO.7and co wasa 
constant whose value depended on the shape of the iuitielboundery-layer 
profile. A relation of this form suffers however from the disadvantage 
that it osn bevslddodyforalimitddistanoe downstream an&Psi 
xeoogpi5eathBtfoxangvalue of n diPferentfromud.tythe condition 
at inpinity 00ula not be satisfied. In the present investigation we 
require an expression for E whioh is consistent with the observations of 
Chapman ma Korst near the 50pamtion point ma ahioh is vdia t0 infinity 
a0rmstre-. 

By &fi.nition 
XE 

&= -ax 
I 0% 

aa 6 
co = -. 

a 

Iienoe elAnbating & we have 

I 4 

I 

XE 
- ax. 

z=600u, 
. ..(lY) 

NOW introducing m expxession for E in the fofm of equation (15) ad 
taking 'k I &ue,weoanwrite 

and solving this equation forma;llly for x 
X 

s I 
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-=- . ..@I) 

The oonstsnt Ki my be determined by reference to &tler's problem. 
Consider a turbulent mixing layer starting from zero thiololess at 
separation and developing to a thidmess b' in a distance a% l 

From equations (15) and (16) the virtual kinematic viscosity is giGen by 

E = K, b'ue 

from which we have 

. ..(22) 

Substituting this expression for K into equation (21) and remeribering 
that cob' is a constant we obtain 

; = u/k;a(;) 

0 

u A 
= ---9 . ..utJ 

go 6 

where 
A r 
- = (r 

Fc 
1 

6 
0 

-;)a(+). 
0 

The problem is thus reduced to one of finding the ratio of the thickness 
b of the real shear Layer to the thickness b' of a shear @PF 
developing Qver the sm.2 distance 
according to equation (10). 

06&, from zero initial thiolmess 
In the asymptotio case considered by 

G&tler the question of the deftition of the mixing layer tbiokness did 
not arise since the velocity profiles were similar, and the oonstsnt K 
was in my case related to .S second constant u which could be measured 
directly. In the present context however the velocity profiles are 
essentially dissimilar +nd it is possible to define the thickness ip 8 
number of ways; itwill be shown thatthevtious definitions of b lead 
to different forms of the relation between go ana X. 



(i 1) The first attempt interprets b as the physical tiiolmess of 
the shear layer measured between the stations where the velocity is O.Ol 
and 0.99 of the free-stream velocity. The variation of this thickness b 
with go can be found from the velocity profiles ocmputed in the 
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previous section:- 

and 

b 

s 

b' 3.29 
-= 
6 x,’ 

. ..(25a) 

Fig.J* shows that the values of x found by this method, curve "a", are 
everywhere too low, the term A in equation (2L) being too large, by 
almost a factor of 2, to agree with the experimental points. Further 
calculations considering the thictiss of the shear layer between stations 
where the velocity is 0.1 and 0.9 of the free-stream velocity yielded 
values of x whioh were only mrgintilly better. 

(b) The second attempt was to interpret b as the momentum 
thiokness of the udxing layer, 8, defined bs 

I 

OD 
e = u'(1 - u')ay. 

-0D 

In this case the ratio b/b' is given by 

. ..(26) 

b 8 OD 

T--e 
= 2.5 u*(l - u')a& . ..@7) 

asympt 
I -m 

The variation of x with Z. predioted by this method is 
illustratedby Curve 'b" in Fig.& and agsin it is seen that the 
values of A me largerthanis required to agree with the 
measurements. 

(c) It is appmnt from these two experiments that the 
identification of b with either the physical thickness or the 
momentum thickness of the shear layer does not lead to .W a&Pate 

description/ 

*The distances are plotted as ratios of 8 instead of 6 for consistency 
with the subsequent analysis; for the boundary-4er profile 

u* = (y/q+, 8 = g 6. 
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description of the variation of the virtual kinematic viscosity with x. 
Now in the origual arguments from wbioh equation (15) wa8 derived the 
thickness b was introduced as a measure of both the m.king length and 
the.overdl velocity gradient across the layer. It would seem 
plausible then to retain a velocity gradient in the expression for E in 
plaoe of a thiokness faotor and we posit a relatLon of the form 

E = hue . 
au* 

( 1 - 
ay R 

In the present analysis we oompute the representative velocity 
gradientontheourve L; = 0 where it is ol~se to its maximum vdue. 
As in the previous oases the constant K, oan be wssed in terms af 
the oonditions in the turbulent sheer layer growing from zero thiolmesa 
and we obtain the following equation for A:- 

; = cs/“[l -fi( ;I-] a($). . ..(ZP) 
0 0 

From equation (8) we have 

au* 
Ai- ( 1 = e -"i +- 

2%H.g 

&-o&O am e I aa* 
. ..oo) 

aci grio 

Values of x computed using equations (24), (29) and (30) Bpe shown 
a8 curve "0" in Fig.3 and it is seen that this curve is in good 
agreement with the experimentel points. If we oan mlw show that the 
present relation between x and z. satisfies the oon&i.tions far 
downstream we shall feel some confidence in using it for our later 
caloulations. 

At large distances from separation, Le., for small values 
of Go, equatipn (30) oan be expanded as a power series 

and 
. ..(32) 
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This equation approaches zero , and hence the quantity A tends to a 
definite limit, a8 co + 0. Our calculations indicate that for small 
values of go 

A z c;: - = 0.222-z+--... 
8 15 87 

and therefore 
cp c.:' 

- 0.222 t;, +A -2 + . . . (Fig.41 . ..(33) 
15 87 

Thus in l&e Umitatinfinity downstresm 

x o- 
-=- 
6 c 

. ..(34) 
0 

whioh is the oomeot asymptotic value. 

We have then the oomplete solution of the mean velocity fiela 
whioh is in agreement with measurements near the separation point and 
which converges to the oorreot form at infinity. 

Korst et al" indiaate a method of finding the displaoement 
effeot of the shear layer with a view to determining a y-scale relative 
to the streauiUnes in tie external flow. our present analysis is 
mainly ooncemed with the computation of the veilocities along streaddn.es 
in the *er and the preoise location of a partinular streadine is of no 
immediate concern. It must be pointed out then that the 5JJ.ustrat.ion of 
the Row field inFig. shows the shearlayerrelativeto intrinsic 
oo-ordinates and the absolute y-soele can be derived ody by speoFFging 
bouudary oon&itions in the free stream. 

5. The Velocity Along Certsin Streamlines 

We are now in a position to use the foregoing results to compute 

the velocity along stresmlines through the shear layer. l.n the present 
analysis itdllbe convenient to define a streamfunction $ such that 

1 w 1 a* 
u = --, v = --. . ..(35) 

P aY P ax 

Consibr first the streamline $M define&by 

. ..(34 

wbem $,, is some stmamlhe inthefree strea~~outside the shear 
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layer. [ijM is a streamline since the integrsl on the right-iba sidfi 
of equation (36) is a oonstant for ail. x from oonsideratiodb of the 
conservation of momentum.] 

It oan be shown t&at the velooity % on this %disnn 
streamline $ is a fuuotion only of the shape of the velooity prof'ile. 
In the asymptotio mixing lsyer the velooity profiLes are similsr, hence 
the velooity u$ is oonstant (equal to I$, say) and $ is then 
termed the oonstfbnt~elooity streamlAne. Thevalueof u; aepenas 
fairly oritioalJy on theproftie shapej calculatedfrom the profile 
given by TollmIen's method the value is 0.58, whereas G&thr's 1st 
approximation lea&s to a value of 0.62. 

Traoing the streamline $ 
! 

baok into the pre-asymptotio region 
of the shear wr, the velocity ti departs from its oonstant value u', 
on aooount of the dissimLlad.ty of the velooity profiles. At the 
separation point s is a fuuotion of tbe,initislboundary-layer proflle, 

tid for profiles of the form u* = (y/h)= the vshe of I.$ is #mm by 
4 

% = (;)“’ . ..m 
ma for m = 7, s = 0.76. 

The fall of I$$ through the pre-aaymptotioIn?&.nglayerfrom 
this vslue at separation oanbe oomputedfromnuwerioalintegrations of 
the velocity profiles. From equations (35) and (36), for any station x 

. ..(3%) 

where the ordinate h is outside the layer. With y, determined 
from equation (38) the velooity u$ is known at onoe from the velooity 
profile. The variation of the velooity along the median streadine is 
illustratea in Pig.5 

The medim streamline $fM oan be usea as a oonvenient datum 
fromwhiohto measure the streamfunotionandwemsydefine a 
non-dimensional variable 

where 0 is the momentum thickness of the initiel bw leyer. 
Consider the form of equation (36) at the separation point, if qD 
is the dividing streamline 

‘d 
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#h - JrM = u*w 

end this maybe written 

. ..oa) 

Thus w obtain the well-knownresultthatthe massflowbeiz~een the 
median atreedine, as we have termed it, and the dWiding streadine is 
proportional to the momentum thickness of the initial boundary leyer. . 

The varlatim of the velooity, qj, along the ctLviaing 
streamlim is shown in Fig.5, end this diagram illustrates the iI?lpOdfud 
signifioenoe of the two streamlines $* = 0 and #* = -1. The 
velooity on the median streemline approaohes its asymptotic value olosely 
at distances fram separation equal to 4.0 or 50 times the momentum 
thiokness (4to5times theboundary-Wer thiokness),while the velocity 
on the dividing streamline has by then reaohed no more then &$ at' its 
asymptotic value. Thus even when the velocity profW.es olosely resemble 
the similar asymptotio form the velooitg uij may still be dlstind Pram 
it8 fine1 value. 

The velooitg profiles at several streamwise stations in the 
sheer layer, in terms of the non-dimensional stream funotion $* 8p~ 
shown in Fig.6. [The square of the velooity, rather than the absolute 
value, is 

= 6.1 
plotted to preserve the lineari* 0ftheprofUes near 

U* The effect of the initialboudarylsyeronthe velooitgon 
$ number of streeml&es is shown in Fi.g.7. It is observed that at a 
fixed distance from the separation point increase of the initial 
boundary-lsyer momentum thickness causes a rapid ohenge in the velooity 
on all the streamUnes except thoae olose to the median streamline 
q* e: 0. 

6. The Method of Kirk 

RLrk'j suggested that some distanoe, x, down&ream of 
separation the turbulent shear leyer behaves in muoh the same way as en 
equivalent leyer developing from sero thickness over a greater distance 
x+x'. It was assumed impU.oitLy that over the distanoe x1 the 
equivalent mixing Layer attains a momentum thiokness 8 equal to the 
momentum thbhess 8 of the mal boundary leyer. Thus the orlgtn of 
mg of the equivalent layer is at a distanoe X' upstream of the 
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red separation point where x1 is prop6ticnsl. to 8. To G&l.er's 
first appraximation the mpmentum thickness of an asymptotic turbulent 
shear layer increases as 36th of the distance from the origin and hence 
Kirk's arguments lead to 

X’ = 300. 

The velocity profiles in the equivalent mixing layer are 
similar and the u* -. Jr* curves can be obtsined from equation (10) 
by simple quadrature:- 

Some data computed by girk's m&hod are presented in Fig.7, and it is 
seen that for values of z& greater than 80 (8 boundsry-mr 
thicknesses) the velocity dong the dividing stredline is in good 

agreement with the values predicted by cur analysis. For the 
streamlines in the lowercvelooity part of the shear layer, for 
Q* <-1,+&e agreement is goodmuohn-rtc separation. 

7. conclusions 

The mean velocity field in the two-&mensional turbulent 
free shear layer developing from an initial boundary laser at 
separation has been solved using the Linearized momentum equation. 
Reference has been made to the work of Korst and others in which 
solutions of the equation were found in terms of a generalized axial 
co-ordinate EC whichwas relatedtcthe distance from the 
separation point x by sn integral equation involving the vi&u&i 
kinematic visoosity E* 

In contrast to the previous work in which an empirical 
expression was found to describe the variation of E with x, and 
hence of Z. with x, the relation between r;c and x has been 
established as part of the solution. This relation is in agreement 
with the measurements of A. J. Chapman and Korst near the separation 
point ana a&.0 satisfies the conditions at infidty downstream. 

The present analysis has been used to compute the velocity of 
fluid along certain stres.mUnes through the shear ~EQW~. It is found 
that except in the region close to the separation point the veloaities 
can be predicted satisfactorily by the simple approdmation proposed by 
Kirk. 
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