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SUMMARY

A method of extrapolation based on a previocusly glven formula faor
creep is derived, and examples are given of its applicatlion to creep rupture
and creep strain data., The accuracy of extrapolation is statistically
evaluated and shown to be within the cbserved scatter of the experimental data,
Seven other methods are shomn to have errors significantly greater than that of

the data,
Limitaticns of the method are dlscussed,
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1. Introduction

The problem of deviaing e reliable method for extrapolating the
results of practicable creep tests to the long periods over which many
machines are required to operate has attracted considerable attention, but
the view is widely held that the changes that take place in engineering
materials during creep are far too complex to be governed by laws that would
be simple encugh to be employed. Nevertheless a number of simple methods has
been proposed, The methods differ in detall, but in prineciple either

(a) extrapolate a supposed law that relates time to stress with
temperature constant, e.g. the well known methods of
direct extrapolation on graphs of log stress versus log
time or of stress versus log time

or (b) extrapolate a supposed law that relates time to
temperature with stress constant, e.g, those of Bailey,
Larson and Miller, Manson and Haferd, and Dorn,

In effect, the advocates of these methods advance, collectively,
the opposite view that the governing laws are so simple that a change of
stress, according to (a), or a change of temperabure, according to (b),
changes the rate of creeping of every constituent of the material by exactly
the same amount, Several of the methods have shown an encouraging success,
but all have been found seriously to fail on occasions in which there was no
especlal reason, the contrasting view apart, for expecting them to fail
(c.f. Appendix), They are thus generally believed to have their uses but to
be unreliable.

The method of the present paper lies between the opposed
alternatives, and the results contribute evidence that the laws of creep are
neither so complex as the one view would suggest nor so simple as would the
other., It is based gpon an extensive study of experimental data for
engineering allqys1‘ for the purpose of establishing a firm quantitative
expression for the relationship during creep between the four mechanical
variables concerned, namely stress, strain, time and temperature.

All interpretations of creep data far the purpose of guiding
extrapolation have to contend with the extremely limited amount of data
usually available relative to the considerable scatter in performance., The
amount is seldom sufficient to confirm or deny any reasonable law that may
be considered. The interpretation upon which the present report is based is
supported by the fact that it has led to an acceptable evaluation of the
scatter, and the scatter found has proved to be in quantitative agreement
with that directly indicated by the available results for replicate specimens,

In the working ranges of creep, the differences of scatter between
different fully-developed alloys do not appear to be large, and a scatter
band of width equal to twice the standard deviation (within which only § of
the points may be expected to fall) is seldom narrower than 3 cycle of log
time. Thus whenever data plots are examined for evidence of quantitative
trends, it is more realistic to associate with each point confidence limits
of this order of magnitude than to follow the frequent practice, when a
smooth curve is drawn as far as possible through the experimental points, of

accepting/
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accepting all but inconvenient points at thelr face value., The procedure
leads to a rather different weighting of previous evidence for regular
trends in creep.

Almost all the data examined have been consistent with the view? s
that the creep strain & comprisés the sum of & number of terms of the form

P’ eee (1)

in which o 18 the stress, g and K are simple numbers, C is an
arbitrary constant, and ¢ a combination of time t and temperature T of
which further details are glven in Section 2. The data that are unambiguoualy
exceptional are those for which a marked change in the nature of the material
appears to occur within the experimental range. A conglusion to be drawn
from the research of which the present work forms part® is that creep closely
follows the law stated in an interval between changes of this kind, but departs
widely from it when they occur. They may occur during the progress of a test,
as when decelerating creep follows a period of accelerating creep, or during
loading, when unusually large strains may be cbserved. They may also be
encountered within the range of stress or temperature covered by different
tests, so that one part of the data applies to one conditian of the material
and ancther part to another condition,

The need for fairly extenslve sets of data for study, especially
for tests of extrapolation, has the effect of confining attention principally
to established materislas. They are materials that have been succesafully
developed to avoid these changes, or at least to reduce their effect to
magnitudes comparable with the random irregularities in results, The need
also to reject unusually scattered or ambiguous data, which 1s unavoidable
in early studies, has the similar effect of selecting materials in which such
changes are unimportant. However, this is & current limitation on the
testing of any method of extrapolation,

The present method is based upon fitted curves that conform to the
law given and which give uniform weighting to all the data avallable, The
fitting of the curves i1s best performed by a graphical analysis of the data
identical with that whereby the laws were discovered. The scatter was
evaluated by comparison of experimental points with theoreticel curves
fitted to each set of data as a whole., Accordingly the scatter results are
presented in Section 3 after a description of the method of fitting in
Section 2, The method of extrapoclation is described in Section 4 and
results are discussed in subsequent sectiona,

The variocus features of the formula could be set ocut in a formal
mathematical manner and the fitting and extrapolation be handled numerically.
However, the procedure would be unduly cumbersome and without significant
benefit,

The data considered are principally those previocusly analysed in
deteil in Ref,5 and comprise all those in the Timken Digest, complete

families of creep curves for Nimonic alloys, together with data for other
alloys that came to hand., Over 100 sets of data were studied relating to
alloys of more than 40 compositions., The scatter of all the data was

evaluated,/
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evaluated, but tests of extrapolation were necessarily confined to the
rather few sets that were both without undue scatter and sufficiently
extensive to be usefully divided into shorter and longer time portions
with enough detail in the former to define behaviour. All sets of thia
category that were available when the work was in progress were used.
Analyses of creep data from other scurces that have since come to hand have
also been made,

In order to make details available without unduly extending the
present paper, these are included in Refs,6,7,8,9 and 10,

2, Analysis of Data

The following summary, which will be illustrated later by examples,
will indicate both the first stages of the method of extrapolation and the
experimental support and basis for the guiding theory. Rupture data involve
two stages of analysis and families of creep curves three stages,
Extrapolaticn requires a further stage.

2.1 Stage 1: Resolution of creep curves into components

Creep curves for many commercial alloys have been found to be a
close fit to the equation?

1
e = at? + bt + of? e (2)

in which £ 1s the creep strain after subtraction of the elastlc strain that
ocours during loading”’, t is time measured from the instant when the creep
strain may be regarded as zero, and a, b and ¢ are constants in a
particular test that depend upon the constant stress o and constant
temperature T of the test., The exponents % and 1 are those found by
Andrade, Kennedy, and others for a varlety of materials and relate to the
primary and secondary stages of creep, while the term with exponent 3
represents accelerating creep, The interpretations of & and ¢, and the
values of the exponents have been derived and checked by detailed studies,
especially of the Nlmoniec alloys3ah’5’7:8’9, and there 1s good reason to
believe that the equation is of wide applicability,

o

When extrapolation is based on families of creep curves, Stage 1
congists in the resolution of each curve into the three components of strain
represented by the three terms on the right of Equation (1), They will be
referred to as the t,, t+ , and t, components and are represented by

a3

straight lines on a graph of log € versus log t with slopes of ;, 1 and
3 respectively, A convenient and accurate method of resolution of the curve
into its campenent lines by the use of master curves has been deviaed10.

2,2 BStage 2: Resolution of components into terms

The magnitudes of the three components of Equation (2) vary with
time stress and temperature. At each temperature of testing, the components
are dlsplayed by the above method for each of the testing stresses, Stage 2

consists/
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consists in plotting, for the t%, t, and t; components at each
toemperature separately, the log stress of the test against the log time for
the component concerned to reach an arbitrary value, say 0.1%. The curves
cbtained are analogous to plots of times to rupture, and indeed creep rupture

data afford the simplest example,

Experience has shown that the time to rupture corresponds closely
to the time for the dominant component on the right of Equation (2) to reach
a critical value, Materials that rupture after a pronounced stage of
accelerating creep are usually found-’ to have times to rupture that are
effectively determined by only the component of Equation (2) for which the
exponent is 3, while materials that display a long stage of steady-state
creep and proceed to rupture without an appreciable accelerating stage have
“times to rupture that are effectively determined only by the component whose
exponent is unity, Thus for rupture data the direct experimental graphs of
log stress versus log rupture time for each of the temperatures of testing
(see Figs,1, 2 and 3) are equivalent to the graphs of Stage 2, Just desoribed,

It is well known that the points in such plots of rupture data are
liable to fall upon segmental curves formed by straight lines with abrupt
changes of slope; indeed, the onset of the changes of slope has been cne of
the problems of prediction. Detailed study has shown® that the slopes of the
segments, where the segments are clearly present, take values from the
sequence

S, =, I LRl e (3)

The clear experimental evidence for the existence of several segments
indicates that each component on the right of Equation (2) is compound,
i.e. each of the coefficients a, b, ¢ consists in general of a sum of
terms in stress raised to a power, so that the creep strain is to be
repreasented by a sum of terms of the form “

oonst, x oftf eos (W)

in which K has one of the values

;’ 1, 5’

and the ratio K/f has one of the values at (3). The constant contains
the temperaturs.

The qualification "where the segments are clearly present" relates.
to the fact that the proposed formula predicts, in agreement with experiment,
that the log stress versus log time graphs are continucus curves which may be

represented/
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represented adequately by straight lines with ebrupt changes of slope only

when K has the value 3 (c.f. Fig.1)*. When K = % or 1, the theoretical
curvature is more gradual, and the points must be fitted with the curve
appropriate to the value of K. The curves may be regarded as being agymptotic
to lines of standard slope: Fig.2 is an example. )

Stage 2 thus consists of the resolution of the log stress/log time
plots (either for rupture or for & constant value of the strain oompone?t
concerned) into their component segments (K = 3) or asymptotes (K = 5 or 1),
These are conveniently referred to as the 1, %, % etc., segunents or
asymptotes. Any one set of straight lines of common standard slope -K/f Tor
all the temperatures of testing is the graphicsel display of a single term of
formula (4)., A master-curve method!© has been devised for determining the

asymptotes.

2.3 Stage 3: Determination of the temperature dependence of the terms

The spacing in log time with reaspect to temperature between the
lines of a given standard slope (whether segments or asymptotes) differs from
slope to slope, The result is thought to indicate that the different
metallurgical factors present are influenced by temperature to different
extents., The time-temperature relaticnship may be assessed for each term by
cross-plotting the Stage 2 graphs for the slope concerned for any constant
value of the stress, in order to obtain a graph of log time versus temperature.
Exemples are inset in Figs.1, 2 and 3.

The various time-tempersture parameters that have been proposed by
Dorn, Larson and Miller, and others are, in effect, equations of a curve to
fit cross-plots of this nature. For many purposes, but not all,the choice at
this stage of a time-temperature psrameter is not ocritical, and even a freely-
drawn curve in the manner used by scme authors would often be reasonable,
For a number of heat-resistant alloys, however, the points derived from at
least one of the standard slopes ere found to fall, as in Fig.1A, upon curves
that are convex towards longer times, i.e, to have both a negative slope and
negative curvature. Such a result may be seen to be incompatible with all the
familiar parameters, and indeed with the literal use of the usual exponential
law of temperature dependence. The following parameter2s3s11 has been found
to meet requirements

(T - T)'A = constant, when o and & are constant ,,. (5)

in which T' is a constant temperature greater than T and A 1is an
empirical constant, The different temperature dependence of the different
factors in creep is represented by the use of different constants T' for
different slopes, The exponent A is not critically determined by experiment
and has been standardized at the value 20 pending more definite evidence., The
parameter? mccords with a feature to be cobserved in creep data that extend
over a sufficiently wide range of temperature that properties become snomalous
near g certain temperaturs.

When/

*Thereis evidence for some materials that an additional term component of
Equation (2) with K = 9 1s needed. This is of no consequence in the
analysis of rupture date since the changes of slope are abrupt for amy large
value of K. The preoise value of K is then of no consequence.
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When the log time/temperature graphs have the opposite, i.e.
positive, curvature, one or more of the alternative parameters are available.
However for consistency with the asbove evidence and for a more specifie
reason given in Section 4 the requirement has been met by adapting Equation (5)
to the form

(T - T*)*®° = constant, T' < T eer (6)

Stage 3, which 1n principle completes the initial analysis of the
data, consists in the determination, for each group of asymptotes of ome
standard slope, from & log t versus T cross-plot of a group at an
arbitrary constant stress, of the various values of T'. 1In practice it is
usually necessary to revise the analysis by one or more successive
approximations in order to obtain the best overall fitting of the data.

2.4 Discussion

The analysis corresponds to the assumption that creep strain is
represented by a sum of terms of the form (1) in which ¢ dis the expression
given in Equations (5) or (6). Alternmatively and in summary, it assumes
that a family of creep curves has the following structure.

Fach creep curve comprises three components represented by the
three terms on the right of Equation (2)., Each component is compound and
comprises the sum of several similar basic terms with common K of the form (4).
If each basic term is considered in isolation, the graph of log strain versus
log time is a straight line of slope K with one of the values 3, 1 or 3;
the graph of log stress versus log time is a straight line of slope - K/B
with one of the values 1, %, % sveej the graph of log time versus
temperature is a standard curve (Equation (5) or (6)): the quantities not
mentioned in each instance are treated as constant. The usual direct
experimental graphs and cross-plots of these represent the joint contributions
of several bagic terms and are thus normally curves whose relation to the
standard constants is not apparent until the data are analysed in terms
of the present formula.

It 1s a feature of a sum of terms of the present form that their
relative magnltudes change rapidly with changes of the variables, so that
the number of terms that is important in any one set of creep curves is not
unduly large,

For the purpose of prediction, the results of the graphical
analysis of special interest are as illustrated in the examples of Figs.1 to 3,
the set of straight lines of standard slopes on the graphs of log stress versus
log time, and the associated log time versus temperature cross-plots. Before
the method of prediction is discussed, however, it i1s desirable to consider
the experimental support for the farmula that has been derived and the closely
associated question of the scatter of experimental data,

3., Scatter in Creep and Direct Tests of the Formula

The soatter in the sets of data referred to in Section 1 has been
evaluated on the one hand by comparing experimental points with theoretical
curves fitted as a family, by the procedure just outlined, to each set of

data/
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data as a whole, and on the other by comparing the available results,
unfortunately rather few, of replicate tests for the same condition. Results
are summarized in Tables I to III, The scatber in log time was found to be
substantially uniform and Gaussisn over the range of stress and temperature,

and has accordingly been treated on these assumptions, Evidence for the
randomness of the scatter of somée of the sets of data is provided by the

results of Section 5. On the other hand the scatter appears to be significantly
less in the tertiary stsge than in primary and secondary stages of creep,

3.1 General magnitude of scatter indicated by analysis of rupture data

Table I gives the scatter, expressed as a standard deviation in log
time, as evaluated for gll the creep rupture data of Ref.5. The values are
grouped into two supposedly rendom populations comprising those for materilals
whose times to rupture appeared to be controlled by terms in  and those by
terms in t (see Section 2,4), The mean s.d. for the first group is 0.1k in
log time and for the second group 0.21, A check on the general correctness of
these magnitudes is provided by the analysis by an independent method of the
present and other date by Monkman and Grant!2, They found that the scatter
in rupture lives had s.d.'s ranging between 0.14 and 0.23 cycles of log time,
For 10 sets of data, where no figure is given in the table, no scatter values
were assigned. Where a dash occurs, the experimental points were too few in
number effectively to define the theoretical curves, a cross denotes the
presence of a characteristic anomaly referred to in Section 3.3 below, and an
asterisk one of the following not immediately distinguishable possibilities:
more terma should have been used in the formula to obtain satisfactory fitting
(no more terms were used than for which there was clear evidence); the formula
did not represent the true behaviocur; or the data were unsatisfactory,

3.2 Assessment of scatter by analysis of creep date and comperison
with replicate data

Table II presents in summary form the results of an analysis of the
scatter in families of creep curves for the Nimonic series of alloys, an
analysis set out in some detail in Ref,7., The second column of Table II(a)
shows the scatter of the points that make up the experimental creep curves
about the theoretical creep curves of the best fitting family, The second
column of Table II(b) shows the scatter in tertiary oreep alone as assessed
by a comparison of the times to reach a given value of ct®, in Equation (2),
in each individual test with times to reach the same value taken from the
corresponding curve of the best fitting family. In the third columns of
these tables are given the corresponding s.d,'s for the available replicate
tests and, in brackets, the number of pairs of tests upon which the s.d. is
based. There is no clear evidence that the indicated differences of scatter
between these materials are significant, and since the number of results
concerned were about the same for each material, simple mean values are given.
Since there were large differences between the numbers of replicate tests,
however, both a simple mean of the results of these and a mean welghted for the
number of tests are given, The s.d.'s estimated by fitting the formula and as
directly indiceted by replicate tests are in good agreement., The scatter in
tertiary creep is seen to be about half the average scatter over the whole
extent of the creep curves.

3.3 Assessment of scatter by analysis of rupture data and camparison
with replicate data

For the materials of this table, the rupture data were analysed
independently. The scatter of the rupture points about theoretical curves

fitted/
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fitted to the rupture data is given in the fourth column of Table IIL(b).

The mean in brackets at the foot of the column excludes the rather high value
for Nimonic 90-III, This materisl showed a tendency at the highest temperature
for the accelerating creep to be followed before rupture by & further period of
decelerating creep instead of immediately by rupture in the usual way. The
onset of this behaviour was irregular, The scatter in t, values is seen to be
similar to that for the other materials, The scatter in rupture times is seen
to be in good agreement with the scatter in the +; term.

Creep curves for materials that do not exhibit tertiary creep and
whose rupture appears to be determined by the t; terms have not been studied
in detail, but the scatter in rupture time for the two groups of materials in
Table I is seen to correspond generally to the pattern of Table II.

For only four of the materials in Table I and two in Table IT were
results available from replicate rupture tests. The scatter of the rupturse
data about the fitted theoretical curves is compared in Table III(a) and (b)
with the scatter in replicate tests, the two types of material being treated
separately., The agreement indicated by the previous tables is here largely
repeated, but there is a larger spread in some of the values. The scatter of
the data about the fitted curves is indicated as being less than the scatter
in replicate tests, but the result is probably due to the sampling. The
opposlite result indicated by 5.590 may be significant., The data were
particularly extensive and on this score alone would be expected to provide
a stringent test; on the other hand, many of the points relate to tests of
extremely short duration with the loading period comparable with the creeping
period., BSuch tests are not then creep tests, but are combinations of creep
and tensile tests. The question of the homogenelty of the data also arises.

3.4 Discussion

Differences between the scatter values assigned to different
materials may in some instances represent actual differences in variability,
but the possibility of sampling differences and of varying systematic
departures from the formula must be recognised.

In regard to aystematic effects, one that is thought to be
characteristic has been mentioned in connection with Nimoniec 90-III and
Table II(b). Another is exhibited by the materials marked £ in Table I
{zee Ref,5). The points in the log stress/log time graph associated with a
line of given standard slope fall in two distinct groups related by a
parallel displacement, Two flow regimes appear to be present with either
a random or systematic relation between them., The effect may well be
present in some degree in other date, especially the other marked data in
Table I, for it is only clearly identifiied by & suitable number and
distribution of experimental points,

A more elaborete satatistical analysis would he necessary to declde
the significance of the occasional discrepancies., However, the tables show
that the differences of scatter between different materials are usually little
more than the difference for any one material between the scatter in its
aceelerating and decelerating stages. The results may therefore be simply
summarized by the statement that the standard deviation in accelerating creep
and associated rupture times appears to be generally rather more than {5 cycle
of log time, while the standard deviation in the earlier stages and associated

rupture/
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rupture times is at least > cycle, Apart from certain systematic effects
upon which there is too 11t¥le information for study, the formula has been
shown to be in agreement with experiment to within the limmts of the least
acattered data,

4, Extrapolation

Extrapclation is based upon the sets of straight lines with standard
slopes —K/b on graphs of log o versus log t +together with their associated
cross-plots of log t versus T. Limiting positions can be assigned for lines
of those standard slopes for which there is no direct experimental evidence,
and these lead to upper and lower limits to extrapolated values.

The method is best explained by meens of examples.

4,1 Rupture data, with tertiary stage

The simplest case to consider is that of a material which ruptures
after a pronounced stage of accelerating creep whose life is effectively
determined (c,f. Section 2.,1) by only the terms for which K = 3 eand for
which the expected log stress/log rupture life graphs effectively consist of
segments of standard slope jJoined by rather abrupt transitions*., The lower
part of Fig.1A is an example of data that directly show the standard slopes

-% and —%\ (The scale of log stress is four times the scale of log time,

hence e.g. the line of slope -% 1s at 45° to the horizontal.) This figure
has been selected as a convenient illustration of the features and problems of
extrapolation, It a2s not however one of the best examples of the usefulness of

the method, because the test conditions, chosen for other reasons, do not
establish the extrapolated values very closely.

The points relate to Stage 2 of the analysis and represent a direct
plot of rupture data for Nimonic 80A, They have been arbitrarily divided into
two groups: the open points are for times longer than 2000 hours and the
filled points for shorter times., For a test of extrapolation, attention is
first given to the filled points. The unbroken lines an this part of the
figure and the whole of the upper part (which relates to Stage 3) are based
on the filled points only, and represent the completed analysis of the
shorter-time data. The points in the upper part are derived from the shorter-

time points in the lower part by cross-plotting, for slopes —% and —%, at

stresses of 20 and 10 t,s,i. respectively. (For slope -% . dxscussed below
the stress is 2 t,s,i,) Each curve shows the relation between log $ime and
temperature for which the basic terms of the form (4) with K/B = -= and -%

have each a standard value., In more detail, the points in the upper part
correspond to lines of standard slope in the lower part that were first drawn
in tentetively by inspection. For clarity these lines, which would be parallel
to but slightly displaced from the solid lines shown, have been omitted. The
lines actually shown correspond to the curves in the upper part, and both are
as found by trial aend adjustment to secure the best fitting of Equation (4)

to the filled points. They complete the initial analysis, and extrapolation
may now be considered,

. Direct extension beyond 2000 hours of the lines of the steeper
slope -7, as shown in broken line in the lower part, afford an extrapolation

that/
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that is liable to be optimistic because at any instant the trend may change
abruptly on to a line of steeper slope. In this instance the next steeper
slope is -5: +the possibility of & still steeper slope is consldered later,
The worst possibility - still steeper slopes apart - is thus that at any of
the temperatures in the figure, the result of a further experiment at a lower
stress may fall on a line of slope -3 drawn through the last experimental
(filled) point a} that temperature. "Pegsimistice" lines of this kind are
indicated at 815 C and 750°C. They pass through points A and B
respectively.

At the other temperatures, however, a similar possibility is not
open because of a peculiarity of the time-temperature relationship.
Equations (5) and (6) show that the spacing A log t/AT between lines of
any one slope at different temperatures is 20/{T.- T'|. If the temperature
T', at vhich properties are indicated by the formula to become anomalous,
is to have a metallurgical significance, it must presumably lie between O0°K
and the melting point; thus the spacing is indicated to be not less than a
minimum value corresponding to the use of the more remote of these
temperatures for T', Apart from a circumstance that appears to be definable
and will be discussed in the final section, this condition on the spacing and
magnitude of T' has been found to hold for all the data examined. There
has been no clear case in the study of data for more than 40 alloys in
which T' was indicated to fall outside this range., Data for Nimonic 90
has also provided direct evidence to confirm the prediction of very large
spacing A log t/AT when T approaches T'.

In view of the condition of minimum spacing, the lines of slope -%
at 700°C end 650°C are shown in the lower part spaced fram the line of this
slope through the last point B at 750°C by the minimum amount corresponding
to~ T' = 0°K, The corresponding points and curves are shown in the upper part,
the curve heing chain-dashed and the points being arrowed since they refer to
e minimum time rather than to a definitely established time, The condition is
of no assistance for extrapolations at 815 C and 750°C because the spacing
enforced by the final points A and B at these temperatures happens to be
already greater than the minimum, The lines of slope -3 through these
points thus afford a pessimistic extrapolation,

It follows from this construction, as Fig,1A shows, that the last
point B at 750°C provides, with the remaining data, a sector § of
unambiguous extrapolation., Outside this sector, there is a range of increasing
ambiguity as shown shaded.

In regard to the choice of the value -%, data are lmown that
clearly exhibit the scope of -1, but steeper slopes have not been encountered.
In the present example, if attention is confined to stresses greater than the
lowest stress at 750°C for the short-time set, namely point B, the condition
of minimum spacing may be seen to exclude the possibility of lines of slope
steeper than -3, If lines of a steeper slope were present, the line for 815°C
could reasonsbly pass through the point A at 6 t.s.i,, but then those for
700°C and 650°C respectively are not permitted by this condition to pass to
the left of positions €, D, where C and D are spaced fram point B
(at 40 t.s.i.) by the-minimum spacing appropriate to their temperatures., At
higher stresses than 10 t.s,i. (but not smaller stresses) such steeper lines
would provide mare optimistic extrapolations than the lines of slope =%
drawn in the figure., Indeed, for extrapolations towards high stresses, the
smallest permiassible slope is the most pessimistic, In the present instance,
however, the existing points will not tolerate any slope smaller than -5,

The rule for pessimistic extrapolation is therefore to use the most
unfavourable slopes of the series that the data and minimum spacing conditicn

will/
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will allow, The range of useful extrapolation is rather limited in this
example because of the small duration of the longest test at the highest
temperature (point A). A further test for a smaller stress at this
temperature would have defined a wider sector of unambiguous extrapolation,

The value of such a test can be seen in the example of Fig.3,
considered later,

Supplementary information that will assist extrapolation can be
obtained from results from neighbouring materials of a related series. As
an illustration, it appears that the value of T' for slope -y for
age~hardened Nimonic alloys is always greater than 100°C, also no line of
slope -1 has been observed, even at the longest times. If this T' is
edopted as a minimum value for the present data, the lines of slope -»
will fall in the positions shown by the dot-dashed lines of the slope in
Fig.1B, and the unamblguous sector becomes much larger.

The results are aggregated with the other examples in the discussion
of the accuracy of extrapolation in the next section. The differing choices
of T' 1in the present instance do not affect the test of extrapolation because,
whichever method is used, the longer time points deviate by the same amount or
remain ambiguocus,

4,2 Rupture data, no tertiary stags

Fig.2 is an example of rupture data for a material without tertiary
ocreep and for which rupture is apparently governed by terms of form of
Fquation (4) with K = 4, It is a direct plot of the Timken data for a
L to 4 Cr-Mo steel. The data have been arbitrarily divided into shorter
and longer time groups with the division at 10 hours. The graph does not
now approximate sufficiently closely to a set of segments of standard slope
because, with K = 1, the curvature of the transitions is more gradual and
they extend over much of the experimental range.

‘The shape of the transition curve asppropriste to two terms of
form (4) is dependent only upon the values of p and K for the terms and

not upon the constant factors., Thus the strain contributed, at a given
temperature, by two terms with common K (unity in the present instance) is

e = (Aot + A0 )

in which A and A, are constants, Choose quantities A and o, such that

A = l/bbﬁh y A= x/bbﬁb ’
1
1.e., o, = (a/8,) " A

A,

: ﬂ[(é_)ﬁl ()7
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Now choose a quantity to such that

A=t
Q

’ K

RN YRR CH TGy

[+ ] o] [«]

This equation for the cross-plots of log o versus log t at constant strain
represents a master curve whose shape is specified by f,, B,, and K, and
whose position is specified by log o, and log t, . fﬁg.h gives examples of
master curves for a few commonly-occurring combinations of K and K/f. The
shapes of curves for more than two terms of form (4) depend upon the relative
magnitudea of the terms, and are no longer standard; they need to be calculated
as they arise,

The principles of analysis and extrapolation of rupture data far K
small are exaotly the same as those just described for K large, the procedure
being now applied to the asymptotes rather than to the directly fitted lines
of standard slopes. ZEach assymptote represents the independent contribution of
a separate term,

The upper part of Fig.2 represents the completed analysis of the
data represented by the shorter-time filled points in the lower part. The
significance of lines and points is similar to that in the previoua figure;
thus in the lower part the broken straight lines and curves represent
respectively the optimistic direct extrapolations of the asymptotes and curves
fitted to the filled points, while the chain-dashed lines and curves represent
the pessimistic interpretation. For extrapolation, instead of setting, as
previously, a pessimistic line directly through the longest-time point at the
temperature concermed, the standard curve appropriate to the indicated standard
constants is now placed at the shortest time that is allowed by the trend of
the points, The appropriate value of the term is defined by the asymptote.
The curves of the upper part of Fig.2 relate each to the asymptote of
indicated slope,

When the data are such that, as at the lower temperature in Fig.2,
three or more terms are present and their transition regions overlap, the
details are more complicated but the principles remain the same. It becomes
necessary to eatimate the positions of the asymptotes that represent the basle
terms by successive approximation. The results of Fig.2 are discussed in
Seection 5.

Fig.3 for "killed carbon steel” from the Timken Digest, is another
example, In this, the data are sufficlent to define the asymptote of slope -%
at the highest temperature: as a result there is no ambiguity at this
temperature, and the extent of ambiguity at other temperatures is reduced.

In both Fig.2 and Fig.3 the slope of -4 was found not to be more

pessimistic than that of -%, except at the highest experimental temperature
(815°C and 760°C respectively); it has not therefore been shown.

4.3/
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4.3 Creep curves

For the anslysis and extrapolation of creep curves, the procedure
outlined is applied separately to each of the components t,, t,, end t,
k]

obtained by analysis in Stage 1 of the curves. In regard to Stage 1, it 1s
easy to show, by the method of the last paragraph, that the contribution of
any pair of terms in Equation (1) to the creep curve is represented by a
standard curve, Two of the three standard curves concerned are illustrated
in Fig.h. For creep curves with an accelerating stage, 1t is convenient to
fit the (%, 1) standard curve to the earlier portion of the curve and cbtain
the t, term by subtraction of the ordinates of the curve from those of the
experimental points. In Stage 2 the log stress/log time cross-plots of the
t%, t; and t; terms are separately fitted with the eppropriate standard
curves, Since K 1s precisely known, there is no need to use segmental
curves for K = 3. The method leads to extrapolated values of the %1, ¢,
and +t, terms separately: the predicted creep curve is then obtained by
setting the master (%,‘ﬁ) curve in the predicted position and then adding

on the predicted t, contribution.

A complication of the Stage 1 analysis of creep curves 1s that
their shapes are appreciasbly affected by an uncertainty in the amount of
elastic and creep strain that occurs during loading, and thus in the
appropriate geros of strain and time., Although the uncertainties are small
in comparison with practical magnitudes, their efflect on the analysis needs
to be considered, The matter is discussed in detail in Refs.7 and 9 where
the procedure of choosing the amount to suit Equation (1) is supported.
Fig.6 shows the set of creep curves at 815°C from a family of creep curves
for temperatures of 700°C to 940°C for Nimonic 400, The difference between
the crosses, and open circles where shown, represents the difference between
independent estimates of this amount and lies within the experimental latitude.
The solid lines are deraved from a fitting of all the data for times up to
1000 hours; vwhere they are extended to longer times, or are interpolated as
at 9 t.,s.i., they represent unambiguous extensions.

Experimental points for times greater than 41000 hours and not used
for the fitting are shown by filled triangles, The brcken curves (to be
regarded as coincident with the full lines where not drawn) refer to an
independent fitting of data as a whole over the full range of time, which
extends in this case to 45,000 hours,

5. Tests of Extrapolaticn

Owing to space limitations, the results of tests of extrapolation
are mainly presented in summary form, but the examples of Figs.1, 2 and 3 arse
given in more detail, -

Figs.4, 2 and 3 are typical of those given in Ref.5 for the seven
sets of rupture data and one of fatigue data that, of the sets available, were
the only ones sufficiently extensive and of small encugh scatier to provide a
critical test, For these three materials predicted and observed rupture times
are compared in Table IV, Two sets of pessimistic values are given for
Nimonic B0A, the first uses slopes of -5 and -1, with T' of -273°C, as
in Fig,14, the second uses only the -} slope with a T' of 100°C as in Fig,1B,
The confidence limits on the observed times in column 4 correspond to standard
deviationa in log time of *0.07, 0,47 and 0.18 for the three materials
respectively, as found by comparison of individual points with curves from an

independent/
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independent fitting of each set of data as a whole. The results given in
Seotion 3 show that the scatter of the data 1s fairly estimated in this manner,
Single extrapolated times represent unambiguous values, and a range of times
the extent of an ambiguity. The average ranges of extrapolation in time are by
factors of 6, 104 and 11,5 respectively and the extreme extrapolations by
factors of 47, 540 and 54. The errors of prediction are seen to be
distributed in the same manner as the random scatter of the data, with 3 out of
38 results deviating by more than twice the appropriate standard deviation,

The Gaussian figure would be 2 in 38. Results for the remaining 5 sets,
(treated individually in Ref.10) are treated collectively below.

For the family of creep curves for Nimonic 400, of which Fig,6 is a
sample, predicted and observed values are compared in Table V. The bracketed
values in the extrapolation column are given only to complete the table: they
are for times less than 41000 hours and are not therefore extrapolatiaons:
differences from observed times represent the scatter in direct fitting. For
the long-time comparisons that these data afford there is no ambiguous range of
extrapolation, Where two figures are given in the extrapoletion column, the
raw experimental data exhibited one of the anomalous effects noted in Section 3
and was double valued, The average range of extrapolation in time is by a
factor of h.h and the extreme factor is 10.6. For this material, the standard
deviation of points about fitted curves, averaged over the data as a whole,
is 0,21 in log time. It may be seen that % out of 36 extrapolated values fall
within this range, The number to be expected for random errors is 25. This
better-than-random result is probably because the value 0.2 relates to the
whole range of creep, while the scatter is appreciably smaller in the tertiary
stage than in the primary and secondary stages. To distinguish between the
three stages would involve consideration of the errors of distributing the
observed creep amongst the three terms of Equation (2) and was not thought
worth while,

5.4 Statistical presentation of scatter in rupture times

The results for the three sets of rupturs data in Tables II and III
are joined with those for the remaining five sets of data and reduced to a common
basis in Fig.7. The solid stepped curve represents the distribution of scatter
in log time as obtained by direct fitting of the theoretical curves, while the
stepped curve in broken line represents the observed distribution of errors in
prediction, The distribution to be expected from the normal curve of errors
is shown by the continuous curve, To obtain the broken curve, the scatter of
the points for each material about the fitted curves for that material have
been scaled to correspond to a common s.d, in log time for all eight materials,
For example, the individual differences in log time for 4 to & Cr-Mo steel in
column L of Table IV were divided by 0.18, the value of the s.d, for the data.
Those for the other materials were similarly divided by their s.d. and all
values so obtained were treated as a single population., To obtain the broken
curve, the errors of extrapolation for each material were similarly divided by
the appropriate s.d, and aggregated together. The close agreement between the
three curves suggests that the distributions are Gaussian and that predictions
are in error mainly because of the uncertainty of the data., The average
extrapolation was by a factor of 26 in time,

5.2 Btatistical presentation of scatter in creep

The above method of aggregating the rupture results for different
materials may conceal irregularities in the data for a single material, A more
penetrating test is offered by a set of creep curves that is adequate to
define the scatter ogive in detail., Fig,8 for Nimonic 100 and Fig.9 for
Nimonic 90 show the ogives for two sets of this kind,
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In both figures, A gives the observed scatter of short-time points
about creep curves fitted to these points, B the scatter of long-time points
about curves extrapolated from the short-time data, and € the scatter of all
the points about curves fitted 4o all the points. The cbserved ogives are the
stepped curves: each is to be compared with the continuous Gaussian ogive which
in both figures is drawn for a standard deviation of 0,2 in log time,

In regard to Fig.B8 for Nimonic 400, the central sections of 8A and 8C
fit closely to the calculated curve, suggesting that the scatter is essentlally
Gaussian with a standard deviation of 0,2; 8B is of similar form but steeper,
suggesting that for extrapolated points the scatter is less than 0.2,

The upper and lower sections of Figs.BA and 8C - but more particularly
the upper sections - depart significantly from the Gaussian curve. The points
observed at three to four times the standard deviation (whose number 1s
considerably in excess of those predicted by the Gaussian curve) are attributed
to a double-valued behaviour in the 17 +term which was elearly cbserved at 870°C
and 940°C (c.f. Ref.7, Section 4.3). The effect 1s not cbserved in Fig.8B,
presumably because very few of the extrapolated points fell in the primary range.
It will be observed from Fig,8B that the double-valued behaviour of the short-time
deta has not biased the extrapolation, suggesting that the method of analysis has
been successful in distinguishing regular behaviocur at larger strains in the
presence of irregularities at smaller strains.

Fig,9 for Nimonic 90 shOWf generally similar features, again being

affected by double values in the t° group of terms. Fig,9B indicates that

the extrapolation is slightly pessimistic overall, to the extent of 0.05 in

log time or about 12% in time, an error which is much less than the uncertainty

of a single point. This overall pessimism 1s probably due to a tendency to

caution in the analysis. There is a suggestion of the influence of double

values in the extrapolation ogives (see Fig.9B), probably because, for this

material, as many as one third of the extrapolated values were in the +t,; region,
E]

6. General Discussion

The feature of the formula that has been least critically tested is
the precise form of the time-temperature parameter. One of the more usual
exponential forms was not used because these predict, in particular instances,
the wrong curvature of the log time-temperature cross~plots. The form proposed
meets the experimental requirement that the plots may have elther positive or
negative curvature. The condition of minimum spacing to which it leads,
between lines for different temperatures on the log stress/log time cross-plots,
has enabled the most unfavourable slopes of the lines to be selected for
pessimistic extrapolation, The condition 1s part and parcel of the result
that T' 1lies between the absolute zero and the melting point which was
yielded by direct analysis of all the sects of data as a whole, and is not
independently checked by the examples of extrapolation given, which relate to
the same data.

The method evidently provides means of predicting the onset of the
metallurgical changes that are responsible for a steepening at longer times
of the graphs of log stress versus log life, However, metallurgical changes,
presumably of another kind, are known to occur, of which the onset is not
directly predicted by the method. In some, though apparently not all instances,
these appear to be associated with a flattening rather than a steepening of the
graphs, and the present method will then be unduly pessimistie, Further research
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along the present llnes is necessary however, both to define the
circumstances in detail and to assess the significance of the ancmalies
that have been mentioned.

The operations of fitting the formula have been carried out without
difficulty by Junicr staff; a typlcal time for fitting a set of creep rupture
data, including plotting of primary data, is 4 to 6 hours, and for a set of
ereep curves, 3 to 5 days. These times are appreciably reduced when suitable'’
copying equipment is available. The saving in machine time on the 3 sets of
creep curves discussed in Ref,7 amounts to 48 machine years,

A formula whose agreement with the data was achleved by a purely
arbitrary flexibility would be most unlikely to provide satisfactory
predictions, and the result found for the present formula that the errors of
prediction are in substantial agreement with both the errars of direct fitting
and the directly-measured scatter in replicate tests is thus evidence for the
validity, within the circumstances concerned, of both the formula and the
method of prediction.
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TABLE T

Séatter of Rupture Data about Fitted Curves
for Materials of Reference 5

Standard deviations in log time

Nimonic Nimonic Nimoniec Nimonic Nimonic
80-I 80-I1 BOA-T 80A-I1 BOA-IIT
0.13 0.05 0.07 Q.14 0.04
Nimonic Nimoniec Nimonio Nimonic Nimonic
90-I 20-11 90-II1 95-1 95-11
0.0 0.1 0,23 - Ok
Nimonic G.32 Inconel G. 3 35-15
100-1 X
0.09 014 0.25 0.18 0.1
Materials | H.46 18-8+Cb Red Fox | FCB(T)-I |FCB(T)-II
that 36
rupture - 0.18 0.12 - -
on t2
term DM.2 2520 G.19 2512 16-1 33
0.0 0.24 - 0.7 0,22
Rex Rex Red Fox 2} Cr-1 Mo CML-I
337A L8 by
0.17 £ £ 0,11 0.20
CML-II CRM-I CRM-I1 CRM-TIII Killed
0.14 0.16 0.15 0.18 carbon
0.18
Silmo Mean of t°
0.141 rupture 0.1l
C-Mo 2% Cr-Mo |} Sicromo | Sicrome 4-6%
2 3 Cr-Mo+
0,26 * 0.13 * 047
Materials
that L-6% Sicromo | Sicromo | Sicromo Sicromo
rupture Cr-Mo+Ti 53 EMS 7 9N
on t 0.13 * 0.24 0u1 4 0.28
term
18-8 S.&6 5.590 Mean of t!
0.16 0.22 0.32 rupture 0,20,
- data were too sparse to define scatter
* pystematic errors of fitting curves to data were
present, so that scatter figures would be unreliable
# characteristic ancmaly

TABIE II/
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TABLE TI

Standard deviations in log time

(a) Creep data

Data gbout Replicate
M¥aterial fitted curves data
Nimonic 80A-~T O.1h 0.05 (2
Nimonic B0A-TIT 0.27 0.18 (2
Nimoniec 90-1 0.18 0.15 (8B
Nimonic 90-II 0.15 0.27 (6
Nimonic 90-III 0.25 0.19 (2
Nimonic 4 00-II 0.2 -
[ ]
Mean 0,20 0.18
017
(b) Creep and rupture data
Creep data
Rupture data
Materlal t, values about |Replicate | sbout fitted
fitted curves t, values curves
Nimonic 80A-IIT 0.06 0.07 (2 0.0k
N‘imonic 90"1 0.1 1 0.1 8 7 0.1 0
Nimonic 90-II 0,08 0.04 (3 0.1
Nimonlo 90-II1 0,09 - 0.23
Nimonio 4100-II 0.1 - -
x
Mean 0.09 012 0.1
Y, (0.08 without
0.08 N9O-III)

Mean weighted by number of teats

/

unwelighted mean

bracketed figures indicate mumber of pairs
of tests

TABLE III /




- 23 -

_TABLE IIT

Comparisons of Scatter in Rupture Dats

Standard deviations in log time

Data about
Material fitted curves Replicate data
Nimonic 90-IT 0.41 0.36 (4
Red Fox 36 0.12 0.06 (4
(a)
v type Mean 0.09 0.15 plain
0.10 weighted
48-8 stailnless 0.6 o.40 (1) -
S.%16 0,22 0.45 (3
'(b) 3.590 0,32 0.05 (2
v WPe | yoan 0.23 0.30 plain
0,3 weighted

TABLE IV /
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TABLE TV

Extrapolated Creep Rupture Times compared with Observed Times

Nimonic 80A -
Observed] Range for| Range for | Extrapolated time (hours)
T o time + standard|t2 x standard
(°C)l t.s. i, (hours) error error T = -273°G| T' = 100°C
650 | 22 2650 | 2250-3% 30 360 %60
20 6200 5300-7300 | 4400-8600
20 4800 44 C0-5700 } 3900-4200 ] 4200
20 5300 L500-6200 3700-7200
18 8200 7000-9700 5900-14 400 4L700-6400 6400
16 13400 {41400-15900{ 9700-18800 6100-10300 | 10300
700 13 4800 44 00=5700 3600-4200 4200
10 11000 94,.00-1 3000 £200-1 24 00 9500~ 24 00
7 34,000 29000-40000 8500-49000 1 9000-49000
750 8 4500 3800-5300 24,00-4600 34 00-4600
6 1300 §11400-15500 M 0014500 5600-1 4500
L 22700 {19300-26700 L600-73000 11 500-73000
L6 Cr-Mo steel
Observed Range for Range for
T P.s.1. x time * standard §{*2 x standard | Extrapolated
(°c) 1000 (hours) error error time (hours)
538 24 104 70-1 54 114125
20 1600 44 00-2400 420-740
593 13 3o 21 0-460 200-260
1M 1400 930-21 00 640-% 00 450-730
649 9.1 140 93-210 105-116
6 2800 1900-4200 1 280-61 00 L.20-1 300
704 6 86 57-129 72-86
5 250 4170-370 140-225
iy 1400 730-4 650 500-2400 290-620
3.5 1200 800-1 800 420-11 60
2.5 5300 3500-8000 1 000-5000
&5 2.0 90 60-1 35 114-180
1«5 160 110-240 13-350 280-670
1.1 LBO 320-720 600-2500
G, 9 670 4.50-4 000 970-6000
0.7 890 600-1 340 14 0-4 950 1780-1 6900
Killed carbon steel
538 12 1550 1030-2340 680-3500 570-660
10 3600 2400-54L00 4 580-8200 10201 550
g 4800 3200-7200 21 00-11000 14.30-2500
6 1 34,00 8900-20000 4600-1 3500
649 3 620 14 0-930 1:30-680
2 2400 1400-3200 1 300-2750
704 2 290 1 90-440 230-320
1.8 450 300-680 320-450
1.5 850 560-1 280 540-840
760 0.75 900 600-1 360 870

TABLE V /




TABLE V

Extrapolated Times compared with Observed Times for Creep of Nimenic 400

Times for indiceted strains, hours
T o 0u1% 0.2% 0.5
°C |+.s.1i.
Range far Range far Range for
Observed{ * standard EXtr?pD‘ Observed| * standard Extrepo- Jbserved | ¥ standard Extr?po-
lation lation lation
erraar errcr errar
700 { 23 420 260-680 (730) 1400 | 870-2300 1850 4800 | 3000-7800 5000
20 3000 1 900-4800 1850 - - - 4300 - - - 8800
17 4000 2500-6500 4500 10000 | 6200-16200 8800 - - - 15800
750 | 17 300 190-480 (670) 920 570-4 500 1 500 2900 1800-4700 2900
15 950 5901 540 1400 2800 | 4 700-4500 2850 5200 3200-~8400 6800
12 6000 | 3700-9700 3700 - - - 7400 - - - | 1m0
51 11 335 210-540 E}n 0; 790 490-1 280 (720) 1800 14 00=2900 1420
9 800 500-1 300 880 41750 | 41080-2800 1820 3850 2400-6200 3550
7 970 600-1 570 1870 3900 | 24L00-6300 4500 7800 4800-1 2600 8900
6 3700 2300-6000 3050 9800 | & 00-4 5800 7500 - - - 16200
4 - - - 8600 - - - 21 500 - - - 57000
870 5 200 4 20-320 (730) 520 320-840 1590 1490 730-4 920 00
L 4250 770-2000 1 500 3200 | 2000-5200 3500 6600 44 00— 0700 7200
3 2500 | 1 500-4000 2900 6600 | 44 00-1 0300 7000 - - - 147000
1 300- 4900~ 1 8700-
2,5 41650 1 000-2700 4500 5000 | 3 00-8100 10800 - - - 29000
3750- 11 500~ 37000-
2 3750 2300~6000 8600 40600 | 660017400 A 7100 - - - 19000
940 2 280 1 70-450 (560) 780 480-1 260 1420 2450 | 4 500-4000 3500
2550- 5500~
1.5 940 580-1 520 1430 2400 | 4 500-3900 2850 6800 4200-11 000 2800
1200~ 4000~ 11 000-
1 1400 | 870-2300 | 544, 5400 1 3300-8700 | ¢5n9 - T | 120

TABLE VI /
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TABLE VI

Scatter about Extrapoleted Curves compared with
Scatter about Fitted Curves

Standard deviation in log time
Material
(1) (11) (111)
Nimonic BOA-II 0,22 0.27 0.22
Nimonic 400 0.47 0.2 0.13
Mean weighted for
numbers of points 0.19 0.21 0.15

(1) Longer-time points about extrapclated curves
(e.g., triangles about solid curves in Fig.6),

(i1) Shorter-time points about directly fitted curves
(crosses about solid curves).

(111) Longer-time points about directly fitted curves
(triangles sbout broken curves).
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APPENDIX 1

Test of Other Methods of Extrapolation

Seven other methods described in the literature (see Section 1)
have been tested upon the two sets of rupture data of Figs.1 and 2 and
Table IV. Signifioant errars were found, and in view of their magnitude,
it was not considered necessary to extend the testing to other materials.
The methods generally require comparisons of results at common stresses or
temperatures, and consequently involve the use, unless the experimental
conditions are speclally selected in advance, of a supplementary and
unspecified method of interpolation or even extrapolation. The procedure
is subject to personal errors, and was therefore avoided; thus the number
of experimental points that could be used was rather limited. They were
sufficient to provide the cumulative distribution diagrams of errors shown
in Figs.10 and 14, The methods considered are indicated in the figures.

Each method gives a roughly Gaussian distribution of errors whose
standard deviation 1s between two and five times that of the curve of data
scatter shown by the continuous curve, Thus they can all be significantly
in error. Although the comparison is limited to two sets of data, the form
of the Gaussian distribution 1s such that even 1f a very large number of
predictions with small error were added, the observed errors, which include
some in excess of five times the standard deviation, would remain

significant. The general view that these methods are unreliable is thus
confirmed.
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A method of extrapolation based on a previously
given formula for creep is derived, and examples are
given of its application to creep rupture and creep
strain data. The accuracy of extrapolation is
statistically evaluated and shown to be wathin the
observed scatter of the experimental data., Seven other
methods are shown to have errors significantly greater
than that of the data,

Limitations of the method are discussed.,
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