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This paper reviews the current state of knowledge of three-dimensional
turbulent voundary layers, mainly from the point of view of making
caleulations. The nature of the boundory layer is discussed and the
equations for general steady turbulent flow arc given. Next follow
momentun-integral equations, which can then be solved with suitable
assumptions as to the velocity profiles and shcar stress components. An
account of these assumptions follows snd a few sample results are given.

The paper ends with a short account of some matters connected with

transition.
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1 IMTRODUCTION

The study of three-dimensional turbulent boundary layers has been1 )
greatly neglected in the literature, Thus in two reviews, one by Sears' in
1954 and one by lMoore? in 1956 which together include about 50 references on
the subject of three-dimensional boundary layers, only 4 refer to the tur?u-
lent problem and these were all concerned with flow over infinite yawed wings
and cannot be considered to be guite general. In the review by Cooke and
Hall3, written in 1960, there are about 50 more references, and of these only
about 12 refer to genuinely three-dimensional turbulent boundary layers.
Again, in Applied Mechanics Reviews for 1960 there are about 17)H refer?nces
to boundary layers of all kinds (excluding Magnetohydrodynamics) of yhlch
only 1 deals with a properly three-dimensional turbulent problem, whilst two
others do so in part (and only a small part). Since £lying machines of the
future are likely to be more "three-dimensional” in shape than in the past
it will certainly be necessary to make a greater study of the subject than
has been done up to the present time. The neglect has been due to the
difficulties of the subject, which are immense, even in two dimensions, and
to the fact that the collecting of experimental evidence is so tedious and
unrewarding.

This paper is an attempt to roview what little that has been done. In
it we shall exclude unsteady mean flows and will also exclude in the main
axially symmetric flow, since the latter has usually merely involved a
simple extension to work on two-dimensional flow. Attention will be con-
centrated almost entirely on theoretical work, and in particular on the
description of such calculation methods as have been attempted. These have
all assumed small (or zero) cross-flow, that is, small mean velocity
components normal to the streamlines in the extcrnmal flow, and have assumed
well-knovn two-dimensional expressions for the streamwise velocity and skin
friction components. MNore variety has been found in the assumptions for the
cross-flow. The only more unified attempt to write down a general form for
the velocity profiles is due to Coles®*. This is an extension of the law of
the wall and the law of the wake; so far only a small amount of experimental
evidence exists in support of this model. The subject has been decply
examined by Johns’con5’6 who suggested a form for the cross-~flow quite
different from any of the others and prescnted considerable expecrimental
evidence in its support.

The flow over infinite yawcd wings has considerable literature in
laminac flow. This 1s because therc exists an "independence" principle accord-
ing to which the chordwise compcnents of flow satisfy ordinary two-dimensional
boundary layer eguations. This principle does not hold for turbulent flow,

A simple theorctical proof of this was given by Rott and Crabtree? and
experiments of Ashkcnas and Riddell® confirmed it. A full discussion of the
sub ject was given by Turcotte?, who advocated s "line of flow" principle,

by which the streamwise wall shcar stress is considercd to be a function of
the distance over which the fluid has actually flowed, rather than the
perpendicular distance from the lecading edge. Most methods of calculation
so far put forward have uscd strcamline co-ordinates and they have tacitly
followed this principle.

Turbulent scparation in thrce-dinmcnsions has scarcely been touched upeon
by workers in the field, except in its purely topological aspects, which
apply equally well to laminar or turbulent boundary layers?O0:11. We do not
consider it hcre.

In this paper we give the general three-dimensional equations for the
mean flow, and then explain the axially symmetric analogy applicable in
cases where the mcan cross-flow is small., Momentum-integral equations are
given, since only by their use has any progress becn made, Their solution
depends on assumptions made about veloocity profiles and surface shear stress.

- -



An account of these assumptions follows. Next is given a description of

the few three~dimensional turbulent boundary laycr calculations that have
been made, and we conclude with a short account of some matters comnected with
transition.

2 GENERAL

241 Boundary layer and momentum-intesral cquations

Curvilinear co-ordinatces &, m, & are used. The surface over which the
boundary layer lics is ¥ = 0 and Z denotes distance from the surfecc measured
along a normal. On the surface Z = 0 are two families of co-ordinate curves
£ = constant and m = constant, orthogonal to one another. JIor this systenm
the element of length is given by

as® = h12 ae® + hg ar + az? . . (1)

In the boundary layer h1 and. h2 are usually assumed to be functions of & and

m only. For this to hold it is necessary that the curvature of the surface
does not change abruptly and thet locally the boundary layer thickness is
small compared to the principal radii of curvature of the surface.

We denote velocity components by u + u', v + v' w + w', where u, v and
w arc the mean values. Density p,total enthalpy H and temperature T are
treatced in the same way. Terms involving fluctuations of the coefficient of
viscosity u, the coefficient of heat conductivity, the spceific heat at

constant pressure oP and the Prandtl number Pr arec omitted. Mean squares

and products of the turbulent fluctuations in velocity and density are taken
to be of order &, the boundary layer thickness. As in the incompressible
two-dimensional casc tils last assumption is probably Jjustified in
favourable or slightly unfavourable pressure gradients, but is not so when
separation is approached. The usual boundary layer approximation, namely
that rates of change of mean flow properties in the € and n directions are
of order unity and those in the Z direction are of order 5~1, are made.

We write

K, = = sm=mme =% K, = = smmm— e (2)

these arc the geodesic ourvatures of the curves & = congtant, m = constant
respectively. Ve denote the mean of a product f'g by (f gt S. A full account
of the derivation of the equations of motion is given by Vugllo—Laurin12. For
steady mean flow, in thc absence of body forces and of hcat sources the
equations are

s, xou, [, ew)la 2
h1 5% + h2 i + Lﬁ + 5 37 Azuv + K1v

1. q
"‘;;'f{"""% F“ZL m-p({lw)] (3)
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%% %% + ﬁ; %% + [& + -:gzz]'gz - Kﬂuv + KQu
= - E%; 2% + % %Z!:P %% - p(v'w'i] , u)
Y
%g (phzu) + %ﬁ (ph1v) + gz {ph1 h, [% + -i?T);J} = 0, (5)

18 ( {eH  1Pra o ovE
5 57 {p L?é + Tr o7 (CPT)_I p(w H )} . (6)
Certain terms on the right hand sides of equations (3) and (4), namely
- o) L - pTW)
B aé P ! 2 H aé P

consist of shoar stress torms p(ou/92) and w(dv/8%) together with Reynolds
stresses - p(u'w') and - p(;T;T). We will denote their values by Ty and T

and their values at the surfacc of the body by Ton and Top*

2

It will be scen that the first three cquations are similar to laminar

equations, cxcept that w is replaced by w + (1/9)(p‘w’) and the terms on
the right hand side of the cquations which in laminar flow would be

p(dv/0%) and u(dv/37) are 7, and T,. The energy cquation (6) also resembles
the laminar flow encrgy cquation, cxcept that it has an additional ternm

- p(w'ﬁ').



The valucs of 3p/dZ and dp/dm arc obtained from the flow at the edge
of the boundary laycr. Denoting the values of flow gquantitics at the cdge
by the subscript "e" we have

~
u_ du v_ou

© e c] i 9p
= p e ==~ K uv o+ KV = — ’ .
h1 of h2 9§ 27¢c ¢ 1 pn1 0g

\ (7)

u_ ov v_ov

e Ve e e 2 _ _ 4. 9p
T + B, on Kjuve + Kpug = ph, on

since p is unchanged in travelling through the boundary layer along a normal
to the surface.

In deriving momentum-integral equations in laminar flow it is usual to
climinate w, and in addition no direct use is made of the energy cquation.

Here we climinate w + (ETQT)/p and the momentum~integral equations will be
the same as thosc in laminar flow. These cquations arc derived in Ref.3 and
so we shall only give the results here. For reasons given in Ref.3 it is
usual to use "streamline co-ordinates" which have the property that the curves
T = constant are the projections on to the surface of the strcamlines of the
external flow. In these co-ordinates v, = 0 by definition.

We write
& \ 8 "
- ~ Lu. = - A )
o= [ (1) 2 R i
S e Q e e
& 5
g = /(1...{?_)52{31_&4, O1p = j( “1%)'%”‘14’* (8)
8 e/ Ve ¢ d o/ Pe'e
8 5
= - | -2 g S )
6y = / 2 % 055 = [ N
(¢] Pee OPGC
J

Finally we assume the external flow to be irrotational, so that a

velocity potential exists, which we may put cqual to E. It can be shown that s
in this casc h, = 1/ue. -
The momentum~integral cquations then becone 2



{+

L2y 6,) it (o B, )+ e (26,, + 6,)
p. 9€ ‘e 117 T nopu-dn Pe T2’ T OF 11 7™

| T01
= ;;;- K1 (611 - 622) = u 39 (9)
Pe e
ou
79 ] ) 2 e
o 52 (P Bp1) * Fof.0 on (pg Opp) + u 5 21
ou T
1 © 2 . _ 02 _
F g 2o (814 = 855 +8,) = u_ Ky Oy = i (10)
2 ¢ Pee

as shown in Ref. 3.

2.2 Threc-dimcnsional cffects

An sccount of the gencral bchaviour of thruc-dimensional boundary
leyers (whether laminar or turbulent) is given in Ref. 3, and we shall not
repcat this in detail. Howcver we may mention some of the morc important
points.

As we traversc the boundary laycer along a normal to the surfacc the
dircction of flow changes; the velocity vector rotates usually, but not
always, in one direction as we travel from outsidc towards the surfacc. If
we takce the direction of the c¢xternsl flow as the standard direction, any
component of velocity normal to this dircetion will be called "cross-flow".

A physical cxplanation for the cristicnce of cross-flows may be given
as follows. The streamlines at the cdge of the boundary layer are supposed
to be curved, so that there must be an inward pressurc gradicnt balancing
the centrifugal force. Near to the surfacc of the body the fluid has been
retarded, whilst the pressure gradicnt is unchuanged. Hence the inwards
pressurc gradient is now too great for the centrifugal force and the fluid
is made to move inwards.

This is fairly casy to understand so long as thc inwards pressure
gradicnt incrcases as we travel downstrcam. When it decreases and changes
sign, as it will do if the external strcamlines reduce their curvature and
bend tlhe other way as at a point of inflexion, the matter is more complicated.
The reduction, vanishing, and reversal of the pressure gradicnt does not
causc an immediate reduction, vanishing and reversal of the cross-flow. This
tekoe time. The reversal first occurs downstream of the point of inflexion
and then only near to the body, so that there are places wherce the cross-
flow is inwards (refcrred to the new curvature) at points ncar to the body,
and outwards at points further away. Only after travelling some distance
downstrean of the point of inflexion will the flow be reversecd at all levels
of the boundary layer. Pig. 1 shows somc calculated cross-flow components
for a laminar boundary layer. Similar cross-flows should apwvear if the
boundary layer is turbulent.

-8 -



In general the crocs-flow in a turbulent boundary layer is nuch less
than in one which is laminar. This is to be expected since in equations (1)
and (2) the virtual shear stress terms such as

- s

L %% - p(u'w'), b %% - p(vTw?) .

are much largcr, particularly at high Reynolds numbers, than the corresponding
shear stress tcrms p(du/d%) and p(8v/0Z) in laminar flow. The effect of this
shear stress is to resist the growth of cross-flow. The reduction is well
illustrated in Fig. 2 teken from Ref. 13. This shows oil-flow patterns over
a wing with 550 sweep. The oil-flow lincs lic along the direction of flow
close to the surfacc of the wing. The dircction of flow outside the boundary
layer may be taken to be almost the same as that of the wndisturbed flow. It
will be scen that there are wed c-shaped areas where the dircction of flow is
much "straighter" than over the rcst of the wing. These arc places where the
flow is turbulent and at these places the cross-flow is much less than at
places where the flow is laminar. In sencral one may expect turbulent nixing
to attempt to maintain the mainstrcam velocity in megnitude and direction
deeper down into the boundary laycr than in laminar flow. The fact that

this happens to the magnitude of the velocity vector is well-known from

e

studies in two dimensions. 1Lt will also happen to the dircetion of the vcetor.

Another major cffect of the thrce-dimensional nature of the flow is more
familiar since it occurs in axially symmetric flow. This is the effect of
diverging or converging streamlines in the cxternal flow. Converging stream-
lincs causc a thickening of the boundary layer. This is to be expected, since
the boundary layer has less room to "spread itself", so to speak, over the
surface in the converging flow. The opposite effcct takes placc when the
streanlincs diverge.

£

1

2.3 The axielly symmetric analogy

Let us suppose that we arc following a dcfinite extornal strcamline
7 = constant, along which we have

- I
ds = h, 4§ = o az

and so along this strcamline

o 1 0

= = =, 11)

L1 u,, 08 ( 3
In eddition we write H = 61/611, h, = v and denote partial derivatives with s

respect to s by primes.

We now assume that the crosswisc component of velocity and its
derivetives are small. In this case we find that uquations (9) end (10)
reduce to



E}

CF

=S 55 (12)
[S] € P u
e e
Pe  PUo ety 4 %Y %02
- t ——— — =
: O24 + Op4 {pe R \i *r e Ot 89

It willbe seen that equation (12) is the standard momentum-integral
cquation for compressible flow over an axisymmetric body, whose cross sections
have radius r.

analogy.

This is what we mcan when we speak of the axially symmetric

Bguation (12) is identical to the well-known two-dimensional equation
with ué}ue replaced by

v . 1
£y - L
u H+2 r °
e

(14)

Now r'/r (as in axisymmetric flow) is a measure of the amount the streamlines
diverge (or converge if r' is negative).

Thus it 1s scecn that converging
flow (r' < 0) has the same effcet on 611 as an adverse pressure zradient.

In a calculation it is necessary to determine the volue of r.
be shownld»?15

It can
that if the equation of the surface in Cartcsian co~-ordinates
is z = z{x, y) and if U and V are vclocity components parallel to the axes
x and y, then r is given by

(15)

where
o _ .. )
L oL 2, 2 & 2 2. i 2. 2
dx T ox x dz’ by oy * Zy oz’ g = 1 +12, +2

Subscripts attached to z denote partial derivatives.
In many cases Z and z

are small, and in this casec equations (15)
and (16) simplify to

- 10 ~



d oU . 9V )
Ye Ts (Log uer) T oox 0 dy’
(L (17)
o) 0 9
U 3s = Ut oy* )

Certain conditions are necessary in order that v may be small., If
terms of order v arc ignored we find from equations (3) and (7) that in
streamline co-ordinates

<

08

X

o (o8 [ G2
P 0

- K1uv}

= K (Peue2 - o) 'a‘ag[u -Sf‘; - p(V'W')] . (18)

<

Hence if v and §'w') and their derivatives are to be small either K2 or
Peuea - pu2 must be small. The former condition implies that the geodesic
curvature of the strcamlines nust be small, as might be expectcd. However
K, need not be small if p_u 2 - pu2 is small., According to Vaglio—Laurin12

2 e'e

this condition will hold at moderate Mach numbers if the wall is highly cooled.
Vaglio-Laurin supposes that peuc2 = pu2 and points out that equation (18) will
then admit the solution v = 0, (v'w') = 0. He is then able to use the
exially symmetric analogy complctely and has no cross-flow equation to solve,

3 VEI OCITY PROFILES AND SKIN FRICTION COMONENTO

In order to make an attempt to solve the momentum-integral egquations
(the solution of the full turbulent boundary laycr equations cannot be
achieved at present, even in two dimensions% it is necessary to make some
assumptions about the velocity profiles and the values of T and Top* These

must depend on experiments not many of which have becn made in genuinely three=-
dimensional cases. Boundary layer measurement is o tedious and time-consuming
affair, and the determination of Ton and Top in particular, is a matter of

x4

considerable difficulty. So far as I am aware no throe-dimensional floating
element experiments have cver been made. IYreston or Stanton tubes may be
used, of course, provided they can be properly calibrated, but their
directional properties are poor, so that they may only bc cxpected to give
the total skin friction. O0il-flow pattcrns can of coursc be uscd to give
direction of flow, but no systemetic tests of this nature havc bcen made,

so far as I am aware.

[%4

Some measurements of velocity profiles have been reported but these are
not very numecrous. The experiments of Gruschwitz!® were made in a curved

-] -



channel with an initial straight portion. Xuethe, McKce and Curry47
investigated flow over an elliptic wing swept at an angle of 25°. In these
experiments the cross~flow was quite large in places. Wallace!d made
measurements on a swept tapered wing, the mean swecp being 30°, whilst
Brebner and Vyatt13 investigated wings swept at angles of 45° and 559,
Johnston's?» experiments were carried out over a flat wall bounding a jet
Plowing at right angles against a wall. See Fig.3., Blacknan and Joubert!d
examined profiles near to the trailing edge of a delta wing at incidence.

It is from this rather small body of experiment that workers have
attempted to develop calculation methods.

31 Velocity profiles

Calculation methods have so far only been applied to the case of small
cross~flow and in this case it is to be hoped that streamwise velocity profiles
may be similar to those in two dimemsions. Experimental cvidence confirms
this in general. It has thereforc been usually assumed that the streamwise
componcnt follows a power law of the form

1
N

u Z
={1-; = <«§« (19)

and n = 7 is commonly used both for subsonic and supersonic flows. Magerzo

found that this form fittcd some experiments of Gruschwitz’ fairly well.

Cooke21 found that the form

_ <_§>%-(H-1) (20).

&
u
e

fitted some expcriments of Wallace18 guite well except near to the wall.
Becker~“ also used this form.

23

Zaat ™™ suggested for compressible {low

£ Gl B

r (21)

L
u
e

i
/m\\
+
o’
ooF‘(

N’
N
I
o
ke
[N
o~ |

where
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He quoted Wallace'518 experiments to justify the form for v/ue.
The form, bascd on experiments byGac-usckmitz'6 on ducts and Wallaoe18
on wings,

N2
A - ) A
u_ < 6) u & (22)
e e

2L

with a = tan a, was used by Magergo, Braun  eand Cook021, whilst Beoker22

suggested that

2

fitted Gruschwitz's experiments very well if

1
Equation (22) also fits the experiments of Kuethe etal-unite well, but
(19) fits poorly with n = 7.

Johnston5’6 made a close study of the velocity profiles of references
16 and 17 and as a result of this and of a long series of experiments of his
ovn he suggcsted a form for the cross-flow as shown in Fig. 4. It will be
seen that v/ue is expressed as a function of q/ue, so that v = O when u/ue =0

and also when u,/ue =1, Fig. 5, reproduced from Rel'. 5, shows how Johnston's

model fits the data of Kuethe et al. This form of plot does not show very
clearly the way the cross-[low varies across the boundary layer. Ve have
therefore in Fig. 6 plotted v/ue as a function of ¥%/8 for Johnston's fit of

his model to one of the profiles of Grusohwitz16 (station 10 along line 3),
taking for the strecmwisc component thc value

O T <ﬁ§>7
w &5 )2
e

which fits the observations quite well, Tlds particular profile was chosen
becgusc in most of the others the pecak is too near to the v/ue axis to be

convenicntly drawn. VProfiles such as that in Fig, 6 illustratc the difference

-13 =
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between laminar and turbulent boundary layers in this respect. The peak is
very much nearer to the wall in the turbulent than in the laminar case.
Pig. 7 is an attempt to give a full threc~dimensional picture of the same
profile., Unfortunately Johnston's model differs from others mostly in the
region close to the wall where measurements are thc most difficult to make
and suffer from the most inaccuracy.

Johnston's form for the velocity profile v may be written

< o= (25)
ue U.e

near to the wall, and

(26)

i

-
N

]
o i;—;
R

.
Ye

further away from the wall. The change from one to the other takcs place
where the tvwo lines in the u, v plane (Fig. L) intersect. Johnston suggests
that for extcrnal streamlines which are initially straight and then become
circular A is given by

A = 28, (27)

where B is the angle through which the streamlincs have turned., He found,
nowever, that except perhaps for flow in ducts, onc cannot rely on the factor
2 in equation (27). Indeed a factor 1 gave closer ugreement in one case and
this was the number he used in a calculation. The cuantity e is equal to
tan o as already defined (o is the angle between streamlines and limiting
strcamlinen) and is an unknown to be determined in the course of a
calculation,

Z
¥inally, Coles” suggested that the velocity vector q should be given by

25 "%

where

Za 1306 N
T ~7
% - nf(5) &= F(E)

In these equations 4. is the magnitude of a friction velocity vector

which is taken parallel to the surface shcar stress vector g. The

-y -



functions f and w are the well-known "law of the wall" and "law of the wake"
functions, that is

g, Zq
f<%§£) - % 6n<%;3> + o, (28) ’

and w is a function tebulated by Coles. According to Coles an is to be a
~
vector constant in magnitude and direction at any given station. Thus e
Lo

and q, are both vectors constant in dircction but varying in magnitude for

varying & according to the variations of the functions f and we q itself

- . Y 4 3 s ~
varies both in magnitude and di-cetion. Coles finds in an cxample that the
direction of 4 is ncarly the samc as the direction of the extcrnal pressure

gradient at the point concerncd, and makes the tentative suggestion that this
should hold universally.

Blackman and Joubert19 attempted to tust the theory in an experiment.
They divided the vector Q. into componcnts w, in the A direction and Wj

4

perpendicular to this. w,_ and w,, suitably normalised, should both have the

h
shape of the law of the wake function w(Z/8) if the hypothesis of Coles is
correct. The results are shown in Fig. 8. Blackman and Joubcrt claim that
the fit is good, since Wj has a fairly good fit. They rightly say that wy

is subjcect to much more uncertainty than Wj; indeed the lack of experimental

€

precision obtainable by prescnt methods makes scatter ineviteble in this N
component. There was, however, vory little cross-flow in the experiments

(o < 5°) and it was not possible to detcrmine the direction of the pressure
gradient, which was in any casc small.

The questilon of the it of cxpcriments to the modcls of Colesh and
Johnston? is in a state of some confusion, Coles found that his model
fitted the measurements of Kuethe ¢t al A very well, and Johnston has
used Fig. 5 to show how his model also fits the same obscrvations. On the
other hand Johnston found that his own observations could not be made to
fit Coles's model. Johnston was able to fit his modcl fairly well to the
ecxperiments of Grusohwitz16; Colus felt that the experiments concerned
were probably subject to errors ncar to the wall. In the discussion
following Ref. 6 Coles reported on his attenpts to f£it Johnston's mecasure-

ments to Coles's model. He found that Gp could be made to fit wcll, and

that the dircction of g, was close to the direction of the pressure gradient,

but that the Fit to his form for w(Z/8) was not good. TFinally we may note
that the profiles of Blackmun snd Joubert!? holped to confirm Coles's model
but could not be made to £it that of Johnston.

« W

Much less is known about tlhrec-dimcusional compressible boundary layer
profiles than incompressiblc oncs. One may hope that two-dimensional flows
will agein give us a gulde. In this conncction one may expcct that the
transformation

-15 -
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“

Z &
2 = /(p/pm)dz;, A = [(p/Pm)dé,

where P is evaluated at the temperature Tm of egquation (31) below, will

reduce streamwise compressible profiles to incompressible ones. Spenccz5
found this transformation to be most successful in the two-dinensional
case, More speculative would be to assume that the transformation would
elso hold for the cross-~flow, If it did one would be able to formulate a
compressibility corrclation similar to that for laminar {low.

3.2 Wall friction valucs

For the streamwise skin friction in incompressible flow Becker22 used
the Ludwieg-Tillman formula2®,

T N e r -0-268
o - o123 x 107078 (J—-—-—-—-"v “) . (29)
PUg

27

0
Cook.e3 , following Spence ' used the relation

1
T o, P 6.\ 5
012 = 0.0088 =2 ~2_EL_11> , (30)
Pells Pe My

where quantities with suffixz m are evaluated at a temperature Tm determined

from the relation

=
i

Ho, o+ 1) 0.22(7, - T ), (31)
where Tr is the rcoovery teunpcrature given by

T o= 0 {1 . %ﬁ?(x-‘l)Mez} . (32)

r is the "recovery factor" and is usually taken as 0.89, whilst Me is the

Mach number at the edge of the boundary layer. The assumption
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was also made, with w = 8/9,

2k

Braun used the relation

(33)

2
= 12
N
!
=
Bl
bos
ol ®
\_/'

with Tm given by equation (31). The viscosity temperature relation used

was

L i
== O (34)
e (34

K is 0.0225 for = flat plate. DBraun, who was dcaling with a slightly yawed
cone, did not takc K = 0.0225 but he multiplicd this value by 2/V3, saying that
this is usually done fer an unyawed cone.

A1l these forms are taken from two-dimensional methods. The only cvidence
for this comes from axisymaetric bodies, for which i1t scems to be true that
the same flow mechanism holds locally as in two-dimencional bodies.
. 2, s .
Vaglio=Laurin ~, in a problem with zero crosus-flow, after using a
transformation which reduce his comprcssible problem to an incompressible
axially symnctric onc with zcro pressure gradicnt, uses cquation (28) which,
on integration of th. equation for 611 in cquation (8) gives T in terms
of ©
11°
The skin friction component Top in all the methods is taken to be
equal to To1 tan a, where a is to be detcrmined in the coursc of the

solution. All workers exccpt Becker take

tan o = 1lim —. (35)

zs0 ¥

Becker?? inscrts a factor & on the right of cquation (35). There is no
smeclal rcason why equation (35) should hold exactly, since the forms for
u and v usced by all workers Go not apply ncar to the wall.

A L0 TER, L. HELIODS

e T NI AT

Only two general methods of solution scem to have been suggested, both
of which assume small cross-flow and both of which solve the str.amwise equa-
tions by taking over two-dimensional mcthods. Braun24, who found a solution
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for a cone at small angles of yaw, also implicitly assumed small cross-flow
and uscd two-dimensional properties for the streamwise flow. Vaglio-Laurin!
of course took the cross-flow cqual to zero and ihen also used two-dimensional
methods for the streamwise flow.

4.1  Cooke :__s_’methoqm

In this method the solution of the streamwise equation follows
closely the method of Spence?/ in two dimensions. This method uses the
momentum equation (12) snd in incompressiblc flow the strcamwise shear

s8tress is given by

T 8, \-1/5
0; = 0.0088 <?97;11> . (36)
Uy

This equation is due to Young28.

Writing

@ = ©

g O1p\1/5
11 v

and assuming that in the determination of 611 it is sufficiently accurate to

write H = 1.5, we find that ecguation (12) becomes in the incompressible case

b1, N
é% {@ uelr1 2} = 0,0106 ueh'r1 2, (37)

where r is found from equation (17).

For the cross~flow the form (22) is assumed, with a = tan a = a, and H
is again assumed to be constantly equal to 1.5. Writing

mu “5/2 .

g =
e

Cooke finds

00166 _ 2,187 X%
¢ u 2.5 Im
c

gl&

This method was applicd to a 550 swept wing tested by Brebner and
Wyatt!3, and included the determination of H by Spence's method?d, and so

6117
~18 ~

61 and B could all be calculated. Some results are shown in Figs.9 and 10,



The method can readily be extended to compressible flow using a
transformation for the streamwise flow due to Spencez7. For the flow over
infinite yawed wings the equations for 611 in the case of gzero heat transfer

and also of constant wall temperature are given in Ref. 30,

Cooke31 has also applied this method to the flow over a delta wing of
1%% thickmess-chord ratio at zero 1lift at a Mach number of 2, This wing has
been tested in the R.AE. 8 foot tunnel and it was found that the pressure
measurements agreed quite well with calculations by slender thin wing
theory. However the separate velocity components were not measured and so
the calculated values of these components were used in the boundary layer
calculations, The streamlines could then be found and are drawn in Fig. 11.
Turbulent streamwise calculations using equation (12) and Spence's transforma=
tion?7 were then made. These calculations could be simplified because it
was found that the term (H + 2) (ué/ue) + p'/p could be ignored compared

with the other terms in the coeficient of 6 The result is shown in

1°
Pig. 12. There is considerable convergence of the external strcamlines
near to the centre line and this causes a thickening of the boundary layer
in this region. Everywhere else it was found that the value of 611 was

much the same as it would have been if the flow had been over a flat
plate of the same planform. It was found also that the additional
pressure drag due to the displacement thickness was less than 1,5 of the
total skin friction drag plus wave drag and it could therefore be ignored.

4,2 Becker's method22

Becker assumes the equations (20) and (23) far the velocity componentse
For the streamwise shear stress he assumes the wcll-knovn Ludwieg and Tillman
relation26

H

T a0, ,\~0.268
o; = 0,125 x 10—0.678}1 <__e_;__1_1>
pu,

and suggests that a clnse approximation to this is

T 6, =1/l
o1 = 0.0125 e A1 . (38)
2 v
pu
e

He deals only with incompressible flow.

Unfortunately Becker assumes a rather special external flow correspond-
ing to a special value of r in equation (12) namcly v = 1/ue. This

assumption is equivalent to assuming that awe/ag = 0, .which implics that the

external flow is two-dimensional, as may be scen by consideration of the
equation of continuity for the external flow. The assumption is easily
avoided and Becker's streamwise cquation may then be written
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u - 5] "00268
0, +0,, |(H+2)C+ EL] = 0.103 y 10706780 (e 11 . (39)
11 u ) v

The cross=-flow equation (13) bcecomes according to Becker

v "ot 2u8 q Ou
1 — [ .4 I
821 + e21 {YB(H’G11 pu82 + u + =7 } = ru, an(1*'h)911’ (40)
where
. 22H-1
YB(H) T oL H+4?

though Becker's ecquation has the tern 2r'/r + Zué/ue missing because
of his special value of r,
In order to solve these equations one may assumc a constont value of H

as we did previously. Becker suggests H = 1.29 in one example, This nmakes
Yj(ﬂ) = 0.52, As an alternative Bocker finds H by an equation which is

indcpendent of r. He writes

- 4 g-q4 P
® = ‘{:HZHMS

and uses the equation

1
-2 -2 2
8, <?ew > *Auw = Bu (u1)
32
due to Kehl)“, where
A = 0.008%,
_ 0.0164 0.85

log(ue611/v) U6117;3-300
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Equations (39), (40) and (41) are then threce cquations for the three unknowns
8, H and a, since

H-1

H-1
ST REED O %21 7 T EEE-n % (v2)

Becker does two examples, the first of which is the case where the
streamlines are circles of radius R, and u, = £(R), so that U, is constant

along strcamlines; he also supposes the boundary layer is "very thick", so
that the term To1 may be ignorcd in cquation (40). This equation then reduces

to

844
1 PRSI
63, = (1+H),

1

remembering that Becker writes r = 1/ue. If H and 611 arc constant, and H is

equal to 1.29 this by equations (42) rcduces to

a = 10586,

where B is the amount the external streamlincs have turned from the start.
Por his second example Becker considers the decay of a cross-flow
which had developed earlier, specificd by 621 = (621)0, and is now

subject to uniform external flow with straight streamlines. In this case
equation (40) becomes

00,0065
1 -
O34 + L %1 = O

] (%e

(i 611
where

u 6
Ree - .8 v11’
11

and once more H = 1,29.
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This gives, using (38),

~s/ &

8y = (8], ’

where

/b
¢ = 154 0, (%9611> .

.3 Johnston's solution along a line of symmetr 235

When applying the axially symmetric enalogy we assumed that 612, 950

and their derivatives in equation (9) could be ignorecd. Johnston, though
he ignores 0,, (1t is in Pact zcro along a line of symmetry), does not

ignore 6612/h26n.

If we assume constant density and writc

d 6 ut T
1% %0 — 01
' < ey aatmane —— MR
61 * ¥ 3o * Oy @H+2)u*'r} N (13)
e e

which we may compare with equation (12). Johnston points out that the
torm r'641/% roeprescnts the effect of convirging or diverging gtreamlines

(as we have alreedy explained in Scction 2.3) and that the tcrm 6612/ran
represents the effect of boundary layer "skewing". That this term necd not

be small was shown by Moore and Richardsonsd. In onc experiment, for instance,
they found the values

3 6 u! T

= 0.007, 6. (n-+2)1§ = - 0.008,

gy
as

N
o
3

so that in this casc the contribution of 6612/fan certainly could not be

ignored.



Using his model {equations (25) and (26)},for the velocity profiles
Johnston shows that for large Reynolds numbers Gkb11 > 10k)

Hence we have along a line of symmetry -
a6
1 12 1 0A
r dn  rom (6, -8,)- (ub)

Now, as discusscd in section 3.1 Johnston assumes that A = B, where B
is the angle the streamlines have turned from their initial straight path,
and since the curvaturc Kﬁ of thce lines & = constant is

198
T 4m
we have by equation (2) ’
__Th . 138 _ 1, ‘
K o= r ron  rdm (45)

Finally Johnston assumes that r = 1/ue, the same assumption that was

used by Beéker22, which is tantamount to assuming that the external flow is
two=dimerisional and is probably justified for the experiment of Fig. 3.

Herice we have from cquations (43), (4k4) and (45)

S Ty
) o - —
bl =~y T3 (46)
¢ Pele
aloné a line of symmetry.
. This equation is integrated by using the Ludwicg and Tillman26 formula ’

for f,, combined with the von Docnhoff and Tetervind? formula for H.

-

Alternatively a method due to Rotta56 is followed.

¥

" FEither of the methods gives results agreeing well with experiment in
the special case considered.
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L, Braun's solution for the slightly yawed conezu

Braun solves the problem of a cone of semi-angle © yawed at a small
angle ¥ in a supersonic stream, He uses a streamline co-ordinate system and
uses the velocity profiles (19) and (22) and wall shear stress values given
by equations (33), (31) and (32) for Ty &nd (35) for Tgpe For the external

flow he uses Kopal's tablesd/, Writing N = y/sin © for the yaw parameter he
expands tan o and & in the form

i

2
tan a aﬂx + azk + eres

o
L]

60+ 617\.4‘ ese o

He 1s then sble to find a,, 80 and 81 in closed form, Perhaps the most

intercsting results are the deflection of the limiting streamlines, that is,
the value of a to the first order in A, Fig. 13 is taken from Braun's paper,
In this figure ¥ is the azimuth angle round the cone measured from the
generator with the greatest inclination to the flow at infinity. It will

be seen that a is increased by heating, but raising the Mach number reduces
it. The deflection angle is much smaller than in the laminar adiabatic

cese and it decreases with Mach number in contrast to the laminar case,

where it increases with Mach number for values of Mach number greater than
ebout 2,

5 TRANSITION

We shall only meke a few isolated remarks in this section, some of
which are speculative and not completely justified either experimentally
or theoretically.

So far no calculations appear to have been made in cases when the flow
is partly laminar ond partly turbulent, First of all the determination of
the transition "front" itself is a difficult matter into which we shall not
enter, beyond remarking that two kinds of instebility seem to be involved,
namely two-dimensional instability (Tollmien~Schlichting) and sweep
instebility. It wes suggested by Eichelbrenner and Michel38 that both of
these types exist on a surface; in certain regions one is more important than
the other and in other regions their roles are reversed., Thus, for a slender
wing with leading edge separation and reattachment, transition fronts as
shown in Fig. 14 may be possible39, where CDE is a front due to two-dimen-
sional instability and ABC and EFG are fronts due to sweep instability.
Fronts of this type have been observed. A third type of instability, that
described by eortlertQ as occurring in flow over concave surfaces, may also
have its effect in places,

Another interesting fact has been point out by Gregory41. It is that
when trensition occurs at an isolated point (say near to the leading edge of
a swept wing) the usual wedge of turbulence appears, spresding out at the
usual angle, but the wedge is curved, its edges being the envelopes of lines
making angles +10,6° with the external streamlines starting from the point
concerned, Fig.15, taken from Ref, 42, shows calculated wedges of turbulence
starting from points at different distances from the leading edge. It will
be seen that the nearer the disturbance is to the attachment line the greater
the area covered by the turbulence wedge. In particular, if x/o is equal to
0.01 the whole wing outboard of the point of disturbance is "contemi:.ated",
Fig. 16 is taken from photographs by Gregory#2, and illustrates this
phenomenon very well,

When turbulent calculations are to be made they must start with some
known initial conditions. In two dimensions it is usual to assume that the
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momentum thickness is unchanged at transition; this means that skin frio-
tion end displacement thickness are usually discontinuous. (Actually tran-
sition does not take place suddenly but is spread over a region which is
fairly short, so that skin friction and displacement thickness vary rapidly
but are not quite discontinuous,) The assumption is that there is no rapid
change in the momentum thickness. An argument in favour of this might run
as follows, A discontinuity in momentum thickness implies a sudden change
in momentum and this means that there must be not merely a discontinuity in
skin friction but also an infinite foroce at the point of transition. There
is some experimental evidence for this assumption, as may be seen from
Fige17 which shows displacement thickness and momentum thickness as drawn
by Rottalt3 from cxperiments by Schubauer and Klebanoffi,

In three-dimensional flow the problem is more difficult, An obvious
first suggestion is to make 044 continuous. This is not sufficient and a

second condition is required, Ore that has been suggested is to make a
continuous, that is, the directica of the limiting streamlines is to be
unchanged, Apart from the fact that this direction is conneoted with skin
friction which we expect to be discontinuous, the assumption of an unchanged
direction is contrary to the evidence of Fig. 2, a careful examination of
which seems to show a discontinuity in direction of the oil-flow lines at
the edges of the wedges of turbulence, A discussion which is not, and can-
not be, wholly satisfactory, is given in Appendix 1. It would appear from
this that the result depends on the angle a' whioh the normal to the tran-
sition front mekes with the local external direction of flow., The result
is that

| s 1] 3 | 1
611 cos o 612 sin o and 622 sin o 621 cos o

are continuous at transition, If the cross~flow is sma11,612 is small com~
pared with 611 and 622 is small compared with 621. In this case the condi~-
tions reduce to a simpler form, namely that 611 and 621 are continuous at

transition, independently of the direction of the transition front. This
was pointed out to me by Professor A.D. Young.

6 CONCLUDING REMARKS

Although little work on turbulent boundary layers has been done the
outlook for calculation methods is not quite so dismal as at first appears,
Velocity profiles seem to be of a more "universal" shape than in laminar
flow, and momentum-integral equations seem to be adequate in favourable or
slightly unfavourable pressure gradients. Energy-integral equations could
also be further exploited in this connection.

Even in the laminar case it has been found that streamwise velocity
profiles are very like two-dimensional ones and, since turbulent mixing is
a three-dimensional phenomenon, it may well be expected that this similarity
will be borne out more faithfully in the turbulent case. The great differ-~
ence is that one can never resort to an exact solution to test any method,
and experiment is the only possibility. In any case methods are largely
empirical, This inevitably means that calculations with turbulent boundery
layers will be inaccurate, and indeed in two dimensions an accuracy of from
5 to 10 per cent is all that is usually expected. Within that range the
position is not too hopeless and one may well anticipate improvements in the
future if only more systematioc and careful experiments can be made,

We have made no attempt here to discuss the structure of a three-

dimensional turbulent boundary layer, This has an extensive literature in
two-dimensions but practically none in three dimensions, In addition, so
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far as I am aware, no work has been done in the unsteady case or in
conncction with scparation. The problem of detcrmining separation is
difficult enough and doubtful enough even in leminar flow. However
separation seems to teake place fairly abruptly in the sense that the
bending of the streamlines increases considerably just before separation and
methods of solution break down when this happens. One may therefore hope
that & place where o method breaks down is fairly near to the place of
separation. Further than that one cannot go at present.

LIST OF SYMBOLS

A faotor in velocity profile (26)

A, B, factors in equation (41)

a factor in velocity profiles (21), (22) and (23)
b factor in vilocity profile (21)

C constant in viscosity temperature relation (34)
c chord measured normal to lcading edge

cp specific heat at constant pressure

e factor in velocity profile (25)

f<?%§> law of the wall function, eq. (28)

i form factor

i total enthalpy

by, b, coefficients in line element (1)

K1, K2 geodesic curvatures of curves & = const, m = const., Egq. (2)
K constant in skin friction formula (33)

M Mach number

n power in eg (19)

)] pressure

Pr Prandtl number

q velocity

A friction velocity

R radius

Ree11 Reynolds numbcr based on 611

Y



LIST OF SYMBOLS (Cont'd)

r recovery factor in eq. (32)
r h2
8 length measured along a streamline
T temperature
T external temperature over unyawed cone, Fig. 13,
u, v, w velocity components
U° reference velocity
Wy Wj wake velocity comporents in direction of limiting streamlines
and normal to them
w(Z/5) law of the wake component
X, ¥, % Cartesian co~ordinates
o defined by tan a = ¢02/&O1
ol angle between the normal to the transition front and the local
direction of the external flow
B angle of turn of external streamlines
Y angle of yaw of cone in Braun's work
) boundary layer thickness
A transformed boundary layer thickness
61, 52 displacement thickness "components"
€ aru_"/2
\ e
O14s 0425
8 momentum thickness “components"
0219 80
0 Fig. 12 and section 4.4, Semi~vertical angle of cone
1/5
) Section k4.1, G,H(u.e 611/v)
1! coefficient of viscosity
y kinematic viscosity
E, Ny & ourvilinear co-ordinates, & along streamlines, £ normal to
surface, 1 normal to & and Z
P density
Ty Tp shear stress components
Tor0 To2 wall shear stress ocomponents
¥ azimuth angle of cone
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w power of T in viscosity-temperature relation

e H~1
1 - -
[}{2H+15:}

e1

Subscript e denotes valucs at the cdge of the boundary layer
" n denotes values at a temperature T given by cquation (31)

r denotes recovery values
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APPENDIX 1

TRANSTTION

We shall consider two-dimensional transition as an introduction to the
method to be used in the more general case, and will give a "proof" of the
continuity of 6 from elementary considerations. Such a proof cannot be
rigorous but it is suggestive,

We assume that the same momentum equation holds on either side of tran=-
sition, This equation in steady inocompressible flow is

dau T
d 0 e w
=+ (H + 2) = = 5 s (a1)
e p Ue

where H = &*/0, Ty is the wall skin frioction and U, the external velocity.

In turbulent flow there is an additional term

RN | -t
4 /' u 2"v Zdy
>
dx U 2
o e

which we shall ignore es is usually done. Thus the same equation applies
throughout,

For smaell dx equation (A1) may be written, if there are no discon-
tinuities, by the mean value theoren

T
o' - 0 + [}EL42622_5§] (Ué -U) = ._IL{] ax,
e 2
e n Ue m

where [z]m denotes a "mean" value, that is the value z takes for some value
of x in the range considered, which is taken to include the transition point.
Primes denote values at the end of the interval dx.

We now let dx tend to zero; Ué -+ Ue and although H and Ty M2y change

rapidly or even be discontinuous in the limit their "mean" values are finite
and so

6 = 6!

that is, © is continuous at transition. The result is simply any analytical
expression of the fact that there must not be en infinitely large skin frioction
at transition.

In three dimensions we use equations (9) and (10). If T and Ty 8re

not to be infinite we find that 611 and 621 must be continuous at transition.
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We have arrived at this result on the implicit assumption that the
transition front is at right angles to the direction of flow of the external
streamlines. If, however, the normal to the front maekes an angle a' with
the direction of & increasing the result must be modified., We change the
co-ordinate system to £' and ' with €' in the direction normal to the tran-
sition front. We now use equations (13) and (14) of Ref.3, They are more

complicated but they still lead to the oonclusion that e;1 and 651 are con-

tinuous; here primes denote values in the new co~-ordinate system, that is

§ )
1 ———
6‘{1 = ———U2 (uet - ut) pu' dz, 651 = 1U2[ (ve‘ -v') pu' daz,
Pe e o e e )

where Ue (= ue) is the resultant external velooity.

Now we have

u! = ucosa'=vsina', u, = U oosa',
U' = usina' + voosat, vé = U, sin a',
from whioch we may deduce
6!, = ocos’a'@,, - sin a' cos a' (6,, +8,,) + sin® a! 0
11 11 12 21 22
6!, = sina' ocos a' B,, - sin2 a' 6,, + 0082 a' ®,, -~sina' cos a' ©
21 11 12 21 22

and it is these which must be continuous at transition. They reduce to the
previous values when a' = O as they should. A neater way of writing the
result is found by multiplying these equations respectively by cos a' and
sin o' and adding, and by sin a'! and cos a' and subtracting., We find that

6,, cos a' - O > sin a! and 622 sin o' - 0., cos a!

11 1 21

must be continuous at transition.
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FIG.|. LAMINAR CROSS-FLOW VELOCITY

PROFILES. EXTERNAL POINT OF INFLEXION
AT £ =0O-5.



FIG.2. OIL FLOW PATTERNS SHOWING WEDGES OF
TURBULENCE. (BREBNER AND WYATT)
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FIG.3. EXPERIMENTAL ARRANGEMENT
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FIG.Il. CALCULATED EXTERNAL STREAMLINES
ON DELTA WING AT ZERO INCIDENCE (COOKE)
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