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This paper reviews the curarcnt state of knowledge of three-dimensional 

turbulent boundary layers, mainly from the point of view of making 

calculations. The nature of the boundary layer is discussed and the 

equations for gcncrul. steady turbulent Slow are given. Next follow 

momentum-integral equations, which can then be solved with suitable 

assumptions as to the velocity profiles and shear stress components. f%.n 

account of these assumptions follows and a few sample results are given. 

The paper end s with a short nccount of some matters connected with 

transition. 
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I IFi!RODUCTION -- 

The study of three-dimensional turbulent boundary layers has been 
greatly neglected in the literature, Thus in two reviews, one by Sears' in 
1954 and one by Moore2 in 1356 which together include about 50 mferences on 

r_ the subject of three-dimensional boundary layers, only 4 refer to the turbu- 
lent problem and these were all concerned with flow over infinite yawed wings 
and cannot be considered to be quite general. In the review by Cooke and 
Ea113, written in 1960, there are about 50 more references, and of these only * about 12 refer to genuinely three-dimensional turbulent boundary layers. 
Again, in Applied. Mechanics Reviews for 1960 there are about 175 references 
to boundary layers of all kinds (excluding Magnetohydrodynamics) of which 
only 1 deals with a properly three-dimensional turbulent problem, whilst two 
others do so in part (and only a small part). Since flying machines of the 
future are likely to be more f'three-din~ensionalf' in shape than in the past 
it will certainly be necessary to make a greater study of the subject than 
has been done up to the present time. The neglect has been due to the 
difficulties of the subject, which are immense, even in Tao dimensions, and 
to the fact that the collecting of experimental evidence is so tedious and 
unrewarding. 

This paper is an attempt to review what little that has been done. In 
it me shall exclude unsteady mean flows and will also exclude in the main 
axially symmetric flow, since the latter hns usually merely involved a 
simple extension to work on two-dimensional flow. Attention will be con- 
centrated almost entirely on theoretical work, and in particular on the 
description of such calculation methods as have been attempted. These have 
all assuned small (or zero) cross-flo:nr, that is, small mean velocity 
components normal to the streamlines in the external flow, and have assumed 
well-knovnl t::-o-dimensional expressions for th e streamwise velocity and akin 
friction components. More variety has been found in the assumptions for the 
cross-f low. The only more unified attempt to write down a general form for 
the velocity profiles is due to Coles 4, This is an extension of the law of 
the wall and the law of the v&e; so far only a small amount of experimental 
evidence exists in supoort of this model. 
examined by JohnstonS,f; 

The subject has been deeply 
who suggested a form for the cross-flow quite 

different from any of the other s and presented considerable experimental 
evidence in its support. 

The flow over infinite yawed :F;ings has considerable literature in 
laminar flow. This is because there exists an "independence" principle accord- 
ing to which the c,hordwise components of flow satisfy ordinary two-dimensional 
boundary layer equations. This principle does not hold for turbulent flow. 
A simple theoretical proof of this was given by Rott and Crabtree? and 
experiments of Ashkcnas and Riddell conf-kmad it. A full discussion of the 
subject was given by Turcottey, who advocated a "line of flow" principle, 
by which the streamwise wall shear stress is considered to be a function of 
the distance over which the fluid has aotually flowed, rather than the 
perpendicular distance from the leading edge. Most methods of calculation 
so f,ar put forward have used stroamline co-ordinates and they have tacitly 
followed this principle. 

Turbulent sep aration in t,hroe-dincnsions has scarcely been touched upon 
by workers in the field, except in its purely topological aspects, which 
apply equally ~11 to lsninar or turbulent boundary layerslOrll, Ve do not 
consider it here. 

In this paper we give the general three-dimensional equations for the 
mean flow, and then explain the axially symmetric analogy applicable in 
cases where the moan cross-flow is small. Momentum-integral equations are 
given, since only by their use h&s any progress been made. Their solution 
depends on assumptions made about velocity profiles and surface shear stress. 
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An account of these assumptions follows. iYext is given a description of 
the few three-dimensional turbulent boundary layor calculations that have 
been made, and we conclude with a short account of some matters connected with 
transition. 

2 GENERAL 

2.1 Boundary lzr and momentum-intLf;ral esu@&~s_ -n--m 

Curvilinear co-ordinates c, 71, Z: are used. The surface over which the 
boundary layer lies is < = 0 and ;= denotes distance from tho surface measured 
along a normal. On the surface Z = 0 are two families of co-ordinate curves 
5= constant and 7 = constant, orthogonal to one another. i?or this system 
the element of length is given by 

ds2 = h; de2 -+ h; dq2 + dZ2 . 

In the boundary layer h, and h2 are usually assumed to be functions of F; and 
71 only. For this to hold it is necessary that the curvature of the surface 
does not change abruptly and that locally the boundary layer thickness is 
small compared to the principal radii of curvature of the surface. 

Ye denote velocity components by u + u', v -i v' w c w', where u, v and 
VJ are the mean values. Density p,total enthalpy 15 and temperature T are 
treated in the same way. Terms involving fluctuations of the coefficient of 
viscosity p, the coefficient of heat conductivity, the spccifio heat at 
constant pressure 0 and the Prandtl number 2?r are omitted. 

P 
hlean squares 

and products of the turbulent fluctuations in velocity and density are taken 
to be of order 6, the boundary layer thickness. As in the incompressible 
two-dimensional cast tj5.s last assumption is probably justified in 
favourable or slightly unfavourable pressure gradients, but is not so when 
separation is approached. The usual boundary layer approximation, namely 
that rates of change of mean flow propertie s in the c and 71 directions are 
of order unity and those in the ;j direction are of order 6-1, are made. 
We write 

K, = 1 %2 R2 t= 1 ah., 
- e--e - -I__-* 

h, h2 X ’ 11, h2 &-J ' (2) 

these are the geodesic ourvaturcs of the curves E = constant TJ = constant 
respectively, J7e denote the mean of a product f'g' by (fTF). A full acoOur& 

of the derivation of the equations of motion is given by Vsglio-Laurin'2. 
steady mean flow, in the absence of body forces and of heat sources the 
equations are 

(3) 
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F’ 
I 

c 

1 ap la av = ----i--- 
P9 a7l p a,r, [ li- at; ----p(W) ) 1 

& (Ph2u) + g (ph,v) -I- L !ph, h2 
ag t [ 

w -I- F]! = 0, 
,' 

O+) 

(5) 

I a ‘-‘af? 
= ;zj i-J z+ CL 

‘s?- a (CpT)] - p(T-iF)] . I+ a2g (6) 

Certain terms on the right hand sides of equations (3) and (4), namely 

consist of shear stress terms P(~u/'~C) and p(av/a;=) together with Reynolds 

stresses - p(n) and - p(?-??-). We will denote their values by T, and a 2 
and their values at the surface of the body by zO, and 1; 

02' 

It will bc: seen that the first three equations are similaz to laminar 
equations, except that VT is replaced by w + (l/p)(m) and the terms on 
the right hand side of the equation s 
~(8u/~3~) and p(av/az) are zj and 'Go. 

mhich in luminar flow would be 
The energy equation (6) also resembles 

the ianinnr flow energy equation, except that it has an additional term 

- p(zF>. 
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The values of ap/ac and ap/a?~ are obtained from the flow at the edge 
of the boundary layer. Denoting tho values of flow quantities at the edge 
by the subscript 'Ierr we have 

ue sue ve due - .- + .I - 
h, x h2 ac 

- K2uevo -I- K,ve2 = - - ' 22 
phd ag ' 

(7) 

since p is unchanged in travel.ling through the boundary layer along a normal 
to the surface. 

In d&riving momentum-integral equations in laminar flow it is usual to 
ciiminate w, and in addition no direct use is .made of the energy equation. 
Here we oliminatc w + (TV)/p and the momentum-integral equations will be 
the same as those in laminar flow. These equations arc dcrived in Rcf.3 and 
so we shall only give the results here. For reasons given in Ref.3 it is 
usual to use "streamline co-ordinates" which have the property that the curves 
rl = oonstant are the projections on to the surface of the strw,mlines of the 
external flow. In these co-ordinates v = 0 by dofinition. e 

We write 

Finaily we assume the ex-tornal flow to be irrotational, so that a 
velocity gotential exists, which we may put equal to g. It can be shown that 
in this case h I = l/ue. 

r, 

The momentum-integral oquatians then become 3 
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%I - y+ R, (sl, - 022) = - 
e PU 

3' 
e e 

(9) 

1 
2:; ce 

e 
0 6<, ) " I$ 02, 

To2 
-I--=------- -t- 22 -I- - = II -- ' 3 

m 

h2Uc, 
e PU ee 

as shown in Kcf. 3. 

2.2 Three-dimcnsionsl tiffects e-"_p_ --w-e --<- -P--aFr-n--cz 

An account of the genera!. behaviour of three-dimensiontil boundary 
lZijE1- S (whcthcr laminar or turbulent) is given in Ref. 3, and we shall not 
repeat this in detail. Iiowcv~ rrje may mention some of the more important 
points. 

As we traverse the boundary layer along a normal to the surface the 
direction of flow changes; the velocity vector r0tatc.s usually, but not 
alv~ays, in one direction as we travel from outside towards the surface. If 
wo take the direction of the txt-rnal flow as ihe standard direction, any 
component of velocity normal to this direction will be called "cross-flow". 

A physical explanation for the czristence of cross-flovrs may be given 
as follows. The str~amlincs at the edge of the boundary layer are suc;2osod 
to be curvc;d, so that there must be ,an inward pressure gadiont bal.ancing 
the centrifugal force. Scar to the surface oi' the body the fluid has been 
retarded, whilst the pro,, ~"nure gradient is unohLnged. Hence the inwards 
pressure gradient is now too great for the centrifugal force and the fluid 
iS made to move inwards. 

This is fairly easy to understand so long as the inwards pressure 
gl-adicnt incrtiascs as WC travel downstream. !Vhen it decreases and changes 
sign, as it will do if the exttirnal strcamlincs reduce their curvature and 
bend the other v&y as at a point of inflexion, the matter is more complicated. 
?i:c rcduct:ion,vanishing, and reversal of the pressure Gradient does not 
cause: an immediate reduction, vanishing and reversal of the cross-flow. This 
tal.:c,s tim~5. :"he reversal first occurs downstream of the point of inf'lcxion 
and then only na:+r to the body, so that there are places where the cross- 
flow is in7;ards (referred to the new curvature) at points near to the body, 
and outwards at points further away. Only after travelling some distance 
downstream of the point of inflexion will the fiov< bc reversed at all levels 
of the boundary layer. Pig. 1 shows some calculated cross-flow components 
for a laminar boundary layer. Similar cross-flows should apllear if the 
boundary layer is turbulent. 
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In general the cross-flow in a turbulent boundary layer is much less 
than in one which is laminar. 'This is to be expected since in equations (-7) 
and (2) the virtual shear stress terms such as 

shear stress 

illustrated in Fig. 2 taken from Ref. 43. This shows oil-flow patterns over 
a wing vVith 55O sv:eep. The oil-flow lines lit along the direction of flow 
close to the surface of the ning. The direction of flov: outside the boundary 
layer may be taken to be almost the same as that of the undisturbed flow. It 
will be seen. that there are v:ed,c-shaped areas Trchoi+e the direction of flovv is 
much "straighter" than over the rest of the wing. These arc places where the 
flow is turbulent and at these places the cross -flow is much less thpan at 
places where the flov: is laminar. In sencral one may expect turbulent mixing 
to attempt to maintain the mainstrc;&m velocity in magnitude and direction 
deeper down into the boundary layer than in laminar Slow. The fact that 
this happens to the si&nitudc ot the velocity vector is well-known from -u_.. 
studies in two dimensions. It mill also happen to the direction of the vector. ---__I 

Another major effect of the thzoc-dimensional nature of the flow is more 
familiar since it occurs in axially symmetric fl.07;. This is the effect of 
diverging or converging streamlines in the external flow, Converging stream- 
lines cause a thickening of the boundary layer. This is to be expected, since 
the boundary layer has less room to "spread itself", so to speak, over the 
s-urface ir, the converging flow. The opposite effect takes $Lacc when the 
streamlintis divorge. 

2.3 14 The axiall~anal. u---e- au- 

Let us suppose that we arc following a definite external streamline 
q = constant, along which we have 

and so along this streamline 

L I a 
aE;=<S’ (11) 

In addition we write H c 8,/O,,, h2 = r and denote p-artisl derivatives with 

respect to s by primes. 

Ye nov,r assume that the cro sswise component of velocity and its 
derivatives are small. In this case ne find that equations (9) and (10) 
reduce to 
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ek + fJ, c (3 + 2) $ * i$ + G. = .-ILL, 
e pe I PU ee 

(12) 

2u’ 
e;, + e21 I 

Pk 2rt 
c + -f + -=F=- 1 

1 

4 
+ y g+ (e,, 4,) = To2 

----ye 03) 
PU e e 

It willbe seen that equation (12) is the standard momentum-integral 
equation for compresnl. ‘blc flow over an axioymmetric body, whose cross sections 
have radius r. This is what we mean when we speak of the axially symmetric 
analogy. 

with 
identical to th e well-known tmro-dimensional equation 

04) 

Now r'/r (as in axisymz~etric flow) is a measure of the amount the streamlines 
diverge (or converge if r' is negative). Thus it is seen that converging 
flow (rt < 0) has the same effect on 0,, as an adverse pressure gradient. 

In a calculation it is necessary to dotermine the value of r. It can 
be shown'&,'5 that if the equation of the suri'ace in Cartesian co-ordinates 
is z = z(x, y) and if U and V are velocity components parallel to the axes 
x and y, then r is given by 

where 

05) 

(16) 

Subscripts attached to z denote partial derivatives. 

In many cases z and z are small, and in this case equations (‘l5) 
X Y 

and (16) simplify to 
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a a 
U c 77; = ‘ax 

~+v--. 
3Y 1 

Certain conditions are necessary in order that v may be small. If 
terms of order ~2 are ignored we find from equations (3) and (7) that in 
streamline co-ordinates 

07) 

= K2 (peue2 - pu2> + +c 
i 

P $p(77) . 
. 1 08) 

Hence if v and m) and their derivatives are to be small either K2 or 9 
2 

PU ee - pu2 must be small. Tnc former condition implies that the geodesic 
curvature of the streamlines must be small, as might be expected. However I 
K2 need not be small if peue2 - 

2 
pu is small. According to Vaglia-Laurin'2 

this condition will hold at moderate Xsch numbers if the wall is highly cooled. 
Vaglio-Laurin supposes that peue2 = pu2 and points out that equation (I 8) will 

then admit the solution v 3 0, (m) 5 0. He is then able to use the 
axially symmetric analogy completely and has no cross-flow equation to solve. 

3 - VZXCCITY :'I?OFILES MD SKDJ'RICTION C0E.'0~7EXTS 

In order to make an attempt to solve the momentum-integral equations 
(the solution of the full turbulent boundar layer equations cannot be 
achieved at present, even in two dimensions 3 it is necessary to make some 
assumptions about the velocity profiles and the values of 7Cj and ~~2. These 

must depend on experiments not many of vrhich have been made in genuinely three- 
dimensional cases. Boundary layer measurement is a tedious and time-consuming 
affair, and the determination of zO, and 202 in particular, is a matter of d I 
considerable difficulty. So far as I am aware no thrtie-dimensional floating 
element experiments have ever been made. Preston or Stanton tubes may be 
used, of course, provided they can be properly calibrated, but their 
directional properties are poor, so that they may only be expected to give 
the total skin friction. Oil-flow patterns can of course be used to give 
direction of flow, but no systematic tests of this nature have been made, 
so far as I am awcaree 

? 

Some measurements of velocity profiles 
not very numerous. 

have,keen reported but these are 
The experiments of Cruschwitz were made in a curved 
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channel with an initial straight portion. Ku&he, McKee and Curry'7 
investigated flow over an elliptic wing fi7Jep-t at an angle of 25'. In these 
experiments the cross-flow w ;as quite large in places. Wallace~8 made 
measurements on a SirJept tapered wing, the mean sweep being 30°, whilst 
Brebner and Tyatt'3 
Johnstonls5, t 

investigated wings snept at angles of &5O and 55'. 
* experiments mere carried out over a flat vrall bounding a jet 

flowing at right angles al;ainst a wall. See Fig.3. Blackman and Joubertlg 
examined profiles near to the trailin, 0‘ edge of a delta wing at incidence. 

It is from this rather small body of experiment that vrorkers have 
attempted to develop calculation methods. 

3.1 Velocity profiles -- 

Calculation methods have so far only been a-i3plieci to the case of' small 
cro,ss- flow and in this ease it is to be hoped that streamwise velooity profiles 
may be similczr to those in t:iro dimensions. Experimental evidence confirms 
this in general. It has therefore been usually assumed that the streamwise 
component follows a power law of the form 

09) 

and n = 7 is commonly used both for subsonic and supersonic flows. Iviager*' 
found that this form fitted some experiments of Gruschwitz16 fairly well. 

Cooke2' found that the form 

2.. = 
U 

e 

fitted some experiments of Iliallacc 18 

Becker2* 
quite well except near to the wall. 

also used this form. 

Zaat23 su&gcsted for compressible flow 

(20) * 

(21) 

where 

To2 a = tan a = - . 
"01 
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He quoted %allace's I 8 experiments to justify the form for v/ue. 

The form, based on experiments by Gruschwitz 16 on ducts and Wallaoe 18 

on wings, 

( > 
2 .L = 

U 
I+ 

e 

2. 
U 

e 
a, b-2) 

with a= tan a,, was used by Nager 20 , Braun 24 and Cooke" , vrhilst Becker 22 

suggested that 

fitted Gruschwitz's experiments very well if 

a = 4 -5 tan a = $.h2o 
3 =01 

(23) 

(24) 

17 
Equation (22) also fits the experiments of Kuethc eta1 ,quite well, but 

(19) fits poorly with n = 7. 

Johnston5'6 . made a close stu&y of the velocity profiies of referenoes 
I 6 and 17 and as a result of this and of a long series of experiments of his 
own he suggested a form fcr the cross-flow as shown in Fig. 4. It ~S.11 be 
seen that v/u, is expressed as a function of u/u,, so that v = 0 TJhen u/u = 0 e 
and also when u/ue = 1. Fig. 5, reproduced from Ref. 5, shovs how Johnston's 
model fits the data of Kuethe et al. This form of -@ot does not shorn very 
clearly the way the cross-flo:7 varie s across the bound,ary layer. 'Ye have 
therefore in Fig. 6 plotted v/ue as a function of US for Johnston's fit of 

his model to one of the profiles of Gruschwitz " (station IO along line 3), 
taking for the streamwisc component the value 

1 
A L 

0 
7 = 

U 8 ' 
e 

r:hich fits the observations quite well. This particular profile was chosen 
because in most of the others the peak is too near to the v/ue axis to be 
oonvenicntly drawn. Profiles such as that in Fig. 6 illustrate the difference 
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between laminar and turbulent boundary layers in this respect. The peak is 
very much nearer to the wall in the turbulent than in the laminar case, 
Pig. 7 is an attempt to give a full three-dimensional picture of the same 
profile. Unfortunately Johnston's made1 differs from others mostly in the 
region close to the wall where measurements are the most difficult to make 
and suffer from the most inaccuracy. 

Johnston' s form for the velocity profile v may be written 

V eu -.. = .- 
u e U e 

near to the wall, and 

2.. 
ue 

t A 1 -” 
( > e 

(25) 

(26) 

further away from the wall. Tlie change Prom one to the other takes plaoe 
where the tv?o lines in the u, v plane (Fig. 4) intersect. Johnston suggests 
that for external streamlines which are initially straight and then become 
circular A is given by 

A = 28, 

where /'3 is the angle through which the streamlines have turned. He found, 
hoip<ever that except perhaps 
2 in eq:ation (27). Indeed 

for flow in ducts, one cannot rely on the factor 
a factor 1 gave closer agreement in one case and 

this was the number he used in a calculation. The quantity e is equal to 
tan a as already defined (a is the angle between streamlines and limiting 
streamlines) and is an unknown to be determined in the course of a 
calculation. 

Yinally, Coles3 suggested that the velocity vector 2 should be given by 

where 

In these equations q7; is the magnitude of a friction velocity vector 

sT which is taken parallel to the surface shear stress vector zO The 
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functions f and w are the well-known "law of the wall" ‘and "law of the wake" 
functions, that is 

and w is a function tabulated by Coles. According to Coles rlsT is to be a 

vector constant in magnitude and direction at any given station. ThUS 
% 

andsv are b tk o 1 vectors constant in direction but varying in magnitude for 

varying 2: according to the variations of the functions f and m. zitself 
varies both in magnitude and diaection. Coles finds in an example that the 
direction of s,{ is nearly the same as the direction of the external prcssure 

gradient at the point concernud, and makes the tentative suggestion that this 
should hold universally. 

Blackman and Joubert 19 attempted to tsst the theory in an experiment. 
They divided the vector -9 into components wh in thc 2T direction and wj 

perpendicular to this. wh and wj, suitably normalised, should both have the 
shape of the law of the wake function w(t;/6) if the hypothesis of Coles is 
correct. The results are shonn in Fig. 8. Blackman and Joubcrt claim that 
the fit is good, since wj has a fairly good fit. They rightly say that wh 

is subject to much more uncertainty than w,; 
J 

indeed the lack of experimental 

precision obtainable by present methods makes scatter inevitable in this P 
component. There was, however, very little Gross-flom in the experiments 
(a < 5O) and it was not yossible to determine the direction of the pressure 
gradient, which was in any case small. 

The question of the fit of experiments to the models of Coles" and 
Johnston5 is in a state of some corfusion, Coles found that his model 
fitted the measurements of Ku&he et al'/. very ;-rell, and Johnston has 
used Pig. 5 to show how his model also fits the s:Lmc observations. On the 
other hand Johnston found that his own observations could not be made to 
fit Coles's model. Johns;Czn was able to fit his model fairly well to the 
experiments of Gruschwitz ; Colts felt that the experiments concerned 
were probably subject to errors near to the ~-all. In the discussion 
following Ref. 6 Coles reported on his at-tcnpts to fit Johnston's mcasure- 
ments to Coles's model. He found that zq could be made to fit ~~11, and 

that the dircotion of-TV KS close to the direction of the pressure gradient, 

but that the fit to his form for w(u6) X~S not good. Finally we may note d 
that the profiles of Blackman and Joubertdy helped to confirm Coles's model 

. 

but could not be made to fit that of Johnston. 

&tixch less is l:nobsn about ~lir,~,:e-diner;slon,zl compressible bouni!ary layer 
profiles than incompresaiblc ones. One ma;/ 5opc that tno-dimensional fiows 
will again give us a gil-ide. In tLis connection one may expect tbst the 
transformation 
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where pm ia evaluated at the temperature Tm of equation (31) below, will nc 
reduce streamwise compressible profiles to incompressible ones. SpenccLY 
found this transformation to be moat successful in the two-dimensional 
case. @ore apeoulative would be to assume that the transformation would 
also hold for the cross-flow. If it did one would be able to formulate a 
compressibility oorrclation similar to that for laminar flow. 

3.2 sll fxiction values -.- 

For the streamwise skin friction in incompressible flow Becker 
22 used 

the Ludwieg-Tillman forr!!ula26. 

%I e % 
‘7 

= o.,23 x ,,-0.578 -“‘268a 

PU c > V 

e 

Cooke", folloxing Spence 27 used the relation 

(29) 

(30) 

where quantities with suffix m are evaluated at a temperature T, determined 
from the relation 

T, = &be + T,) c 0,22(Tr - Te), (31) 

where Tr is the rcoovery temperature given by 

Tr = Te (32) 

r' is the "recovery factor" and is usually taken as G.89, whilst He is the 

Usoh number at the edge of the boundary layer. The assumption 
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p a T" 

was also made, 75th L\) = 8/9. 

BraW124. used the relation 

(33) 

with T m given by equation (3-i). The viscosity temperature relation used 

WSS 

(34) 

K is 0.0225 for a f'lat plate. Braun, ti:o -::as dcaline ;:rith a slightly yawed 
cone, did not take K = 0.0225 but he multiplied this value by 2/sj, saying that 
this is usually done fcr an unyawed cone. 

,' 
All these forms aretaken from two-dimensional methods. The only evidence 

for this comes from axisymnetric bodies, for which it seems to be true that 
the same flow mechanism holds locally as in t- 

. wo-dimcnc~onal bodies. ! 

Vaglio-Laurin'2, in a problem with zero cross-f'lmr, after using a 
transformation which reduce h-is compress iblc problem to an incompressible 
axially symnotric one with zero pressure gradicn t,uses equation (20) which, 
on integration of thv equation for Oql in cqaation (8) gives zo, in terms 

of 8 
I I  l 

The skin friction com,Ionent 702 in all the methods is taken to be 

equal to zo, tan a, where a is to be determined in the course of the 

solution. All workers except Becker take 

tan u = lim z0 
z+Q 

(35) 

Becker 22 inserts a factor 2 on the right of equation (35). There is no 
special reason wh;r equation (35) should hold exactly, since the forms for 
u and v used by all workers Co not apply ne.ar to the wall. 

Only two general methods of solution stem to have boon suggested, both 
of which assume small cross- flow and both of which solve the sWiamwise equa- 
tions by taking over two-dimensional methods. Braun24, :pho found a solution 
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l 

for a cone at small angles of yaw, also implicitLy assumed small cross-flow 
and used two-dimensional properties for the streamwise flow. 'Jaglio-LaurinA2 
of c0urs0 took the cross-flow equal to zero and then also used two-dimensional 
methods for the streamwise flow. 

4.1 Cooke'- m&hod 21 
.m.m-A,-.-*-., 

In this method the solution of the streamwise equation follows 
5 closely the method of Spence27 in two dimensions. This method uses the 

momentum equation (12) and in incompressible flow the strreamwisc shear 
stress is given by 

TOl e 01, 
- = O.cD88 -- 

2 
PU e > 

-'/5 e 
V 

e 

This equation is due to Young 28 . 

(36) 

and assuming that in the determination of EI1, it is sufficiently accurate to 
write H = 1.5, we find that equation (12) becomes in the incompressible case 

6 k ue4.r'*'j = 0.0106 u:r'02, (37) 

where r is found from equation (47). 

For the cross-flow the form (22) is assumed, with a = tan a a a, and H 
is again assumed tobc constantly equal to 1.5. Writing 

E = a r u -3’2 . 
e 

t 
Cooke finds 

c. 
dE 0.0166 
zi-rE = 

2.187 % 
-=JE-!TK’ 

e 

This method was applied to a 55' swept wing ttsted by Brebner and 
vJyattI3, and included the determination of EI by Spence's method29, and SO 

%' 
bj and j3 could all be calculated. Some results are shown in Figs.9 and IO. 
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The method can readily be extended to compressible flow using a 
transformation for the streamwise flow due to Spence27. For the flow over 
infinite yawed wings the equations for 0,, in the case of zero heat transfer 
and also of constant wall temperature are given in Ref. 30. 

Cooke3' has also applied this method to the flow over a delta wing of 
130 thi.&ness-chord ratio at zero lift at a Mach number of 2. This wing has 
been tested in the R.A.E. 8 foot tunnel and it was found that the pressure 
measurements agreed quite well with calculations by slender thin wing 
theory. However the separate velocity components were not measured and so 
the calculated values of these components were used in the boundary layer 
oalculations. The streamlines could then be found and are drawn in Fig. 11. 
Turbulent streamwise calculations using equation (12) and Spencc's transforma- 
tion27 were then made. These calculations could be simplified because it 
ras found that the term (H + 2) (upe) + p’/p could be ignored compared 
with the other terms in the ooc?ficient of 0,,. The result is shown in 

Fig. 12. There is considerable convergence of the external streamlines 
near to the centre line and this causes a thickening of the boundary layer 
in this region. Everywhere else it was found that the value of 13,~ was 

much the same as it would have been if the flow had been over a flat 
plate of the same planform, It was found also that the additional 
pressure drag due to the displacement thickness was less than 1,x of the 
total skin friction drag plus wave dra, 0 and it could therefore be ignored. 

4.2 Becker's method 22 

Becker assumea the equations (20) and (23) fDr the velocity components. 
For the streamwise shear stress he assumes the well-known Ludwieg and Tillman 
relation26 

=01 
- = 0.123 x lo 
P”e2 

and suggests that a clnse approximation to this is 

“04 e e,, 
- = 0.0125 7 

c > 

44. 

P”e2 

. 

He deals only with incompressible flow. 
Unfortunately Becker assumes a rather special external flow correspond- 

ing to a special value of r in equation (12) namely r = l/ue. This 
assumption is equivalent to assuming that arrr$ac = O,,which implies that the 
external flow is two-dimensional, as may be seen by oonsideration of the 
equation of continuity for the external flow. The assumption is easily 
avoided and Becker's streamwise equation may then be written 
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The croar, -flow equation (-13) becomes according to Becker 

%l 
+ 02d 

c 

Tol 2u; &’ 
Y3(H)~---=---a + -- .i- - 

II p"e2 u 
= "-- 

r (40) 
e 

where 

Y3(Ij) = t z+f+-, 

though Becker's equation has the term 2r'/r ;- 2uCyue missing bc.cause 
of his special value of r. 

T In order to solve these equstiop3 one may assume a constwit value of H 
as we did previously. 
y3(d = 0.52, 

Becker suggests H = 1.29 in one example. This m&es 
As an alternstivc Becker fin& Ii by an equation which is 

I 
indcpendcnt of r. He writes 

and USGS the equation 

B = 



Equations (39), (40) and (41) 
6, H and a, sinoe 

are then three equations for the three unknowns 

5-1 = ?qirq 
H-l 6 

' e21 = -zm 

H-' a6 
l 

(42) 

Becker does two examples, the first or" which is the case where the 
streamlines are circles of radius R, and ue = f(R), so that ue is constant 

along streamlines; he also supposes the boundCar layer is "very thick", so 
that the term 704 may be ignored in equation . This equation then reduces 
to 

51 e;, = T (l+H), 

remembering that Becker writes r = l/u e' If H and 8,, arc constant, and H is 
equal to I.29 this by equations (42) reduces to 

a = I .5ah 

where @ is the amount the external streamlines have turned from the start. 

For his second example Elecker considers the decay of a cross-flow 
which had developed earlier, specified by 0 2, = (t32,)o, and is now 
subject to uniform external flow with straight streamlines. In this case 
equation (40) becomes 

*;I + 0.0065 e2., = 0, 

where 

Reg ue 'II 

II 
= a?, 

and once more H = 1.29. 

- 21 - 



This gives, using (38), 

e21 = (e2,)o ems”, 

where e 

( > 

l/4 
e = 

154 % Roell * 

4.3 ___ Johnston's solution along a line of ssnmetr 2 ,33 
4-_-e %- - - .  

Vhen applying the axially symm&ric unalom vqe assumed that C,2, e22 
and their derivatives in equation (3) could be ignored. Johnston, though 
he ignores 02" (it is in fact zero along a lint of symmetry), does not 

ignore N,,/hi&% 

If we assume oonstant density and write 

we find that equation (9) takes the form 

1 a e12 c UP 

e;1 
-i---+0 (H+2)$ + "01 = 

r aq II LL1pIz) 
PU ee 

(43) 

which we may compwe with equation (*12). Johnston points out that the 
tc-rm rV8,d/z- rupresonts the effect of oonvi.rging or diverging streamlines 

(as we have already explained in Section 2.3) and that the term ae12/r&l 
represents the effect of boundary layer "s&%i.ng". That this term need not 
be small was shown by lAoore and Richardsor&. In one el;poriment, for instance, 

P they found the values 

1 a e12 Tol 
-T= 

0.007, - 0.008, - = o.cQ17, 
r 2 

PU ee 

so that in this O&SC the oolltribution of d0,2/raq certainly could not be 

ignored. 
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Using his model [equations (25) 
Johnston shows that for large Reynolds numbers 

Hence we have along a line of symmetry 

Now, as disousscd in section 3.1 Johnston assumes that k = /3, where p 
is the angle the streamlines have turned from their initial strai&t path, 
and since the curvature K, of the lines g = constant is 

we have by equation (2) 

5 
r' =..- = 
r 

2.. = 5%. (45) 

Finally Johnston assumes that r = l/u,, the same assumption that was 

YF;ed b+ &dker 22 ) which is tantamount to assuming that the external flow is 
two-dk&&ional and is probably justified for the experiment of Fig. 3. 

Heno'e we have from equations (43), (I+&) and (4.5) 

U’ 

e;, = 
“01 

-2e11 <+--=- 2 
PU ee 

(46) 

along a line of symmetry. 

% ‘Thfs equation is inteLrated by using the Ludwieg and Tillman 26 formula 9 
for ,T~, Combined with the von Docnhoff and Tetervin35 formula for H. 

Alternatively a method due to Rotta 36 is followed. 

Eii;her of the methods gives results agreeing well with experiment in 
the special case considered. 
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4.4 Braun's solution for the sliphtly y awed oone 24 

Braun solves the problem of a oone of semi-angle 0 yawed at a small 
angle y in a supersonio stream, He uses a streamline co-ordinate system and 
uses the velooit profiles (19) and (22) and wall shear stress values given 
flow he USeS ,,!: i3;lbg; by equations (33 (32) for zol ana (35) for 1602s For the external 

I 37. Writing X = y/sin8 for the yaw parameter he 
expands tan a and 6 in the form 

!E tana = u,h + a212 f ..*, 

6 = ho + S,h * l . . l 

He is then able to find a ,, b. and 6, in olosed form. Perhaps the most 
interesting results are the deflection of the limiting streamlines, that is, 
the value of a to the first order in X, Fig. 13 is taken from Braun's paper, 
In this figure Jr is the azimuth angle round the oone measured from the 
generator with the greatest inclination to the flow at infinity. It will 
be seen that a is increased by heating, but raising the Mach number reduoes 
it. The deflection angle is much smcaller than in the laminar adiabatio 
o&se and it decreases with Mach number in contrast to the laminar case, 
where it increases with Mach number for values of Mach number greater than 
about 2. 

5 TRANSITION 

We shall only make a few isolated remarks in this seotion, some of 
which are speculative and not completely justified either experimentally 
or theoretically. 

So far no calculations appear to have been made in oases when the flow 
is partly laminar and partly turbulent. First of all the determination of 
the transition flfrontfl itself is a difficult matter into which we shall not 
enter, beyond remarking that two kinds of instability seem to be involved, 
namely two-dimension&l instability (Tollmien-Sohliohting) and sweep 
instability, It was suggested by Eiohelbrenner and Miche138 that both of 
these types exist on a surfaoe; in oertain regions one is more important than 
the other and in other regions their roles are reversed. Thus, for a slender 
wing with leading edge separation and reattachment, transition fronts as 
shown in Fig. 14 may be possiblejg, where CDE is a front due to two-dimen- 
sional instability and ABC and EFG are fronts due to sweep instability. 
Fronts of this type have been observed. A third type of instability, that 
described by G'drtle&O as occurring in flow over concave surfaoes, may also 
have its effect in plaoes. 

Another interesting fact has been point out by Gregorybl. It is that 
when transition occurs at an isolated point (say near to the leading edge of 
a swept wing) the usual wedge of turbulenoe appears, spreading out at the 
usual angle, but the wedge is curved, its edges being the envelopes of lines 
making angles t10.6’ with the external streamlines starting from the point 
oonoerned. Fig.15, taken from Ref. 4.2, shows oalculated wedges of turbulence 
starting from points at different distances from the leading edge. It will 
be seen that the nearer the disturbance is to the attaohment line the greater 
the area covered by the turbulence wedge. In particular, if x/o is equal to 
0.01 the whole wing outboard of the point of disturbance is l*oontami:.ated". 
Fig. 16 is taken from photographs by Gregoryb2, and illustrates this 
phenomenon very well. 

When turbulent calculations are to be made they must start with some 
known initial conditions. In two dimensions it is usual to assume that the 
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momentum thickness is unchanged at transition; this means that skin frio- 
tion and displacement thickness are usually discontinuous. (Actually tran- 
sition does not take place suddenly but is spread over a region which is 
fairly short, so that skin friction and displacement thiokness vary rapidly 
but are not quite discontinuous.) The assumption is that there is no rapid 
change in the momentum thickness. 
as follows, 

An argument in favour of this might run 
A discontinuity in momentum thickness implies a sudden change 

in momentum and this means that there must be not merely a discontinuity in 
skin friotion but also can infinite foroe at the point of transition. There 
is some experimental evidence for this assumption, as may be seen from 
Fig.17 which shows displaoement thickness and momentum thickness as drawn 
by Rottak3 from experiments by Schubauer and Klebanoffh. 

In three-dimensional flow the problem is more difficult. An obvious 
first suggestion is to make 0,, continuous. This is not suffioient and a 
second condition is required. Ore that has been suggested is to make a 
continuous, that is, the directic;? of the limiting streamlines is to be 
unchanged, Apart from the fact that this direction is conneoted with skin 
friction which we expect to be discontinuous, the assumption of an unahanged 
direction is contrary to the evidence of Fig. 2, a careful examination of 
whioh seems to show a discontinuity in direction of the oil-flow lines at 
the edges of the wedges of turbulenoe. A discussion which is not, and can- 
not be, wholly satisfactory, is given in Appendix 1. It would appear from 
this that the result depends on the angle a' whioh the normal to the tran- 
sition front makes with the local external direction of flow. The result 
is that 

51 00s a' - 8 
12 

sin a' and 
e22 

sinat -0 
21 

co9 u' 

are continuous at transition, If the oross-flow is small,012 is small com- 
pared with Cl, and 822 is small compared with 821. In this case the condi- 
tions reduce to a simpler form, namely that 8,, and 821 are continuous at 
transition, independently of the direction of the transition front. This 
was pointed out to me by Professor A.D. Young. 

6 CONCLUDING FUZMARKS 

Although little work on turbulent boundary layers has been done the 
outlook for calculation methods is not quite so dismal as at first appears. 
Velocity profiles seem to be of a more "universal" shape than in laminar 
flow, and momentum-integral equations seem to be adequate in favourable or 
slightly unfavourable pressure gradients. Energy-integral equations could 
also be further exploited in this connection. 

Even in the laminar case it has been found that streamwise velocity 
profiles are very like two-dimensional ones and, since turbulent mixing is 
a three-dimensional phenomenon, it may well be expected that this similarity 
will be borne out more faithfully in the turbulent case. The great differ- 
ence is that one can never resort to an exact solution to test any method, 
and experiment is the only possibility. In any case methods are largely 
empirioal. This inevitably means that calculations with turbulent boundary 
layers will be inaccurate, and indeed in two dimensions can aocuracsy of from 
5 to 10 per cent is all that is usually expected, Within that range the 
position is not too hopeless &and one may well anticipate improvements in the 
future if only more systematio and careful experiments can be made. 

i 

. 

We have made no attempt here to discuss the structure of a three- 
dimensional turbulent boundary layer. This has an extensive literature in 
two-dimensions but practically none in three dimensions, In addition, so 
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far as I am aware, no work has been done in the unsteady case or in 
connection with separation. The problem of detormining separation is 
difficult enough and doubtful enough even in laminar flow. However 
separation seems to t,ake place fairly abruptly in the sense that the 
bending of the streamlines increases considerably just before sepamtion and 
methods of solution break down when this happens. One may therefore hope 
that .a place whore a method breaks down is fairly near to the place of 
separation. Eurthcr than that one cannot go at present. 
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APPENDIX 1 

TRANSITION 

We shall consider two-dimensional transition as an introduction to the 
K method to be used in the more general case, and will give a "proof1 of the 

continuity of 0 from elementary oonsiderations. Such a proof cannot be 
rigorous but it is suggestive, 

We assume that the same momentum equation holds on either side of tran- 
sition. This equation in steady inoompressible flow is 

aue 
z 

W g+(H+2)8- = - ue ax 
P 'e* ' 

(Al > 

where H = S*/0, 'Go is the wall skin friotion and Ue the external velocity. 

In turbulent flow there is an additional term 

00 
a 

I’ 
ii ‘2 ‘2 -5 

E u2 aY, 
0 e 

which we shall ignore as is usually done. Thus the same equation applies 
throughout. 

For small dx equation (Al) may be written, if there are no disoon- 
tinuities, by the mean value theorem 

where [z), denotes a "mean" value, that is the value z takes for some value 

of x in the range oonsidered, which is taken to include the transition point. 
Primes denote values at the end of the interval dx. 

We now let dx tend to zero; Ul -c Ue and although H and aw may ohange 
rapidly or even be discontinuous in the limit their "mean" values are finite 
and so 

that is, 0 is oontinuous at transition. The result is simply any analytical 
expression of the fact that there must not be an infinitely large skin friotion 
at transition. 

In three dimensions we use equations (9) and (IO), If zo, and 202 are 

not to be infinite we find that 0,, and e2, must be continuous at transition. 
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We have arrived at this result on the implicit assumption that the 
transition front is at right angles to the direction of flow of the external 
streamlines. IT, however, the normal to the front makes an angle a,' with 
the direction of E increasing the result must be modified. We change the 
co-ordinate system to g1 and r)' with E' in the direction normal to the tr=an- 
sition front. We now use equations (13) and (14) of Bef.3. They are more 
complicated but they still lead to the oonolusion that 8' ,, and 0,& are con- 
tinuous; here primes denote values in the new oo-ordinate system, that is 

6 6 
q, = _1_ 

Pe ‘iii 
bet - u’> pu’ dC, 04, = A- 

Pe '* 
‘vex - vo pu’ a, 

0 eO 

where Ue (= ue) is the resultant external velooity. 

Now we have 

ut = u 00s a’ -vsinu’, U' e = ue 00s a' ) 

U’ = u sin ut + v 00s at , VI e = ue sina' , 

from whioh we may deduoe 

% 
2 = 00s a1 8,1 - sin a1 cos a1 @,2 f e2,) + sin* U' e2* 

es, = sin CL~ 00s ~1 e,, - sin* U' 8 12 + OOS* d e2, - sin a' 00s CL* 8 22 ' 

and it is these whioh must be continuous at transition. They reduce to the 
previous values when at = 0 as they should. A neater way of writing the 
result is found by multiplying these equations respectively by 00s CL' and 
sin a* and adding, and by sin ut and 00s a' and subtracting. We find that 

0 
11 

009 d - 8 
12 

sin u' and e22 sin d - 8 21 00s ut 

must be oontinuous at transition, 
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THREE-DIMENSIONAL TURBULENT BCUNDARY LAYERS 
Cooke, J. c. June, 1961. 

This paper reviews the current state of knowledge of three- 
dimensional turbulent boundary layers, mainly from the point or view of 
making calculations. The nature of the boundary layer is discussed and 
the equations for general steady tur%lent flow are given. Next follow 
momentum-integral equations, which can then Se solved with suittile 
assumptions as to the velocity profiles and shear stress components. An 
account of these assumptions follows and a few sample results are given. 
The paper ends with a short account Or some matters connected with 
transition. 
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