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Notation
X, ¥ Cartesian co-ordinates
u, v velocity components
p density
u absolute viscosity
v kinematic viscosity
T temperature
L length of flat plate
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] stream function

6 momentum thickness
c Chapman's viscosity constant
g dummy variable

£(x) arbitrary function

Subscripts

o value at separation

S free-stream value

R reference value

D value in dead-air region

Non-Dimensional Quantities

x* = x/L

~ YR
y =¥y |-
vx
u* = u/ui
1]
'L S
VulLv
Re Reynolds number

SUMMARY

A theoretical analysis is made of the constant pressure
laminar mixing process between a stream having an initial boundary layer
velocity profile, and a fluid at rest.

The present theory follows the methods of W. Tollmien and
S. I. Pai with certain modifications. The results apply to incompressible
flow, but can be exterded to the compressible case without difficulty.

1. Reduced Momentum Equation

The momentum differential equation for a thin two-dimensional
shear flow at constant pressure can be written

au u 3 au )
pa - + v —— = - < -_>- 0.‘(1)
ax Iy  dy dy

The method of PaiZ*, makes the following additional simplifications

*The method had previously been employed by Tollmien! to solve the
incompressible wake problem and also by Oseen for very slow motion.
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T = constant everywhere,
ou du
vV -—- << u -,
oy ox

and thirdly, that the velocity u appearing as the coefficient of
du/9x in the first term, can be replaced by some fixed reference value

up, say.

The momentum equation then reduces to

S — : e (2)

N. B.

It should be noted that in the present case of the mixing of a
stream, with a fluid at rest, the assumption of uniform temperature
throughout the flow, precludes the application of the results as they
stand, to the compressible case.

The present theory departs from the method of Pai, and its
extension in Ref,3, by attaching to wup a value different from the
free-stream value u,. Since up replaces a real velocity component
varying between zero and u,, it seems more reasonable to choose some
mean value, Two simple applications of the method, which will be
described later, point to a value

uR =

mcl'_s

as being suitable,

2. Solution of the Equation

Equation (2) is in the form of the diffusion equation of
classical physics, and its solution is

u(x, y) = ;1;(/00 Ug <y- 2\/—%—7- ﬁ> e_ﬁadﬁ . (3)
oo ug

where u = u/(y), st x = O.

Now, if y, dis the thickness of the initial boundary layer,
suitably defined, at the point of separation, the boundary conditions
may be formulated

- <y<0, u, = 0
0 <Yy <y, Y = u,(y) oo (L)
Vo <Y <®, u, = U .

Thus equation (3) can be written

( §;§B y
ui 2 > ﬁa 1 2 VX

02
u(x, y) = -- e’ LA+ - [ u0<y—2 ——.ﬁ>eﬁdﬁ.
& VR [y-¥,



where y = y /1:13
vx

~ YR
yo - yO TT .
1754
That is §
u1 ;"s" 1 2 7.4
U(Xs Y) = - {1 + erf, -2 + - . u (y -2 - . 19) e_ﬂ’dﬂ.
2 2 V= YYo ° up
2

Now for a first approximation, let us assume a linear velocity
profile for the initial boundary layer:

y
uo(y) = u1 e T . se 0 (7)
Yo
The integral in equation (6) can now be evaluated and we obtain
y
Uy ;'-;o u1 2 VX _
u(x, y) = -- |1 + erf. ———| + ——=- <y-2 ——.ﬁ)eﬁadﬂ
° : O L R
2
-7,
lu* = % |1 + exf. M
2
2 Y,
+ —2‘ - eI‘f. - eIfc ———
¥ 2 2
° - ~
1 r 53 /4 - .(X_:Zof
P ———— e_ - e 200 (8)
AL
where u* = u/ui.
3. Case of y, = O
For the case of y, = 0, equation (6) reduces to the simple
form

u* = & 1+exf.{%E.yE} ... (9)

which describes the mixing process of a uniform stream with a fluid at
rest,

This velocity profile is plotted in Fig,2 for two values of
up. The curve is compared with the theory of Chapman® which is exact
within the framework of the boundary-layer approximations. We see that
the e.greement is improved significantly by taking u, = $u; rather
than uy = . However, the agreement is even better than would appear
from Fig, 2, ﬁere is an ambiguity in the co-ordinate systems of the two

methods/
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methods., The present theory takes rectangular axes aligned with the
direction of the initial stream, whereas Chapman measures y from the
dividing streamline, There is no reason to suppose "a priori" that the
two sets of axes will coincide.

If we determine the velocity on the dividing streamline by the
method of Ref.3, we find a value of 0,61 u,. Thus if this point on the
profile is chosen as the new y-origin, equatlon (9) can be correctly
compared with the exact curve. Fig.3 shows that the agreement is now
rather good.,

4,  Incompressible Boundary Layer on a Flat Plate

At this point it might be interesting to digress slightly from
the subject of laminar mixing, to consider a different solution of
equation (2). Since this differential equation is linear, we can add
separate solutions to form others.

If we multiply equation (9) by 2 and subtract the solution

u¥* = 1

we obtain an expression for the velocity profiles in the boundary layer

on a flat plate:-
Yy
u* = erf. {% ’ E@ .y ’ - . ... (10)
u, vx

Equation (10) is plotted in Fig.4 for two values of up, and compared
with the exact curve of Blasius®, It is seen that a value of up between
O.4 u, and 0.5 u, would give the best fit, though there seems little
theoretical justification for such a choice.

5. General Lominar Mixing Problem y,_#£ O.

In the general case of a flow with an initial boundary layer of
finite thickness, there is no longer similarity of the velocity profiles.

Suppose that the boundary layer has developed over a flat plate
of length L, and 2lso that we wish to define y, such that the velocity
gradient at the wall will be the correct value as given by the Blasius
solution, Thus we may write:

g vL
Yo = mmmmm——m- = 3,0115 | - ... (11)
(5) .
oy 7=0
and equation (7) becomes
Uy
uo(y) = ui . 0'332 N T e ...(12)
vL
Also, since by definition
~ YR
Vo = Yo | 77
vx

we have

and/



and taking up =

\:‘é-‘

o o _ ... (13)

Hence for any value of x*, we can obtain the corresponding
value of y,, and then from equation (8), the velocity profile u(y) can
be computed., The ordinates can be expressed in the more general form by
writing

o

uy y
vy |- = 3.0115(;—). oo (10)
vL Yo

6. Method of Locating Streamlines

The stream function V¥ is defined by

el oy
u = ==, V = = --
oy ox
and thus
¥ o= /udy+f(x). ...(15)
For convenience we shall assume that the streamline { = O passes

through the origin (the point of separation). This streamline is sometimes
termed the separating streamline, since it divides the fluid originally in
the dead-air region from that in the outside flow, Thus

y
q::juody,atx=0
o)
and for u, given by equation (12), it follows
u, 3
¥ = 1.5058 You, L . (—— >
uy
or in non-dimensional form
u, \?
| S — = 1.5058(——). ... (16)
Uy

For other values of x, the stream function is given by equation (15),
where f(x) is an unspecified function. This equation can be written

o [(5)e(E) om0

= 3.0115@f<5>d<5>+f(x)

1

or in non-dimensional form

v = sons [ura (= )60, e (17)

Jo
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We may trace the path of the streamlines in the initial part of the
mixing layer by the following argument.

In the immediate vicinity of the separation point, i.e., for
very small values of x*, the velocity profile is modified from its form
at x* = 0 only at its extremities. Over a large part of the profile,
the velocities are still given effectively by equation (12). Thus
neglecting the natural decay of the velocities in the boundary layer as
small compared with the velocity changes due to the mixing process, it is
fairly safe to assume that particles of fluid on the streamline through’
the point (O, 25 ), for instance, have a velocity *ui for some short
distance downstream of separation,

Hence at a given station x* (where x* << 1) we can fix the
value of Y* at u* = 2, as equal to its value at x* = O and
u* = 3, viz., from equation (16)

(“’*)u;;:—;— = 0,3765.

Then for the remainder of the profile at that station, the local values
of the stream function are given by

/5, y
y* = 0,3765 +3.o115j u*d(-->. ...(18)

= Yo
Te Results

The flow field in the neighbourhood of the separation point has
been solved using equation (8), and tracing the path of the streamlines by
the method outlined above. Fig.5 shows some typical velocity profiles and
streamlines., It is noted that the streamlines closest to the wall in the
initial boundary layer, are deflected upwards towards the region of higher
velocities after separation.

The results of the present theory have been derived for
incompressible flow; however, Chapmanlt showed that assuming a linear
viscosity-temperature law, relations expressed as functions of x* and
y¥, are independent of Mach number, and can thus be applied to compressible
flow. In Fig.6, we have plotted the veloclty rofiles in terms of Y*
instead of the physical ordinate y. The velocity profiles
corresponding to any given Mach number can be obtained from these curves by
simple quadrature after the method of Ref.l.

The velocity along the streamlines is plotted in Fig,7, and the
velocity on the line y = O 1is shown for comparison with that on the
streamline ¥ = 0., It is clear that large errors would be introduced by
neglecting the migration of such streamlines towards the layers of higher
velocity.

It is found that the boundary u* = O in the x* ~{* plane
is a straight line in the part of the flow field, x* << 1, and has a slope
oy*
( - > = - 0.66.
-3
ox u*=0

Now from the definition of the stream function
oy vu, Ooy*

VvV = = == = = | ey ——, ... (19)
ox L ox*

Thus/
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Thus the vertical velocity component in this part of the dead-air region,
x* << 1, 1is constant and has a value

p vu, 0. 66
vp = 0.6 ) ——— = ey, ... (20)
L VRe

By way of comparison, the vertical velocity component at the outer edge
of the boundary layer at separation is slightly greater:-

vuy
V1 = Oc 865 =
L
as given by the Blasius solution,

For zero thickness of the initial boundary layer, the value of
vp 1is infinite at the separation point, and drops as

1Vx .
In this case of course, the condition x* << 1 cannot be satisfied.

In the compressible laminar mixing process, equation (20) can
be replaced by

P v,u C
vy = 0.66 I ... (21)
p L

where pp 1is the density in the dead air region, and C is Chapman's
constant., Thus, for a given Reynolds number, the effect of Mach number is
to increase the vertical velocity component in the dea-air region.

If 6 is the momentum thickness of the initial boundary layer
at separation, equation (21) can also be expressed in the form

VDe
2. - oL C. ... (22)
VD

8. True Boundary Conditions

In the above simplified analysis, we have taken a linear function
for the velocity profile at separation. The true profile is determined by
the past history of the boundary layer; over a flat plate for instance,
the velocity distribution would be described by the Blasius solution,

Now we have argued that the effect of separation spreads slowly
through the shear layer as it proceeds downstream. Near the separation
point, the greater part of the velocity profile still corresponds to a
boundary-layer distribution, whilst the lowest velocity region is modified
by the mixing process.

Fig.8 shows this more clearly. At a given station x* (where
x* << 1), a good approximation to the true velocity distribution should
be obtained by fairing the mixing profile, equation (8), with the local
Blasius profile for a boundary layer which would have developed over a
flat plate of length x + L.

This procedure of course loses its justification for larger
values of x*,

Thq/
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The next stage of this analysis should be the solution of the
complete problem in the x* ~ y* plane, using the differential equation
derived by Chapmanu,

ou* a du*
——— = e (u* —— ) oo (23)
ox* oy* oy*

and initial conditions given by the present method at some short distance
downstream of separation. The integration of equation (23) cannot be
started at the separation point due to the discontinuity in the boundary
conditions at the origin.

9. Conclusions

1. Constant-pressure laminar flow problems have been solved using
simplified diffusion theory after the small-perturbation methods of
Tollmien and Pai., Two such solutions agree well with exact theory.

2. The laminar mixing process between a stream having an initial
boundary layer, and a fluid at rest, has been analysed., By assuming a
simple form of velocity distribution at separation, a closed solution has
been obtained for the velocity profiles in the mixing layer.

3., A method is indicated for tracing the path of the streamlines
through the shear layer close to the separation point.

4, Streamlines close to the wall in the initial boundary layer src
deflected towards the region of higher velocity after separation.

5. For a short distance downstream of the separation point, the
vertical velocity component in the dead-air region is constant, and has a
value inversely proportional to the thickness of the boundary layer at
separation.,

Acknowledgement
This paper is based on the author's project thesis presented
to the
Training Center for Experimental Aerodynamics,
Rh8de~St. -Gendse,
Belgium

in 1960, and is issued as an A,R.C. paper with the permission of the
Director.,

References/



- 10 =

References

No, Author(s) Title, etc,

1 W, Tollmien Grenzschichten, Handb, d, Exper.,~ Physik, TV,
Pt I, 267 (1931).

2 S. I, Pai Two~dimensional jet mixing of a compressible
fluid.
J.A.S. Vol.16, 1949, pp.4b63-469.

3 A, J. Chapman Free jet boundary with consideration of initial

and boundary layer,
H, H. Korst Proc, 2nd U.S. National Congress of Applied

Mechanics, Michigan, June 14-18, 1954,

L D. R. Chapman Laminar mixing of & compressible fluid,
N.A.C.A. Report 958, 1950.

5 H, Blasius Grenzschichten in Fllissigkeiten mit kleiner
Reibung. 2. Math. und Phys., 56, 1 (1908).
Translation in N,A.C.A. TM 1256,



Fic.

ss3o04d Buixiw 3anssaud - quesuo)

O“.*\J.

uoibas 1re - peeg

3|14oud wfre; Aaepunog

3|140ud

m\mv* =xMN
Buixi

Jafre] seays sauy

urea.r3s 33

«



Fig. 2.

Exact theory (Chapman)

Equation 9) : -
—————— uR = lL|
s uR = u|/2
0-2 0-4 0-6 w* 0-8 -0 -2
Zero thickness of initial boundary layer




1d

40

2:0

-60

-80

FiG. 3.

Exact theory (Chapman)
Equation 9) ug = %2,

(y-scale corrected such
that y=0 at ¥ =0)

0-4 06 % 08

Zero thickness of initial boundary layer




5-0 T T T
Exact theory (Blasius)
Method of Pai

ug =R u,

3-0

w O -0 12



Fic. 5.

Z1-0 01:0 80:0 90-0 ¥0-0 200

o

&1
il
8
\

i

uotbas ure |- peag

quiod
uoigeredag

TR TR RTERRRTRRRRNRRNRANNNNNAN

——
T ————
—_——
— —

suwedys N eeoe—p—T1T - TTTAsre oo

reaidht go-0 <

$0-0 - S-0
90:0 =«
“*\>
sa|140.4d safrey
fi3100[3A —0-I

/ / / "
/ L [ .

/ [ A 1.

/[ A A

/ / / p. 12/

n



W

SI-0

*S\ ol-0

S0-0 0

S0-0-

aue|d M - 1 u s3)1j04d MD0IBA
% »*

-0

20

€-0




Fie. 7

0i-0

»* 800 30-0

saujureaJls buore f3oo3A

S0-0



-0

FiG. 8.

Present theory

0-2 0-4 06 1.¥ 08

Velocity profile at oc = 0-05

1-0



10 % X 29/6 ¥°N €3°IN/1/81189 Sq

AR.C. C.P, No,613, September, 1960
Nash, J. F, - Nat, Phys. Lab.

LANINAR MIXING OF A NCN-UNIFCRM
STREAM WITH A FLUID AT REST

A theoretical analysis is made of the constant
pressure laminar mixing process between a stream having
an initial boundary-layer velocity profile, and a fluid
at rest.

The present theory follows the methods of
W, Tollmien and S, I, Pai with certain modifications,
The results apply to incompressible flow, but can be
extended to the compressible case without difficulty.

L.R.C, C,P, No.513.  September, 1950
Nash, J, F, - Nat, Phys, Lab,

I2WINSR MIXING CF -~ NCON-UNIFCRU
STREAL WITH A FLUID AT REST

.. theoretical analysis is made of the constant
pressure lsminer mixing orocess betieen a stream having
an initial doundary-layer velocity profiles, and a fluid
at rest.

iors the methods of

The present theory foll
with csrbein modifications,
rs

W, Tollmien and o, I, Zai
The rasults ap T
extended to th

V- w e




© Crown copyright 1962

Printed and published by
HER MAJESTY’S STATIONERY OFFICE

To be purchased from
York House, Kingsway, London, w.c.2
423 Oxford Street, London w.1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
50 Fairfax Street, Bristol 1
35 Smallbrook, Ringway, Birmingham 5
80 Chichester Street, Belfast 1
or through any bookseller

Printed in England

C. P. No. 613

S.0. Code No. 23-9013-13

C. P. No. 613

-



