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Notation 

x9 Y Cartesian co-ordinates 

u9 v velocity components 

P density 

Y absolute viscosity 

v kinematic viscosity 
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T temperature 

L length of flat plate 
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JI stream function 

8 momentum thickness 

C Chapman's viscosity COIlStiUlt 

B dummy variable 

f(x) arbitrary function 

Subscripts 

0 value at separation 

i free-stream value 

R reference value 

D value in dead-air 

Non-Dimensional Quantities 

X* = x/L 

? 

9 

Jr* = ---mm 

dqi7 

% Reynolds number 

region 

SUMMARY 

A theoretical analysis is made of the constant pressure 
laminar mixing process between a stream having an initial boundary layer 
velocity profile, and a fluid at rest. 

The present theory follows the methods of W. Tollmien and 
S. I. Pai with certain modifications. The results apply to incompressible 
flow, but can be extended to the cmpressible case without difficulty. 

I. Reduoed Momentum Equation 

The momentum differential equation for a thin m-dimensional 
shear flow at constant pressure can be written 

au au a au 
pu -- + pv -- = -- /J -- 

( > 
. . . . (1): 

ax ay aY aY 

The method of Pai**, makes the following additional simplifications 

T/ 
--------------------___________________^---------------------------------- 
*The method had previously been employed by Tollmien' to solve the 

incompressible wake problem and also by Oseen for very slow motion. 
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T = constant everywhere, 

3U au 

v -- << u -- , 

ay ax 

and thirdly, that the velocity u appearing as the coefficient of 
au/ax in the first term, can be replaced by some fixed reference value 
uR, say. 

The momentum equation then reduces to 

au u aau 
we = -- m-w . . . . (2) 
i3X uR aYa 

N.B. 
It should be noted that in the present case of the mixing of a 

stream, with a fluid at rest, the assumption of uniform temperature 
throughout the flow, precludes the application of the results as they 
stand, to the compressible case. 

The present theory departs from the method of Pai, and its 
extension in Ref.3, by attaching to uR a value different from the 
free-stream value q. Since uR replaces a real velocity component 
varying between zero and ul, it seems more reasonable to choose some 
mean value. Two simple applications of the method, which will be 
described later, point to a value 

as being suitable. 

2. Solution of the Equation 

Equation (2) is in the form of the diffusion equation of 
classical physics, and its solution is 

. . . (3) 

where u = u,(y), at x = 0. 

Now, if y. is the thickness of the initial boundary layer, 
suitably defined, at the point of separation, the boundary conditions 
may be formulated 

-co <y<o, u. = 0 

0 < Y < YOP uo = U,(Y) 

Yo < Y < 00 , u. = Ui . 

Thus equation (3) can be written 
-cy 

. . . (4) 

where/ 
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where 

That is 

. . . (6) 

Now for a first approximation, let us assume a linear velocity 
profile for the initial boundary layer: 

The integral in equation 

u, 
u(x, y) = -- 1 + erf. 

2 
[ 

(6) can now be evaluated and we obtain 

f? 
iu* = 6 1 + erf. --2 

1 I 
2 

. ..(8) 

where II* = u/l+. 

3. Case of yr, = 0 

For the case of y, = 0, equation (6) reduces to the simple 
form 

. ..(9) 

which describes the mixing process of a uniform stream with a fluid at 
rest. 

This velocity profile is plotted in Fig.2 for two values of 
uP The curve is compared with the theory of Chapman& which is exact 
within the framework of the boundary-layer approximations. We see that 
the agreement is improved significantly by taking u 

B 
=3-b rather 

than uB = u . However, the agreement is even bet er than would appear 
from Fig.2. & ere is an ambiguity in the co-ordinate systems of the two 

methods/ 
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methods. The present theory takes rectangular axes aligned with the 
direction of the initial stream, whereas Chapman measures y from the 
dividing streamline. There is no reason to suppose "a priori" that the 
two sets of axes will coincide. 

If we determine the velocity on the dividing streamline by the 
method of Ref. 3, we find a value of 0.61 ul. Thus if this point on the 
profile is chosen as the new y-origin, equation (9) can be correctly 
compared with the exact curve. Fig.3 shows that the agreement is now 
rather good. 

4. Incompressible Boundary Layer on a Flat Plate 

At this point it might be interesting to digress slightly from 
the subject of laminar mixing, to consider a different solution of 
equation (2). Since this differential equation is linear, we can add 
separate solutions to form others. 

If we multiply equation (9) by 2 and subtract the solution 

u* = 1 

we obtain an expression for the velocity profiles in the boundary layer 
on a flat plate:- 

u* = erf.Fe.yE}* . . . (IO) 

. 

Equation (10) is plotted in Fig.4 for two values of uR, and compared 
with the exact curve of Blasius5. It is seen that a value of uR between 
0.4 u1 and 0.5 ui would give the best fit, though there seems little 
theoretical justification for such a choice. 

5. General Laminar Mixing Problem y. f 0. 

In the general case of a flow with an initial boundary layer of 
finite thickness, there is no longer similarity of the velocity profiles. 

Suppose that the boundary layer has developed over a flat plate 
of length L, and also that we wish to define y, such that the velocity 
gradient at the wall will be the correct value as given by the Blasius 
solution, Thus we may write: 

Ul 
21 

VL 
Yo = --------- = 3.0115 -- . ..(u) 

au 

( > 

Ul 
-I 

aY y=o 

and equation (7) becomes 

u,(y) = u1 . 0.332 y 

Also, since by definition 

. ..(12) 

we have 

x/L = x*, say 



and taking uR = & 
4.5356 
e--v__- x* = ~a . l ..(13) 

YO 

Eence for any value of x*, 
.lue of yo, 

we can obtain the correspond&ng 
and then from equat.ion (8), the velocity profile u(y) can 

computed. The ordinates can be expressed in the more general form by 
writing 

yc = 3.0415 (; ). . ..(14) 

6. Method of Locating Streamlines 

The stream function Jr is defined by 

w a* 
u = --, v : - -_ 

aY ax 

and thus 

Jr = udy + f(x). . ..(15) 

For convenience we shall assume that the streamline jr = 0 passes 
through the origin (the point of separation). This streamline is sometimes 
termed the separating streamline, since it divides the fluid originallg in 
the dead-air region from that in the outside flow. Thus 

i 

Y 
= UodY 9 atx= 0 

0 

and for u. given by 

Jr 

equation (12), it follows 

= I.5058 m . 

or in non-dimensional form 

4f" 
$ 

-w--- = 

= 4-q 
. . . (16) 

For other values of x, the stream function is given by equation (15), 
where f(x) is an unspecified function. This equation can be written 

I# = uiyo/(i)d(;)+ f(x) 

= 3.01155 Jv-u, I( f ) d(k) + f(x) 

or in non-dimensional form 

Jr’ = 3.0115 /u* d (;) + f(x). . ..(17) 



We may trace the path of the streamlines in the initial part of the 
mixing layer by the following argument. 

In the immediate vicinity of the separation point, i.e., for 
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very small values of x*, the velocity profile is modified from its form 
at x* = 0 only at its extremities. Over a large part of the profile, 
the velocities are still given effectively by equation (12). Thus 
neglecting the natural deca.y of the velocities in the boundary layer as 
small compared with the velocity changes due to the mixing process, it is 
fairly safe to assume that particles of fluid on the streamline through' 
the point (0, &y,), for instance, have a velocity & for some short 
distance downstream of separation. 

Hence at a give: station x* (where x* << 1) we can fix the 
value of @* at u* = 
u* = $, viz., 

as equal to its value at x* = 0 and 
from equ:Eion (16) 

(If*),;=& = 0.3765. 

Then for the remainder of the profile at that station, the local values 
of the stream function are given by 

7. Results 

The flow field in the neighbourhood of the separation point has 
been solved using equation (8), and tracing the path of the streamlines by 
the method outlined above. Fig.5 shows some typical velocity profiles and 
streamlines. It is noted that the streamlines closest to the wall in the 
initial boundary layer, are deflected upwards towards the region of higher 
velocities after separation. 

The results of the present theory have been derived for 
incompressible flow; however, Chapman4 showed that assuming a linear 
viscosity-temperature law, relations expressed as functions of x* and 
Q', are independent of Mach number, and can thus be applied to compressible 
flow. In Fig.6, we have plotted the velocity refiles in terms of Jr* 
instead of the physical ordinate y. The u(y P velocity profiles 
corresponding to any given Mach number can be obtained from these curves by 
simple quadrature after the method of Ref.&. 

The velocity along the streamlines is plotted in Fig.7, and the 
velocity on the line y = 0 is shown for comparison with that on the 
streamline JI = 0. It is clear that large errors would be introduced by 
neglecting the migration of such streamlines towards the layers of higher 
velocity. 

It is found that the boundary u* = 0 in the x* hr $* plane 
is a straight line in the part of the flow field, x* << 1, and has a slope 

W’ --- ( > = - 0.66. 
ax* u*=o 

Now from the definition of the stream function 

w VU~ w* 
r v = - -- = - --- . --- , 

ax L ax* 
. . . (IV) 

Thus/ 
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Thus the vertical velocity component in this part of the dead-air region, 
x* << 1, is constant and has a value 

r 0.66 
vD 

= 0.66 2 = ---- . I+. . . . (20) 
L Gi 

By way of comparison, the vertical velocity component at the outer edge 
of the boundary layer at separation is slightly greater:- 

as given by the Blasius solution. 

For zero thickness of the initial boundary layer, the value of 
vD is infinite at the separation point, and drops as 

In this case of course, the condition x* c< 1 cannot be satisfied. 

In the compressible laminar mixing process, equation (20) can 
be replaced by 

pi 

J 

ui”lc 

vD = 0.66 - -  - - -w-  

b L 

. ..(21) 

where pi is the density in the dead air region, and C is Chapman's 
constant. Thus, for a given Reynolds number, the effect of Mach number is 
to increase the vertical velocity component in the dea-air region. 

If 8 is the momentum thickness of the initial boundary layer 
at separation, equation (21) can also be expressed in the form 

vDe e-e = 0.44 c. . . . (22) 
UD 

8. True Boundary Conditions 

In the above simplified analysis, we have taken a linear function 
for the velocity profile at separation. The true profile is determined by 
the past history of the boundary layer; over a flat plate for instance, 
the velocity distribution would be described by the Blasius solution. 

Now we have argued that the effect of separation spreads slowly 
through the shear layer as it proceeds downstream. Near the separation 
point, the geater part of the velocity profile still corresponds to a 
boundary-layer distribution, whilst the lowest velocity region is modified 
by the mixing process. 

Fig.8 shows this more clearly. At a given station x8 (where 
x* x.x I), a good approximation to the true velocity distribution should 
be obtained by fairing the mixing profile, equation (8), with the local 
Blasius profile for a boundary layer which would have developed over a 
flat plate of length x + L. 

This procedure of course' Ioses its justification for larger 
values of x*. 
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The next stage of this analysis should be the solution of the 
complete problem in the x* - Jr* plane, 
derived by Chapman&, 

using the differential equation 

au* a 
--- = m-m 
ax* a+* 

. . . (23) 

and initial conditions given by the present method at some short distance 
downstream of separation. The integration of equation (23) cannot be 
started at the separation point due to the discontinuity in the boundary 
conditions at the origin. 

9. Conclusions 

I. Constant-pressure laminar flow problems have been solved using 
simplified diffusion theory ,after the small.-perturbation methods of 
Tollmien and Pai. Two such solutions agree well with exact theory. 

2. The laminar mixing process between a strenm having an initial 
boundary layer, and a fluid at rest, has been analysed. By assuming a 
simple form of velocity distribution at separation, a closed solution has 
been obtained for the velocity profiles in the mixing layer. 

3. A method is indicated for tracing the path of the streamlines 
through the shear layer close to the separation point. 

4. Streamlines close to the wall in the initial boundary layer are 
deflected towards the region of higher velocity after separation. 

5. For a short distance downstream of the separation point, the 
vertical velocity component in the dead-air region is conslant, and has R. 
value inversely proportional to the thickness of the boundary layer at 
separation. 
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