MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

The Calculated Effect of the Station of Maximum Cross-Sectional Area on the Wave Drag of Delta Wings

by

J. H. B. Smith and W. Thomson

U.D.C. No. $533.693 .3: 533.692 .2: 533.6 .013 .12: 533.6 .048 .2$
C.2. Nio. 606

September, 1961

THE CALCULATED EFFECT OF THE STATION OF MAXIMUM CROSS-SECTIONAL AREA ON THE WAVE DRAG OF DFLTA WINGS

by
J. H. B. Smith
and
W. Thomson*

SUMMARY

Use is made of previously calculated properties of a family of delta wings with subsonic leading edges and diamond cross-sections to investigate the effects on the drag and pressure distribution due to volume of varlations in the streamwise station at which the cross-sectional area is a maximum. For each station of the maximum oross-seational area and each value of the aerodynamic slendemess ratio, $\beta s / l$, the wing of the family which has least drag for given length and volume is found. As the station of maximum orosssectional area is moved aft from 65% of the length from the apex, the drag of this optimum wing rises; the rise being steeper for lower values of $\beta \mathrm{s} / \ell_{\text {. }}$. In parallel, adverse pressure gradients and the suction on the wing near the troiling edge both increase so that it becomes less likely that the calculated values will be reproduced in a real flow.

[^0]
LIST OF CONTENTS

	Page
1	INTRODUCTION
RESULTS	4
CONCLUSIONS	5
LIST OF SYMBOLS	8
LIST OF REFERENCES	8
APPENDICES 1 AND 2	9
TABLES 1-3	$10-13$
ILLUSTRATIONS - FigS.1-15	$14-15$
DETACHABLE ABSTRACT CARDS	-

LIST OF APPENDICES

Appendix

1 - Calculation and minimization of the drag due to volume 10
2 - Calculation of pressure due to volume 13

LIST OF TABLES

Table

1 - Values of $D / q e^{2}$ for ten basic wings of the family 14
2 - Coefficients of lowest drag wings of the family 14
3 - Pressure coefficients for four basic wings of the family 15

IIST OF ILLUSTRATT ONS

Fig.
Centre-sections of "Lord V" and "Newby" wings 1
Cross-sectional area distributions of "Lord V" and "Newby" mings 2
Drag factors of "Lcrd. V" and "Newby" wings 3
Drag factors of wings with quintic polynomial centre-sections, calculated by thin-wing theory 4

ITST OF ILLUSTRATTONS (CONTD)

Fig.
Minimum drag of wings with quintic polynomial centre-sections and fixed $\bar{\xi} \mathrm{v}, \beta \mathrm{s} / 2$ (thin-wing theory) 5
Winimum drag of wings with quintic polynomial contre-seotions and fixed $\bar{\xi}$ v. $\bar{\xi}$ (thin-wing theory) 6
Variation of drag factor with Hach number for wings $A-H$ (thin-wing theory) 7
Centre-seotions of wings A, C, E, G 8
Centre-sections of wings B, D, F 9
Cross-sectional area distributions of wings A, C, E, G 10
Cross-sectional area distributions of wings B, D, F 11
Pressure distributions at $y=0.05 \mathrm{~s}$ on "Newby" wing (thin-wing theory) 12
Pressure distributions on "Lord V "wing, $\beta s / \ell=0.577$ (thin-wine theory) 13
Pressure distributions on wings A-G $14(\mathrm{a}-\mathrm{g})$
Variation of drag factor with Mach number, according to slender body theory for wings $\mathrm{A}-\mathrm{H}$ 15

INTRODUCTITON

One approach to the design of a large transport aircraft is to accomodate the fuel and as much as possible of the payload within the wing. For supersonic flight this leads to a search for sharp-edged deltalike wings with subsonic leading edges which have low wave drag due to volume. Although other considerations make it likely that the planform of such an aircraft would have streamwise tips and that its cross-sections would bulge along the centre-line, relative ease of caloulation leads us to make preliminary investigations on delta wings with diamond cross-sections.

Such wings have been studied by various fully and partially linearized theories appropriate to subsonic, transonic and supersonic speeds in an extensive series of R.A.E. papers. A number of them have also been tested in wind tunnels and in free-flight. One result of this work has been to establish that two particular wings, the "Newby" and the "Lord V", have low drag for given volume and length over a range of the aerodynamic slenderness parameter $\beta s / \ell\left(\beta^{2}=M^{2}-1, s=\right.$ semi-span, $\ell=$ length). These wings are completely defined by their centre-sections which oan be described by the equations:

$$
\begin{array}{ll}
\text { "Newby" } & z(\xi, 0)= \pm \frac{V}{2 s l} 12 \xi(1-\xi) \\
\text { "Lord V" } & z(\xi, 0)= \pm \frac{V}{2 s l} 1 \xi(1-\xi)\left(4-6 \xi+4 \xi^{2}-\xi^{3}\right) \tag{2}
\end{array}
$$

where the origin is at the wing apex, the x-axis is along the centre-line of the wing, the z-axis is normal to the wing plane and $\xi=x / l$. These centre-sections are illustrated in Fig.1, with the corresponding crosssectional area distributions in Fig. 2.

A convenient standard of comparison for the volume-dependent drag of slender configurations is the drag of the optimum slender pointed body of revolution of given length and volume (the Sears-Haack body):

$$
\begin{equation*}
\frac{D}{q}=\frac{128}{\pi} \frac{v^{2}}{e^{4}} \tag{3}
\end{equation*}
$$

We shall use K_{0}, the ratio of the drag of a wing to the drag of the Sears-Haack body of the same length and volume, as a measure of drag. Fig. 3 shows values of K_{o} for the "Newby" and "Lord V" wings. It is clear that there is a difference of $10-15 \%$ between the values calculated by thinwing theory* and those derived by the integration of measured pressure

[^1]distributions. On the other hand, the difterences between the drags of the two wings and the trends of the drags with Mach number are both well represented by the theory.

We have said that these two wings have low drag and have displayed the relevant values of K_{o}, but it is not easy to make the statement more precise. Even ff we confine our attention to thin-wing theory, making all the assumptions implied therein, we do not know the minimum drag of a wing with given planform and volume. However, if we are prepared to limit ourselves to delta wings with diamond crosssections whose centre-sections are polynomials of degree five, the curve labelled "unrestricted optimum" of Fig. 4 can be obtained from the results of Ref.1. For $0.2 \leqslant \beta s / \ell \leqslant 0.8$, one or other of the two wings ("Newby" and "Lord V") has a value of K_{0} which is within 10% of the optimum. In view of the uncertainties of the theory, we may doubt the value of an attempt to use it to find wings of this family with lower values of K_{0}.

The designer, however, is as concerned with how the volume is distributed over the planform as with the volume itself, so we should consider restrictions on the distribution of volume. For a slender wing the constraints on the volume distribution which can be expeoted to have most effect on the drag are those imposed on the cross-sectional area distribution. We consider the simplect of these: we fix the leng thwise station at which the cross-sectional area distribution has its maximum value*.

2 RESULTS

The "Lord V" wing has an area distribution with its peak at 55% of its length from the apex. Fig. 4 shows how its drag varies compared with the optimum curve for wings of the present family which have their maximum cross-sectional areas at the same station. The theoretically possible improvement never exceeds 4%. The cross-sectional area distribution of the "Newby" wing has a maximum at $2 / 3$ of its length; its drag is shown in Fig. 4 compared with the corresponding minimum curve. At $\beta s / \ell=0.4$, there is now apparextly 15% to be gained.

The general picture of the variation in minimum drag with $\beta s / \ell$ when the station of maximum cross-sectional area is fixed is shown in Fig. 5. The usual tendency for K_{0} to decrease as $\beta s / \ell$ increases is seen to be most pronounced when the maximum cross-sectional area occurs aft. When it is far enough forward the decrease in K_{0} as $\beta s / \ell$ increases through small values is reversed at the larger values. Although for $0.3 \leqslant \beta \mathrm{~s} / \ell \leqslant 0.7$ a wing with its maximum cross-sectional area near 60% of its length is best, the proximity of the curves f or 50% and 70% suggest that the optimum is flat. The same values are shown in Fig. 6 in a plot of K_{o} against station of maximum cross-sectional area for fixed $\beta s / l$. These show how the best position for the largest cross-section moves back from 50% at $\beta \mathrm{s} / \ell=0$ to 67% at $\beta \mathrm{s} / \ell=0.8$. They also show a rapid and substantial increase in K_{0} at low values of $\beta s / l$ as the maximum cross-section is moved aft. However, there is a fair-sized region of the diagram where K_{0} is no more than 0.8 and the maximum cross-section is not less than 65% of the length from the apex.

[^2]Since tentative layouts of supersonio transports indicate that the maximum oross-sectional area should be considerably further aft than the 55% of the "Lord V", we shall look at some of the wings in this region in more detail. Each of the eight points lettered A-H on Fig. 6 corresponds to a wing which, at its design value of $\beta \mathrm{s} / \ell$, has the least drag of any wing in the family we have considered with its maximum cross-sectional area at the same station. The values of K_{0} are all less than 0.8 . There are three wings H, E, A with $\bar{\xi}=0.65$ designed for $\beta s / l=0.4,0.6$ and 0.8 , two wings F, B with $\bar{\xi}=0.70$ designed for $\beta s / \ell=0.6$ and 0.8 , two wings G, C with $\bar{\xi}=0.75$ designed for $\beta s / \ell=0.6$ and 0.8 and wing D with $\bar{\xi}=0.8$ designed for $\beta s / \ell=0.8$. The variation in drag of these wings at other values of $\beta s / \ell$ is displayed in Fig.7. We see that a change in $\bar{\xi}$ of 0.05 affects the drag at a given $\beta 8 / \ell$ more than a change of 0.2 in the $\beta s / \ell$ for which the wing was designed. In particular, the advantage of H over E is 80 slight that we consider it no further*, thus limiting our attention to two design values of $\beta s / l$.

The centre-sections of the wings A-G are illustrated in Figs. 8 and 9, with the corresponding oross-sectional area distributions in Figs. 10 and 11. The wings which have $\bar{\xi}=0.75$ and 0.8 (C, G, D) have points of inflexion in their centre-sections. The 'dip' becomes larger for the lower design value of $\beta s / \ell$ and for the further aft $\bar{\xi}$. In the oase of wing D, the 'dip' persists in the area distribution. Some of these dips may be introduced by the search for an optimum within a restrioted family of shapes. In this case we should expect there to be wings outside the family without the dips and with lower drags. It is of some interest that the first 20% of the wing has a shape decided primarily by the choice of $\beta s / l$ and the last 20% is decided primarily by the choice of $\overline{\bar{\xi}}$, as Fig. 10 shows clearly. We do not find any evidence that the dras is related to the maximum oross-sectional area, exaept for wings which have their maximum areas at the same station.

The predictions of inviscid flow theory are liable to be invalidated by the occurrence of boundary layer separation forward of the trailing-edge, either ordinary or shock-induced. The possibility of ordinary separation from the wing surface is avoided by a pressure field over the wing in which the pressure falls monotonically both in the stream direction and inwards from the leading edge to the centre-line, as is shown in Ref.2. The same pressure field avoids the possibility of shook-waves oocurring on the wing in properly supersonic** inviscid flow. However, if the pressure at the trailing-edge is below that at infinity, the recompression behind the wing may take place through a shook system and if it does so in viscous flow there may be a forward branch of the system on the wing surface with a separated boundary layer behind it. Without a deeper investigation of the flow near the trailing-edge we can only be sure of avoiding this separation by requiring that the pressure coefficient remains positive at the trailingedge. In fact it may not be possible to find a wing which has favourable pressure gradients and a positive trailing-edge pressure coefficient. Fortunately there are many cases in which one or more of these conditions is violated and the real flow still appreximates to the inviscid flow model; the various rises in pressure being small enough and slow enough for a thin boundary layer or wake to accommodate itself. However, we should be cautious

[^3]in accepting the pressure drag estimates of inviscid theory when these are associated with rapid increases in pressure in the stream direction or with large suctions near the trailing-edge. Of course, failure to realise the attached flow over the rear of such a wing could result in a pressure drag which was lower rather than higher than the theoretical estimate. However, this drag would depend on Reynolds number, and, more seriously, the associated flow would be sensitive to trailing-edge conditions. At best the forward branch of the trailing-edge shock system could be expected to move across the rear of the wing as, for instance, elevon settings were altered. At worst the flow might be unsteady. The pressure distributions on wings $A-G$ have been investigated with the above considerations in mind.

Although the drag of the "Newby" wing changes rapidly with $\beta s / \ell$ (Fig.4), the character of the pressure distribution near the centre-line shown in Fig. 12 (extracted from Ref.3) is little affected. We have therefore not considered the pressure distributions at a range of values of $\beta \mathrm{s} / \mathrm{l}$ for all the wings. Fig. 13 shows the pressure distribution on a "Lord V" wing (again from Ref.3) at various spanwise stations at one value of $\beta s / l$. The character of the pressure distribution is well represented by the variation at two spanwise stations*, $y / s=0.05$ and $y / s=0.575$, so we show the distribution on wings $A-G$ at these stations only.

The wings $A-D$ whose pressure distributions at $\beta s / 2=0.8$ are shown in Fig.14(a)-(d) are all designed for $\beta s / l=0.8$ and for values of $\bar{\xi}$ of $0.65,0.7,0.75$ and 0.8 respectively. Both thin-wing theory and slender thin-wing theory values have been calculated as described in Appendix 2, but our discussion is in terms of the thin-wing theory values only. Wing A has a wholly favourable pressure field, falling from front to rear and from leading edge to centre-line. Its trailing-edge suction is less than that of the "Newby" wing. Its calculated drag is a little below that of the "Newby" wing at $\beta s / \ell=0.8$; at $\beta s / \ell=0.4$ its calculated drag is well below that of the "Newby" wing and actually bel ow the measured drag of the latter.

Wing B shows an insignificant adverse streamwise pressure gradient and a little more suction near the trailing-edge then wing A. Wing C has a slight adverse streamrise pradient and a marked increase in trailingeqge suction. Wing D has a definite adverse streamise gradient, a slight adverse gradient from leading edge to centre-line near $\xi=0.75$ and a large trailing-edge suction. Moving the station of maximum crosssectional area aft from 0.65 to 0.8 therefore not only increases K_{0} from
0.65 to 0.8 , as shown in Fig.6, but also reduces the likelihood of realizing the assumed type of flow.

Referring now to Figs.14(e) - (g), we see that the pressure distributions on wings E, F and G designed for $\beta s / l=0.6$ and $\bar{\xi}=0.65,0.7$ and 0.75 respeotively show the same trends_as those on wings $A-D$. If we consider two wings with the same value of $\bar{\xi}$ optimized for different values of $\beta s / \ell$ and compare the pressure distributions at the design values of $\beta \mathrm{s} / \ell$, we find that the unfavourable features are more severe for the lower value of $\beta s / l$. To determine whether this is due to the change in $\beta s / \ell$ at which the pressures are calculated or the change in design $\beta s / l$, we show additionally on Fig. 14 (g) the pressure distribution on wing G at $\beta s / \ell=0.8$, the design value for wings $A-D$. Both the adverse gradient and the trailing-edge suction are reduced at the higher $\beta s / 2$. Comparing wings G and $G(\bar{\xi}=0.75$ for both $)$ at $\beta s / t=0.8$, we see that G has a steeper adverse gradient but less trailing-edge
*The numerical values of y / s are chosen to take advantage of Eminton's work 3 . They, and the values of $\beta \mathrm{s} / \ell$, are related to tests of particular wings.
suotion. However, all these differences between the pressure distributions on wings with the same $\bar{\xi}$ are relatively small. It is doubtful whether they have any relevance outside the present theory or even outside the present family of wings.

Finally, for completeness, the drags of wings A-H have been evaluated by slender-body theory. The results are shown in Fig.15. One can conclude that slender-body theory becomes less appropriate as the station of maximum cross-sectional area is moved aft, as would have been expected from the pressure distributions of Fig. 14.

CONCLUSIONS

Area distributions for delta wings with diamond cross-sections have been found in which the maximum cross-sectional area oocurs towards the rear of the wing and the calculated drag due to volume is low, at least at the higher values of $\beta s / l$. When the station of maximum cross-sectional area is aft of 65% of the length from the apex, the drag increases as it moves further aft for all values of $\beta s / \ell \leqslant 0.8$. When the maximum cross-sectional area oocurs at any fixed station aft of 60%, the wings designed for the higher values of $\beta s / l$ have lower drag than those designed for lower values of $\beta \mathrm{s} / \ell$ at their respective design points.

Because of the predicted occurrence of unfavourable pressure ficlds and large trailing-edge suctions, the postulated type of flow becomes less likely to occur on the wings where the maximum cross-sectional area is further aft, owing to possible boundary layer separations.

LIST OF SYMBOLS

$A_{i} \quad(0 \leqslant i \leqslant 3)$ coefficients which determine the shape of the wing
C_{p} pressure coefficient
$C_{i} \quad(1 \leqslant i \leqslant 4)$ pressure coefficient on four basic wings
D drag
$D_{i} \quad(0 \leqslant i \leqslant 9)$ drags of ten basic wings
$K_{0} \quad\left(\pi e^{4} / 128 v^{2}\right)(D / q)$ volume-dependent drag factor
ℓ length
M Nach number
q kinetic pressure
s semi-span
$S(\xi) \quad$ oross-sectional area
V volume
x, y, z right-handed Cartesian coordinates, origin at wing apex, ox along wing centre-line and $O y$ to starboard in the wing plane

LIST OF SYMBOLS (COMTD)

$\beta \quad\left(M^{2}-1\right)^{\frac{4}{2}}$
$\xi \quad x / \ell$
$\bar{\xi} \quad$ value of $\bar{\xi}$ at which $S^{\prime}(\xi)=0$
$\phi \quad$ disturbance velocity potentiel

LIST OF REPRENCIS

No. Author
1 Weber, J.

Title, etc.

Some notes on the zero-lift wavo drag of slender wings with unswept trailing eedges. \therefore R.C. R. E: H. 3222 . Jeceniber, 1959.

On the aerodynamic design of slender wings. J.il. soro. Soc. Vol.63, 2.709. December, 1959.

3 Eminton, E. Pressure distribution at zero-lift for delta wings with rhombic cross-sections. A.R.C. C.A. i 0.525 . Octover, 1959.

4 Weber, J. Slender delta wings with sharp edges at zero lift. \therefore R.C.19549. ifay, 1957.

APPENDIX 1

CALCUIAIITON AND MINIMIZATION OF THE DRAG DUE TO VOLUNE

With the origin at the wing apex, $0 x$ along the centre-line, $O y$ to starboard in the plane of the wing and O_{2} completing the right-handed system, the equation to the starboard upper surface of the delta wing which we consider is:

$$
\begin{equation*}
z(x, y)=\frac{e^{2}}{2 s}(\xi-y / s)(1-\xi) \sum_{n=0}^{3} A_{n} \xi^{n} \tag{4}
\end{equation*}
$$

where s is the semi-span, ℓ is the length and $\xi=x / \ell$. The thickness vanishes along the leading edge $y=s \xi$. z is a linear function of y, so the crosssections are rhombic. The centre-section is given by the quintic polynomial:

$$
\begin{equation*}
z(x, 0)=\frac{e^{2}}{2 s} \xi(1-\xi) \sum_{n=0}^{3} A_{n} \xi^{n} \tag{5}
\end{equation*}
$$

The cross-sectional area, $S(\xi)$, is given by

$$
\begin{equation*}
S(\xi)=4 \int_{0}^{s \xi} z(x, y) d y=e^{2} \xi^{2}(1-\xi) \sum_{n=0}^{3} A_{n} \xi^{n} \tag{6}
\end{equation*}
$$

and the volume, V, by

$$
\begin{equation*}
V=\int_{0}^{\ell} S(\xi) d x=e^{3} \sum_{n=0}^{3} \frac{A_{n}}{(n+3)(n+4)} \tag{7}
\end{equation*}
$$

According to thin-wing theory, the drag of a wing of this family is clearly a quadratic form in the coefficients A_{n}. In Ref. 1 (Table 2^{*}) the values of $D / q e^{2}$ for ten independent wings of the fanily are quoted for $\beta s / \ell=0.2(0.1) 0.8$. This Table is reproduced as Table 1 of the present paper. If the drags of the wings of this Table are denoted by $D_{0}, D_{1}, \ldots D_{9}$, the drag of the general nember of the family (4) is

[^4]\[

$$
\begin{align*}
D=\left(A_{0}\right. & \left.+A_{1}+A_{2}+A_{3}\right)\left(D_{0} A_{0}+D_{1} A_{1}+D_{2} A_{2}+D_{3} A_{3}\right)-D_{4} A_{0} A_{1} \\
& -D_{5} A_{0} A_{2}-D_{6} A_{0} A_{3}-D_{7} A_{1} A_{2}-D_{8} A_{1} A_{3}-D_{9} A_{2} A_{3} \tag{8}
\end{align*}
$$
\]

The condition that the wing has its maximum oross-sectional area at a particular lengthwise station $\bar{\xi}=\bar{\xi}$ is not easily formulated. We replace it by the condition that the cross-sectional area $S(\xi)$ has a local extremul at $\bar{\xi}=\bar{\xi}$ i.e.

$$
\begin{equation*}
S^{\prime}(\bar{\xi})=e^{2} \sum_{n=0}^{3} A_{n}\left((n+2) \xi^{n+1}-(n+3) \xi^{n+2}\right)=0 \tag{9}
\end{equation*}
$$

The results produced can then be inspeoted to determine that the extremum is a maximum and that this is the greatest local maximum.

To find the wing of the family which has the least drag for a given volume of, say, ℓ^{3} and given $\frac{\xi}{\xi}$, we have simply to solve the six simultaneous equations:

$$
\left.\begin{array}{c}
\frac{\partial}{\partial A_{n}}\left(\frac{D}{e^{2}}+\lambda\left(\frac{V}{e^{3}}-1\right)+\mu \frac{S^{\prime}(\bar{\xi})}{e^{2}}\right)=0 \quad n=0,1,2,3 \tag{10}\\
\frac{V}{e^{3}}-1=0 \\
S^{\prime}(\bar{\xi})=0
\end{array}\right\}
$$

for the coefficients A_{n} and the Lagrangian multipliers λ and μ, where D / q is given in terms of the A_{n} by equation (8), V by equation (7) and $S^{\prime}(\bar{\xi})$ by equation (9). We then know the shape of the wing by equation (4) and its drag by equation (8).

This has been done for $\beta s / l=0.2(0.1) 0.8$ and a range of values of $\bar{\xi}$. The resulting velues of $K_{0}=\frac{\pi e^{4}}{128 V^{2}} \frac{D}{q}$ have been plotted in the figures.

For the partioular wings $A-H$ of Fig. 6 , the coefficients A_{n} are tabulated in Table 2. The shapes of these wings, plotted in Figs.8-11, show that the local extremum at $\overline{\bar{\xi}}$ is the only maximum of the crosssectional area distributions. However, a check on the area distribution of the wing corresponding to $\vec{\xi}=0.85$ and $\beta s / \ell=0.8$ in Fig. 6 showed that this has two maxima; the rearward one at $\bar{\xi}=0.85$ is slightly lower than the forward one. No other checks have been carried out, but it is to be expeoted that many of the wings corresponding to high values of $\bar{\xi}$ and low values of $\beta s / l$ will have more than one local maximum.

The drag of the wings A-H is readily calculated by thin-wing theory using equation (8) and Table 1. The drag has also been calculated according to slender-body theory. (Slender-body theory and slender thin-wing theory are equivalent so far as the drag of wings with straight unswept trailingedges is concerned.) The formula appropriate to this family of wings has been given by Weber ${ }^{1}$. It is

$$
\begin{align*}
K_{0}=\frac{1}{256}\{ & -\frac{5}{4} A_{0}^{2}-\frac{23}{12} A_{1}^{2}-\frac{55}{24} A_{2}^{2}-\frac{307}{120} A_{3}^{2}-\frac{7}{2} A_{0} A_{1}-\frac{13}{3} A_{0} A_{2} \\
& -5 A_{0} A_{3}-\frac{13}{3} A_{1} A_{2}-\frac{29}{6} A_{1} A_{3}-\frac{59}{12} A_{2} A_{3} \\
& \left.+\left(A_{0}+A_{1}+A_{2}+A_{3}\right)^{2}\left[k-\ln \frac{\beta 5}{e}\right]\right\} \tag{11}
\end{align*}
$$

where $k=\frac{25}{12}-\frac{1}{3} \ln 2$ is the value appropriate to rhombic cross-scotions.

\triangle APPENDIX 2

CALCULATION OF PRESSURE DUE TO VOLUNE

Eminton has programmed the calculation, according to thin-wing theory, of the pressure due to volume on wings of the present family. In Ref. 3 she tabulates the chordwise pressure distribution at two spanrise stations on four basic volume distributions for two values of $\beta s / l$. For the present work, she has calculated thesc for a further value of $\beta s / l$ and the complete tabulation is reproduced here as Table 3. The choice or the spanwise stations and the two lower values of $\beta s / \ell$ was originally to conform with experimental configurations.

For the general wing of the family, equation (4), the pressure coefficient is given in terms of the $C_{p_{i}}(i=1,2,3,4)$ of Table 3 by

$$
\begin{equation*}
C_{p}=\sum_{n=1}^{4} A_{i-1} C_{p_{i}} \tag{12}
\end{equation*}
$$

The pressure cocfficient has also been calculated by slender thin-wing theory, by equation (50) of Ref.4. The expression is not reproduced here on account of its length.

TABLE 1

Values of $D / a e^{2}$ for ten basic wings of the family (thin-ring theory)

Coefficients				$\beta s / \ell$						
A_{0}	A_{1}	A_{2}	A_{3}	0.2	0.3	0.4	0.5	0.6	0.7	0.8
1	0	0	0	0.3601	0.3032	0.2658	0.2391	0.2190	0.2039	0.1928
0	1	0	0	0.258?	0.2050	0.1701	0.1452	0.1266	0.1122	0.1007
0	0	1	0	0.2053	0.1560	0.1250	0.1037	0.0882	0.0765	0.0673
0	0	0	1	0.1703	0.1251	0.0978	0.0797	0.0669	0.0575	0.0503
1	-1	0	0	0.0506	0.0491	0.0478	0.0467	0.0459	0.0455	0.0456
1	0	-1	0	0.1168	0.1110	0.1057	0.1013	0.0977	0.0948	0.0930
1	0	0	-1	0.1705	0.1594	0.1495	0.1410	0.1339	0.1282	0.1242
0	1	-1	0	0.01764	0.01627	0.01498	0.01382	0.01281	0.01191	0.01110
0	1	0	-1	0.0488	0.0441	0.0399	0.0362	0.0329	0.0301	0.0277
0	0	1	-1	0.00869	0.00764	0.00672	0.00592	0.00525	0.00470	0.00424

TABLE 2

Coefficients of lowest arag wings of the family for unit V / e^{2}

| referonce
 Ietter | design
 $\beta s / 2$ | dusign
 ξ | coefficients | | | | K at
 design
 (thin-wing
 theory |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0.8 | 0.65 | 24.90 | -52.20 | 67.44 | -29.93 | 0.646 |
| B | 0.8 | 0.70 | 27.15 | -72.48 | 103.14 | -45.22 | 0.651 |
| G | 0.8 | 0.75 | 26.65 | -62.52 | 66.04 | -12.44 | 0.698 |
| D | 0.8 | 0.80 | 22.53 | -20.87 | -34.58 | 55.39 | 0.779 |
| E | 0.6 | 0.65 | 33.30 | -91.32 | 125.75 | -58.83 | 0.679 |
| F | 0.6 | 0.70 | 35.45 | -107.97 | 151.16 | -66.97 | 0.706 |
| G | 0.6 | 0.75 | 31.95 | -77.43 | 74.86 | -12.04 | 0.775 |
| H | 0.4 | 0.65 | 35.37 | -99.11 | 133.57 | -60.66 | 0.789 |

TABLE 3

Pressure coefficients for four basic wings of the family (thin-ring theory)
$\beta \mathrm{s} / \ell=0.416$

y/s	ξ	$c_{p_{1}}$	$\mathrm{C}_{\mathrm{p}_{2}}$	c_{3}	${ }^{\text {c }}{ }_{4}$
0.05	0.1	0.901	0.218	0.035	0.005
	0.2	0.560	0.351	0.125	0.037
	0.3	0.282	0.392	0.228	0.105
	0.4	0.012	0.341	0.303	0.196
	0.5	-0.255	0.198	0.311	0.275
	0.6	-0.522	-0.035	0.211	0.289
	0.7	-0.788	-0.359	-0.035	0.160
	0.8	-1.054	-0.774	-0.469	-0.209
	0.9	-1.319	-1.280	-1.128	-0.937
	1.0	-1.585	-1.876	-2.053	-2.163
0.575	0.6	0.284	0.463	0.393	0.279
	0.7	-0.321	0.106	0.257	0.278
	0.8	-0.711	-0.280	-0.020	0.120
	0.9	-1.047	-0.753	-0.509	-0.324
	1.0	-1.360	-1.320	-1.252	-1.188

$\beta s / \ell=0.577$

y / s	ξ	$c_{p_{1}}$	$c_{p_{2}}$	$c_{p_{3}}$	$c_{p_{4}}$
0.05	0.1	0.778	0.178	0.027	0.004
	0.2	0.484	0.291	0.101	0.029
	0.3	0.253	0.328	0.185	0.083
	0.4	0.031	0.290	0.249	0.157
	0.5	-0.188	0.180	0.260	0.223
	0.6	-0.407	-0.004	0.187	0.240
	0.7	-0.625	-0.260	-0.001	0.147
	0.8	-0.842	-0.590	-0.336	-0.131
	0.9	-1.060	-0.993	-0.849	-0.686
	1.0	-1.278	-1.469	-1.571	-1.628
0.575	0.6	0.443	0.464	0.331	0.213
	0.7	-0.144	0.169	0.338	0.223
	0.8	-0.493	-0.132	0.045	0.124
	0.9	-0.785	-0.503	-0.311	-0.184
	1.0	-1.051	-0.948	-0.865	-0.809

TABLE 3 (CONTD)

y / s	ξ	${ }^{\mathrm{p}_{1}}$	$\mathrm{c}_{\mathrm{p}_{2}}$	$\mathrm{c}^{\text {p }}$	${ }^{\text {c }}{ }_{4}$
0.05	0.1	0.664	0.143	0.021	0.003
	0.2	0.411	0.236	0.079	0.022
	0.3	0.223	0.268	0.147	0.065
	0.4	0.044	0.243	0.200	0.125
	0.5	-0.132	0.159	0.212	0.177
	0.6	-0.308	0.017	0.161	0.194
	0.7	-0.484	-0.182	0.020	0.129
	0.8	-0.659	-0.439	-0.234	-0.076
	0.9	-0.834	-0.753	-0.625	-0.493
	1.0	-1.008	-1.125	-1.179	-1.203
0.575	0.6	0.667	0.457	0.270	0.159
	0.7	0.030	0.202	0.200	0.166
	0.8	-0.294	-0.027	0.071	0.106
	0.9	-0.550	-0.308	-0.179	-0.105
	1.0	-0.776	-0.649	-0.581	-0.548

FIG. I. CENTRE-SECTIONS OF 'LORD V'AND 'NEWBY' WINGS

FIG. 2. CROSS -SECTIONAL AREA DISTRIBUTIONS OF 'LORD $\bar{\nabla}$ 'AND 'NEWBY' WINGS.

FIG. 3. DRAG FACTOR OF 'LORD \bar{V} ' AND 'NEWBY' WINGS.

FIG.4. DRAG FACTOR OF WINGS WITH QUINTIC POLYNOMIAL CENTRE-SECTIONS, CALCULATED BY THIN-WING THEORY.

FIG.5. MINIMUM DRAG OF WINGS WITH QUINTIC POLYNOMIAL CENTRE-SECTIONS AND FIXED $\bar{\xi}$ (THIN-WING THEORY).

FIG.6. MINIMUM DRAG OF WINGS WITH QUINTIC POLYNOMIAL CENTRE-SECTIONS AND FIXED $\bar{\xi}$ (THIN-WING THEORY).

FIG. 7. VARIATION OF DRAG FACTOR WITH MACH NUMBER FOR WINGS A TO H (THIN-WING THEORY)

FIG. 8. CENTRE - SECTIONS OF WINGS A,C,E,G DESIGNED FOR VARIOUS $\bar{\xi}$ AND $\beta \mathrm{s} / \boldsymbol{\ell}$.

FIG. 9. CENTRE-SECTIONS OF WINGS B,D,F DESIGNED FOR VARIOUS $\bar{\xi}$ AND $\beta \mathrm{s} / \ell$.

FIG. IO. CROSS - SECTIONAL AREA DISTRIBUTIONS OF WINGS A,C,E,G.

FIG.II. CROSS-SECTIONAL AREA DISTRIBUTIONS OF WINGS B,D,F.

FIG.I2. PRESSURE DISTRIBUTIONS AT $y=0.05 \mathrm{~s}$ ON 'NEWBY' WING (THIN-WING THEORY).

FIG.I3. PRESSURE DISTRIBUTION ON 'LORD ∇ ' WING, $\beta \mathrm{s} / e=0.577$ (THIN-WING THEORY).

FIG.I4 (a) PRESSURE DISTRIBUTION ON WING A. $\beta s / l=0.8$.

FIG.I4 (b). PRESSURE DISTRIBUTION ON WING B. $\beta s / \ell=0.8$.

FIG.I4 (c). PRESSURE DISTRIBUTION ON WING C. $\beta \mathrm{s} / \mathrm{l}=0 \cdot 8$.

FIG. I4.(d). PRESSURE DISTRIBUTION ON WING D AT $\beta s / \boldsymbol{l}=0.8$.

FIG.I4.(e). PRESSURE DISTRIBUTION ON WING E AT $\beta 5 / \ell=0.577$.

FIG. 14. (f) PRESSURE DISTRIBUTION ON WING F AT $\beta s / \ell=0.577$.

FIG.14.(9) PRESSURE DISTRIBUTION ON WING G AT $\beta \mathrm{s} / \ell=0.577$ AND 0.8 .

FIG. 15. VARIATION OF DRAG FACTOR WITH MACH NUMBER ACCORDING TO SLENDER-BODY THEORY FOR WINGS A-H.

.R.C. C.P. Nu.

THE CALCULATED EFFECT OF THE STATION OF IHAKIMUM CROSSsectional area oit tee wave drac of delta wings. Gnith, J.H.B. and Thomson, W. September, 1961.

Use is made of previously calculated properties of a family of delta wings with subsonic leading edges and diamond cross-sections to investigate the effects on the drag and pressure distribution due to volume of variations in the streamwise station at which the cross-sectional area is a maximum. For each station of the maximum cross-sectional area and each value of the aerodynamic slenderness ratio, $\beta s / \ell$, the wing of the family which has least drag for siven length and volume is found. As the station of maximum crosssectional area is moved aft from 65% of the length from the apex, the orag of this optinum wing rises; the rise being steeper for lower values of $\beta \mathrm{s} / \mathrm{i}$. In parallel, adverse pressure gradients and the suction on the wing near the trailing edge both increase so that it becmes less likely that the calculated values will be repromined in a real flow.
533.693.3:
533.692.2 :
533.6.013.12 : 533.6 .048 .2
A.R.C. C.P. NO. 606

THE CALCULATED EFFECT OF THE STATION CF la SECTIONAL AREA ON THE WAVE DRAG OF DELTA WINGS. Smith, J.H.B. and Thomson, W. September, 1961.

Use is made of previously calculated properties of a family of delta wings with subsonic leading edges and diamond cruss-sections to investigate the eifects on the drag and pressure distribution due to volume of variations in the streamwise station at which the cross-sectional area is a maximume. For each station of the maximum cross-sectional area and cach value of the aerodynamic slenderness ratio, $\beta \mathrm{s} / \ell$, the wing of the family which has least drag for given length and volume is found. As the station of maximum crossdrag for given length and volume is found. As the station of maximum cross of this optimum wing rises; the rise being steeper for lower values of $\beta s / \mathcal{L}$ In parallel, adverse pressure gradients and the suction on the wing near the trailing edge both increase so that it becomes less likely that the calculated values will be reproduced in a real flow.
A.R.C. C.P. NC. 606

THE CALCULATED EFFECT OF THE STATION OF MAXIMUI CROSSSECTIONAL AREA ON THE WAVE DRAG OF DELTA UINGS. Smith, J.H.B. and Thomson, W. Septomber, 1961.

Use is made of previously calculated properties of a fanily of delta wings with subsonic leading edges and dianond cross-sections to investigate the effects on the drag and pressure distribution due to volune of variations in the streamwise station at which the cross-sectional area is a maximum For each station of the maxinum cross-sectional area and each value of the aerodynamic slenderness ratio, $\beta s / t$, the wing of the fanily which has least drag for given length and volume is found. As the station of maximum crosssectional area is moved aft from 65% of the length from the apex, the orag of this optimum wing rises; the rise being steeper for lower values of $\beta \mathrm{s} / \mathrm{f}$. In parallel, adverse pressure gradients and the suction on the wing near the trailing edge both Increase so that it becomes less likely that the calculated values will be reproduced in a real flow.
533.693.3:
533.692 .2 : 533.6.013.12 533.6 .048 .2
533.693.3:
533.692.2 : 533.6.013.12 : 533.6 .048 .2

© Crown Copyright 1962

Published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w.c. 2
423 Oxford Street, London w. 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
50 Fairfax Street, Bristol 1
35 Smallbrook, Ringway, Birmingham 5
80 Chichester Street, Belfast 1
or through any bookseller
Printed in England
S.O. CODE No. 23-9013-6
C.P. No. 606

[^0]: *Now of Manchester University. The work was begun while he was a vacation student at the R.A.E. in 1960.
 Ereviously issued as R.A.D. Tech. Hote No. Aero 2782 - A R. C. 23,112 .

[^1]: *We shall use "thin-wing theory" to mean the theory of inviscid irrotational flow based on the linearized potential equation, in which boundary conditions satisfied on the wing surface are applied in the plane of the wing and flow variables required on the wing surface are evaluated in the plane of wing. The pressure is obtained from the linearized Bernoulli equation. The further qualification in "slender thin-wing theory" will imply that the assumption of slenderness $\left(\left|\beta^{2} \phi_{x x}\right| \ll\left|\phi_{y y}\right|+\left|\phi_{z z}\right|\right)$ has been made in addition.

[^2]: *More precisely, we make $S^{\prime}(\bar{\xi})=0$. See Appendix 1 for details.

[^3]: *As we should expect, H and E are elmost the some shape.
 **At low supersonic Mach numbers it seems to be possible for a normal shook to occur near the trailing-edge of a delta wing in inviscid flow. If the trailing-edge angle on the centre-line exceeds twice the maximum deflection angle possible through an oblique shock at the local Mach number of the flow there, then it is likely that a normal shock will occur on the centre-line upstream of the trailing-edge, on the analogy of the flow over a wedge where the bow shock is detached. There seems to be no reason why this should not be associated with a pressure distribution, as caloulated by thin-wing theory, which is favourable in the sense desoribed above.

[^4]: *The algebra would be a little simpler if we used the prosentation of Table 3 of Ref.1. However, the values quoted there have been rounded off and the slight loss of significance would upset the sensitive minimization procedure.

