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Use is made of previously caiculated properties of a family of delta 
wings with subsonio leading edges and diamond cross-sections to investigate 
the effects on the drag and pressure distribution due to volume of variations 
in the streamwise station at which the oross-sectional area is a maximum. 
For each station of the maximum oross-seotional area and each value of the 
aerodynamio slenderness ratio, &s/8, the wing of the family which has least 
drag for given length and volume is found. As the station of maximum oross- 
sectional area is moved aft from 65% of the length from the apex, the drag 
of this optimum wing rises; the rise being steeper for lower values of ps/&. 
In parallel, adverse pressure gradients and the suction on the wing near the 
trailing edge both increase so that it becomes less likely that the oalculated 
values will be reproduced in a real flow. 
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1 INTBOiXJCT1:ON 

One approach to the design of a large transport aircraft is to 
accommodate the fuel and as much as possible af the payload within the 
wing. For supersonic flight this leads to a search for sharp-edged delta- 
like wings with subsonio leading edges which have low wave drag due to 
volumer Although other considerations make it likely that the planform of 
such an airoraft would have streamwise tips and that its cross-sections 
would bulge along the c'entre-line, relative ease of oalculation leads us to 
make preliminary investigations on delta wings with diamond cross-sections. 

Suoh wings have been studied by various fully and partially linearized 
theories appropriate to subsonic, transonic and supersonic speeds in an 
extensive series of R.A.E. papers. A number of them have also been tested 
in wind tunnels and in free-flight. One result of this work has been to 
establish that two particular wings, the "Newby" and the "Lord V", have 10~ 
drag for given volume 3 nd length over a range of the aerodynamic slenderness 
parameter @s/4 (j3* = M -1, a = semi-span, 5 = length). These wings are 
completely defined by their centre-sections which oan be described by the 
equations: 

"Newby" zk,o) = 

"Lord V" &,o) = 5 & X(I - d(4 - 6~ + x2 - E3, 
. 

where the origin is at the wing apex, the x-axis is along the centre-line 
of the wing, the z-axis is normal to the wing plane and c = x/4. These 
oentre-sections are illustrated in 35g.1, with the corresponding cross- 
sectional area distributions in Fig.2. 

A convenient standard of comparison for the volume-dependent drag of 
slender configurations is the drag of the optimum slender pointed body of 
revolution of given length and volume (the Sears-Haack body): 

2 = 128 V2 
9 - 2. T. 

We shall use X0, the ratio of the drag of a wing to the drag of the 

Sears-Haack body of the same length and volume, as a measure of drag. 
Fig.3 shows values of K. for the "Newby" and "Lord V" wings. It is clear 
that there is a difference of IO-15% between the values calculated by thin- 
wing theor? and those derived by the integration of measured pressure 

_ -v-m .z-u_pp___ 
*We shall use "thin-wing theory rt to mean the theory of inviscid irrotational 
flow based on the linearized potential equation, in which boundary conditions 
satisfied on the wing surface are applied in the plane of the wing and flow 
variables required on the wing surface are evaluated in the plane of wing. 
The pressure is obtained from the linearized Bernoulli equation. The 
further qualification in (t will imply that the 
assumption of slenderness~~~~~~~l~~~~g]~~~~has been made in addition. 
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distributions. On the other hand, the differences between the drags 
of the two wings and the trends of the drags with Mach number are bath 
well represented by the theory. 

We have said that these two wings have low drag and have 
displayed the relevant values of Ko, but it is not easy to make the 
statement more precise. &en if we confine our attention to thin-wing 
theory, making all the assumptions implied therein, we do not know the 
minimum drag of a wing with given planform and volume. However, if we 
are prepared to limit ourselves ta delta wings with diamond cross- 
sections whose centre-sections are polynomials of degree five, the 
curve labelled "unrestricted optimum11 
results of Ref.1. For 0.2 6 Se& 

of Fig.4 can be obtained from the 
c 0.8, one or other of the two wings 

("Newby" and "Lord Vtt) has a value of K. whioh is within IC$ of the 
optimum. In view of the uncertainties of the theory, we may doubt the 
value of an attempt to use it to find wings of this family with lower 
values of Ko. 

The designer, however, is as concerned with how the volume is 
distributed over the planform as with the volume itself, so we should 
consider restrictions on the distribution of volume. For a slender 
wing the constraints on the volume distribution which can be expeoted 
to have most effect on the drag are those imposed on the Gross-sectional 
area distribution. We consider the simplest of these: we fix the 
lengthwise station at which the cross-sectional area distribution has 
its maximum value*. 

2 RZXJLTS 

The "Lord V" wing has an area distribution with its peak at 55% 
of its length from the apex. Fig.4 shows how its drag varies compared 
with the optimum curve for wings of the present family which have their 
maximum cross-sectional areas at the same station. The theoretioslly 
possible improvement never exceeds 4%. The cross-sectional area dis- 
tribution of the l'Newbyl' wing has a maximum at 2/3 of its length; its 
drag is shown in Fig.4 compared with the oorretiqonding minimum curve. 
At ps/4 = 0.4, there is now apparently 15$ to be gained. 

The general picture of the variation in minimum drag with Ss/& 
when the station of maximum cross-sectional area is fixed is shown in 
Fig.5. The usual tendenoy for K. to decrease as ps/& increases is seen 
to be most pronounoed when the maximum cross-sectional area occurs aft. 
'@hen it is far enough forward the decrease in K. as Ss/+? increases 
through small values is reversed at the larger values. Although for 
0.3 < @s/e < 0.7 a wing with its maximum cross-section& area near 6% 
of its length is best, the proximity of the curves for 5C55 and i'@$ 
suggest that the optimum is flat. The same values are shown in Fig.6 in 
a plot of K. against station of maximum cross-seotional area for fixed 
ps/&. These show how the best position for the largest cross-section 
moves back from 5Wh at @s/d = 0 to 6To;/o at @s/d = 0.8. They also show a 
rapid and substantial increase in K a at low values of @s/d as the 
maximum cross-section is moved aft. However, there is a fair-sized 
region of the diagram where K. is no more than 0.8 and the maximum 
oross-section is not less than 65% of the length from the apex, 

*More precisely, we make S'(E) = 0. See Appendix 1 for details. 
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Since tentative layouts of supersonio transports indioate that the 
maximum oroas-seotional area should be considerably further aft than the 
55$ of the "Lord V", we shall look at some of the wings in this region in 
more detail. Each of the eight points lettered A-H on yig.6 oorresponds to 
a wing whioh, at its design value of as/&, has the least drag of aw wing 
in the family we have considered with its maximum oross-seotional area at 
the same station. The values of Ko are all less than 0,8. There are three 
wings_H,E,A with g = 0.65 designed for pa/.& = 0.4, 0.6 and 0.8, tw,o wings F,B 
with & = 0.70 designed for @s/43 
designed for @s/4 

= 0.6 and 0.8, tgo wings G,C with E = 0.75 
= 0.6 and 0.8 and wing D with g = 0.8 designed for 

pa/& = 0.8. The variation in drag of these wings at other values of @s/b 
is displayed in Fig.7. We see that a change in g of 0.05 affeots the drag 
at a givan @s/C more than a change of 0.2 in the @s/e for whioh the wing 
was designed. In partioular, the advantage of H over E is so slight that 
we consider it no furthe*, thus limiting our attention to two design values 
of pa/e. 

The oentre-sections of the wings A-G are illustrated in Figs.8 and 9, 
with the corresponding oross-seotionsl area distributions in Figs.10 and Il. 
The mings which have 4; = 0.75 and 0.8 (C,G,D) have points of inflexion in 
their centre-sections, The *dip* becomes larger for the lower design value 
of @s/4 and for the further aft g. In the oase of wing D, the 'dip' persists 
in the area distribution. Some of these dips mey be introduoedby the search 
for an optimum within a restrioted family of shapes. In this oase we should 
expeot there to be tings outside the family without the dips and with lower 
drags. It is of some interest that the first 20"$ of the wing has a shape 
deoided primarilyJy the ohoioe of @s/4 and the last 20$$ is deoided ptimarily 
by the ohoioe of &, as Fig.10 shows clearly, We do not find any evidenoe 
that the drag is related to the maximum oross-seotfonsl area, exaept for 
wings whioh have their maximum areas at the same station. 

The prediotions of invisoid flow theory are liable to be invalidated 
by the ooourrenoe of boundary layer separation forward of the trailing-edge, 
either ordinary or shook-induoed. The possibility of ordinsry separation 
from the wing surfaoe is avoided by a pressure field over the wing in which 
the pressure fslls monotonically both in the stream direction and inwards 
from the leading edge to the oentre-line, as is shown in Ref.2, The same 
pressure field avoids the possibility of shook-waves ooourrfng on the wing 
in properly supersonio** invisoid flow. However, if the pressure at the 
trailing-edge is below that at infinity, the recompression behind the wing 
may take plaoe through a shook system snd if it does so in viscous flow 
there may be a forward branch of the system on the wing surface with a 
separated boundary layer behind it. Without a deeper investigation of the 
flow near the trailing-edge we can only be sure of avoiding this separation 
by requiring that the pressure coefficient remains positive at the trailing- 
edge. In faot it may not be possible to find a wing which has favourable 
pressure gradients and a positive trailing-edge pressure coefficient. 
Fortunately there are meny cases in whioh one or more of these conditions 
is violated and the real flow still approximates to the invisoid flow model; 
the various rises in pressure being small enough and slow enough for a thin 
boundary layer or wake to acaommodate itself. However, we should be aautious 

*As we should expeot, H and E are almost the ssme shape. 
**At low supersonic Maoh numbers it seems to be possible for a normal shook to 
oocur near the trailing-edge of a delta wing in invisoid flow. If the 
trsiling-edge angle on the oentre-line exoeeds twioe the maximum defleotion 
angle possible through an oblique shock at the looal Rach number of the flow 
there, then it is likely that a normal shook will ocour on the centre-line 
upstream of the trsiling-edge, on the analogy of the flow over a wedge where 
the bow shook is detaohed. There seems to be no reason why this should not 
be assooiated with a pressure distribution, as oaloulated by thin-wing theory, 
whioh is favourable in the sense desoribed above. 



in aocepting the pressure drag estimates of inviscid theory when these 
are associated with rapid increases in pressure in the stream direction 
or with large suotions near the trailing-edge. Of course, failure to 
realise the attached flow over the rear of such a. wing could result in 
a pressure drag which was lower rather than higher than the theoretical 
estimate. However, this drag would depend on Reynolds number, and, 
more seriously, the associated flow would be sensitive to trailing-edge 
conditions. At best the forward branch of the trailing-edge shock system 
could be expected to move across the rear of the wing as, for instance, 
elevon settings were altered. At worst the flow might be unsteady. The 
pressure distributions on wings A-G have been investigated with the above 
considerations in mind. 

Although the drag of the "Newby" wing changes rapidly with Bs/& 
(Fig.4), the charaoter of the pressure distribution near the centre-line 
shown in Fig.12 (extracted from Ref.3) is little affected. We have 
therefore not considered the pressure distributions at a range of values 
of @s/d for all the wings. Fig.1 3 shows the pressure distribution on a 
"Lord V" wing (again from Ref.3) 
value of &s/4. 

at various spanwise stations at one 
The character of the pressure distribution is well 

represented by the variation at two spanwise stations*, y/s = 0.05 and 
Y/S = 0.575, so we show the distribution on wings A-G at these stations 
only. 

The wings A-D mhose pressure distributions at @s/J, = 0.8 are shown 
in Sg.l4(a)-(d) are all designed for ps/& = 0.8 and for values of g of 
0.65, 0.7, 0.75 and 0.8 respectively, Both thin-wing theory and slender 
thin-wing theory values have been calculated as described in Appendix 2, 
but our discussion is in terms of the thin-wing theory values only, 
r;fing A has a wholly favourable pressure field, falling from front to 
rear and from leading edge to centre-line. Its trailing-edge suction is 
less than that of the "Newbyll wing, Its calculated drag is a little 
below that of the "Newby" wing at ps/& = 0.8; at @s/d = 0.4 its calculated 
drag is well below that of the "Newby" wing and actually below the 
measured drag of the latter. 

Wing B shows an insignificant adverse streamwise pressure gradient 
and a little more suction near the trailing-edge than wing A. 'Sing C has 
a slight adverse streamwise gradient and a marked increase in trailing- 
edge suction. V?ing D has a definite adverse streamwise gradient, a 
slight adverse gradient from leading edge to centre-line near E = 0.75 
and a large trailing-edge suction. Moving the station of maximum cross- 
sectional area aft from 0.65 to 0,8 therefore not only increases K. from 
0.65 to 0.8, as shown in Fig.6, but also reduces the likelihood of 
realizing the assumed type of flow. 

Referring now to Figs.14(e) - (g), we see that the pressure dis- 
tributions on wings E,F and G designed for ps/& = 0.6 and S = 0.65, 0.7 
and 0.75 respeotively show the same trends-as those on wings A-D. If we 
consider two wings with the same value of g optimized for different 
values of @s/d and compare the pressure distributions at the design 
values of @s/d, we find that the unfavourable features are more severe 
for the lower value of @s/&S. To determine whether this is due to the 
change in &s/4? at which the pressures are calculated or the change in 
design ps/.&, we show additionally on Fig.l4(g) the pressure distribution 
on wing G at @s/e = 0.8, the design value for wings A-D. Both the 
adverse gradient and the trailing-edge suction are reduced at the 
higher @s/e. Comparing wings C and G (g = 0.75 for both) at @s/& = 0.8, 
we see that G has a steeper adverse gradient but less trailing-edge 

--e-- 

work3, 
are chosen to take advantage of Eminton's 

They, and the values of J~s/&, are related to tests of particular 
wings. 
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suotion. However, all zhese differences between the pressure distributions 
on wings With the same 5 are relatively small. It is doubtful whether they 
have any relevance outside the present theory or even outside the present 
family of wings. 

Finally, for completeness, the drags of zings A-H have been evaluated 
by slender-body theory, The results are Sh0W.i in Fig.15. One can OonOlude 
that slender-body theory becomes less appropriate as the station of maximum 
cross-sectional area is moved aft, as would have been expected from the 
pressure distributions of Fig.?&. 

CONCLUSIONS 

Area distributions for delta wings with diamond cross-sections have 
been found in which the maximum cross-sectional area ooours towards the 
rear of the vsing and the calculated drag due to volume is low, at least at 
the higher values of @s/4. When the station of maximum cross-sectional area 
ie aft of 65% of the length from the apex, the drag inoreases as it moves 
further aft for all values of @s/P, < 0.8. Yhen the maximum cross-sectional 
area oooura at any fixed station aft of 6@, the wings designed for the 
higher values of @s/4 have lower drag than those designed for lower values 
of Ss/& at their respective design points. 

Beoause of the predicted occurrence of unfavourable pressure fieJ.ds and 
large trailing-edge suctions, the postulated type of flow becomes less likely 
to occur on the wings where the maximum cross-seotional area is further aft, 
owing to possible boundary layer separations. 
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With the origin at the wing apex, Ox along the centre-line, Oy to 
starboard in the plane of the wing and Oz completing the right-handed 
system, the equation to the starboard upper surface of the delta wing 
which we consider is: 

(4) 

where s is the semi-span, & is the length and F; = x/4. The thickness vanishes 
along the leading edge y = SE;. z is a linear function of y, so the cross- 
sections are rhombic. The centre-section is given by the quintic polynomial: 

2(x,0) = $ c(1 - G) f An c . I . (5) 

n=O 

The cross-sectional area, S(c), is given by 

& 3 

SW = 4 
i 
b 

dx,y)dy = e2 E2(1 - G> 
--7 
1 An ' 2 

0 n=O 

and the volume, V, by 

(6) 

(7) 

According to thin-bang theory, the drag of a wing of this family is 
clearly a quadratic form in the coefficients 14 . n In Ref.1 (Table P) the 

values of D/qd2 for ten independent wings of the family are quoted for 
ps/a = 0.2(0.1)0.8. This Table is reproduced as Table 1 of the present 
paper. If the drags of the wings of this Table are denoted by Do, Dl, . . . 

D9’ 
the drag of the general member of the family (4) is 

p____y _ w----m mwLF -  P-CSLLIY . s%~_~G.*--I-- 

*The algebra would be a little simpler if we used the presentation of 
Table 3 of Ref.1. however, the vslucs quoted there have been rounded off 
and the slight loss of significance would upset the sensitive minimization 
procedure. 
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Appendix 1 

D = (A0 + A, + A2 + A3)(J+& + D,A, * "~~2 + D3A3) - D4AoA~ 

- D 5++ 2 - D&A, - D 
J 78 

,A2 - D8A,A3 - D9A2A3 l 

The condition that the wing has i&s msxinum oross-sectional area 
at a particular lengthwise station g = g is not easily formulated. We 
replace it by the conditign that the cross-sectional area S(c) has 
a local extremun at 5 = E i.e. 

3, 
S'(g) = d2 ij- A,( (n+2)r+' - (11+3)p+~) = 0. 

-A 
(9) 

n=O 

The results produced can then be inspeotcd to determine that the 
extremum is a maximum and that this is the greatest looal maximum. 

To find the wing of the family which has the least drag for a 
given volume of, say, 43 and given c, we have simply to solve the six 
simultaneous equations: 

a 

c 

D 
rq -++j 

se2 
-1 +/.I 

> 
k!a =fJ 

45* > 

v 
7' = O 

n = 0,1,2,3 

(10) 

for the coefficients An and the Lagrangian multipliers h and p, where 
D/q is given in terms of the An by equation (8), V by equation (7) and 

St(E) by equation (9). We then know the shape of the wing by equation (4) 
and its drag by equation (8). 

This has been done for 

The resulting values of K. = 

pi& = 0.2(0.1)0.8 and a range of values of E, 
4 Ii& 2 have been plotted in the figures. 

zTq 

For the particular wings A-H of Fig.6, the coefficients An are 
tabulated in Table 2. The shapeg of these wi.ngs,plotted in Figs,8-11, 
show that the local extremum at E is the only ~~~~imum of the cross- 
seotionsl area distributions.- However, a check on the area distribution 
of the wing corresponding to E = 0.85 and 
this has two maxima; the rearward one at & 

Ss/4 = 0.8 in Pig.6 showed that 
= 0.85 is slightly lower than 

the forward one. No other checks have been carried out, but it 2s to be 
expeoted that many of the wings corresponding to high vtiues of 4; and low 
values of (33/d will have more than one looal maximum. 
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Appendix1 

The drag of the wings 8-H is readily oalculatedby thin-wing theory 
using equation (8) and Table I. The drag has also been calculated according 
to slender-bod;y theory. (Slender-body theory and slender thin-wing theory 
are equivalent so far as the drag of wings with straight unswept trailing- 
edges is concerned.) The formula appropriate to this family of wings has 
been given by Weberl. It is 

K. = =.iL 256 -4%~inA 2 2 22 22&22i.zA2 24 2 120 3 -+cTv3 22 92 

-5-$.-y3 - y AlA - F Al% - 12 a. 2% 

where k = 4n2is the value appropriate to rhombic cross-sections. 
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CALCULA.TION OF PREGWR.E DUE TO VOLUME - --rwLCmI--a LS _--w-a FLU we 1 

Eminton has programmed the calculation, according to thin-wing theory, 
of the pressure due to volume on wings of the present family. In Ref.3 she 
tabulates the chordwise pressure distribution at two spanwise stations on 
four basic volume distributions for two values of @s/k?. For the present work, 
she has calculated these for a further value of &s/,6 and the complete 
tabulation is reproduced here as Table 3. The choice of the spanwise 
stations and the tT?o lower values of ps/& was originally to conform with 
experimental configurations. 

For the general wing of the family, equation (4 , the pressure 
coefficient is given in terms of the C 

P ( 
i = 1,2,3,4 of Table 3 by 

i 

4 .- 
C 

P = > 
A. c 

__, '-I Pi ' 
n=j 

(42) 

The pressure coefficient has also been calculated by slender thin-wing 
theory, by equation (50) of Ref.4. The expression is not reproduced here 
on account of its length. 
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TABLE 1 

F--= Coeffxients T 
2 

0 

0 

0 

1 

0 

0 

-1 

0 

-1 

-1 

- 

-- 

0.2 

0.3601 

0.258-T 

0.2053 

0.1703 

0.0506 

0.1168 

0.4705 

0.01764 

0.0488 

0.00869 

0.3 

0.3032 

0.2050 

0.1560 

0.1251 

0.0491 

0,1110 

O.-t594 

0.01627 

O.wtl 

0.00764 

-- 

0.4 

0.2658 

0.1701 

0.1250 

0.0978 

0.0478 

0.1057 

0.1495 

0.01498 

0.0399 

0.00672 

PS/h 
-_L_ 

0.5 

0.2391 

0.1452 

0.1037 

0.0797 

0.0467 

0.1013 

0.1410 

O.Ol382 

0.0362 

0.00592 

0.6 

0.2190 

0.1266 

0.0882 

0.0669 

0.0459 

0.0977 

0.1339 

0.01281 

0.0329 

0.00525 

0.7 0.8 

0.2039 0.1928 

O.l? 22 0.1007 

0.0765 0.0673 

0.0575 0.0503 

0.0455 0.0456 

0.0948 0.0930 

0‘4282 0.1242 

6.0119i 0,01110 

0.0301 0.0277 

0.00470 0.00424 

TABLE 2 

reference 
letter 

A 

B 

C 

D 

E 

F 

G 

H 

--- 

design 
PS 14 

0.8 

0.8 

0.8 

0.8 

0.6 

0.6 

0.6 

0.4 

-- 

design 
E 

0.65 

0.70 

0.75 

0.80 

0.65 

0.70 

0.75 

0.65 

--- 

AO 

24.90 

27.45 

26.65 

22.53 

33.30 

35.45 

31.95 

35.37 
ma- 

coeff5.cients 
_I_-.- 

Al 

-52.20 

-72.48 

-62.52 

-20.87 

-91.32 

-1 o-7.97 

-77.43 

-99.11 

A2 

67.44 

103,14 

66.04 

-34.58 

125.75 

151.16 

74.86 

133.57 
-.- 

A3 

-29.93 

-45.22 

-12.44 

55.39 

-58.83 

-66.97 

-12.04 

-60.66 

K, at 
design 

(thin-wing 
“thOorJt) 

0.646 

0,651 

0.698 

0.779 

0.679 

0,706 

0,775 

0.789 

- 14 - 



Pressure o?Lffioients for four basic wings of the family 
&A in-win theo 

ps/e = 0.416 
-m- 

Y/S 
-Iy 

0.05 

0.575 

I * - -  

0.1 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.6 
0.7 
0.8 
0.9 
1.0 

*---  

C  

P I  

0. go1 

0.560 
0.282 
0.012 

-0.255 
-0.522 
-0.788 
-1.054 
-1.319 
-1.585 

0.284 
-0.321 
-0.711 
-1.047 
-1.360 

/ yh / F; / cP, 

0.05 

~ 

0.575 

0.1 0.778 
0.2 0.484 
0.3 0.253 
0.4 0.031 
0.5 -0.188 
0.6 -0.407 
0.7 -0.625 
0.8 -0.842 
0.9 -1.060 
1.0 -1.278 

0.6 
0.7 
0.8 
0.9 
1.0 

C 
*2 

0.218 
0.351 
0.392 
0.341 
0.198 

-0.035 
-0.359 
-0.774 
-1.280 
-1.876 

0.463 
0.106 

-0.280 
-0.753 
-1.320 

0.443 
-0.144 
-0.493 
-0.785 
-1.051 

c 
P2 

0.178 
0.291 
0.328 
0.290 
0.180 

-0.004 
-0.260 
-0.590 

%z . 

0.464 
0.169 

-0.132 
-0.503 
-0.948 

C 
p3 

0.035 
0.125 
0.228 
0.303 
0.311 
0.211 

-0.035 
-0.469 
-1.128 
-2.053 

0.393 
0.257 

-0.020 
-0.509 
-1.252 

-w-m 

c 
p4 

w-m 
0.005 
0.037 
0,105 
0.196 
0.275 
0.289 
0.160 

-0.209 

:;*g . 

0.279 
0.278 
0.120 

-0.324 
-1.188 

c C 
p3 p4 

0.027 
0.101 
0.185 
0.249 
0.260 
0.187 

-0.001 
-0.336 
-0.849 
-1.571 

0.331 
0.238 
0.045 

-0.311 
-0.865 

0.004 
0.029 
0,083 
0.157 
0.223 
0.240 
0.147 

-0.131 
-0.686 
-1.628 

0.213 
0.223 
0.124 

-0.184 
-0.809 

- 15 - 



Y/S 
I 

E 

0.05 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.6 
0.7 
0.8 
0.9 
1.0 

&‘is = 0.800 

0.664 
0.411 
0.223 
0.044 

-0.132 
-0.308 
-0.484 
-0.659 
-0.834 
-1.008 

0.667 
0.030 

-0.294 
-0.550 
-0.776 

0.143 
0.236 
0.268 
0.243 
0.159 
0.017 

-0.182 
-0.439 
-0.753 
-1 .I 25 

0.457 
0.202 

-0.027 
-0.308 
-0.649 

0.021 
0.079 
0.147 
0.200 
0.212 
0.161 
0.020 

a.234 
-0.625 
-1.179 

0.270 
0.200 
0.071 

-0.179 
-0.581 

C 
p4 

0.003 
0.022 
0.065 
0.123; 
0.177 
0,194 
0.129 

-0.076 
-0.493 
-1.203 

“0% 
0:106 

-0.105 
-0.548 

- 16 - 
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CENTRE-SECTIONS OF ‘LORD Y’AND 
‘NEWBY’ WINGS 

0 
O-4 O-6 I 3 

FIG. 2. CROSS-SECTIONAL AREA DISTRIBUTIONS 
OF ‘LORD 9’AND ‘NEWBY’ WINGS. 



THIN- WING THEORY 

PRELIMINARY RESULTS FROh 
PRESSURE MEASUREMENTS 
AT R.A.E. BEDFORD 

X 

X 

0 
X 

0 
0.2. 0’3 o-4 o-5 O-6 0.7 0.8 

FIG. 3. DRAG FACTOR OF ‘LORD P’ 
AND ‘NEWBY’ WINGS. 

0.3 
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o-2 0.3 o-4 o-5 O-6 0.7 0.8 
P s/e 

FIG.4. DRAG FACTOR OF WINGS WITH QUINTIC 
POLYNOMIAL CENTRE- SECTIONS, 

CALCULATED BY THIN-WING THEORY. 
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FIG.5 MINIMUM DRAG OF WINGS WITH QUINTIC POLYNOMIAL CENTRE-SECTIONS 
AND FIXED 3 (THIN-WING THEORY). 
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FIG.6. hiiM”M DRAG OF WINGS ‘ki QUINT;: POLYNOMIAL 
CENTRE-SECTIONS AND FIXED 5 (TtibkWt~~ THEORY). 

d 



0@2 o-3 OS4 o-5 0~6 ps/A 0.7 O-8 

FIG. 7. VARIATION OF DRAG FACTOR WITH MACH 
NUIVI~~~ FOR WINGS A TO H @HiN-WING THEORY 
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FIG. 8. CENTRE - SECTIONS OF WINGS A,C,E,G 
DESIGNED FOR VARIOUS f AND Bs/d. 

FIG. 9. CENTRE-SECTIONS OF WINGS B,D,F 
DESIGNED FOR VARIOUS f AND Bs/.t. 
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FIG. IO. CROSS - SECTIONAL AREA 
DISTRIBUTIONS OF WINGS A,C,E ,G. 

014 016 0~8 f I*0 0 O*Z 

FIG. I I. CROSS - SECTIONAL AREA 
DISTRIBUTIONS OF WINGS B,D,F. 



FlG.12. PRESSURE DISTRIBUTIONS ATy =Oeo5 s 
0h1 ‘NEWBY’ WING (THIN-WING THEORY). 

0.225 0.225 

o-400 o-400 
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I.0 

FIG.13. PRESSURE DISTRIBUTION ON ‘LORD Y’ WING, 
Ps/e = 0-577 (THIN-WING THEORY). 
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FIG.l4(a) PRESSURE DISTRIBUTION ON 
WING A. /3s/+O*8. 
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FIG. 14 (b). PRESSURE DISTRIBUTION ON 
WING 8. /h/4 = 0.8. 
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FIG.14 (c). PRESSURE DISTRIBUTION ON 
WING C. /h/Q= 098. 
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--- SLENDER THIN-WING 

THEORY. 

FIG. 14.(d). PRESSURE DISTRIBUTION ON WING D 
AT /3s/e=O-0. 
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- -- SLENDER THIN-WING THEORY 

FIG. 14. (e). PRESSURE DISTRIBUTION ON WING E 
AT /3+%=0*577. 
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FIG. 14. (f) PRESSURE DISTRIBUTION ON WING F 
AT @s/R = Oe577. 
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FIG. ‘4(g) PRESSURE DISTRIBUTION ON WING G 
AT as/t = 09577 AND 0*8. 
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FIG. 15. VARIATION OF DRAG FACTOR WITH 
MACH NUMBER ACCORDING TO SLENDER-BODY 

THEORY FOR WINGS A-H. 
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For each station of the maximum cross-sectional are2 and each value of the 
aerodynamic slenderness ratio, ps/& , the wing of the family which 112s least 
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rsings with subsonic leading edges and diamond cross-sections to investigate 
the effects on the drag and pressure distribution due to volume of variations 
in the streamwise station at which the cross-sectional area is a maximum. 
For each station of the maximum cross-sectional area 2nd each value of the 
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drag for given length 2nd volume is found, As the station of maximum cross- 
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