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The concept of scale-effect introduced in Ref.b5 to account for dis-
similer critical crack lengths in similar flat sheets is placed in better
perspective by relating it to Griffith's well known work on crack propagotion.
The results of recent experiments are quoted that confirm the reliability of
the approach via scale effect and also confirm the semi-empiricel formula for

relating critical stresses in flat sheets to those in corresponding cylinders.
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1 INTRODUGTION

A great deal of work has been done in recent years in an cndeavour to
understand what determines critical crack lengths in structural materiosls.
This work has been intonsified since the advent of pressure cabins and has
therefore largely been concerncd with cracks in sheet material. The purpose
of this note is to take stock of the situation on the basis of past work and
of some recent experimental results and, in particular, to emphasise any
results that are likely to be of direct interest to the designer.

2 GRIFFITH'S WORK

Few papers on crack propagation can be read without meeting in the
first few paragraphs the name of Griffith with reference to his classic work
on crack propagation in brittlec sheet material. Griffith considered the
effect of introducing e crack across a field of uniform tensile stress in a
thin sheet with loaded cdges fixed in space, the material of thc sheet being
brittle and perfectly elastic. In order to appreciate 1ts bearing on later
work it is worth examining his general approach to the problem.

To fix ideas consider a large shect ABB'A'
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of indefinite width subjccted to tensile stresses o at the fixcd boundaries AB,
A'B' as shown in Fig.1. If now a slit (or craok? CD is made in the sheet it
follows from the structural analoguez* of Kelvin's Theorem in dynamics that
the strain energy of the sheet must drop. It can also be readily shown’ that
if the amount of the strain energy is U1 when the crack has length £ the rate

of increase of strain encrgy with crack length dU1/d6 with boundaries fixed

is exactly equal but oppositec in sign to the ratc of increase of strain cnergy
with boundaries free under the same (oonstant) applied stress. But if the
crack CD is small enough to ensure that the stress disturbance it causes is
only local, the strain energy increase with bounderies frce con b$ calculated
in terms of the length £ of the crack. This was done by Griffith’ using
formulae derived by Ingli54 for the stresses causcd by an clliptical opening

2 ez = e - g e RETSETWAT A SNET

* fThe analogue to the theorcm states that "If the displaccments of an elastic
system are fixed the strain cnergy is least when thc constraints arc lcast"
(see Ref.2).



in which the major axis is normal to the temsile strcss. By taking the
limiting case where the ratio of minor to mejor axis approaches zero
Griffith found this increase to be equal to

U, = <}‘§) x (—g—)z o (1)

for a sheet of unit thickness.

By the above argument, therefore, the rate of increase of strain
energy with crack length under fixed boundary conditions is given by

dU'I - 'JEZVG'Z (2)
Tt T E

where v and E rcpresent Poisson's ratio and Young's modulus respectively.
If now the Total Potential Energy of the system wzre represcnted by
the strain energy U1 equation (2) would indiccte an unstable condition

however short the crack length £, since for equilibrium it is necessary
that

dgméi.E._) -0 . (3)

Griffith resolved this difficulty by introducing the notion of cnergy
absorbed by surfece tension. By enalogy with the behaviour of surface
tension in liquids the fresh surfaces formed by the walls of the crack
absorb energy per unit arca of amount

U, = 214 , (%)

where T = surface tension per unit length

A area of fresh surface.

For a shect of unit thickness the encrgy absorbed in forming a crack of
length € is therefore given by

U, = 2T¢ (5)
which gives

au,,

35 = 20 . (6)

Using equation (3),we now have, f'or equilibrium,

2
au _ 4 - _Rtvo .
% - ag Uy tUy) = 2r e o= 0 . (7)



This gives the critical crack length £ for any applied stress o (or vice versa)
if the surface tension T is known. For the sake of conciseness the cpplied
stress o on the gross area at feilure will be referred to as the failing
stress.

Taking glass as his material, Griffith deduced its surface tension at
room temperature by extrapolating from a curve of surface tension against
temperature obtained experimentally for comparatively high temperatures, the
lowest being as high as 745°C. In this way he obtained a valuc for T of
0.0031 1b/in. From (7), with v = 0.251 and E = 9 x 10°, this gives

ot = 375 , (8)

a value only some 1Q% greater than that found by Griffith experimentally by
bursting glass tubcs and bulbs under internal pressure. It 1s noteworthy
that in these experiments the veluc of oV¢ remained, as indicated by (7,
fairly constant in spite of a six to one variation of the crack length &.

3 RELEVANCE OF GRIFFITH APPROACH TO CRACK FROPAGATION IN METAL SHEET

If the condition for crack instability were the same for metals as for
an almost perfectly brittle material likc glass, one should be able to derive
the surface tension for metal sheet of any matcerisl by inserting the values
of the experimentally measurable values of crack length € and failing stress ¢
in cquation (n. Experiment shows for example that a 48 in. wide sheet of
aluminium alloy to D.T.D.746 has a criticel crack lcngth of 15 in., under an
applicd temsile stress of 16,000 lb/inz. Teking v = 0.3, E = 107 lb/inz, and
neglecting the fact that the crack would have becn greater than 15 in. if the
sheet had not been finite, we find the surface tension T to be given by
58 1b/in. The value of the surface tension of aluminium, &s deduccd from a
similar cxperimental technique to that used by Griffith for glass, is,however
of the same order as that for glass and therefore some 20,000 times too small
to account for the energy required to satisfy cquation (75.

It is clear from this that the rate at which energy is absorbed during
crack extension dUz/dL must be due to something very different from surface

tension. The only reasonable assumption that can be made is that this encrgy
absorption is due to plastic deformation of the matcrial in the neighbourhood
of the crack cxtremity. Like the encrgy absorbed by the surface tension over
the fresh surfaces crcated by the crack, encrgy absorbed by plastic deformation
is an irrcversible process. Moreover the strain associated with this deforma-
tion must locally, i.e. around the crack extremity, reach a value large enough
to cause fracture before the crack can extend.

It is not possible in our present state of knowledge to obtain e
guantitative expression for the energy absorbed by plastic deformation but
experiment shows that, in general, this energy is no longer proportional to
the length of the crack as in formula (4) assumed by Griffith for brittlc

materials. It is also clear that thc cnergy absorbed Ué cennot be proportional

to the square of the crack length because, by cquation (7), that would meke
the failing stress independent of the crack length instead of progressively
smaller with increasing crack length as experiment shows. It is impossible
for the energy cbsorbed to be proportional to a powcr of & greater than 2 for
that would make the failing stress increase with crack length. We are
Justified therefore in writing



n
U, = k & o (9)
k!
where k, = constant (dimensionally appropriate) |
n = index that depends on the sheet material ( (10)
but must be less than 2 i
Gﬁ = ultimate stress of sheet material = constant

for that material,

Instead of (7) we therefore have

au n-14 2
S = kont -k e =0, (10)
where k, is of course different from the coefficient of % ¢ in (7).

The result is that, instead of the Griffith formula for perfectly
elastic but brittle materials, i.e.,

%2 = constant |, (11)

we now have o new formula
oﬁ(1-n/2) = constant (12)

for any one materizl. To determinc the value of the index n it is necessary
only to find by experiment the applicd failing stress o for two values of
creck length., As shown in para. 4 the curve of o against £ given by (12) is
then identical with that derived in Ref.b on the basis of scale effect.

Y IDENTITY OF SCALE-EFFECT APPROACH WITH THE_APPROACH 3 la GRIFFITH

The basis of the approach used in Ref.5 is that thin shects of similar
shape with similarly shaped holcs should fail under the same applicd stress.
When the hole takes the form of o crack, similitude is only achieved if the
crack has a radius of curvaturc at its extremitics proportional to its length.
The fact that the sharpness of the crack at its ends is independent of its
length must however introduce an element of dissimilarity to specimens of
different size but otherwise similar in shape. Tests carried out on such
specimens can therefore be expected to exhibit a 'scale effcct' which may be
different for different materials. For any particular material this scale
effect is readily found by comparing the applied stress at failure for two
similar sheet specimens (with corresponding cracks) of differcnt size. If
the scale effect is constant for any one material it follows that the failing
gtress for any other sizc of similar sheet (and crack) can be expresscd by a
simple formula. Such a formula was derived in Ref.5 where, by comparison with
available experimental results, it was shown that the scale effect is indeed
approximately constant for any one particular material. It was shown in
Ref.5 that if



q,

failing stress for crack length 61 in sheet 1

1
oy = failing stress for crack length 52 in sheet 2
then o = foiling stress for any crack length &

is given by the expression*

fa

o, slog 4/¢
= 2 ! (13)
o, - o, log 62761 ’

on the assumption that the cracks are proportional to the linear dimensions
of the sheets and that the shects are all sinilar.

Using the energy approach after the manner of CGriffith one derives the
constant n in (12) by writing

o,

12 81(2"n) = o 32(2"n) = constant , (1%)

2

oF (1-1/2)
(—ﬁ-l\, , (t4a)
2/

log oé/oa
(1-n/2) = 33@'7:}72‘; . (15)

%2
%

whence

Thus for any crack length £ the corresponding failing stress o is, by (12) and
(15), given by the relation
<log OQ/O%

£ -(3) (1)

1

which, by taking the logs. of the r.h.s. of cach, is readily seen to be
identical with ?13) above. [At values of £ smaller than that which makes

o = S1t the failing stress cannot of course exceed dhlt]°

5 COMPARISON OF FATLING STRESSES OF SHEDT MATERTAL OF DIFFERENT
DEGRELS OF DUCTILITY

Experiment shows that the index n in (12) normally lies between 0.9
and 2 for light alloy materials, whence it is clear that the strength of a
brittle sheet material, for which n = 1, falls off more rapidly with
jncreasing crack length than that of a ductile material that has a value of
n greater than unity. In order to obtain the value of the index n for

e v ——

% See equation (4) of Ref.5 where only the symbols are different.
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certain typical materiels one mey refer to Teble 3 of Ref.5 and to the
following Table 1, which shows the results of experiments carried out by
the Bristol Aircrzft Co. on sheets of verious light alloy materials.

* o e e

(16 _s.w.g. shcet specimens, 30 in., x 10 in. and 90 in. x 30 in,)
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| | | | |
o ] G/Uult ! ] Average - i
Material ult gg?gﬁ ﬁ?g%;h rggziiion! stress | Index ,criterion
1 10 in, sheet |30 in, sheet | pgrqo :reGuCtion mn (1=n/2)
l i ratio | !
SRS AV SRR AMSERITPEIE MEEERRRMSPERE SEALL E L. B v
: 10 0.80 0.6y 0.8 | t ’
i 15 0,71 0.5 :  0.79 !
(L 72 6l ,200 20 0.6 0.5 | 0,78 1 0.78 ;1,55 | 0,225
25 0,57 O | 077 |
30 0.51 039 | 077 !
! ‘ i
: i
10 0.65 0,58 | 0.29 l
15 0.61 0.55 | 0.87 : !
202413 68,200 | 20 0.57 0.47 | 0.83 0.02 | 1,64 | 0,18
{U.s.) 25 0.53 oLz I 079 ‘
30 0.9 0.37 | 075
10 0.70 0.5 | 0.64 i ’
0.0 15 0.61 0.36 0459 3
s 73,400 20 0.53 0.9 ' 0.5 0,56 {0495 | 04525
. 25 0.46 0.2 0.52
30 .41 0.21 0.5t !
{
10 0.75 0.5 L 0.67
) 15 0.66 Ouk | 0.6
L73 £5,500 20 0.57 0.35 0.61 +  0.61 1,11 | 0445
25 0-5 003 006 . H
30 0.lly 0.26 0.59
10 0.73 0.52 0.71
20% - 15 0065 Ooi«lj Ol66
T436 71,700 20 0.58 0.37 0.8 | 0.65 | 1.22 | 0.39
(Brit.) 25 0.52 0.32 0.62
30 0.6 0.28 0.61 |
10 0.71 0.5 0.7 i
201l = 15 0.61 0.4 0.66 |
Teb 68,600 20 0.53 0.35 0,66 | 0.66 | 1.25 | 0.375
(U.S.) 25 0.46 0.3 0,65 !
30 0.41 0.27 0.66 |
10 0.69 0,36 0.52 .
15 0.57 0.30 0.55 |
D.T.D, 77 5500 20 0.48 0.25 0.52 ' 0,53 | 0.85 {0,575
637 25 0.39 0.21 0.5
30 0.33 0.18 0.54 |
10 0.69 0.40 0.58 ;
15 0,59 0.32 .54
Zgﬁ;"f 76,200 20 0.19 0.27 0.55 | 0455 |0.91 |0.545
rit. 25 0.2 0.23 0.55 |
30 0.37 0.20 05k ¢
T
10 0.71 0,54 0.76 4
15 0.65 0.45 0.69 |
2024=13 | 69,900 20 0.59 0.39 0.66 | 0.8 | 1.2 10
1 (Brit.) 25 0.53 0.35 0.66
30 0.L8 0.30 0.63 |
i
15 0.71 3 10,54 0,76 |
20 0.56 g 0.43 0.77
D.T.D. 6l;,700 25 0.47 0.37 0.78 § 0.8 1.356 | 0.322
746 30 0.41 g ) 0,33 0.8 '
35 b 0.37 i ] 0.31 0.83 | ;
i ! 10 o3 |&los 1 o ;
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The number (2-n)/2 shown in the last colum of the table can be taken
as a criterion of the importance of scale effect on crack prepagaticn. It
is unfortunate that its value cannot be quantitatively related as yet to the
physical properties of the material, but can ¢cnly be found experimentally,
It is seen from the table that, for example, material 2024~T3 (American
specification) is a little less subject to scale effect than D.T.D, 74,6 and
both are a geod deal less subject than 7075~16 and D.T.D.687.

From the designer's point of view the need for tests is not a sericus
handicap. What he wants to be assured of is that the value of the index n,
once detecrmined by refcrence to a simple test on a couple of similar sheets cof
different size=-e,g. linear dimensions in ratio 3:1 - can be regarded as fixed
for the particular material., Recent experiments ge scme way towards previding
that assurance as the results next discussed show,

6 CONSTANCY OF Tili INDDX n FOR ANY ONE MATERIAL IN FLAT SUEET FORM

The value 1.356 of the index n given above for D.T.D. 746 was derived by
comparing corresponding crack lengths and failing stresses for two sheets,
one 20 in. x 10 in. and the other 4O in. x 20 in. (Ref.5). It is interesting
therefore tc see whether, by using this value of n, the behaviour of a large
sheet c¢f the same material® can be reliably estimated.

Recent experiments at R.AE.** on a sheet 8, in., x 48 in. showed that
the failing stress for a crack 15 in. long was 16,000 1b/in2. Taking the
size ratic in relation to the 20 in, x 10 in, sheet as 48/10 = 4.8 (since
the slight discrepancy in the length is of little acccunt), we sce that a
corresponding crack in the smaller sheet has a length 15/48 of 10 in.

i.e. 3,12 in,, for which, by Table 3 of Ref.,5 the failing stress is
26,000 1b/in2, The corresponding failing stress for the larger sheet is
therefore given by

. (1-n/2) |
26,000 x (;9§> (17)

q
i

15,500 1b/in®

i

fer the value of n (= 1.356) quoted abgve.
This agrees well with the 16,000 lb/in2 obtained by direct experiment.

It may be noted here that if, as Wells has suggested in an unpublished

work, ot/2 g constant for any cne material, i.e. if the index n in (12)
has unit value for all materials, the value of ¢ would be given by
26,000//eB = 11,900 1b/4in, » a serious underestimate.

7 DEDUCTIONS TO BE MADE FROM POINTS ABOVE CONSIDERLD REGARDING CRACK
PROPAGATION IN FLAT SHEET

(a) The main deduction to be made from the points already treated is
that, fcor any one sheet material, the drop in failing stress consequent on
increasing the length £ of a crack in a certain ratic in an infinite expanse

*  The material was D,T.D,5,6 which however is identical in properties to

D.T.D, 7.6 material but is not made to the same close limits of thickness.
*# Not yet published.



of sheet - or increasing the size (and crack length) of a finite sheet in
the same ratio while preserving similarity - can be calculated from

formula (12), i.e. 03(1"3/2) = constant. Where n can never exceed 2 and
normally lies between 0,9 and 2 but is constant for any one material,

Increasing the length of cracks in an infinite expanse of sheet has
approximately the same effect as increasing the size of cracks in a finite
sheet so long as the crack lengths are small compared with the sheet
dimensions and so affect the stresses at the edges of the sheet in line
with the crack to a negligible degree.

(b) The corresponding formula obtained by Criffith for completely
elastic but brittle materials like glass makes n equal to unity in the above
formula and so becomes

1/2

a? = constant .

Wells has suggested that the same formula is applicable to other materials
such as the various light alloys so long as for each material the appropriate
constant is used. While this is very nearly true for certain materials such
as 7075-T6 and D.T.D.6463, it is far from true for other materials such as
2024~T3 and D.T.D.?Aé, whose crack resistance is much less subject to scale
cffect. A further point to note is that, although the above formula is true
for glass and very nearly true for the light alloy 7075-T6, the value of the
constant, dependent as it is on the surface tension in the former and on
plastic flow in the latter, is of a different order of magnitude in the two
cases, that for the alloy being about 6000 times grcater than that for glass.

(c) From the designer's point of view what needs to be known about
each kind of sheet material is

(i) The index n that determines scale effect

(ii) The failing stresses at a series of crack lengths in a standard
sheet of fairly lerge size, say & f't wide by 8 ft long.

To obtain (i) a comparison must be made between the measured failing
stresses of two similar sheets (with similar crack lengths) as in Tables 1, 2,
and 3 of Ref.5, the linear size ratio of the two sheets being fairly large -
3:1 say. A convenient way of doing this is to draw a curve of failing stress
agoingt crack length covering the whole range of crack lengths for each of
the two sheets., The larger of the two sheets should have the size demanded
in (ii) above, so that the data there rcquired is gathered at the same time.

A check on the stress ratios of the two sheets (which should be approxi-
mately the same for all similar crack lengths) is provided by comparing them
with the stress ratios for pairs of cracks of 3:1 length ratios in the
(preferably) larger of the two sheets, so long as such cracks are small com-
pared with the sheet width.

With this data to hand, the critical stress corresponding to any length
of crack - or the critical crack length for any failing stress - for any
width of sheet (so long as the length is not less than about twice the width)
can at once be estimated.

It is to be particularly noted that the €.h.s. of (12) is only constant
for crack lengths that are the same fraction of the sheet width (assuming that
the length is always at least twice the width). The cxception is the case
where the cracks concerned are very small compared with the sheet width for

- 10 -



this approaches the casc of finite cracks in an infinite sheet. Under this
condition the &.h.s. of (12) has the same value for 2ll crack lengths.

8  CRITICAL CRACK LENGTHS FOR PRESSURISED CYLINDERS

Before the experimental work of Peters and Kuhn6 in 1957 it had been
implicitly assumed that the relation between failing stress and critical
orack length is the samc whether the sheet is flat or whether it is wrapped
up into a cylinder and the tensile stress induced by internal pressure.

This assumption they found, after testing a large number of cylinders, to be
wholly unjustified. For cxample, a cylinder of radius 4.4 in. with a two-
inch crack was found to fail at about 2/3 of the fuiling stress of the
corresponding flat sheet, whilc a cylinder of 3.6 in. radius with the same
length of crack failed at only 1/3 of the failing stress of its corresponding
flat sheect. An explanation of the cause of this reduction in stress -
considered obscure by Peters and Kuhn - was put forward in Ref.5, where olso
the cmpirical formula, which they evolved for converting flat sheet failing
stresses into their cylindrical sheet counterparts, was rationalised.

The reason for the reduction in strength suffered by the sheet when
wrapped up into a cylinder and pressuriscd is that not only have the ordinary
hoop forces to be by-passed round the ends of the crack - to that extent the
conditions are no different from those obtaining in the flat sheet under the
same tensile forces - but, owing to the radiel pressure still maintained at
and in the immediate neighbourhood of the crack edges, the extra membrane
forces thus developed have also to be by-passed. If a close-fitting rigid
frictionless sleeve is imagined to surround the pressurised cylinder so that,
when the crack is made, further local radial expansion camnot occur near its
edges, the stress concentration at the crack ends will be identical with
those in a flat sheet under cqual tensile stresses.

On the removal of such a slceve the cylindrical surface will tend to
bulge near the crack under the internal presswe and, because of the thinness
of the shcet in relation to the radius of thc cylinder this is necessarily
resisted by membranc rather than bending stresses in the sheet. Such stresses
cannot be developed in the circunferential direction because of the proximity
of the free edges of the crack. Over the middle region of the crack pressure
is resistcd partly by longitudinal tension in the bulged sheet and partly by
rate of change of bending shear. In the vieinity of the crack ends, however,
local bulging is negligibly small and resistance due to bending of the sheet
may be ruled out. The only rcmaining way in which the skin can resist the
internal pressure is by membrane tension in a direction oblique to the crack,
so taking advantage of the natural curvature of the c¢ylinder in that direction,
small though that may be compared with the curvature in the circumferential
direction. It is thesc heavy tensions in the neighbourhood of the crack ends
that cause the increased stress concentration at thosc points.

The formula for the resultant stress concentration, deduced empirical
by Peters and Kuhn and rationalised in Ref.5 has the form

g1, = Gf.s/(" + k&/r) (18)
where Op g, = failing stress for flat sheet,
£ = crack length
r = radius of cylinder
k = (non dimensional) constant, independent of the material.

-1 -



Thus when r approachcs infinity and £ is still finite the local pressure

approaches zero, the cylinder becomes locally a flat sheet and there is no
extra stress. lreters and Kuhn found that k had the some value for 2024-T3
and 7075-T6 material & result one would expect, since any peculiaritics in
the material is taken eccount of in the quantity Oa g.*

®
8.1 Apparently anomalous cxperimental results for glass

However, in order to check the constancy of the coefficient k, they
checked 1t against the experimental results obtaincd by Griffith! on spherical
glass bulbs of various diameters. They found that the stress at failure was
unaffcected by the diameter and concluded that the value of k for glass was
zero. It was pointed out in Ref.5 that this conclusion is not justified,
the factor responsible for the weakness of the cylinder in comparison with
the corresponding flat sheet being in this case absent. What happons is
that the local pressurc around the crack is resisted by the curvature in
the line of the crack as soon as the curvature normal to the crack becones
ineffective.

While this is a satisfactory cnough explanztion to account for the
behaviour of the spherical bulbs it doecs not account for the fact that
Griffith's results with glass tubes indicates that here again the failing
stress seems to be independent of the diamcter. The explanation this time
becomes clear as soon as the wall thickness 0.02 in. of Griffith's tubes is
compared with their diamcter 0.6 in. Magnificd to the size of a pressure
cabin the wall thickness of the cabin would be over 2 in. thick. This means
that the local pressurc force round thc 4 in. crack at which the tubes were
burst was transmitted by bending rather than membrane action, and therefore
was not dependent on the diameter of the tubc.

That the absence of such a constraint against local bulging as the
close~fitting frictionless sleceve mentioncd above is the cause of the greatly
incrcased stress concentration at the crack ends gains confirmation fron an
experiment carried out by the Douglas Aircraft Co. described by Lock® et al
in the following words "In one unpublished test by Douglas Aircraft Co., a
crack in o cylindrical spccimen was covercd by a plexiglass shect to prevent
cxcessive bulging of the crack lips. Without the plexiglass radial support
to the edges of the crack a specimen failed ot 2247 cycles at a hoop stress
of 9130 pes.i., but with the support a similar specimen at the same stress
took 39,875 cycles before failure. This gives further indication that the
problem in a cylindrical structurc under pressurc is very different from a
flat tension specimen conteining o crack".

9 RECENT EAPERIMENTAL RESULTS AND THEIR 3ELATION TO FORMULAE (12) anD (18)

Certain experimental results® relating critical crack lengths to
nominal spplicd stress have recently been obtained at R.A.E. for both flat
shcets and eylinders in D.T.D.546 matcrial (which, apart from closer
tolerances, is identical with D.T.D.746).

These in conjunction with results obtained by the Bristol Aircraft Co.8
over the period 1956-58 may now be uscd to check the validity of formulae (i2)
and (18) above, and also to confirm the theory that the added membrane
stresses around the crack edges caused by the local pressurc constitute the
rcason for the weakness of the cylindrical vis & vis the flat shecet.

e e e s e T e miTm e

* Not so far published.
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9.1 Stress et failure of large flat sheet deduced from tost results
for small sheet

It has alrendy been shown in Section 6 above that the index n deduced
from tests on 10 in. and 20 in. wide sheet can be used to give the failing
stress for a much wider (48 in.) sheet with acceptsble accuracy. The
procedure followed may be summarised as follows:=

(1) Exprcss crack length ¢ as a fraction of the sheet width L (in
crack direction).

(ii) Read off the failing stress o of the small (10 in.) basic sheet
for the scme fraction &/L. .

(iii) Use formula (12) to give the required failing stress for the
larger sheet.

9.2 Failing stress for cylinders deduced from those for corresponding
flat sheets

Before failing stresses for cylinders can be deduced from those for
corresponding flat sheets, it is necessary to know the value of the constant k
in formula (18). This is an empirical constant to be derived from dircet
experiment. By using calculated failing stresses for the flat sheets corres-
ponding to the two sizes of cylinder used in their experiments,Peters and
Kuhn 6 arrived at the valuc 4.6 for k. Here one set of cxperimentel rcsults
will be used to derive the value of k and it will then be seen if' this is
consistent with other availablc results.

The larger of the two Bristol cylinders (D.T.D.746) was 144 in. in
diameter, 54 in. long and 0.0k in. wall thickness. At a hoop stress of
13,000 1b/in® the critical crack length £ was 8.1 in. i.e. 8.1/54 or 0.15
of the length L. Fron Fig.1 (Ref.5) tBe failing stress for a similar crack
in a 10 in. wide sheet is 45,000 1b/in“. Using flat-sheet scale-effect as
in equation (17) one finds the failing stress o for a flat sheet 54 in. wide
to be

0,322
= 45,000 <%g = 26,000 1b/in? . (19)

To obtain the corrcsponding stress for the same sheet in cylindrical form, we
use Pormule (18) to give

26,000
Oeyl. = T+ (B.A/72) %k ° (20)

Equating this to the known failing stress 13,000 1b/in? for this cylinder
gives

k = 9% (21)

* This is nearly twice the value (4.6) quoted by Peters and Kuhn®. The
difference is due to the fact that the figures for flat sheet used by them
were celculated and differ widely from the experimentelly obtained values
quoted in Table 1,of Ref,.b. It is also noted that when the crack in g
cylinder is greater in length than the cylinder radius as in the curves
shown by Peters and Kuhn, the value of k is not likely to be the same as that
for cracks that are small compared with the radius.
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Having derived the value of the constant k we can now apply it to
calculate the failing stress for the smaller Bristol cylinder which has the
dimensions - length 48 in., diameter 44 in. sheect thickngss 0.012 in.,
material D.T.D.546. It failed at a stress of 6900 1b/in° for & critical
crack length of 6 in. i.e. § of the cylinder length. Referring again to the
basic 10 in. wide sheet we find from Fig.1 (Ref'.5) that for a crack 7 of the
sheet width o = 48,000 1b/in?. Following steps (i), (ii) and (iii) of
section 9,1 we find the failing stress for the larger sheet to be

0.322
o = 148,000 @% - 29,000 1b/in® . (22)

Prom formula (18) the corresponding failing stress for the cylindrical sheet
is therefore

. 29,000 _ 29,000 _ _ a2 ,
Oyl = THke/r T TH S ¢/55y = 8400 1b/in (23)

.. 2
which compares with the measured stress of 6900 1b/in”.

With the same value of k, Tormula (21) is next applied to the large
(pressure-cabin size) R.A,E. cylinder whose dimensions are = length 48 in.
diameter 144 in., sheet thickness O.O04*, At an applied stress of
16,000 1b/in? the critical crack length was found to be 6 in., i.e. § of
the cylinder length.

For this ratio of &/I the failing stress for the 10 in. sheet as
already found above is 48,000 lb/inz, and the scaled-up value, by (22), is
29,000 1b/in2. Fronm formula (18) therefore

g,
,,_if‘,;%- ~ - 2000 _ 46,500 1b/in? (24)

%yl = T+9 ¢
1+ (9 X 5.)
72)
which is in good agreement with the stress of 16,000 found by experiment.

9.3 Added membranc stresses in cylindrical shcet causcd by local
Rressure in region of orack edges

The radical change that takes ploce in the nembranc-stress distribution
around a crack in a flat sheect under tensilc strcss, when the same sheet is
rolled up into a cylinder and the tensile stress is induccd by internal
pressure, is strikingly illustrated in Figs.2 and 3. These show ghotographs
of brittle~lacquer patterns obtained in the coursc of the Bristol®™ experiments.
Fig.2 shows thc pattern obtained around a 6 in. crack in a flat sheet 20 in.
(in crack digection) x 40 in, x 0.04 in. under an applied stress of
14,000 1b/in“. TFig.3 shows the pattern around a crack 9 in. long in 2
cylinder 44 in. diameter 35 in. long with_the same shect thickness of 0.04 in.
under & nominal hoop stress of 4500 1b/in¢. These dimensions are quoted only

-~
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% Cylinders with sheet thicknesses varying between 0.028 in. and 0,064 in.
were tested but without significant variation in critical crack length: in
all cases the longitudinal stress was zero, (Subsequent experiments with
full longitudinal tension prescnt have shown that the critical crack length
is longer by about 10% to 15% in the case of the 22 gauge sheet; for heavier
gauges (not yet tested) the increase is likely to bc less).
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as inecidental information because quantitative comparison of stress is here
of only secondary interest to a comparison of the two stress distributions.
These are seen at a glance to be radically different for the flat shecet and
the cylinder. In the flat sheet the cracks in the lacquer appear only
around the extremities of the slot, the intervening area of sheet being quite
free from cracks. Also the directions of the oracks show that the tensile
strain, and hence the membrane stress is nearly normel to the direction of
the slot. In marked contrast to this the lacquer cracks in Fig.> show every
evidence of heavy stresses all along and in the immediate neighbourhood of
the slot. The directions of the cracks in this region moreover show clearly
that these stresses lie parallel to the slot at its edges but that, a little
distance away from the edges, the stresses start by being parallel to the
slot opposite its mid point and become increasingly normal to the slot as
the slot extremities are approached. At these latter points the stresses
are therefore in the same direction as those of the flat sheet. In the
region beyond the slot extremities, and in line with the slot, the cracks
that all lie parallel to the slot for the flat sheet are at right angles to
this direction in the cylinder. This suggests that the membrane stresses
caused by the local pressure have swamped the flat sheet component of the
stress field. This is not surprising in the light of formuls (18) which
for k =9, £ =9 in. and r = 22 in., gives the failing stress for the cylinder
as —

A A

il N

, Ve
¥

VL yy by
o

Fig.h

oyl = o%.s./(1 + ke/r)

= c%.s./(1 +9 x 9/22)

O-’fQ d
= -ng- = 0.2t 0, (25)

This means that the stress concentration for the cylinder is 1/0.21 or
about 5 times that in the flat sheet.

The drastic change above noted in the direction of the principal tensile
stress can only be attributed to the heavy longitudinal tensile stresses
developed each side of, and parallel to, the slot. In thc flat shecet case
the only stress along the edge of the slot is a compressive stress equal in
magnitude to the applied tensile stress o. This helps to counteract the
inward pull (towards the centre. O of the slot) caused by the curved tension
lines ABA', the remaining resistance coming from tension in the sheet to the
right of B (Fig.hk). It is only to be expected therefore that when the
usual compression stress along OB is changed into a tension of much greater
absolute value the sheet to the right of B is subjected to heavy tension in
the line of the slot. This accounts for the new direction of the lacquer
cracks in that region.
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10 DESIGNING FOR TWFROVED CRACK RESISTANCE TN PRESSURE VESSELS SUCK
AS PRAESSURE-CABTNS

The very considerable reduction in the critical crack length of a
pressurised cylindrical sheet below that for the corresponding flat sheet
under the same tensile stress is well demonstrated by the recent R.A.E,
tests on a large flat sheet and on a sheet of the same width converted into
a pressure cylinder without longitudinal tension., TFor the same tensile
stress the critical crack length dropped from 15 in., to 6 in. Another way
of' presenting this fact is to say that, if there were no drop in stress for
& given crack length as a result of converting from flat sheet to cylindrical
form, a stress of 28,000 1b/in2 would be needed for fast propagation of a
6 in. crack, whereas in point of fact the critical stress is only 16,000 1b/in.

It has already been pointed out that the reason for this reduction is
the local pressure at and in the immediate neighbourhood of the crack edges.
Near the crack ends this pressure has to be equilibrated by membrane acticn
in the sheet because the bending action of the sheet is here very small.
Also, because the membrane pull acts obliquely along lines of small curva-
ture, its magnitude is much enhanced. The result is a much increased stress
concentration at the crack ends.,

One way of avoiding this situation is to provide the necessary bending
stiffness that the sheet by itself lacks. Stringers can provide this bending
stiffness if suitably located in relation to the crack. The greater the
pitch of the stringers the less support they can give to the sheet adjoining
the crack edges. The position would clearly be much improved if stringers
were, so to speak, continuous circumferentially, in other words if stringers
as such were replaced by thin corrugated sheet of approximately equal weight.
Failing this, the pitch and gauge thickness of stringers might well be reduced
without increasing their overall weight.

That closing up the pitch of stringers improves the crack-resisting
properties of the sheet is clearly demonstrated by the Bristol expcriments
on cylindrical test specimens representing typical pressure=cabin construction.
Two of these specimens 12 ft in diameter and 12 f't long were reinforced with
fremes ot 20 in., pitch end stringers at varying pitches, while the third was
unreinforced and only 54 in. long. The sheet material was to D.T.D.746. The
figures given in the following Table are extracted from the Bristol results.

IABLE 2
. . N Critical crack
Stringer pitch | Neminal hoop stress length
Lo in. 12,800 1b/in? 14,15 in.
5,05 in. 13,000 1b/in? 12.3
7.7 12,800 1b/in? 11
7.9 13,000 1b/in? 10.16 in.

Comparing the first and last rows and neglecting the very slight
differences in stress, we see that a 55/ reduction in stringer pitch from
7.9 in. to 4.4 in., enables a 374 increase in critical crack length to be
achieved at the stated stress.
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11 SIRTNGER PITCI IN RELATTON T0 PITG. OF. CIRCUMVERENTIAL
FIUES OF DANDE

With conventional frames ot 20 in. pitch the improved crack resigstance
shown in Table 2 above consequent on closing up the pitch of stringers is
worth consideration by the designer. I, however, circumferential bands at
10 in. pitch are used, as has beon suggested by the writer 9, it is clear
from the table that, at the steted hoop stress, - a figure generally acccpted
in practice - there is no point in closing up the stringer pitch. This
follows from the fact, cxperimentally demonstrated! , that in the presence
of such bonds & crack can never rcach o critical length when stringers are
used at the conventional pitch of about 6 in. und the nominsl hoop strcess

~

is in the region of 15,000 1lb/in“.

12 SUMMARY OF MATN POINTS BROUGHT OUT ABOVE AND CO:CLUDING REMARKS

From the foregoing remarks the following points cmerge.

(i) The formula comnceting critical crack length with applicd stress
for an clastic but brittle matcrial (such as glass) cstablished by Griffith
cen with a slight modification be made applicable to ordinary light-alloy
sheet material.

The well known Griffith formula states that, for any one material,

1/2 .

ot = constant , (26)

where o is the applied stress and £ the critical crack length. The modified
formula has’ the some form excupt that the index 1/2 is replaced by (1 -1/2)
in which n is constant for any onc material and normally lies betwcen

1 and 2 but wmust be less then 2. Thus we may write
06(1-'n/2) = constant . (27)

The value of thce constant in the latter formula {or metals turns out to be
of a different order of magnitudc fron that in the former for glass, being
some 6000 timcs greater.

(ii) The modified formula hos becn shown to be identical with that
dcduccd in Ref.5 on the basis of attributing to a scnlce offect the difference
in the failing stresses of shects of different size but similar in shape and
crack length. As suggested in Ref.b, the scale cffcct is duc to lack of
similarity in the shape of the cracik at its extreme cnas, which shope instead
of being dimensionally similar is dimcaslionally ddentical.

(iii) Before use cen be made of the modified lformula the index n must
be determined by experiment on two similar sheets of different size, a lincar
ratic of at lecst 3:1 being adviscble. A curve of failing stress versus
crack length is drawn for cach sheet and the average velue of n obtained by
comparing diffcrent crack lengths. For any onc material this index is then
known once and for all.,

(iv) The modificd rormula encbles onc to calculate the failing siress
corresponaing to any crack length in ~ny size of sheet or conversely the
critical crack length for any applied strcss. TFor this purpose the curve
of o against £ obtaincd in (iiis above for the larger of the two sheets is
preferably uscd. Incidentally the lincar size of a shect is nearly cnough
settled by its width (in the crack direction) alonc, so long as tne length Lo
at least twicc the width.
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(v) 1In comparing the failing stress of a flat sheet with that of the
corresponding cylinder, the empirical formula suggested by Peters and Kuhn
and rationalised in Ref.5 may be used. It takes the form

= 28
where Op.s, = failing stress for the flat sheet,
/] = crack length,
r = cylinder radius,
k = constant for all materials and non-dimensionel.

The value of k can only be determined reliably by experiment, and in
practice need only be considered for cases in which the crack length is

not greater than the radius. The value of k derived from recent experiments
described above appears to be about 9.

(vi) The crack properties of reinforced flat sheets and cylinders
depend on those of the corresponding unreinforced components. To obtain
the critical crack length 60 for a given plain flat sheet of width LO

(and length not lcss than twice the width) under any specified applied

stress o, We need to refer to the curve rclating applicd stress 9 to

critical crack length 81 for one of the basic sheets of width L1 mentioned

in (iii) ebove. Formula (27) cnables us to write, for sinilar sheets

marked O and 1, *
f'o (1- n/2) 7,
)

but, as we can only compare similar crack lengths in similar sheets we
must write

Yo _ o (50)
e = - . 30
2 L,

From (29) therefore

e

which gives the value of o in terms of known quantities. The critical
crack length &1 corresponding to A for the basic sheet is now read off from

the above-mentioned curve and equation (30) then gives the required crack
length 80.

To obtain the critical crack length 60 for a cylinder of length LC
and radius r subjected to 2 specified nominal hoop stress o, we first

consider the corresponding flat sheet of width Lc and, by (31) write
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(1-1n/2)

c

o = o <E%> (32)

where LO = Lc' But from (28)

o, = OC/(1 + k&d/r) P (33)
where
LC
= = — = 3 a . )
60 = @o = 61 T required crack length (34)

Substituting in (32) the value of SR given by (33), we obtain the relation

L (1-n/2)

0& 0
ey Y M AT TR, — P Z
k 4, L. I;) (35)
< 1 e 1
G (1 4
c r L
1
or
a, 6)
PR p— — 7
<} +.A61> = B (5
where
Lc
A = =, == = known constant
r L1
and F (37)
L (1 = fl/Z)
B = o 2 = known constant.
c L1 J

From the curve giving oF against @1 the values of thesc two quantities that

satisfy (36) arc readily found by inspection. The critical crack length for
the cylinder £, is then given by (34).

If the critical crack length is specificd and the applied stress for

the cylinder requirced the approach is more direct. For 61 is then obtained

directly from (30) on substituting 60, Lc for &o, Lo. The stress oy

ponding to crack 61 is read off the appropriate curve and, on substitution

corres—
in (31) gives , for the flat sheect LO. Equation (28) on substitution of

9, for Op o and EG for & then gives the required applied stress for the

cylinder.

- 19 -



(vii) The Bristol experiment58 show that, for a full size (12 rt dia)
pressure cabin with conventional frame spacing (20 in.), a reduction of
stringer pitch is a potent factor in increasing the crack resistance of the
skin. As Table 1 above shows a 55% pitch reduction results in a 375 increase
in critical crack length. As pointed out above, however, this benefit is not
worth striving for on the designer's part if the circumferential bands that
have for sometime been advocated by the writer 9,10 are used. Such bands at
10 in. pitch preclude the possibility of a crack ever reaching a critical
length under the normel hoop stresses used in practice.

(viii) It should be pointed out that the numerical values of the index n
for the three materials nentioncd in Jection 5 are derived from the recsults
of experiments that were not specifically designed for the purpose. It is
therefore highly desirable that properly designed experiments should be
cerried out to check these values and to correct them if necessary. It is
equally desirable that the values of the index should be obtained for other
light alloy sheet matcrials and also for stecl.

The present paper does not, nor is it intended to, throw a new light
on the mechanism of crack propagation in sheet material. More will doubtless
be learnt about this as time gocs on but it is in the highest degree unlikely
that the added knowledge will ever enable the crack-propagation properties of
a sheet material to be quantitatively deduced from the mechanical properties
of the material alone.

In the case of a perfectly clastic brittle material it is possible to
calculate, as Griffith did, both thc energy released and the energy absorbed
as a result of introducing a crack in the sheet, and hence, for any given
crack length, to obtain the stress at which the release and absorption rates
are equal. But for conventional structurel materials -~ light alloy or steel -
some degree of plastic deformation with, in consequence, a non-linear rclation
between stress and strain, must always supervene before fracture and this
preccludes accurate calculation.

In these circumstances it seems rcasonable to adopt a semi-empirical
approach, such as that described here, by which for cach sheet material the

crack-propagation properties of flat sheet and pressurlscd cylinders in that
material can be derived from a single basic experiment.

LIST OF REFERENCES

No. Author(s) Title, etc
1 Griffith, A.A. The phenonmena of rupture and flow in solids.

Phil. Trens. Roy. Soc. (London)
Ser. 4, Vol, 221, 1920.

2 Williams, D, The relations between the energy thcorems
applicable in structural theory.
Phil. Mag. November 19338,

3 Roberts, D.K., The velocity of brittlc fracture.
Wells, A.A. Engineering, December 24th, 195L.
4 Inglis, C.E. Stresses in a plate due to the presence of

cracks and sharp corners.
Proc, Inst. Naval Architects' March 14th, 1913.

- 20 -



No.

10

LIST OF REFERCNCES (Contd)

Authorgs}

Williams, D.
Peters, R.W.,
Kuhn, P.

Lock, M.H.,
Gloria, R.,
Sechler, E.B,

Bristol Aircraf't Co.

Williams, D.

Williams, D.

Title, etc

Crack prepagation in sheet material -~ some
conclusions deduced from & combination of
thecry and experiment.

Aero. Res. Council. C.P. No,).67. Octcber 1959.

Bursting strength of unstiffened pressure
cylinders with slits. N.A.C.l.
Technical Note No. 3993, April 1957.

Fatigue and penetration studies on pressurised
cylindersa

Cal. Tech. Pasadena. Contract NoAJW. - 64.31;
Galcit 89. P,88392. June 1957.

Research prograimme tc determine "Fail Safe"
characteristics of pressure fusclages.
A.R.C. 20,,22, June 1958.

A constructional method for ninimising the
hazard of catastrephic failurc in a pressure
cabin,

Acro. Res, Ccuncil, C,P.No.286, Octcber 1955,

in experimental verification of the theoretical

conclusicns of A.1.C., C.P, Ne.286.
AeI‘O. ROS. CC‘U.IlCil, G.Po NO.557’ I\‘Iia.y 19570

47,2078.2.P. 56U K3 - Printed in ‘nglond



FIG. 2. TEST No.32 - BRITTLE LACQUER CRACK PATTERN
AROUND 6" LONG SLOT IN A COUPON SPECIMEN

FIG. 3. TEST No.29. BRITTLE LACQUER CRACK PATTERN
AROUND SLOT IN PRESSURISED CYLINDER
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