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On the Transient Motion of a Slender Delta Wing 
with Leading Edge Separation 

- ny - 
G, J. Hancock, 

Department of Aeronautical Engineering, 
Queen Mary College 

The linear and non-linear theories of the steady flow past a 
rigid slender dolta wing are reviewed and extended to the two transient 
motions 

(i) entry into a sharp edged gust 

(ii) sudden change of incidence. 

For slender wings with leading-edge separations it is shown 
that the solution to the gust problem is trivial; each chordwise section 
instantaneously jumps from its initial steady state to its final steady 
state as the gust front passes the section. An approximate method is 
described for determining the time dependent solution for the prObbm Of 
the sudden chance of incidence. 

1. Introduction - -lr-*p+.a.m 

The current intorest on slender wings is primarily concerned with 
the steady flow past rigid wings. Thcorctically, the spp+icstion of the 
linear slender wing theory to those problems, due to Jones , leads to a 
simple result for th e loading in terms of the incidence and plan form OJ? 
the wing. HOVG VC 1' , the practicability of this result is found to be 
extremely limited, in particular, to wings with round leading edges at 
small angles of attack. In gcnersl the formation of a pair of lctzding~ 
edge vortices, due to the separation of the flow from the lccdi.nC cdgcs 
and subscqucnt convection by the free stream, requires a more complex 
mathematical modal for thl: undorstsnding and prediction cf the flow 
characteristics and the forces involved. Sovcral attempts have been made 
on this aspect 2 3, the most succussful is that due to i,!snglcr and Smith&. J 
Together with recent experimental invcstigations5,~>7 the main fcsturcs of 
the flows, about slondor delta wings with zero camber are understood. 
Some secondary effects on those wings have still to bc satisfactorily 
explained and prodictod, for cxsmple; the effect of the trailing edge on 
the loading throughout the subsonic range of speeds, the, api>arcnt non- 
uniformity of different oxperimcntal results and the effects of secondary 
separations. In addition furthor fundamental \ror!r is necessary on the 
more gcncral types of slcndcr wings ;sith curved ksding edges and camber, 
both chordwise and spanwisc. 

Honcvor it seems opportune at this stage to start discussing some 
of the transient motions of slender wings in iho ?!rosdncc, CI~ loading-odgo 
vortices, r;Jhi& vrill ultfrnatcly bc nccdcd for the: invtisti@tims of both 
---------w---v- -----.. - --.-_ - ______________-____ slcndcr/ 

---w--w.-.. ---- -___ ---- ____________ 
Previously issued as A.R.C. 21,754~. 
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slender aircraft response and the possibility of flutter. This note is 
restricted to a discussion of the behaviour of the flow about a rigid 
slender delta wing as it 

(i) passes through a sharp-edged vertical gust 

(5ij undergoes a sudden change of incidcnc'e. 

2, The Linear Slender Wing Theory:* WM- StcadzCasc .-a 

The notation for the slender wing model is shown in Fig.1. The 
apex of the slcndcr wing is taken as the origin of a cartcsian systcn of 
co-ordinate (x axis is in the direction of the relative free stream V, and 
the y axis is the spanwise co-ordinate). 

It is assumed in this note that the trailing edge is normal to the 
free stream and that the span is a maximum at the trailing edgc. The slender 
wing approximation (aspect ratio < I), together with the usual linearisation 
approximation (perturbation velocities u, v, w arc small compsrcd vsith the 
free stream velocity V) resolves the problem of finding the perturbation 

such that 

and 

velocity potential Q (x, y, a) (where u = a$/ax, 
which satisfies the differential equation 

0, + & = 0 

= -aV 

%XW, 

Q = 0 

V = a~/ay, w = a-+/a 2) 

. . . (I) 

.*. (2) 

a** (3) 

as y 3 02, z 3 e0, x + -00 . The general solution of equation (I) includes a 
function of x which depends on the thickness distribution of the wing. 
In this note ne are only concerned with the lifting properties of the vring, 
so assuming that the thickness distribution does not affect the lifting 
characteristics, each cross flow plane may be treated independently from 
its neighbours. The problem in each cross flow plane is essentially two- 
dimensional, so that the x co-ordinate appears as a dependent variable, 

The solution of equation (I) which satisfied equations (2) and (3) 
gives the discontinuity of the velocity potential across the vkng plan form 
(I yl <S(x), O,cX~O,, z = 0) as 

~S(X,Y,O) = Q(X,Y,-0) - Q(x,Y,+o) 

= 2aV [z?(x)-y+ 
. . . (4) 

The pressure coefficient cp is given by the formula 

P lower surface -P 

cP = 
uE3cr surface -----w--"-m.-------- ---------- 

+p v2 

2 a 
= - -- (A$) 

v ax 

Substituting equation (4) into equation (5), assuming CL is constant, 

l *. (5) 

&S?(x) 

cP = 
““““-“-“r 
[I - y2/s2(x)lF 

. . . (6) 

The/ 
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The spanwiso lift distribution L(y) is given by 

L(Y) = &pv”4cr[ 9 (co)-y IS ..* (7) 

On integration of equation (7) the lift cocfficicnt CL bccomos 

XA 
cL = 2 

.I. (8) 

where A is the aspect ratio. Thcsc ri-sults, prescntcd above, arc ~11 
known but arc included hf2rc for the sake of complctcncss and as a rcfercncc 
for the discussion proscntcd later, 

There are two important consequences of the slender wing assumption 
(Ael) which are illustrated by the differential equation (3). First, the 
absence of any terms depending explicitly OR the co-ordinate x implies that 
the results, of the loading distribution, say, are independent of forward 
speed, thus incidentally eliminating any variation with Mach number. 
Physically this mean s that the perturbation velocity u(= &,J/L?x) in the 
stream direction is alwa s 
v(= ag/ay) 

small compared with the perturbation velocities 
and w(= &$ a~) in the plane /y s normal to the f;n=e stream. 

Thus the slender wing equation states that 

u<<v,w l . *  (9) 

together with the initial linearisation condition that 

v,w<<v .a* (IO) 

Therefore to a first approximation (the same order as the linear theory) 
the velocity components are 

(v, v, d . . . (11) 

Secondly, the equation for the velocity potential in the cross flow planes 
is that for a two-dimensional incompressible fluid so that disturbances arc 
propagated infinitely quickly in these planes. This is again a relative 
effect, since on the linear theory all disturbances arc propagated with the 
speed of sound of the free stream, but the rate of propagation relative to 
the span is larger than the rate of propagation relative to the chord for a 
slender wing. 

In the discussion above it is stated that the loading is, 
theoretically, independent of Mach number. This is, of course, optimistic. 
At supersonic speeds this condition is essentially true because the supersonic 
trailing edge can sustain a finite load. At subsonic speeds it is expected 
that the trailing edge will hnvc an increasing effect as the Mach number 
decreases, since the loading at the trailing edgc must be zero. Even so it 
has been shown experimentally7 that at low speeds the slender wing type of 
loading is obtained for approximately 60/i of the chord from the leading SPCX~ 

3. The.Linear Slender Wing Theory: Transient MotizE 

The transient motion of the slcndor wing assuming linear 
scrod 

r-l 
amics has been extensively studied and the results arc summsrizcd by 

Miles . The transient motions which are considered in this paper are 

(i) flight through a sharp-cdgod gust (a constant upwash velocity 
V$ exists behind the gust front and is zero in front of it) 

(ii) a sudden change of incidence, from ai to a2s say, at time t = 0, 
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It is instructive in this case to deduct physically the forces during 
these motions from the ideas presented in tho previous paragrajph on the 
steady case, 

Consider a sharp-edgcd gust as it passes over a slender wing at 
incidence cc, with the condition that at t 
apcx.(x = 0). 

= 0 the gust front is at the 
The gust will pass over the wing with the constant free 

Stream velocity V, since, on the basis of the linear approximation, the 
perturbation velocities in the strcsm direction are of the second order, 
and therefore negligible. After time t, the gust front will have reached 
the chordwise section x = Vt. Assuming that the steady cast condition 
that each chordwise section may be considered independently of its neighbours 
still holds for an unsteady motion, then the section x will have been 
unaware of the approach of the gust front until time x/V. Then the 
effective incidence of the section changes instantaneously from a to 
a f w.. /V. In this cross flow plane the Ifluid may be regarded as 
incompressible so that prcssurc disturbances are propagated infinitely 
quickly away from the wing. Hence the wing instantaneously assumes the 
loading sssociatcd with steady cast with the incidence a + v%/V. Thus as 
the gust front passes over each chor&kse section of the l-ring, it assumes 
its new steady state. 

The main assumption in the above argument is that each ch rdwise 
section may be considered separately as in the steady case. % 
shown that as long as the wing is slender (i.e., aspect ratio 

Miles pas 
[I@ -1 ]a <I ) 

the transient problem may be treated as series of two-dimensional problems 
in the cross flow planes. However, for the slender wing oscillating at a 
low frequency equation (3) remains the differential equation, but at high 
frequencies the cross flow differential equation becomes 

where a is the speed of sound in the free stream. Physically this means 
that the'incompressibility assumption in the cross flow plane is breaking 
down because of the high downwash speeds associated with the wing oscillations. 
This state of affairs cannot be said to apply to the present case under 
discussion (i.e., sectional sudden change of incidence) where the downwash 
velocities remain small so that the assumptions are justified. 

The other problem, namely, the sudden change of incidence of a 
slender wing from Us to cl2 at time t = 0 is simply the sudden change 
from one steady state loading (associated with c$) to the second steady state 
loading (associated with cl,) over the whole wing surface at t = 0. This 
follows by the same arguments as those described above. 

4* The Non-Linear Slender VJing Theory: StSt Case 

The linear slender wing theory, discussed in Section 2 predicts 
infinite velocities at the loading edge. This singularity is the usual 
type associated with the classical thin aerofoil theories but its presence 
does rot invalidate the application of the theories to practical cases as 
long as the flow follows the contours of 15ngs without separation. For 
slender wings the free stream separates from the leading edges creating a 
vortex sheet and this vorticity is convected downstream forming the leading 
edge vortices. The mathematical model for this type of flow, assuming the 
existence of the leading edge vortices in inviscid fluid motion, has been 
most thoroughly investigated by Uanglcr and Smithk. 

For a slender v:ing at a uniform incidence a, the notation is shown 
The wing planform is the same as before, namely s 

The vortex sheet is denoted by S(x, r, 0) = 0, 
arc the polar co-ordinates of t;hc: vortex sheet at the chordwise 

section/ 
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section x in the cross-flow plane. The equation for the velocity 
pottntial is ils before 

where 

Q yy -I- $zz = 0 

dQ \ \ 
( i d’i = -aV 

Z-0 
1st 4x) 
o,<xs c 0 

. . . (12) 

*a. (13) 

is the boundary condition which must still be applied on the wing, The 
conditions on the vortex sheet, forming the leading edge vortex, are 

(i) there is no flow across the sheet 

(ii) thcrc is no pressure discontinuity across tht; sheet. 

Condition (i) bccomcs 

ar 
= - V sin A -- 

i3X 
.*. (14.) 

: s=o 
bconst. 

where d/&-i denotes the rate of change normal to the sheet in the cross 
flow plane. Condition (ii) bccomcs 

. . . (15) 

/ w 
denotes tho mean value of -- 

\ j 
across the shtitlt S =: 0, 

a0 
a/da denotes the rate of change tangential to the sheet S = 0 in the 
cross-flow plane, and A$ signifies the discontinuity of 0 across the 
sheet S = 0. 

Equation (12) is to be solved, satisfykg the boundary equations 
03), (14) and (15) with tnc condition that the load is zero at the leading 
edge . 

Mangler and Smith considered the case of a dolta wing and assumed 
conical flow so that 

S’ (x) 
= mm.111 . . . (16) 

s (4 

whcrc S'(x) z tan y and y is the semi-apcx angle. Equations (121, (lj), 
(14) and (15) and (16) with the assumption of conical flow, acain rcsolvc the 
problem into a two-dimensional problem in the cross planc, whtirc the: shape of 
the vortex she& in the cross plane is now one of the fcsturcs to be 
determined. 

An explicit function 
problem but it has beon f 

(Y, z; x> cannot bc written dovJn for this 
computed . The pressure coefficient can then be 

found in the cross-flow plant from 

Thus/ 
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Thus the total spanwise lift distribution can be calculated and the total 
forces determined. Alternatively the total lift can be obtained by the 
contour integration of the velocity potential discontinuity over the wing 
and vortex sheet in the cross flow plane at the trailing edge, so that 

where CD is the normal force coefficient and C is a circuit which 
encloses wing and vortex sheet in the cross-flow plane at the trailing 
edge of the wing. 

It is emphasized that the solution is restricted to the linear 
and slender wing assumptions so that the orders of ma of the velocity 
perturbation expressed in equations (y), (10) and (11 

In Fig.3 the slender wing is again shown with its associated 
leading edge vortices. We are going -Lo consider the vortex sheet at section 
%* Now the vortex sheet is formed by the creation of vorticity due to 
separation at the leading edge and then convcctcd do\mstrcam under the action 
of the free stream and the cross perturbation velocities. Thus the vorticity 
formed at point A on the leading edge at position XA (see Fig.3) at time 

k reaches section x1 at point 4 on the vortex sheet at time tl, where 
-x 

ti- tA = 3 A --w-w-- , This relationship is because the perturbation 
V 

velocities in the streamwise direction are of the second order of magnitude 
and therefore neglected to a first approximation for a linear theory. 
Similarly the vorticity formed at the point B at section s at tine tg 
reaches point 3L at section x5 at time tl, where 

'21 " ts = 
xi - XB 
--*v-m- . Thcrcfore the vorticitjr formed at the agex forms the 

0 
inner part of the vortex core at section x1 and takes timc x,/V to pass 
from the apex to section x1. 

If we denote l?(x) as the circulation around one of the leading- 
edge vortices at section x, say the one for y >O, then 

r(x) = . a$5 do 
i 

l ** (19)  

C 

where the circuit C (which lies in the cross-flow plane at section x) 
encloses the whole of the leading edge vorticity, for y > 0, but _n_o4 the 
wing plan form (lyl <S(x), 2 = 0). Then the rate at which circulation is 
shed from the leading cdgc is 

dr ar 
-- = V -- = v-"-&5 dcr) ' . . . (20) 

and therefore we can write 

I 
-t 

r = dr . . . 
J,A 

V 

at ax ax VC / 

whore I' is the circulation at section x at time t and 
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is the circulation which is shed in time 6~ upstream at section x - VT 
at time t - r. The substitution of (20) into equation (21) gives an 
identity for the steady case, but the ideas presented here are fundamental 
for the discussion of the unsteady motions. 

5. The Non-Linear Slender Wing ThcorJ: Sharp-Edged Gust u-s- .- *---.a 

WC non consider the case of a slender wing entering a sharp- 
edged vertical gust which has a constant vertical velocity wI behind the 
gust front. 

First we shall consider the win<- tj at zero incidence initially before 
the gust passes over the wing so that there is no initial vortex system or 
loading. Since the slender wing approximations are still assumed the gust 
front will not accelerate as it passes over the body and thcrcfore proceeds 
past the wing at the free stream velocity. As the gust passes each 
chordwise section it is assumed that rate of vorticity associated with 
effective wlfi is instantly generated and then convected downstream. 

Thus as the gust proceeds along the chord the vorticity which is 
created at each chordwise section is then convected with the gust front. 
When the gust reaches section x, say, the section is instantaneously at an 
effective incidence wi/V, together with the full complement of leading 
edge vorticity associated with the steady case of the section at the effective 
incidence of wi/V, Since the fluid motion in the cross-flow pla~c is 
essentially incompressible there art‘ no time lags for the propagation of the 
pressure field at the wing to infinity. Therefore the problem in the cross- 
flow plane becomes instantaneously the steady flow problem, since there is 
no additional leading-edge vorticity after the gust front has passed the 
section. Assuming that the solution to the steady problem is unique the 
section instantaneously takes up the stcsdy ststc loading associated with the 
effective incidence wi/V as the gust front passes the section, This 
statement implies that the vortex rolls up as it is convcct2d and is fully 
rolled up behind the gust front. 

In the proceding paragraph it is stated initially that the results 
are based on the assumption that each section creates the vorticity associated 
with the steady case at incidence 
passes that section, 

wi/f instantaneously as the gust front 
and then at the same rate subsequently. An altcrrativc 

physical approach is to argue that if the steady state condition is 
instantaneously attained at one section as thz gust pssscs that section then 
all subsequent sections will instantaneously attain thoir steady state 
conditions as the gust front pass~'s them. But the initial section can be 
taken as the apex, where the leading-edge vorticity is zero, Therefore the 
solution follows. 

If the wing is at an initial incidtince GI the above remarks still 
apply. Mathematically each section instantaneously takes up the steady 
loading condition associated with the effective incidence a + wL/V. 
Physically this i s more obscure than the case discussed above since in this 
case this result means that the leading edge vortex associated with the 
initial incidence a instantaneously incrcsscs its strength and changes the 
position of its core. However, the approximation of the slender wing 
theory that the rates of change in the cross-flow planes arc greater than 
rate of change in the strcamwise direction imply that the rate of change of 
the vortex strength and its position is greater than the rate at which the 
gust front passes over the wing. 

It is claimed that the solution presented for this problem is the 
correct mathcmtical one on the basis of the linear slender wing approximation, 
and not a crude approximation, 

In real fluids two viscous effects will modify those analytical 
solutions. The first will be the viscous lag which will delay the formation 

of/ 
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of the leading edge of vorticity (this is analagous to the lag of the 
formation of trailing edge vorticity for a two-dimensional oscillating 
wing in incompressible flow). Thcrc will also bo a lag in the formation 
of the secondary scpzrations on the upper wing surface near the loading 
cage. 

6. The Don-linear Slender Winin~or_o_ry: Sudden Ch,anef Incidence e-s P--.-m-&- - __u_w--* -1 

If a slender wing at zero incidcnc c in a stram of velocity V 
suddenly changes to a finite incidence c( at time t = 0, then initially at 
t = +O, before Gany leading edge vortices are formed the velocity potential 
is given by the linear theory (presented in Scation 2h In this cast vorticity 
is oroattid along the whole of the leading cdgcs and than convcctcd dowrstrcam. 
Thus, at a rzfercncc chordvfisc section x aft of the apex the strength of 
the loading edge vorticity builds up from zero at time t = 0 to the full 
strength associated with the steady case at incidence a after a certain 
time (probably infinite). 

Mathematically, the potential problem to be solved, by extending 
the equations proscntod in Section 4 to this unsteady cast, is the solution 
of the differential equation, 

Ia 
an 

ar ar I 
= - sin h \ 

s=o ( 
me + v mm 
at iI 

. . . (24 
ax s=o 

8=const. 

whore S(x, r, 8, t) = 0 

..I (23) 

with the boundary conditions 

(i) 
a+ ~ 

( J ii; z=o 
= -c;rV 

lYldS(d 
t>o 

(ii) there is no flow across the lcsding-edge vortex sheet, so 

is the equation of the leading-edge vortex. 

(iii) there is no pressure; loading across the vortex shed, hence 

/ a(4) 
--*-- + VA 
at 

(z)+ ( 2,. ;; (A$)jzo = 0 ..e (25) 

Unfortunately this set of equations cannot bL rusolvod for a 
slcndcr delta wing by the assumption of conical flon to the solution in 
only one cross flow plane, as pcrformod by IIangler and Smith4 in the steady 
case. The concept of conical flow must break down in this problem on a 
dimensional basis, because the time t cannot be non-dimunsionaliscd by a 
combination of x, y and V without upsetting the condition thct the non- 
dimensional variables remain a function of y/x only at each instant of time. 

The following technique is suggested for this problem with a slundcr 
delta wing for its approximate solution. The aim is to attempt to obtain a 
time dGpendent solution from the solution which L 's available for the steady 
oase of the slcndcr doltn wing. 

The/ 
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The velocity potential discontinuity across the plsnforn of ,Z 
deltn wing in stcsdy motion is denoted by 

Ag = A 3 (x, Y, a) . . . (26) 

This solution is avsilCble although it is not given directly in Rd.4. 

For the case of the sudden change of incidcncc, in ;L particular 
cross-flow plane, at section x say, the leading-edge vortex will be zero 
at time t = 0, end then build up in strength with a movement of the vortex 
core with increasing time, until the final steady values arc reached, 
Qualitatively the distributions of A$ across the wing with increasing 
time will resemble the distributions in the steady czsc 5s the incidence 
increases from zero to a* Therefore it is suggested thst e, simple 
rcprcscntation of this may be written 

A $(x, yt t> = 
A Qh Y, ah, t3) 
--------II*-----.. a . . . (27) 

4x, tl 

where A 6(x, y, t) represents the time dependent solution across the wing 
for the section x for it sudden change of incidence from zero to a at 

A @(x, Y> ah, tl > 
t = 0; I----------------- 

a[x, $1 
represents the distribution of load expected. 

with increasing time, and the term a must be included since the wing is 
st the constant incidbnce cc for t > 0. Thcrcfore 

a (x, 0) = 0 .*. (28) 

and a (x, t) + a 

after a sufficient time. 

It is assumed from equations (27) and (28) thst 

[Ac,(~,y,t)]~~ = -I,",-- 1 - 2v(s2 (x)-Y +a . . . (29) 
a[x,t] ho 

which is the linear solution. The convergence of the steady solution as 
a decreases to the linear solution is shown by Mrtn&r and Smith although 
tho convcrgencc is non-uniform n-t a = 0. This is due to the diffzrsnt 
singularities of A@ for a > 0 snd a = 0. 

The next point vfhich needs clarifying is the function 01(x, t), 
introduced in equation (27). For our unsteady problem it is non assumed 
that the leading-edge vorticity which is shed during the trsnsicnt motion at 
any particulnr section is the sitme cs that in the sturdy case, Rhcn this 
section is at th;: same effective incidcncc. Thus the rata of crtirtion of 
leading edge vorticity st section x, for t > 0, is 

--- ar 

1 
v -- 

3X 
(x, q . . . (30) 

te:2dy case 
4 

This is the same as equation (20) and has therefore been calculated. 
Vorticity is convected with the free stream velocity, so that the strength 
of the leading-edge vorticity nt scotion x aftcr time t is 
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J 
-X 

r(x,t) = 
mv> 
---a--- dx 

x-vt ax 
. . . (39) 

This equation states that T(x,O) is zero at timt: t = 0 and builds up to 
its steady vnluc in time t = 
position x), 

x/V (which will vary with chordwise section 

It is stated for equation (30) that I'(x,a) in the steady case 
has been calculated, so by inversion, 
the steady cast. 

th6 function a(x,I') is known for 
Hcncc WC now assume that 

a(x,t) = a(x, r[x,tl> 
where I'[x,t] is given by equation (31). 

Thus equations (32), (31) and (27) given an approximate time 
depcndont solution based on our kno\?L,dge of the steady state characteristics. 
The prossurc coefficient can bc dotcrmined from equation (27) by the formula 

2 d(A$) 

cP = F dt 1 
----- +v A( y) + ( ;)mf;;q/y/tS(x) 

220 

.,. (33) 

The application of equation (33) introduces the following points 

(i) at time t = 0, cp will not be identical to the linear solution 
because the term a(A$)/bt, which involves da(xSt)/at, is not 
zero, However c 

P should remain finite since 

aa(x,t) da ar(x, t) 
------- = -- . -am---- 

at ar at 
where 3l?/dt = O(1) at t = 0, and aa/ar = O(1) at time t = 0. 
This latter condition is based on the observation that at very 
small incidences the effect of' the leading-edge separation is to 
transfer the singularity from the wing to the leading-edge vortex, 
so the strength of the vortex should then be proportional to a. 
This point requires further investigation, 

(ii) at time t = x/V, 
cP 

will be discontinuous because of the 
discontinuity in da/at. However, this is a sectional 
discontinuity in the respect that it occurs at different sections 
at different times. But the overall force and moment coefficients 
will be continuous functions of time. It could be argued that 
the magnitude of this sectional discontinuity will indicate the 
usefulness and correctness of this approximate method. 

Unfortunately it is difficult to assess whether or not the results 
from the above approximate theory, which will involve some computation,arc 
satisfactory. 
(24) and (29, 

An exact solution of equation (22) with boundary equations (23), 
will involve a considerable amount of numerical work. 

Experimentally, this problem of sudden change of incidence is virtually 
impossible to perform. However, this particular problem is an academic one, 
rather than one which idoalizes some particular motion of an aircraft du&.ng 
a transient condition. 

It is suggested that it would be profitable to extend the ideas 
presented here to more complex transient motions (rigid wing harmonic 
oscillations, for example) which can be sx~rimental3.y tsstod in a wind tunnel. 

Notation/ 
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Notation 

x9 Yz 2 

u, v, IV 

v 

9 

h 

o- 

r(x) 

A@(x,Y,~) 

AS (x,Y, t> 

dbt> 

I'W) 

& Author(s) 

1 R. T. Jones 

2 R, Lcgcndre 

oartesian co-ordinates, origin at the wing apex 

perturbation velocities 

free stream velocity, parallel to x direction 

velocity potcntisl 

maximum chord of slender v;ing 

equation of leading edges 

discontinuity of velocity potential 

incidence 
uniform upwash velocity behind the gust front 

equation of leading-edge vortex in the steady case 

polar co-ordinates in cross-flow plane, origin at 
y=z=o 

additional polar angle (see Fig.2) 

tangential co-ordinate along a surface 

strength of leading-edge vorticity in steady case 

discontinuity of velocity potential across the wing 
in the steady case 

discontinuity of velocity potential across the wing 
in the unsteady case 

empirical incidence- function 

strength of leading vorticity in unsteady case. 

Rcfwenccs _PYP___-* 

Title, &cm -.w. 

Properties Op low-aspect-ratio pointed wings at 
speeds below ,a.nd above the speed of sound. 
N.A,C.A, Report 835, I Y46. 

Ecoulemc-nt au voisinage de la pointe avant dtunc 
sile a forte flcche aux incidcnces moyenl?es. 
La Rccherche Acronau'ciquc: No. 31, 1953. 
Translated as A.X.C.16,7% 
9'10~ in the neighbourhood of UC apex of a highly 
swpt wing at moderate incidcnces." 

3 C. E. Brovm and On slender delta wings with leading-cdgc separation, 
Y/. H. Michael J. Aero, Sci. Vol.21, p.490, October, j954. 

4/ 



- 12 - 

&. Author(s) 

4 K, W, Mangler and 
J, H. B. Smith 

5 G. Drougge and 
P. 0. Larsen 

6 W. H. Michael 

7 P. T. Fink and 
J. Taylor 

8 J; W. Miles 

Title, etc. 

Calculation of the flow past slender delta wings 
wi+h leading-edge separations. 

Proo. Roy. Spc. A. Ftol.251, p.200. 
May, 1959. 

Pressure measurements and flow investigation on 
delta wings at supersonic speed. Report FFA 57. 
A.R.C.lS,jIO 
November, 1956. 

Flow studies on flat plate delta wings at 
supersonic speeds. 
NACA TN 3472. July, 1955. 

Some low-speod experiments with 20 dcgrec delta 
wings, A.R.C.l7,854 
September, 1955. 

The potential theory of unsteady supersonic flow. 
Cambridge University Press 1959. 



FIGS. I aL3. 

FIG. I. 

Notation 

Convection of vorticity 



1 V 

Equation of vortex sheet 

S(s,r, q=o 

Skder wing notation 



C.P. No. 563 

@I Crown copyright 1961 

Published by 
HER MAJESTY'S STATIONERY OFFICE 

To be purchased from 
York House, Kingsway, London w.c.2 

423 Oxford Street, London w.1 
13~ Castle Street, Edinburgh 2 

109 St. Mary Street, Card% 
39 King Street, Manchester 2 

50 Fairfax Street, Bristol 1 
2 Edmund Street, Birmingham 3 

80 Chichester Street, Belfast 1 
or through any bookseller 

Printed in England 

S.O. Code Na. 23-9012.63 

C. P. No. 563 


