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SUMMARY

The linear and non-linear theories of' the steady flow past a
rigid slender dclta wing are reviewcd and extended to the two transient
motions

(i) entry into a sharp edged gust
(i1) sudden change of incidence.

For slender wings with leading-edge scparations it is shown
that the solution to the gust problem is trivial; each chordwise scction
instantaneously Jjumps from its initial stcady state to its final steady
state as the gust front passes the section. An approximate method is
described for determining the time dependent solution for the problem of
the sudden change of incidence.
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Te Introduction

The currcnt interest on slender wings is primarily concerncd with
the steady flow past rigid wings.  Theorctically, the app}ication of the
lincar slender wing theory to thcse problems, duc to Jones , leads to a
simple rcsult for the loading in terms of the incidence and plan forn of
the wing. Howevcr, the practicability of this result is found to be
extremcly limited, in particular, to wings with round lcading edges at
small angles of attack. In general the formation of a pair of lcading=—
edge vortices, duc to the scparation of the flow from the lcoding cdges
and subscquent conveetion by the frec stream, requircs a morc complex
mathematical model for the understanding and prediction ef the flow
characteristics and the forces involved. Several attempts have been made
on this aspcct2:3, the most succcessful is that duc to llangler and Smi thir,
Together with recent experimental investigations®»6,7 the main featurcs of
the flows, about slender delta wings with zero camber arc undcrstood.

Somc sceondary clfcets on these wings have still to be satisfactorily
cxplaincd and predicted, for cxamplc; the effect of the trailing cdge on
the loading throughout the subsonic range of specds, the apparcnt non-
uniformity of diffcrent cxperimental results and the cffccts of sccondary
scparations., In addition furthcr fundamental vork is nccessary on the
morc general types of slender wings with curved lcading cdges and camber,
both chordwisce and spanwisce.

Howcver it scems opportunc at this stage to start discussing some

of thc transient motions of slendcr wings in the prescnce of lcading-cdge
vortices, which will ultimately be nccded for the investigations of both
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slender aircraft response and the possibility of flutter. This note is
restricted to a discussion of the behaviour of the flow about a rigid
slender delta wing as it

(1) passes through a sharp-cdged vertical gust

(i1) undergoes a sudden change of incidence.

2. The Linear Slender Wing Theory: Stcady Casc

The notation for the slcnder wing modcl is shown in Fige.1. The
apcx of the slender wing is taken as the origin of a cartcsian system of
co-ordinate (x axis is in the dircction of the rclative free strecam V, and
the y axis is thc spanwise co-ordinate).

It is assumed in this note that the trailing cdge is normal to the
frce stream and that the span is a maximum at the trailing edgc.  The slcnder
wing approximation (aspect ratio < 1), togother with the usual lincarisation
approximation (perturbation vclocities wu, v, w arc small comparcd with thc
frce stream velocity V) resolves the problem of finding the perturbation

velocity potential ¢ (x, y, 2z) (where u = 8¢/0x, v = 9¢/dy, w = 0¢/dz)

which satisfics the differential equation

¢yy +¢,, =0 eee (1)
a¢\
such that ( —— ) = -~V PN (2)
oz ? =0
ly lss(x)
Osxsn,
and $ = O oo (3)

as Yy > oy, Z > 0y, X" . The general solution of equation (1) includcs a
function of x which dupends on the thickness distribution of the wing.

In this note we are only concerncd with the 1lifting propertics of the wing,
so assuming that the thickncess distribution docs not affect the lifting
characteristics, cach cross flow plane may be treated independently from

its neighbours., The problem in each cross flow plane is cssentially two-
dimensional, so that thc x co-ordinate appears as a dependent variable,

The solution of ecquation (1) which satisficd cquations (2) and (3)
gives the discontinuity of the velocity potential across the wing plan form
('Y|s8(x), Osxsgo, z = 0) as

g (x,y,0)

]

¢(X,Y,-O) - ¢(Jf!y’+o) cos <)+)
20 [ ()" 12

If

The pressurc cocfficient Cp is given by the formula

flgwcr surface Pugggr surfacc
b %PVQ

29

)
V 9x

cee (5)

Substituting equation (4) into equation (5), assuming « is constant,

has? (x)

-r oo (6)
P -2
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The spanwisc 1ift distribution L(y) is given by
L) = dpPlals (og)- )7 e (7)
On integration of equation (7) the 1ift cocfficicnt CL becomes

A

G = e ey (8)
b 2

where A is the aspcct ratio.  Thesc results, presented above, arc well

known but arc included here for the sake of completencss and as a refercnce
for the discussion prescnted later,

There are two important consequences of the slender wing assumption
(A<ﬂ) which are illustrated by the differential equation (3). Pirst, the
absence of any terms depending explicitly on the co-ordinate x implies that
the results, of the loading distribution, say, are independent of forward
speed, thus incidentally eliminating any variation with Mach number.
Physically this means that the perturbation velocity u(= 3¢9/0x) in the
stream direction is always small compared with the perturbation velocities
v(= 3¢/9y) and w(= a¢/§z) in the plancs normal to the free stream.
Thus the slender wing equation states that

u< <v, w eee (9)
together with the initial linearization condition that
v, w< <V .o (10)

Therefore to a first approximation (the same order as the linear theory)
the velocity components are

vV, v, w) eee (11)

Secondly, the equation for the velocity potential in the cross flow plunes
is that for a two-dimcnsional incompressible fluid so that disturbances arc
propagated infinitely quickly in thesc planes, This is agoin a rclative
effect, since on the linear theory all disturbances arc propagated with the
speed of sound of the free stream, but the ratc of propagation relative to

the span is larger than the rate of propagation rclative to the chord for a
slender wing,

In the discussion above it 1s stated that the loading is,
theoretically, independent of Mach number,  This is, of course, optimistic.
At supcrsonic speeds this condition is essentially truc because the supersonic
trailing edge can sustain a finite load. At subsonic speeds it is expected
that the trailing edge will have an increasing cffect as the Mach number
decreases, sincc the loading at the trailing edge must be zocro. Even so it
has been shown experimentally7 that at low speeds the slender wing type of
loading is obtained for approximately 604 of thc chord from the leading apeX.

3 The Linear Slender Wing Theory: Transient Motion

The transient motion of the slender wing assuming linear
aerodynamics has been extensively studicd and the roesults arc summarizcd by
Miles®s The transicnt motions which are considered in this paper are

(i) flight through s sharp-cdged gust (a constant upwash velocity
w, cxists behind the gust front and is zero in front of it)

(ii) a sudden changc of incidence, from «, to oy, say, at time t = 0.

1t/
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It is instructive in this case to deduct physically the forces during
these motions from the ideas presented in the previous paragraph on the
steady case.,

Consider a sharp-edgcd gust as it passes over a slender wing at
incidence «, with the condition that at + = O the gust front is at the
apcx-(x = 0)., The gust will pass over the wing with the constant free
strcam velocity V, since, on the basis of the lincar approximation, the
perturbation velocities in the strcam direction are of the sccond order,
and thercfore negligible. After time +t, the gust front will have reached
the chordwisc section x = Vt. Assuming that the steady casc condition
that cach chordwise scction may be considercd indcpendently of its ncighbours
still holds for an unstcady motion, then the section x  will have been
unaware of the approach of thc gust front until time V.  Then the
effective incidence of the section changes instantaneously from « to
a + w/V. In this cross flow planc thc fluid may be rcgarded as
incompressiblc so that pressurc disturbances arc propagetcd infinitcly
quickly away from the wing. Hence the wing instantancously assumes the
loading associatcd with stcady casc with thc incidencc « + n&/V. Thus as
the gust front passcs over cach chordwise scetion of the wing, it assumcs
its new stcady state.

The mein assumption in the above argument is that each chgrdwise
section may be considered separately as in the steady case., Miles™ has
shown that as long as the wing is slender (i.e., aspect ratio (M -1]2< <1)
the transient problem may be treated as series of two-dimensional problems
in the cross flow planes., However, for the slender wing oscillating at a
low frequency equation (3) remains the differential equation, but at high
frequencies the cross flow differential equation becomes

1
¢yy * 95zz = ¢tt

2o
where a_ is the speed of sound in the free stream. Physically this neans
that the incompressibility assumption in the cross flow plane is breaking
down because of the high downwash speccds associated with the wing oscillations.
This state of affairs cannot be said to apply to the prescnt case under
discussion (i.e., sectional sudden change of incidence) where the downwash
velocities remain small so that the assumptions are Jjustified.

The other problem, namely, the sudden change of incidence of a
slender wing from «, to «, at time t = O is simply the sudden change
from onc stcady state loading (associated with “1) to the second steady state
loading (associated with az) over the whole wing surface at t = O. This
follows by the same argumenis as those described above.

L. The Non-Linear Slender Wing Thecory: Steady Case

The linear slender wing theory, discussed in Section 2 precdicts
infinite velocities at the lcading cdge. This singularity is the usual
type associated with the classical thin aerofoil theories but its presence
does rot invalidate the application of the theories to practical cases as
long as the flow follows thc contours of wings without scparation. TFor
slender wings the free stream scparates from the leading cdges creating a
vortex sheet and this vorticity is convccted downstream forming the leading
edge vortices. The mathcmatical model for this type of flow, assuming the
existence of the leading edge vortices in inviscid fluid motion, has been
most thoroughly investigatcd by Mangler and Smithh,

For a slender wing at a uniform incidence a, the notation is shown
in Fig.2. The wing planform is thc samc as beforc, nancly .
|yl €8, 0<x<cy z=0. The vortex shoet is denoted by S(x, r, 6) = O,
where (r, ) arc the polar co-ordinates of the vortox sheet at the chordwise

section/
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section x in the cross-flow plane. The cquation for the velocity
potential is as before

¢yy +¢,, = 0 eee (12)
=) (13)
where - = =qV ses (13
< az) =0
Iyl <5(x)
Ogxgeg

is the boundary condition which must still be applicd on the wing, The
conditions on the vortcx shect, forming the lcading edge vortex, are

(1) there is no flow across the shect
(ii) there is no pressure discontinuity across the shect.

Condition (i) bccomes

Lo} or
—— = =V sin A =- eos (14)
on!s8=0 0x|S8=0

B=const.

where 9/dn denotes the rate of change normal to the shect in the cross
flow planc. Condition (ii) beccomes

¢ 35\ @ \
(VA <~- >+< --) ~-(A¢)) = 0 e (15)
ox do /m oo 5=0

/ a¢\ / aq’)
where ( — ) denotes the mean valuc of e > across the sheet S = 0,
do /m \ ilog

3/d0 denotes the rate of change tangential to the shect 8 =0 in the
cross-flow plane, and A¢ significs the discontinuity of ¢ across the
ShCGt S = O'

Equation (12) is to be solved, satisfying the boundary cquations
(13),(14) and (15) with the condition that the load is zcro at the leading
edgc.

Mangler and Smith considercd the casc of a dulta wing and assumed
conical flow so that

dr $'(x)
- = hateainskatod e e (16)
3x1i8=0 S (x)

whore S'(x) = tan y and y is the scmi-apcx angle. Equations (12), (13),
(14) and (15) and (16) with the assumption of conical flow, again rcsolve the
problem into a two-dimensional problem in the cross planc, wherc the shape of
the vortex shect in the cross plane is now onc of the featurcs to be
determincd.

An explieit function 2(y, %; x) cannot be written dowm for this
problem but it has becn computcd*,  The pressure cocfficient can then be
found in the ocross-flow planc from

2 d / o d \
op = (Vo) ) ) )
i ox \ ay'/m oy z=0
Mha1s /
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Thus the total spanwise lift distribution can be calculated and the total
forces determined. Alternatively the total 1ift can be obtained by the

contour integration of the velocity potential discontinuity over the wing
and vortex sheet in the cross flow plane at the trailing edge, so that

where CN is the normal force coefficient and € is a circuit which

encloses wing and vortex sheet in the cross-flow plane at the trailing
edge of the wing.

It is emphasized that thc solution is restricted to the linear
and slender wing assumptions so that the orders of magnitude of {the velocity
perturbation expressed in equations (9), (10) and (11§nstill apply.

In Fig.3 the slender wing is again shown with its associated
leading edge vorticcs. We arec going to consider the vortex sheet at secction
¥, » Now the vortex sheet is formed by the creation of vorticity due to
separation at the lcading edge and then convectcd dovmstream under the action
of the frec stream and the cross perturbation velocities.  Thus the vorticity
formed at point A on thc leading edge at position X, (sce Pig.3) at time

t, reaches section x,  at point A  on the vortex sheet at tine 1, , where

A
o T X : s .
t, - tA = memmees<= ,  This relationship is bccausc the perturbation
v

velocities in the streamwise direction arec of the sccond order of magnitude
and thereforc neglected to a first approximation for a lincar theory.
Similarly the vorticity formed at the point B at scotion Xy at time tB

reaches point B, at section x  at time t , where
X =X
t, - tB = mem———= , Thercfore thc vorticity formed at the apex forms the
v

immer part of the vortex corec at section X and takes time xi/v to pass
from the apex to section Xx .

If we denote TI'(x) as the circulation around onc of thc leading-
cdge vortices at scction x, say the onc for y >0, then

r(x) = / A do oo (19)

where the circuit C (which lics in the cross-flow plane at section x)
encloscs the whole of thc leading edge vorticity, for y > O, but not the
wing plan form (]y| <S(x), z = 0). Then the rate at which circulation is
shed from thc leading cdge is

dr ar d .
— = V- = v——UA;s <10'> ees (20)
at ox dx Me

and thercefore we can write

I' = /‘t‘x<§;> ar eee (21)

ar
where I is the circulation at scction x at time t and <—i> ar
vt -7
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is the circulation which is shed in time OT upstrcam at scotion x = V7
at timec t = 7. The substitution of (20) into cquation (21) gives an
identity for the steady casc, but the ideas prescnted here are fundamental
for the discussion of the unsteady motions.

5+ Thc Non-Lincar Slcnder Wing Theory: Sharp-ndgcd Gust

We now consider the casc of a slcender wing cntering a sharp=
edged vertical gust which has a constant vertical velocity w, bchind the
gust front.

First we shall consider the wing at zero incidence initially before
the gust passcs over the wing so that there is no initial vortex system or
loading. Sincc the slender wing approximations are still assumed the gust
front will not accclcratc as it passes over the body and thercfore procceds
past the wing at the free strcam velocity.  As the gust passcs cach
chordwise section it is assumed that ratc of vorticity associatcd with
effective W&/V is instantly gencratcd and then convectcd downstreans

Thus as the gust procecds along the chord the vorticity which is
created at each chordwisc scction is then convectcd with the gust front.
When the gust rcaches scotion x, say, the scetion is instantancously at an
effective dincidence W&/v, together with the full complement of loading
cdge vorticity associated with the stcady casc of the scetion at the cffective
incidence of m&/V} Sinecc the fluid motiorn in the cross-flow plaanc is
essentially incompressible there erc no time lags for the propagation of the
pressurce ficld at the wing to infinity, Therefore the problem in the cross-
flow plane becomes instantancously the steady flow problem, sincc therc is
no additional leading~cdge vorticity af'tcr the gust front has passcd the
scction.  Assuming that thc solution to the steady problem is uniquc the
scetion instantancously takes up the stcady statc loading associatcd with the
effective incidernce WQ/V' as the gust front passes thc scctien,  This
statement implics that thc vortex rolls up as it is convected and is fully
rolled up behind the gust front,

In the prceeding paragraph it is stated initially that the results
arc bascd on the assumption that cach scction crecates the vorticity associated
with the steady case at ineidence mﬁ/V instantancously as the gust front
passecs that scction, and then at the samc ratc subscquently. An alternative
physical approach is to arguc that if thc steady statc condition is
instantancously attaincd at one secction as thoe gust passes that scction then
all subsequent scctions will instantancously attain their steady state
conditions as the gust front passcs them., But the initial scctionm can be
taken as the apex, where the lcading-cdge vorticity is zcro. Therefore the
solution follows.

If the wing is at an initial incidence a  the above remarks still
apply. Mathematically each section instantancously takes up the steady
loading condition associatcd with the effcetive incidence a + u&/v.
Physically this is morc obscurc than the case discusscd above since in this
casc this rcsult means that the lcading cdge vortex associatcd with the
initial incidence a instantancously incrcascs its strength and changes the
position of its core. Howcver, the approximation of the slender wing
theory that the rates of change in the eross-flow plancs arc greater than
ratc of changc in the strcamwise dircction imply that the ratc of change of
the vortex strength and its position is greatcr than the rate at which the

gust front passcs over the winge

It is claimed that the solution prescnted for this problem is the
corrcct mathcmatical onc on the basis of the linear slender wing approximation,
and not a crudc approximation.

In rcal fluids two viscous cffucts will modify thosc analytical
solutions. The first will be the viscous lag which will delay the formation

of/



-8 -

of the lecading edge of vorticity (this is analagous to thc lag of the
formation of trailing ecdge vorticity for a two~dimcnsional oscillating
wing in incompressible flow). There will also be a lag in the formation
og the sccondary scparations on the upper wing surfoece ncar the lcading
cdge.

6. The Non-Lincar Slender Wing Theory: Sudden Change of Incidence

If a slender wing at zcro incideonce in a strcam of velocity V
suddenly changes to a finitc incidence « at time +t = O, then initially at
? = +0, before any leading cdge vortices arc formed the velocity potential
1s given by the linear theory (presentcd in Seotion 2% In this casc vorticity
is ercated along the whole of the leading cdges and then conveeted downstrcam.
Thus, at a rcfercnce chordwisc section x aft of the apex the strength of
the lceding edge vorticity builds up from zero ot time t = 0 to the full
strength associated with the steady casc at incidencce a after a ccrtain
time (probebly infinite).

_Mathematically, the potentisl problem to be solved, by cxtcending
the equations prescnted in Scetion 4 to this unsteady case, is the solution
of the differential cquation,

Oy ¥ 9pg = O eeo (22)
with the boundary conditions
_ 3¢ .
(l) ( - = -~V ose (2,77)
oz / z=0
|v]ss(x)
£>0

(ii) therc is no flow across the lcading-cdge vortcx shect, so

3¢ or ar\\
- - -sin7\.<--+V-- eee (20)
an 18=0 ot dx /| S=0
€=const.
where S(x, r, 8, t) = O

is the equation of the lcading-cdge vortex.

{iii) there is no pressurc loading across the vortex shect, hence

(Bn () (), 5 )

Unfortunately this set of cquations cannot be rcesolved for a
slender delte wing by the assumption of conical flow vo the solution in
only one cross flow planc, as pcrformed by Mangler and Smith¥* in the steady
casc. The concept of conical flow must break down in this problum on a
dimensional basis, beccausc the time t camot be non-dimensionaliscd by a
combination of x, ¥y and V without upsctting thc condition thet the non-
dimensional variablcs rcmain a function of y/x only at cach instant of timc.

= 0 eoo (25)

5=0

The following tcchniguc is suggested for this problem with a slunder
delte wing for its approximate solution.,  The aim is to attcmpt to obtain a
time dependent solution from the solution which is availablc for the stcady
case of thc slender delta wing.

The/
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The velocity potential discontinuity across the planform of o
delta wing in steady motion is dcnotud Dby

A® = A% (x,y, a) veo (26)
This solution is available although it is not given dircctly in Refl.lk.

For the casc of the sudden change of incidence, in a particular
cross=flow plane, at scetion x say, the lecading=edge vortex will be zero
at time +t = O, and then build up in strength with a movement of the vortex
corc with incrcasing time, until the final steady valucs are rcached.
Qualitatively the distributions of A¢ across the wing with incrcasing
time will rescmble the distributions in the steady case as the ineidence
increcascs from gero to Q. Therefore it is suggested that o simple
rcprescentation of this may be written

A @(X, A a[x, 't])
do 3 0 - i il e

where A ¢(x, y, t) rcprcscnts the time dependent solution across the wing
for the secction x for a sudden change of incidence from zero to « at

b #(x, y, alx, t])
t = 0; =mee—— o o e represents the distribution of load cxpected

with inorcasing timc, and the term o must be included since the wing is
ot the constant incidence o for t > 0.,  Thercfore

[#4 (X, O) = O s s (28)
and x (x, ) = «
after a sufficicnt time.

It is assumcd from cquations (27) and (28) that

L
[»)

Q
[Ag&(x,y,t)]ho = [Aé(xnya[X,t:}) "‘"""";" ]t - ZV(SQ (x)-f)‘cc Y <29)
alLX, >0

which is the lincar solution. The convergence of the stcady solution as
a decrcascs to the lincar solution is shown by Mangler and Smith although
the convergence is non=uniform at o = O.  This is duc to the diffoerent
singularitics of A% for o > O and a = O,

The next point which nceds clarifying is the function a(x, t),
introduccd in cquation (27). For our unsteady problem it is now assumed
that the leading=cdge vorticity which is shed during the transicnt motion at
any particular scction is the same as that in the steady case, when this
scction is at the same cffective incidencc.,  Thus the rate of creation of
lcading cdge vorticity at section x, for t > O, is

~ ol
LV —— (X, o i soe (30)
0% _kteady case

This is the samec as cquation (20) and has therefore been oalculatcd.4
Vorticity is convected with the free stream velocity, so that the strcngth
of the leading-cdge vorticity at scotion x after time t is

r/



I'(x,t)

ees (31)

[r(xya) - I‘(X“Vt’a)]steady case

This cquation states that I'(x,0) is zero at time t = O and builds up to

its stecady value in time ¢ = x/V (which will vary with chordwise scction
position x),

It is stated for cquation (30) that I'(x,a) in the stcady casc
has been calculated, so by inversion, the function a(x,I') is known for
the steady casc, Hence we now assume thot

C{(X,t) = CC(X, I‘[X,t]) ses (32)
where T[x,t] is given by cquation (31).

Thus cquations (32), (31) and (27) given an approximate time
dependent solution based on our knowludge of the stecady siate charactcristics.
The pressurc cocfficiont can be dotermined from cquation (27) by the formula

2 —o(ag) d 3¢\ 8(ag)
o w (D (D e O
z=0

The application of equation (33) introduces the following points

(1) at time t = 0O, o, will not be identical to the linear solution

because the term 3(A¢)/dt, which involves da(x,t)/dt, is not
zero, However cp should remain finite since

da(x,t) da  Ar'(x,t)

- - o - - masesenemenme

ot oT' at

where oI'/3t = 0(1) at t =0, and 3a/3l = 0(1) at time +% = O.
This latter condition is based on the observation that at very
small incidences the effect of the lecading=-edge separation is to
transfer the singularity from the wing to the leading=-edge vortex,
so the strength of the vortex should then be proportional to «,
This point requires further investigation,

(ii) at time t = x/V, cp will be discontinuous because of the

discontinuity in da/dt. However, this is a sectional
discontinuity in the respect that it occurs at different sections
at different times, But the overall force and moment coefficients
will be continuous functions of time. It could be argucd that

the magnitude of this sectional discontinuity will indicate the
usefulness and correctness of this approximate method,

Unfortunately it is difficult to assess whether or not the results
from the above approximate thcory, which will involve some computation, are
satisfactory. An exact solution of equation (22) with boundary equations (23),
(24) and (25), will involve a considerable amount of numerical work.
Experimentally, this problem of sudden change of incidence is virtually
impossible to perform. However, this particular problem is an academic one,
rather than one which idcalizes some particular motion of an aircraft during
o transient condition.

It is suggested that it would be profitable to extend the ideas
presented herc to morc complex transicnt motions (rigid wing harmonic
oscillations, for example) which can be experimentally tested in a wind tunnel.

Notats am/



Notation
X, ¥, 2 cartesian co=-ordinates, origin at the wing apex
u, v, w perturbation velocitics
V  free stream vclocity, parallel to x dircction
¢ velocity potential
Cy maximum chord of slender wing
|yl = s(x) cquation of leading cdges
A ¢ discontinuity of velocity potential
a ineidence
iy uniform upwash velocity bechind the gust front
S(x,r,@) = 0 equation of lcading-edgec vorteux in the stcady case
(r,G) polar co~ordinates in cross=flow planc, origin at
y=2=0
A additional polar angle (sec Fig.2)
o tangential co-ordinatec along a surfacc
I'(x) strength of leading-edge vorticity in steady case
A@(x,y,a) discontinuity of velocity potential across the wing
in the steady cesc
A¢(x,y,t) discontinuity of velocity potential across the wing
in the unsteady case
a{x,t) empirical incidencc function
T(X,t) strength of leading vorticity in unsteady case.
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Equation of vortex sheet
S (r, x, 6) =0

Slender wing _notation

S(x,r,6)=0

y=z=0
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