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I INTRODUXI!ION 

Body shaping may be used to obtain favourable interference between the 
wingandbodyofawing4~odyconbination, For example, it may be used to 
reduce wave drag, or to generate lift. 

1 One way of des%gning the b&y shape is to design for prescribed pres- 
sures on the configuration. 

. The linearised wing-body interference theory of Nielseni** oan be used 
to calculate the pressure field of a co&&-&ion with a quasi-cylindrioal 
shaped body at zero lift, or under special lifting conditions, in supersonio 
flow. In this paper a numerical method, based on Nielsen's theory, of solving 
the inverse problem, that is of finding the body shape required to produce 
prescribed ressures on body and vdng is presented, The method is suitable 
for use with a desk calculating machine. 

An advantage of designing body shape for prescribed pressures is that 
the effect of pressure gradients on the boundary layer can be taken into 
account. This approach has oeen used in Refs. 4, 5. Ref.5 describes methods 
that have been previously used to design body shape for a given pressure dis- 
tributlon: in this the preasure has been prescribed on a line in the wing root. 
The present paper extends the regions in which the pessure distribution can 
be prescribed. The method presented is in two parts. In the first Section 3 
the pressure distribution is prescribed on the body, In the seclond t Section 4 
the pressure distribution is prescribed on several chozdwise lines across the 
wing. In addition, the pressure distribution can be prescribed along a number 
of body generators, and subsidiary constraints on the body shape can be 

t included, 

Sections 2 to 4 are concerned with combinations with a horizontal plane 
of symmetry, Extensions to lifting combinations are described in Section 5. 6 

2 S-Y OFRESULTS OF QUASI-CYLINDER THEORY 

Nielsen's interference theoryIn* applies to wing-body oor&inations 
employing bodies deviating only slightly in shape from a circular cylinder. 

The body cross section at any x-position (Fig.1) is taken as a oircle 
of radius unity on which are superimposed distortions that vary as cosines of 
even multiples of 0 to preserve horizontal and vertical planes of symmetry. 

Then the body radius, R, may be defined by 

. 

co 
ii3 
ax 

= t g&4 00s 2n8 

where R & I l 

The velocity potential for the oombination, $o, can be written 

(2) 
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where +w is the potential of the wing alone, 

& +- 9i is the potential for the corresponding undistorted combination, 

and % is the potential due to body distortions. 

The pressure coefficient at any point of the combination can be written 
in corresponding form 

. 

where 

and 

p* = '(w) + '(i) + '(d) 

p(w) = 
2 a$, 

-'iT 3x3 

'(i) = 
2 a@i 

-v ax' 

'(d) = 
2 agd 

-'ii: ax' 

l 

22fi The linearised expression, - y ax ) is adopted as pressure coefficient 
on both wing and body of the combination. 

Then Nielsen shows that the pressure coefficient on the body due to 
body distortions is given by 

'B(d) = (4) 
n=O 0 

where W2n(x9r) are 'influence functions' defined and tabulated in Ref.3. 

The pressure coefficient on the wing due to bcdy distortions is given by 

00 
2t 

'i?(d) = p 

,(x++p) 

cc v? 
g,(E)W,, 

l a* (5)  
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3 DESIGH OFBODYSHAPE: TOPRODCCE APRESCP,IBED PiXESSUREDIS~lBUTIONON 
THEBODY 

3.1 The integral equation 

The pressure coefficient on the body is given, as irk (3), by 

pB = PB(w) + 'B(i) + 'B(d) ' (6) 

pBbd + 'B(i) is the pressure coefficient on the body of the corres- 

ponding cmibination with an unshaped cylindrical b&y. Nielsen shows how to 
find this &L-I Ref.1. Provided no strong shockwaves occur this pressure co- 
efficient can also be found by axpertient using an unshaped body. 

SO, if PB is prescribed then, ind.irectly, PB(,) is prescribed. 

Suppose, then, we have 

pw> = P(x, 6) . 

Expanding P(x, 0) in a Fourier series and using (4) 

(7) 

. 

2t .-? PI- 
P z 

p,,(x) CCC32 ne . 

nt0 

. . . (8) 

Eqmtirlg Fourier coefficients, for all n, 

q-j&) -fy[ %,(g) w2n (v , l)az] = 3 (4 . (9) 
0 



Using Gothert's rule (as in ReP.2) a transformation 
an equivalent combination with p = I. 

Equation (9) then takes the form 

5.s mde to obtain 

This is a Volterra integral equation of the second kind for g,,(x). 

The solution may be written 

x 

&&JX) = p,,(x) + 
i 

P&JE;) S&-L 1) aE; 

0 

where Sti is the resolvcnt of Wzn, given6 by 

X 

-i 
~2JX-Yqt 1) W2,(Y,r 1) ay, 

0 

Lock, in unpublished wark, has obtained an integral expression in 
closed form far So(x,l) using operational methods, and has tabulated this 
function. 

This paper avoids the necessity of tabulating the functions S2n(xrl) 
by solving the integral equation (IO) directly by numerical means. 

3.2 Numerical solution of the integral equation_ 

An appr&mation to the integral in (IO) is made using the trapezium 
rule. 

-7- 



Equal intervals of length 6 are taken along the x-axis. 

Then we obtain the approximate equation 

Similarly there is obtained the general approximate formula 

l . . (12) 

.!3&.p) 
The step by step process is started by the equatian (from (IO)) 

= P&9” 

Using the abave formula successive approximate values of g2r(6), %(26), 

g*n(3a, l l 9  oan be calculated. 

It is shown inRef,lI that the error in this ~P~xi~~tc method c.t 
a, any fixed value of' x is O(S2). 

RePeating the oomPutation with interval length 8 a check can be obtained 
L on the accuracy of the solution with interval length 6, Alternatively, the 

accuracy can be checked by evaluata the left hand side of (10) at several 
points using Simpson's Rule. 

In most practical a lioations it is sufficient to compute about four 
Fourier oomponents, g2n(x . Y 

If the body shaPe is definedby 



the pressure distribution produced is 

3 
2t 

c 
q,(x) cos 2 n+e 

l-l=0 

whereas the prescribed pressure distributicm is 

00 

2t 
c 

Pan 00s 2 n0 ffia (8)) e 

n=o 

The difference between these two quantities is in general small, A 
particular ease of this is discussed in Section 3.3. 

3.3 Illustrative example 

Nielsen1 has calculated the pressure distribution on a oombjnation 
oonsisting of a rectangular wedge wing and a circular cylindrical body non- 
lifting configuratiunO 

The arrangement is illustrated in F&2. 

The total wedge angle is 2iw. 

t is taken equal to i . W 

A body shape is now designed to produce a pressure coefficient on the 
body equal to zero* 

Upstream of the wing leading edge the pressure coefficient on the body 
is equal to zero without shaping. The position of the wing leading edge is cr 
accordingly chosen as x = 0, and the body is shapeddownstream of this potit* 

The case p x 1 is considered. Any other value of @canbe treated ,* 
similarly. 

?3qm-ki.on (6) ncm reduces to 

‘B(w) ' 'B(i) -t- PB(d) = 0 9 



Expanding in a Fourier series 

co as co 

2 i. 
c 

K2n(x) cos 2n0+2iw 
c 

L2Jx)oos 2ne +2iw 
c 

p,(x>cos2nB = 0 0 

B n=O rko nr=O 

. 

forn 

using 

Equating Fourier coefficients 

p&(x) = - K2n(x) - L&(x), for n = 0, I, 2, l *a b (94) 

The function PBCw) is illustrated in Fig.3. 

The functions L2n(~) are illustrated in Ref.1 for n I 0, I, 2, 3. 

The functions Pan, obtained in t&is way from (14.) are included in T&&l 
= 0, I, 2, 3. 

Using these values of p2n(x) the integral equation (IO) is now sol'ved 
the approximate formula (12). 

The functions 8;h(x)obtained for n = 0, 1, 2, 3 using an interval 

s1 
zz 0.1 are given in Table I. 

Integration of (13) gives 

R= 

n=O 0 

05) 

Resulting values of R obtained by appoximating to the integral by the 
trapezium rule are given in Table 2 for 0 = 0, x/6, x/3, q2 and are plotted in 
Fig. 4"e 

Fig.5a illustrates the difference between the pressure coefficient in 
the wing root of the undistorted combination due to the first four Fourier 
components (which is cancelled by adding the first four Fourier components 
of body shaping) and that estimated by Nielsen1 to be the exact root pressure 
coefficient. Figc5b illustrates the pressure coefficient on the top generator 
of the body due to the first four Fourier components, The exact pressure 
coefficient remains equal to zero for values of x less than n/2. For values 
of x increasing above x/2 the exact pressure coefficient curve fairs rapidly 
into the we of Pig.5bd. The large looa dirferenoes between the exact 
pressure coefficient arid that given by the first four terms of its Fourier 
expansion (e.g. at the wing root leading edge, x = 0 in Pig,%) are due to 
the exact pressure coefficient having a discontinuity along a line with a 
component in the free stream direction, 

- IO - 



For the case n z 0 results obtained by taking 6, = 0.1 and S2 = 0.05 
are presented in Table 3. The results agree to three decimal places over the 
range con&kred. For higher values of n, Wk(x, 1) oscillates more rapidly 
and smaller interval lengths have to be taken to obtain the same accuracy. 

The amount of body shaping is directly proportional to iw (equation (Is))1 $ 
The shape must be kept within the limits of quasi-cylindrical theory, thus 
imposing a limit on iw' 

4 DESIGN OF BODY SRAPE TO I3RODDCE A PKFSCRIBED PRESSURE DISTRIBUTIO~T AT 
2BVERAL SPANWISE VmG STATIONS, WITH VARIOUS ADDITIONAL PREXXRIBED 
CONSTRAINTS 

4.1 Prescribed pressures at spanwise wing stations 

4.l.d The system of integral equations 

The pressure coefficient on the wing is given as in (3) by 

Pw = 
p~(w, + ‘w(i) + Pw(a) l 

WI 

Pw is prescribed, 

pV+f> + 'w(i) is the pressure coefficient on the wing of the correspond- 

ing unshaped combination. Nielsen shows how to find this in Ref.1. 

So, indirectly, P 
w(d) 

is prescribed. 

As in Section 3, Gothert's rule is used to transform to the case /3 = 1, 

Suppose, for example, pressure coefficients are Irescribed on the 
wing for r = ro, r,, r2. 

In this case the body shape is taken to be defined by the equation 

2 
g ax = t - g2n(~) cos 2 n0 . 

z 
n--o 

07) 

'w(d) = 2t 
n(x -r+ ?.) x-r+1 

h i&.p3 'R12J x-r+IwE, r) d& 1 l (18) 



. 

Writing x = x - r + I this becomes 

x is the distance downstream of the math line which is the upstream 
limit of the pressure field due to bdy distortion. 

Suppose the prescribed values of P w(d) 
at the stations r = rol r,, r2 

are given respectively by tPo, tP,# tP2, all defined as functions of x* 

Then, from (IS), 

The equations (20) form a system of Volterra integral equations for 
Q&), n=O, 1, 2. 

Scme relations representing conditions governing compatible pressure 
disixibutions at different spanwise stations can be derived, 

From (20) 

with si3nilar equations for r = r,, r20 

-12 - 



for all 8, and so, from (17), 

g&)=Q, n=U,g,2, 

Thus (21) becmes 

P*(O) = P,(O) = Pp) = 0 l 

(22) 

( 3) 2 

For this last case, (22), a rClati4m between the 2.nit&3.l graaients 

i 

can also be derived. 

lF3xxn (m), for small X, 

- 13 - 



If g2n(0) * 0 for some n = 0, I, 2, then, from (17), dx r3R is discontinuous 
at x s 0, and the body has a ridge, perpendicular to the stream, at IS = 0. 

4. I,2 Numerical solution of the system of integral equations 

The system of equations (20) is solved by a numerical method analogazs 
to that used in Section 3. Approximations to the integrals in (20) are made 
using the trapezium rLIe. 

Equal intervals of length 6 are taken along the x-axis, 

Then we obtain the approximate equation 

Iieamxmging 

i: I g*(S) -L-s Wa(O, ro) 
3 

po(Q 2 
! ro I 

-?? 2 + 
c 52ll (0) w2n(S~ ro> (25) 

n.=o Xl=0 

withsimilar equakknsforr =r 19 r2' 

Similarly there is obtained the general approxtite formsiLa 

i i g2n(m6) & - - $Wti(O, ro) I g 
PO(~) 2 

2 + 
z c 

' 4g2n (a uv2n(ms, ro) * 

n=O n--o 

g2n( S) Wpn(iCi 6, ro) + . go + b(x 6) WznC 69 rJ 
3 

(26) 

with similar equations for r = r I$ v 

Cenoting the right hand sides of these equations by Qo(m& Ql(m6)~ 
Q,(ms), respectively 

- 14 - 



I 
- $ W2n(0, r2) 

3 
s Q2(mS> 

J 

(27) 

The coefficients on the left hand side are 
the solution of the equaticns (27) can be written 

independent of m, and so 

where Aa' Bti, C2n depend only on the coefficients on the left hand side 

of (27). 

If' the waisting is 
equation (22). 

smooth, the step by step process is started by 

&$$a 
If the waisting h;ls a ridge line at x r: 0 the values of 

n = 0, 1, 2 have to be found using a series solution of the equations 
(20) for small x* This is described in Appendix I, 

Using the formula (28) successive approxSmate values of g2n(6), g2n(2S), 
QJ3a, l ** can be calculated. 

It is shown in Iw.11 that the error in this approximate method at 
any fixed value of x is O(S2), This is true whatever the number of chordwise 
statians. 

Par small 6 the algebraic equations (27) are ill-ccmditioned7% (A set 
of algebraic equations is said to be ill-uanditioned when the determinant of 
the set is small compared with the individual terms of its expansion along 
any r(TJV or column.) This implies that more significant f'iwes must be 
retained in the numerical solution of thti equation than would otnerwise be 
necessary. In fact the coefficients A2n, . . . in (28) are 0 $- 

0 
and so if 

rounr3n.g errors are to be maintained less than some quantity E in %n(mS) 
they must be maintained less than &Es in Qo(mS), . . . , 

The ill conditioning of the equationsbeccmes worse if the diff'erenoe 
between any two of ra9 r,, r2 is small. 
e --r)-- 
*~1 method for removing the ill-conditioning is discussed in Rcf.11, 

- 15" 
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Repeating the cmputation with interval length 2 ha check canbe obtained 
on the accuracy of the Pirst calculation, or, alternatively, the accuracy can 
be checked by evaluating the integral s on the left hand side of (20) at 
several points using Simpscmls Rule. Both types of check are applied in the 
illustrative example, 

411.3 Illustrative example 

Pressure coefficients are prescribed at the wirg statics r = I, 2 by 
the equations 

. 
pot x) -Z 

2 x ” 0.5 x2 

(29) 

The example is designed to illustrate the step by step process rather 
than to &sign a particularly useful body shape. 

(23) aiii?(i$?;~~ 
29) satisfy the conditions for smooth shaping., equations 
and P,(x) are presented Jn Table 4. 

The body shape is defined by the equation 

2s ax = t 
c 

g,(x) f g,(x) oa3 26 
3 

l 

62 
The equations correspondinS to (28) for interval lengths 6, = 0.1 and 

= 0.05 are respeotively 

g*b@,) = - 19.0385 Qo(“sq) + 28.2843 Q~b& 
I 
r‘ 

g&q = 20,0641 Qo(m+- 28.2843 Q,(mS,) 

J 

and 

8,bS2) = - 39.0506 Qo(mS2) + 56.5685 Q&d21 
1 
j 

@q = 40.0633 QO(d2) - 56.5685 Q,(d2) . 

J 
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VaJ-ues of q)(“>, is& x corresponding to the interval lengths &I r: 0.1 > 
and 62 = 0.05 are wesented in Table 5, 

g,(x), 
A sin le check hw been applied using Simpson's rule. 

e,cr8 corresponding to s2 
Using values CXF 

= 0.05 the expressions corresponding to the 
left hand sides of equation (20) have been evaluated at x = 0.60. The 
differences between the values obtained and the prescribed values of 

P, pl 
2 ' 2 (Table 4) are not greater than 0.001. 

7 

c 

The series solution for small x of the system of equations, described 
in Appendix 1, is 

kT,b) = - 0.06250~ + 0(x2) 1 
g,(x) = q.06250~ + 0(x2) 

i 
. 

The values of g:(O), g;(O) obtained from this solution are illustrated 
in Fig.6, There is good agreement with the initial slopes obtained by the 
step by step process. 

4 .2 Inclusion of prescribed pressures at stations on the b&y 

Pressures may be prescribed at e-wise 
to those prescribed at ~4ng stations. 

stations on the body in addition 

With body shape defined by 4 

N 
aR = t- 
f3X 

z 
g2n(x) cm 2 n0 

n=O 

the pressure coefficient on the body due to body distortion is given by (4), 
in the case /3 = 1, as 

‘B(d) = 2t 

If pad) is 
analogous to (27) 

UL 

n=O 0 

prescribed for 0 - CI~, approximate 
are obtained in the form N c, c +J”S) 1 - 8 Q.p, 1) I cos 2n ei 

- -I7 - 
algebraio equations 

= Qi(ms) 



where 

sinw W&O, I) = 0.5, for all n, the algebraic equations can be 
written 

(30) 

The equations (30) can be used in conjunction with the equations (27) 
to determine the body shape. The resulting set of algebraic equations will 
be ill-conditioned ti the pressure coefficients are prescribed at two or 
more wing stations, 

4-a3 Inclusion of conskra-tits on the shape of the body 

L3.1 General remark3 7- 

In addition to prescribing pressures as previously described in this 
section, two sorts of' constraint on the body shape can be kn2osed. 

The first constraint is to prescrtie the streamwise slope on one or 
more body generators. The second is to prescribe the streamwise srea 
distribution of the bcdy. 

4.3.2 Prescribed streemwise slope on body generators 

The body slope, $!$ , is prescribed at &wise body stations* 

With body shape defined by 

N 
2 
ax ” 

G 
z 

i&&(X) 00s 2 n0 

equations are obtained of the form 
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N c g&(d) co9 2n Oi = 1 2r 
t ,d" 

:i, 
. 

i-k0 tei 

These equations can be used in conjunction with equations (27) or (30) 
to determine the body shape, 

The methad fails if pressure and slope axe prescribed on the same 
generator for then the determinan t 
v-r 

of the resulting set of algebraio equations 
An important example & this is the case of prescribed pressure and 

shape in the wing root and this is discussed in Appendix 2 

As an illustrative exam-pie body shaping is designed to prod&e a pre- 
scribed pressure distribution in the wing root and to impose the restriction 
aR - = 0 on the top body generator*, ax 

The body shape is defined by the equation 

arr ax = t c go(x) + g,(x) um 20 3 ’ 

Then 

0 = 25 .!s 2’ ax=o- 

SO 

(31) 

The prescribed vaLue of P 
B(d) 

in the root (6 = 0) 
where 

is taken to be tPo(x), 

. P,(x) = ” 2x . 

Corresponding to (30) 9 

(32) * 

* This particular problem has been solv& in Ref.5. 

- 19 ” 



where 

c g.&(6) m*n(c=T s, 1) a l .* + g&(=7 6) T&,Js, I> 

3 

l 

Ecgations (31) and (32) .gi-v'e 

goba) = g2(mS) = 
Q,(d 

. (33) 

O(S2); 
The error ti g2n(x) for a given va,itie of x8 obtained from (33), is 

the equations are not iLL-cc&itioned as they were in k-.1*2. 

Values of go(x) = g,(x) carreqxxding to two interval len&3x3 Or 

9 = 0*-l and ti2 e 0.05 are presented in Table 6, A comparisGn suggests that 
the error in the values correspcnding to 6, = o,^i is not more than 0,000~. 

4.3.3 Prescribed streamflise area distributi~ 

The ability to obtain prescribed pressures together with a prescribed 
streamwise area distribution ir@.ies that the methGdS described in this 
report can, in principle, be used in oonjunction with 'area rulegdesigq. 

The body cross sectiozxxl area is given by 

2n 

d(x) = $ $ R2 d0 . 

0 

With b&y shape defined by 

- 20 - 



we have 

2x 
dB 
dx= i 

RE 
ax de 

0 

= t f %n(~) /xcos 2 n0 de + O(t2) 

n=O 0 

E 2 nt g,(x) + o(t2> . 

That is, neglecting O(t2), the only Pourier corirponent of body shape to 
affect area distribution is the k'irst. So the first Pourier component is 
determined by the prescribed area distribution, and the higher order oom- 
ponwts can be defined by the prescribed pressure distribution., 

Suppose, for example, it is required to obtain a prescribed area dis- 
tribution and a prescribed pressure distribution in the wing root* 

The body shape is defined by 

4 
dn=,’ ax c 

g&d cos 2 ne . 

Takzing 

& dx = 2 IFt u(x) , x>o, 

and 

= t p,b) 9 x > 0, 

where b%(x) and PO(x) are given f'unctions, there is obtained 

- 21 - 



Hence 

Thus g,(x) and g,(xf, defining the body shape, can be cbtabed~ 

Piratly, the results body uust not deviate too mucl~ from the basic 
cylinclcr; othemise the theary is not applicablce 



The pressure coefficient on the combination can be written in 
corresponilirlg form 

P = '(w) + '(i) + "(a) (3) 

is the pressure coefficxient on the correspnrmding unshaped 

If *he wing is non lifting, or has supersonic leading edges, P 
can be found using Nielsen's interference theory. (4 +. '(i> 

'(w) + '(i) 
The problem of' finding 

for lifting tvings with subsonic leading edges is disaussed in 
Ref.40, 

pld) is the pressure-coefficient due to body distortions, Non-symmetrio 
body distortions can be vaitten as the sum of a symmetria part and an anti- 
symmetricr part; this Section is concerned with antisymmetric bcdy distortions. 
These can be treated by the methods already described in the special cases 
in which the upper an3 lower halves of the flow field due to body shape are 
independent. The two halves are treated separately and body shape and 
correspcmding pressme coefficients are expanded in Pourier series that 
contain only cosines of even multiples of 6. Examples of ccxrbinations which 
can be treated in this way are illustrated in Fig.7 (a and b). Pig.7a 
illustrates a combination with supersonic leading ed.ge wing; the upper and 
lower halves of the flow field due to body shape are independent 5n tlhe shaded G 
xegiorh Fig.p illustrates a combination with subsonic lead5ng edge wing with 
the antisymmetric shaping started so far downstream that the flow field due to 
waisting lies entirely downstream of the stibsonic leading edge. * 

If the leading edge of the wing is subsonic, and the flow fields above 
and below the wing due to body shaping are not independent (Fig&), then the 
methods developed in this paper are, strictly, not applicable, However, even 
in this case, there may well be examples where the interference between the 
upper and lower surface- i) canbe neglected, and useful results obtained ' 
practice, u8 Such an example has been described briefly by Lock and Rogers . 

5.2 Body at ar&e of' attack 

It is shown in Ref.1 how the pressure distribution on a oombination of 
wing and unshaped c,ylin&ical body can be fourd &en the body is at an angle 
of attack. Pressures on a correspond- wing and shaped body combination can 
therefore be prescribed, because, to the acouracy of linearised theory, the 
pressure field due to body shape is independent of body angle of attack. 5 

6 CONCLUSIONS 

A numerical method has been developed, based on the supers&o inter- 
f erence theory of Nielsen1p2 , which enables body distortions to be designed 
which produce prescribed pressure distributions on the body, or at several 
spanwise stations on the wing, of a wix+body combination at zero lift or 
Unaer special lifting conditions. The numerical computations can be oarried 
out on a desk calculating machine. 

4 

Illustrative examples have been presented of each type of problem. The 
first type reduces to the solution of a Volterra i&egral equation, the second 
to the solution of a system of such equations. In the examples considered 



the errors due to the approximate method have been checked, and found SE-JJ. 
enoq&, by performing the calculations using intervals of different lcngti 
in the step by s,tep numerical procedure. 

Work is proccedtig to investigate the applications of the methods of' 
this note to the design of body shapes for particular purposes, for example, 
the control of the flow nesr the body on swept wing-holly combtitiorrs at low 
supersaniu speeds with the purpose of' postponing the drag rim 

amplitude of be dxstortion due to Znth harmonic 

numerioal solution for g2n(x) obtained using interval length 6 

semi wedge angle of re0tanguJ.a.r we-dge wing 

free stream ltkuh number 

amplitude of Znth harmonic of' the pressure coeffS.ent on the 
body due tobody distortions 

amplitude of Znth harmonic of the pressme coefficient on the 
body due to the wing alone 

amplituiie cxf 2nth harmonic of the pressure coeffioient on the 
body due to ir,terferenoe 

pressure coefficient on the ccxribination 

pressure coefficient due t0 wing alone 

pressure coefficient due to interference 

pressure coefficient due to body distortions 

pressure coefficient on the b&y 

bodyradius 

parameter faJrmagnittie ofbody indentation 

free stream velocity 

4 influezx3e fun&ion 

- 24. - 



Mo. 

1 

2 

3 

4 

5 

6 

7 

8 

LIST OR PRINCIPAL SYIdfXIIS (Contd) 

co-ordinate axes with origin on axis of quasi-cylindrical 
body, x downstream 

polar co-ordinates iny, 2 plane 

distance downstream of maoh line from point (-a, 0, o) in 
tilgplane 

velocity potential for complete combination 

velocity potential for wing alone 

interference velocity potential 

velocity potential for distorted body 

body cross sectional area 

AUtiW Title, etc. 

Nielsen, &N, Quasi-cylindrical tSleory of wing-body interference ;i 
at supersonic speeds and comparison with experiment, 
NACA Rep. 1252, 1955, 

Nielsen, J.N. 

Nielsen, J.N, 

ICLfchemeinn,D. 
Hartley, D,E. 

Bagiey, J.A. 

Volterra, V, 

Iiartree, D.R. 

Lock, R.C. 
Rogers, E.W.E. 

LIST OFRE~CES 

General theory of wave-drag reductiosl for ca&ina- 
tions employing quasi-cylindrical bodies with an 
application to swept wing and body combinations. 
i%CA TH 3722 June 24, 1955. 

Tables of characteristic functions for solving 
boundary value problems of the wave equation with 
application to supersonic interference. 
IL&i TN 3673, February. 1957. . 

The design of swept wings andwing-body cc&&a- 
tions to have low drag at tranaonic sneeds. 
mc.lf. 869, Lpril, 1955, 

Bcdydesignforlow-drag swep&wing cor&inations 
at transonic speeds. 
Unpublished RAE Report. 

Theory of functionals. 
1931, 

Numerical analysis. 
Oxford Univ. Press.' '1952. 

Some preliminary experimental results on the effect 
of asymmetric body waisting on the drag due to lift 
of a swept-back wing at transonic speeds, 
mAero/328. Hay 1957. 

- 25 - 



Nuflerical analysis. 
Chaprxwn and Hall. 1955. 

VI Jane s, J .G-, On %he nulnerical solution of convolution integral 
ea,uations and systems of such equations. 
(YO be published in i%IaJi;hcmatics of Comp-i;ta%ion~~ .) 





APPEKDIX Z 

SOLUTION OF TEIE SYSTEM OF INTEGRAL EQUATIONS 
FOR SMALL x, 

1 IK'RODUCTIOi~ 
.% 

A system of two equations for two unknown functions is oonsidered, 

In this cme the equations (20) reduce to 

The Taylor expansion for the Wm(x,r) function is given in Ref.3 and 

begins 

W,(X,d = \Rl,,(O,r) + O(x) 

t where 

4 
wm(o,r) = 

2 BODY SHA.3 ‘#ITIi RIDGE LINE II-- 

Initial values, g ,b> and g2(0), f rom which to start the step by step 
process of section 1~1.2 are to be found 

Expanding in Taylor series: 

POW = PO(O) -I- PO'(O) x + 0(x2) 

P,(x) = P,(O) + P,'(O) x + 0(x2) 

goid = go(o) + go'W x + 0(x2) 

g2b) = Is,(o) + g2w x + 0(x2> l 

(35) 

(37) 

(38) 

FrOin (21) 

fr o PO(O) = A?, P,(O) 

- 27 - 
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Substituting from (35) through to 

- go(O) ~~o(O,ro) x + 

Appendix 1 

(391 in (34) gives 

4$(o) + ~JO) x 

4r 
-- - g*(O) Z7(0,ro) x 

0 

PO(O) + pow x = 2 + 0(x2). 

Jr 
y$ PO(O) f p, ‘(0) x 

1 = 2 - f 0(x2) . 

Equating coefficients of powers of x in these equations 

t3,(0) + ls2(o) = fro PO(O) 2 
i 

(4-d 

got(C) - A0 g,(O) Wo(O, ro) + g2'(0) - 4ro g2(0) a2(C, To> = 
Jr0 PO’(*) 

2 
. ..* (4.1) 

go'b> - f!, go(O) iJo(O, r,) + g2'(0) - qr, g2(Q) W2(03 r,) = 
qrI P,'(O) 

2 l 

Subtracting (72) from (71) 

. . . . (Q) 

c qrl Wo(O,r,) - qro w,CO,~,)] go(O) + k, W2(0,r,) - qro W2(0,ro)j fz2(o) 

45 Jir 
= 9 PO'(O) - -$ P,'(O) . (43) 

Sq-:ilrttions (40) and (43) can be solved for go(O) ad g2(0). 

3 SMOOTH BODY SHAPE 

g:(O) and g2"Gare to be found. An example of their use is given 
in Section 4.1.3. 



i 

r! 

go:01 = gp = 0 

PO(O) = P.,(O) = 0 

Jr0 P/(O) = Jr, PJO: , 

From (22) : 

From (23) : 

From (24) : 

Equating terms O(x) in (34) 

Equating terms 0(x*) in (34) 

p 
o( 

9 0) 
z-‘. 2 (47' 

Go”(o> &20(a go’ (0) 
--+-- 
2 lk, 2’/“, -70 1 w (0,r 

3hm (443) and (49) 

Pt”(0) 
1 ,d49 = 

Equations (l+?> and (50) can be solved for go'(O) and g*'(O) 





DESIGN OF BODY SHAPB WITH PR&SGRIBED PRESSURE 
AND SHAPE IN THE WI?~ s-m 

; I I3TROIXXTIOiX 

It was indicated in Section 4.3.2 that the method there described for 
prescribing pressure distribution and body ahape on several body generators 

% fails 
shown 
case. 

2 

if pressure and shape are prescribed on the same &I','nerator. It is 
in this Appendix how the equations can be solved numericalXy in this 

Restrictions on the prescribed functions are discussed. 

SOLUTION OF Tm EQUATIONS 

Suppose the body shape is defined by the equation 

3R 
TG = t 

i 
g,(x) f g&x) cos 2i I 

i 

The prescribed shape and pressure in the wing soot due to body distortion 
are denoted by the functions tG(x) and tPO(x) respectively. 

That is 

t G(x) 3 (x ' o>, 

and 

1 1 ‘w(d) = tp,(d, (x > 0). r 1 = 
Then from equations (5-l) and (52) 

And from equations (5) and (53’, taking p = 1 

t [,,,,., - f 
P w 

g,,(c) W&-&l) d<-- = +j- 
1 

n=O 0 

Equations (54’ and (55‘ form the system of equations to be solved. 
Substituting from (jj&) in (55' there is obtained 

(521 

(53) 
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In this integral equation for g (C) 
function) on the left hand side of (59) 

t' rle function in brackets (influence 
vanishes at the upper end of the 

interval of integration (Wzn(O,l) = 0.5, all n). 

The equation cannot be solved by the method pretiously used in this 
report, i.e. by awoximating to the intewalby the trapezium rule and 
solving step by step. 

Hmzever, a completely different numerical a-pproach to the solution of 
equations such as (56) exists. This depends on the transformation of the 
integral equation to one Gith constant limits of integration (Fredholm 
equation). The method is described in detail in Ref.9. Essentially, it 
depends on replacing the unknown function by a polynomial vrhich 5s deter- 
mined by satisfying the equation at a ffnite number of points. The problem 
then reduces to the solution of a system of simultaneous linear algebraic 
equations; the number of algebraic equations is equal to the number of 
points at which the integral equation is satisfied, It has been verified 
in a particular case, by evaluating the left hand side of (56) using the 
trapezium rule where g,(g) is the solution obtained as described, that this 
method can be used to solve equation (56). Quite good accuracy was obtained 
by satisfying the equation at six points, in general the number of algebraic 
equations it is necessary to solve depends on the accuracy required and on 
the nature of the prescribed functions P*(x) and G(x). 

3 LIMITATIONS ON THE PRFSCRIBED FUXCTIONS 

It has been found by considering a particular example that if the 
resulting body slope on the top body generator tfgo(x) - g2(x)] from 
equation (51) is of much greater magnitude than the prescribed slope in the 
wing root tlgo(x) e g,(x)! va 1 ues of the pressure coefficient due to body 
distortion occurring further out on the -;&ng may be of correspondingly greater 
magnitude than the values prescribed in the wing root. In practical 
applications it will usually be required that, in general terms, the values 
of pressure coefficient due to body distortion are greatest in the wing rook 
and decrease smoothly almy from the body. Hence a necessary condition is 
that the solution go(x) is not of muoh geater magnitude than the prescribed 
functfon G(x) = g,(x) + g*(x). To fix ideas, suppose that G(x) is prescribed 
first, Then, from (56), it follcn-js that a solution g,(x) satisfying the 
above condition is only obtainable for suitably chosen prescribed functions 
PO(x). Thus for the method to be useful in a practical al3lplication the 
prescribed functions G(x) and P,(x) must be compatible in this sense. 

In any particular case to determine if the prescribed functions are 
compatible is largely a matter of trial. 

- 31 - 



X 

0.0 

0.1 

0.2 

0.3 
0 ' 
0:; 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.1 
1.2 
1.3 
1.4 
I.5 
l.G 
I.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2. 7 
2.8 
2.9 
3.0 

!IXBLE 1 

Nuraerical solution of integral equation using 6, = 0.1 
- -*I-.. P 

-- 
PO (4 

0.000 
-0,060 
-0.ll5 
-0.167 
-0.216 
-0.259 
-0.296 
-0.331 
-0.362 
-0.390 
-0.422 
-0.450 
-0.475 
-0.499 
-0.518 
-0.537 
-0.556 
-0.575 
-0.590 
-0.606 
-0.622 
-0.638 
-0.652 
-0.664 
-0.675 
-0 l 6S6 

-0.698 

-0.708 
-0,716 
-0.724 
-0.732 

0,000 
-0.121 
-0,229 
-0.320 
-0. jd9 
-0.439 
-0,479 
-0.506 
-0.511 
-0.510 

I;*$; 

-0:438 
-0.406 
-0.368 
-0.327 
-0.282 
-0.236 
-0.192 
-0.151 
-0.113 
-0.080 
-0.048 
-0.022 
+0.002 
+0.321 
e0.038 
+o, 050 
+0.058 
+0.062 
+0.066 

P,b) +4 
0.000 

-0.117 
-0.210 
-0.265 
-0.281 
-0.265 
-0.226 
-0.16.3 
-0.099 
-0.028 
-t-o.026 
+0.076 
+O.lOG 
+0.120 
+O.llO 
+0,106 
+0.089 
+0.066 
+0.037 
10.011 
-0.010 
-0.027 
-0.038 
-0.041 
-0.040 
-0,034 
-0.026 
4.016 
-0,OlG 
-to.003 
+O.OlO 

-- 

0.000 
-0.112 
-0.181 
-0.193 
-0.15L 
-0.OlO 
+o. GO1 
+0.075 
+0.124 
+0.132 
+O,O& 
+0.040 
+0.003 
-G,OjO 
-0.051 
-0.056 
-0.048 
-0.030 
-0.005 
+0.012 
+0,020 
+0.022 
+0.020 
e0.008 
-0,005 
-0.010 
-0.015 
-0,015 
-0.012 
-O.GlG 

0,000 

-7 

i 
I 

/ I 

g,(x> 
-3 

0,000 
-0.062 
-0.121 
-0.180 
-0.238 
-0.292 
-0.34.2 
-0.392 
-0.439 
-0.484 
-0.534 
-0.582 
-0.627, 
-0.672 
-0.713 
-0.755 
-0.797 
-0.840 
-0.879 
-0.920 
-0.961 
-1.903 
-1.Ob3 
-1 .oso 
-1.117 
-1.155 
-1.194 
-1.232 
d.267 
-1.303 
-1.339 
-- 

6$x) 

0.00 
-0.12 
-0,2i& 
-0.36 
-0.45 
-0.54 
-0.63 
-0.71 
-0.77 
-0.84 
-0.89 
-0.94. 
-0.98 
-1.03 
-1.07 
-1.10 
-1.12 
-1.14 
-1.16 
-1.18 
-1.20 
-1.21 
-1.22 
-1.23 
-4.24 
-1.25 
-I*25 
-1.26 
-1.27 
-1.27 
-1.27 
-- 

ls4w 

0.00 
-0.12 
-0.23 
-0.32 
-0.40 
-0 i-5 
-0x9 
-0.51 
-0.52 
-0.52 
-0.52 
-0.51 
-0.50 
-0.49 
-0.48 
-0.4s 
-0.47 
-0.45 
-0.45 
-0.44 
-0.44 
-0.45 
-0.46 
-0.45 
-0.45 
-0.45 
-0.45 
-0.45 
-0.46 
-0.46 
-0.4-G 

r*l 

t3,tx> 

0.00 
-o.'i2 
-0.22 
-0.29 
-0.33 
-0.34 
-0.32 
-0.30 
-0.27 
-0.24 
-0.25 
-0.24 
-0.23 
-0.23 
-0.23 
-0.24 
-0.25 
-0.25 
-0.25 
-0.26 
-0.26 
-0.27 
-0.26 
-0.27 
-0.28 
-0.2s 
-0.28 
-0.28 
-0.28 
-0.29 
-0.29 
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TABLE 2 

Body shape for zero pressure coefficient on body in 
combination with wedge winq 
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Numerical solution of integral equation obtained 
using&, = 0.1 and 6, = 0.05 
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TABLE 4 1.1111 
Prescribed pressure coefficients at spanwise wing stations --- 

! x 
I 

/- 

-w- 

I 
0.00 

0.05 

I 

0.10 
0.15 

I 0.20 
6.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 

, c i I I I I 

pO 
I 

p1 
2 

-= 
2 x 

-0.5x2 j -=y 
1 2 

0.00000 
0.04875 
0.0950~ 
0.13875 
0.18000 
0,21875 
0.25500 
0.26875 
0.32000 
0.36875 
0.375Qo 
0.39675 
0.42000 
CL43875 
0.45_700 
0.46875 
0.48000 
0.48875 I 

0.90 0.49500 
0.95 i 0.49875 
1.00 0.50000 

0.00000 
0.03359 
0.06364 
o.ogo16 
0.11314 
0,13258 

:%g 
0?6970 
G.17501 
0.17678 
0.17501 
0.16370 
0.15087 
G.14849 
0.13258 
0.11314 
0.09016 
0.06364 
0.03359 
0. ooooo 

TABLJQ -. 
J$merical solu$ion of the first system of integral equation2 

x 

o.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0. GO 
0.65 
0.70 
0.75 
0.8G 
0.85 
0.30 
0.95 
1.00 

0.0000 

-0.0086 

-0.0547 

-0.1131 

-0.~367 

-0.31S2 

-0.4654 

-0.6338 

I-- 
0. G~GOO 

-0.0036 
-0.Oi72 
-0.0318 
-0.0578 
-0.01342 
-0.1225 
-0.~610 
-0.2127 
-0.2645 
-0.3286 
-0.3959 
-0.4729 
-0.5531 
-0.6471 
-0.7413 

-0.8332 ’ -O.&y6 
-0. ‘3591 

-1.0685 I 8 -1.0838 
-1.2081 

-1.3339 i j -1.3494 

-- wx (6, = GA) f2 = 0.05) 

0. GOGO 0.0000 
0.0529 

0.1061 O.llL9 
0.1769 

0.2459 0.2496 
0.3223 

0.3561 0.4065 
0.4910 

0.5810 0.5886 
0.6866 

0.7849 0.7975 
0.9124 

4.0272 A.0378 
1.1675 

1.2951 1.3124 
I.4590 

1.6050 1.6216 
1.7871 

I .9484 I 1.9702 I 
2.3362 j 2.1551 

2.3597 



TABLE 6 

Mmerical. solution of the secondxstera of iniq@l equations P-Y --IM - -- 

X 

0.00 

0.05 
0.10 

0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 

0.50 

0.55 
0.60 
Oh5 
0.70 
0.75 
0.80 

0.85 
0.90 

0.95 
1.00 

(6, = 0.1) 
Y-w...-- -.- 

o.oooo 

-0.0513 

-0.1055 

-0.1630 

-0.2242 

-o.a@Io 

-0.3582 

-0.4315 

-0.509J 

-0.5917 

-0.6788 

g,(x) = gp 
(62 = 0.05) 

--- 

o,oooo 
-0.0253 
-0.0513 
-0.0780 
-0.1055 
-0.f338 
-0.1630 
-0,193l 
-0.2242 
-0.256-I 
-0.2d91 
-0.3231 
-0,3582 
-0.39&4 
-0.4316 
-0.4701 
-0.5095 
-0.5504 
-0.5919 
-0.6350 
-0.6731 
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FIG. I GENERAL ARRANGEMENT. 
V 

FIG. 2 RECTANGULAR WEDGE WING-CIRCULAR 
CYLINDRICAL BODY COMBINATION. 

0 
8 = SIN-’ X 

A 
I I I 
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FIG.3 PRESSURE COEFFICIENT ON THE BODY 
DUE TO THE WING ALONE. 
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FIG.4 BODY SHAPE FOR ZERO PRESSURE COEFFICIENT 
ON BODY IN COMBINATION WITH WEDGE WING. 
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NIELSEN’S ESTIMATE OF 
EXACT PRESSURE IN ROOT I 

C 
2 2 

x 

0 Cl APPROXIMATE PRESSURE IN WING ROOT GIVEN BY FIRST 

FOUR FOURIER COMPONENTS (-2$& (X)) 

0 
I 2 

n ;=- 2 

3 
X 

(9 APPROXIMATE PRESSURE ON TOP GENERATOR (0=#) GIVEN BY 

FIRST FOUR FOURIER COMPONENTS (-+n(x) COS 24) 

FIG. 5 (a&b) APPROXIMATE PRESSURES ON 
CYLINDRICAL BODY IN COMBINATION WITH 

WEDGE WING. 



INITIAL SCOPES FROM SERIES 
I 

I I I I 

c 

’ THE APPROXIMATE 
VAWES OF go (X) , 
se(X) CORRESPONDIN& 
TO A STEP LENGTH OF 
S, =O*I DIFFER FROM 
THOSE PLOTTED 
&=0=05) Wf Al 
MOST 0.02. 

. 
* 

, 

FIG. 6 SOLUTION FOR BODY SHAPE:STEP BY 
STEP AND SERIES SOLUTIONS. 
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THE UPPER AND LOWER I-tALVES OF THE FLOW FIELD DUE TO 

SHAPING ARE INDEPENDENT IN THE SHADED REGjtONS. 
‘ 

THE UPPER AND LOWER HALVES OF THE FLOW 
FIELD DUE TO SHAPING ARE NOT INDEPENDENT 

IN THIS REGION. 

FIG. 7 (a -c) COMBINATIONS WITH 
ANTISYMMETRIC BODY SHAPING. 
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