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1 INTRODUCTION

Body shaping may be used to cbtain favourable interference between the
wing and body of a wing~body combination. Fou example, it may be used to
reduce wave drag, or to generate lift.

One way of designing the body shape is to design for prescribed pres-
sures on the configuration.

The linearised wing~body interference theary of Nielsen?s? can be used
to calculate the pressure field of a combination with a quasi-cylindrical
shaped body at zero 1lift, or under special lifting conditions, in supersonic
flow. In this paper a numerical method, based on Nielsen's theory, of solving
the inverse problem, that is of finding the body shape required to produce
prescribed pressures on body and wing is presented, The method is suitable
for use with a desk calculating machine.

An advantage of designing body shape for prescribed pressures is that
the effect of pressure gradients on the boundary layer can be taken into
accounte This approach has oeen used in Refs. L4, 5. Ref.5 describes methods
that have been previously uvsed to design body shape for a given pressure dis~
tribution: in this the pressure has been prescribed on a line in the wing root.
The present paper extends the regions in which the pressure distribution can
be prescribed. The method presented is in two parts. In the first §Section 5;
the pressure distribution is prescribed on the body. In the second Section 4
the pressure distribution is prescribed on several chordwise lines across the
wing, In addition, the pressure distribution can be prescribed along a number
of body generators, and subsidiary constraints on the body shape can be
included.

Sections 2 to 4 are concerned with combinations with a hoarizontal plane
of symmetry. Extensinns to lifting combinations are described in Section 5

2 SUMMARY OF RESULTS OF QUASI-CYLINDER THEORY

Nielsen's interference theory1'2 applies to wing-body combinations
employing bodies deviating only slightly in shape from a circular cylinder.

The body cross section at any x~position (Fig.1) is taken as a circle
of radius unity on which are superimposed distortions that vary as cosines of
even multiples of 8 to preserve horizontal and vertical planes of symmetry.

Then the body radius, R, may be defined by

= % z an(x) cos 2nb (1)

n=0

¥le

where R £ 1,

The velocity potential for the combinatiom, ¢,, can be written

b, = byt B3+ 93 (2)



where - is the potential of the wing alone,
¢y + ¢34 1s the potential for the corresponding undistarted combination,

and b is the potential due to body distortions.
The pressure coefficient at any point of the cambination can be written

in corresponding form

PO = P(W) + P(i) + P(d) (3)

where P = -
(w)

HJ
~~
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S

!
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and P(

The linecarised expression, —-—% %?c , 1s adopted as pressure coefficient

on both wing and body of the combination.

Then Nielsen shows that the pressure coefficient on the body due to
body distortions is given by

Fpa) = %i [sZn(x) - % /" 8o (E) W, <5—g-§, 1) ag] cos 210 , (4)
n=0 o

where W2n(x,r) are 'influence functions! defined and tabulated in Ref.3.

The pressure coefficient on the wing due to body distortions is given by

® g, (x-fr+p) , PP
PW(d) = %Z[gm v -jﬁ- / gm(a)wm<%—r+1~%,r>d5]
n=0 o]

vee (5)

L]



3 DESIGN OF BODY SHAPE TO FRODUCE A PRESCRIBED FRESSURE DISTRIBUTION ON
THE BODY

3.4 The integral equation

The pressure coefficient on the body is given, as in (3), by

PB = PB(W) + PB(i) + PB(d) . (6)

PB(W) + PB( 1) is the pressure coefficient on the body of the corres—

ponding combination with an unshaped cylindrical bodye. Nielsen shows how to
find this in Ref.1. Provided no strong shock waves occur this pressure co-
efficient can also be found by experiment using an unshaped bodye

So, if PB is prescribed then, indirectly, PB( a) is prescribed.

Suppose, then, we have

Pha) = P(x, ) . (7)

Expanding P(x, 6) in a Pourier series and using (4)

% }_j [gzn(x) __% w[x g, (8) W, (—’%;—g, 1) dtﬂ cos 2 n6 = P(x, 6)
n=0 0

o«

= -gg‘- \" p2n(x) coes2nd .
n=0
vee (8)
Equating Fourier coefficients, for all n,
- b
- 2
-’5[%(:«) -1 f g, (&) W, (—"—g—‘? ; 1) ac:] - 2 . (9)
o



Using Gothert's rule (as in Ref,2) a transformation is made to obtain
an equivalent combination with B = 1.

Equation (9) then takes the form

8yp(x) = /x &, (8) Wy (x ~ &, 1) & = p,y(x) . (10)

o]

This is a Volterra integral equation of the second kind faor an(x).

The solution may be written

X
g (x) = p,(x) + f Py (E) S, (x~E,1) &

o}

.6
where SZn is the resolvent of W2n’ given~ by

Szn(x (] 1 ) = Wzn(x s 1 )

X
bl / Wzn(x "'Y19 1) Wzn(y1 ) 1) dy1
o]
X Iy
+/ W, (x=3,, 1) ay1j W, (3= Ty0 1) Wy (3, 51) a5,
(o] (o]

Lock, in unpublished work, has cbtained an integral expression in
closed form for S o(x , 1) using operational methods, and has tabulated this
functione

This paper avoids the necessity of tabulating the functions SZn(x s 1)
by solving the integral equation (10) directly by mumerical means.

3.2 Numerical solution of thc integral equation

An appraximation to the integral in (10) is made using the trapezium
rule,

[ 2]



Equal intervals of length & are taken along the x-axis,

Then we obtain the approximate equation
8, (8) = b, (8) + %{%o) W, (8,1) + gy (8) Wy (0 n)} :
Rearranging:

v, (8) + 2 g, (0) W, (5,1)
(11)

fie
L]

&nl®)
1-2w,(0,1)

Similarly there is obtained the general approximate formula

Py (m8) + & {% 85, (0) W, (md 4 1) + g, (8) Wy (=T 8,1)

+ ovee 4 an('ﬁa'-'-T 8) w2n(a,1)}
gy, (m8) = .
12w, (0,1)

.o (12)

The step by step process is started by the equation (from (10))
gzn(o) = Pzn(o).

Using the ebove formuls successive approximate values of g2n(6) s an(ZG) s

8,,(38)5 ++s con be caloulated.

It is shown in Ref,11 thot the c¢rror in this approximctc mothod ot
any fixed value of x is 0(6%).
Repeating the computation with intervel length -26- a check can be obtained

on the accurecy of the solution with interval length 6. Alternatively, the
accuracy can be checked by evaluating the left hand side of (10) at several
points using Simpson's Rule,

In most practical applications it is sufficient to compute about four
Fourier components, an(xgﬂ.)

If the body shape is defined by



3
—g—xlj{- = t Z g2n(x) cos 2 nb (43)

n=0

the pressure distribution produced is

3
2t Z pZn(x) cos 2 nd

n=0

whereas the prescribed pressure distribution is

2% Z p2n(x) cos 2190  (from (8)) »

n=0

The difference between these two quantities is in general small, A
particular case of this is discussed in Section 3.3.

3¢5 Illustrative example

Nielsen! has calculated the pressure distribution on a combination
oonsisting of a rectengular wedge wing and a circular cylindrical body non~
lifting configuration.

The arrangement is illustrated in Fige2e

The total wedge angle is Ziw.

t is taken equal to iw’

A body shape is now designed to produce a pressure coefficient on the
body equal to zero.

Upstream of the wing leading edge the pressure coefficient on the body
is equal to zero without shaping. The position of the wing leading edge is
accordingly chosen as x = 0, and the body is shaped downstream of this point,

The case B = 1 is considered. Any other value of B can be treated
similarly.

Equation (6) now reduces to

PB(W) + PB(i) + PB(d.) = 0,

e



Expanding in a Fourier series

(-] © o0

2 i z Kzn(x) cos 206 +2 3 Z LZn(x) cos 2nf +2iwz pal(x) cos2nd = 0.,

n=0 n=0 n=0

Equating Pourier coefficients
PZn(x) = -KZH(x) -LZn(x), Por  n = 0, 1, 2, ees » (14)

The function PB(W) is illustrated in Fig. 3.
The functions LZn(x) are illustrated in Ref.1 for n = 0, 1, 2, 3

The functions p, (x), cbtained in this way from (14) are included in Tablet
forn=0, 1, 2, 3

Using these values of pzn(x) the integral equation (10) is now solved
using the approximate formula (12).

The functions an( x) obtained for n = 0, 1, 2, 3 using an interval

85, = Os1 are given in Table 1.

1

Integration of (13) gives

3 x
R = 1+iwz cosQnG[QZn(E)di- (15)
n=0 o]

Resulting values of R cbtained by approximating to the integral by the
trapezium rule are given in Table 2 for 6 = 0, %/6, %/3, %/2 and are plotted in
Figelie

Fig.5a illustrates the difference between the pressure coefficient in
the wing root of the undistorted combination due to the first four Fourier
components (which is cancelled by adding the first four Fourier components
of body shaping) and that estimated by Nielsen? to be the exact root pressure
coefficient, Fig.5b illustrates the pressure coefficient on the top generator
of the body due to the first four Fourier components, The exact pressure
coefficient remains equal to zero for values of x less than %/2, For values
of x increasing above /2 the exact pressure coefficient curve fairs rapidly
into the curve of Fig.5bl. The large local differences between the exact
pressure coefficient and that given by the first four terms of its Fourier
expansion (e.g. at the wing root leading edge, x = O in Fig,5a) are due to
the exact pressure coefficient having a discantinuity along a line with a
component in the free stream direction.

- 10 -



For the case n = O results obtained by taking 51 = Oe1 and 52 = 0.0H

are presented in Table 3. The results agree to three decimal places over the
range considered. For higher values of n, W2n(x, 1) oscillates more rapidly

and smaller interval lengths have to be taken to obtain the same accuracy.

The amount of body shaping is directly proportional to i_ (equation (15)% .

The shape must be kept within the limits of quasi-cylindrical theory, thus
imposing a limit on iw.

L DESIGN OF BODY SHAPE TO PRODUCE A PRESCRIBED FPRESSURE DISTRIBUTION AT
SEVERAL SPANWISE WING STATIONS, WITH VARTOUS ADDITICNAL PRESCRIBED
CONSTRAINTS

L Prescribed pressures at spanwise wing stations

Le1e1 The system of integral equations

The pressure coefficient on the wing is given as in (3) by

PW = PW(W) + PW(i) + P‘W(d) . (‘16)

Pw is prescribed.

“w

Pw(w) + Pw(i) is the pressure coefficient on the wing of the carrespond~
ing unsheped combination. Nielsen shows how to find this in Ref.1.

So, indirectly, Pw( a) is prescribede.
As in Section 3, Gothert's rule is used to transform to the case B =1,

Suppose, for example, pressure coefficients are prescribed on the
wing for r = T3 Tys Tpe

In this case the body shape is taken to be defined by the equation

2
%% = % Z g, (x) cos 2 1o . (17)
n=0 .
Then ¢rom (5)) .
2 X~r+
(x -r+1)
Pw(d) = 2% z [-gzn Xv-rl'+ - f gZH(E) W2n(x ~r +1=E, ) dé:l . (18)
n=0 o]

- 11 -



“

]

Writing x = x ~ r + 1 this becomes

2 (x) F
= 2t z [ en®) Wpnlx - 8 ) e
n=0 0

(19)

y is the distance downstream of the mach line which is the upstream

limit of the pressure field due to body distortion.

Suppose the prescribed values of Pw( a) at the stations r =1, T,y T)

are given respectively by tPo, ’c]':’1 ’ 'tPZ, all defined as functions of %

Then, from (19),

i}

{:an(x) Y P (x)
/ 8, (E) W, (x = & r,) d&;:] >
]

X

Z fﬂ ¥ S ESCRRCELESE o
Q

!

1

(v P,(x)
Z 2"" - / Eanl®) Toglt - & 7) 2 = 22

(20)

The equations (20) farm a system of Volterra integral equations for

8onX)s 1 =0, 1, 2

Some relations representing conditions governing ccmpatible pressure

distributions at different spanwise stations can be derived.

From (20)

i [.g (O):] ) PO(O)
'Fo 2
ne=0

with similer equations for r = Tyy Tpe

- ]2 -



Hence

jm—

7o Bol0) = [z, B(0) = [, B,(0) (21)

If the body shape is smooth, then

%] = 0 for all 6, and so, fram (17),
X=Q

an(o) = 0, n = 0,1, 2, (22)

Thus (21) becomes

PO(O) = P1(0) = PZ(O) = 0. (23)

For this last case, (22), a relation between the initial gradients

dPi(x
» 1 = 0, 1, 2,

ay
x:_—O
can also be derived.
From (20), for small y,
2 N
P (x)
2 Jro ot X
Z Zn(x) + O07) = —2—
n=0
with similar equations for r = Tys Toe
Hence
}'; P'(0) = ﬁ PI(0) = |r, P3(0) « (24)

“w

&



Ir gzn(o) % 0 for some n = O; 1, 2, then, from (17), -g% is discontinuous

at x = 0, and the body has a ridge, perpendicular to the stream, at x = Q.

Lel1e2 Numerical solution of the system of integral equations

The system of equations (20) is solved by a numerical method analogous
to that used in Section 3. Approximations to the integrals in (20) are made
usging the trapezium rule,

Equal intervals of length & are taken along the x-axis.

Then we cbtain the approximate equation

2 2
(8 P (8)
Z gz,___., = 02 + >_/ -g-{g?'n(o) W, (8, ro) + gzn(ﬁ) WZn(O, ro)}.
n=0

o

{

n=0

Rearranging
2 p(5) 2
Z 08 {ﬁ.—;.--g-wznm, ] 2 =5 Z 8 g, (0) W, (5, r) (25)
n=0 ' n=0

with similar equations for r = Ty Tpe

Similarly there is obtained the general approximate formula

2 P (ms) 2
() | == - 2w, (0, )| & —5—+ 3 8, (0) Wy (ms, 7)) +
Zanas{ 2 Wonlo } 3 ;5{2%19 Wonmds T,

|
e ]

n=0

8, (8) Wy (@7 8, 1) + +ue + g (BT 8) Wy (5, ro)} (26)

with similar equations for r =T 42 Tor

Cenoting the right hand sides of these equations by Qo(mﬁ), Q1(m6),
Qz(m&), respectively

-1l -



2

z gy, (5) {-g:-gwm<o. ro>} 2 g (m)

n=0

2

Z g, (u5) {—;,3,: 5w, (0, r,)} 2 Q(ms) (27)
~

2

z g, (m5) {;,g,;-g-w%(o, r2>} L Q)| |

n=0 ’

The coefficients on the left hand side are independent of m, and so
the solution of the equaticns (27) can be written

gzn(ms) ; Azn Qo(ms) + an Q'I (mG) + C?.n Qz(ma) s D = O.’ 13 2’ (28)

where AZn’ BZn’ 0211 depend only on the coefficients on the left hand side
of (27)0

If the waisting is smooth, the step by step process is started by
equation (22)s If the waisting has a ridge line st x = O the values of
an(O), n =0, 1, 2 have to be found using a series solution of the equations

(20) for small y. This is described in Appendix 4,

Using the formula (28) successive approximate values of g2n(8), g2n(25),

8%(36), see Can be calculated.

It is shown in  Ref,41 that the error in this approximate method at
any fixed value of x is 0(6%), This is true whatever the mmber of chordwise
stations.

For small § the algebraic equations (27) are 111~conditioned * (A set
of algebraic equations is said to be ill-conditicned when the determinant of
the set is small compared with the individual terms of its expansion aleng
any row or column.) This implies that more significant figures must be
retained in the numerical solution of the equation than would otherwise be

necessarys In fact the coefficients A, , e.. in (28) are O <%> and so if

rounding errors are to be maintained lcss than some quantity E in an(mé)
they must be maintained less than EJ in Qo(mﬁ), ess »

The i1l conditioning of the equations becomes worse if the difference
between any two of Tor Ty Ty is suall.

*A method for removing the ill-conditioning is discussed in Ref.11.
- 15 =
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Repeating the computation with interval 1ength-g- a check can be obtained

on the accuracy of the first calculation, ar, alternatively, the accuracy can
be checked by evaluating the integrals on the left hand side of (20) at
several points using Simpson's Rule. Both types of check are applied in the
illustrative examplea

Le1e?d Illustrative example

Pressure coefficients are prescribed at the wing stations r = 1, 2 by
the equations

P (x)
5 = X =05 %
(29)
2
.."/52.. P-](’X.) = X%
J

The example is designed to illustrate the step by step process rather
than to design a particularly useful body shape.

The equations (29) satisfy the conditions for smooth shaping, equations
(23) and (24). Po(x and P1(-x) are presented in Table L. .

The body shape is defined by the equation

&l

- {go(x) + gy(x) cos 26} .

The equations corresponding to (28) for interval lengths 8y = 0.1 and
52 = 0,05 are respectively

-

g,(m8,) = =~ 19,0385 Q (m5,) + 28.2845 Q,(ms,)
go(m8,) = 20,0641 Q (mb,) ~ 28,2843 Q,(mb,)
4
and
go(mﬁz) = = 39,0506 Qo(méa) + 5645685 Q (mﬁz)
b
82(m52) = 40'0633 Qo(méz) - 56'5685 Q"l (m52) .

o

- 46 -



Values of go(x), gz(x) corresponding to the interval lengths 51 = 0u1
and 62 = 0.05 are presented in Table 5.

A single check has been applied using Simpson's rule. Using values of
gc(x), gz(x§ corresponding to 8, = 0.05 the expressions corresponding to the

left hand sides of equation (20) have been evaluated at x = 0.60. The
differences between the values cbtained and the prescribed values of
P P

-2-9 R -—21— (Table 4) are not greater than 0.001,

The series solution for small y of the system of equations, described
in Appendix 1, is

go(x) - 0.06250x + O(xz)]

]

g,(x) 1.06250x + O(xz)J .

The values of g!'(0), g1(0) obtained from this solution are illustrated
0 2

in Fig.6. There is good agreement with the initial slopes cbtained by the
step by step process.

4e2 Inclusicn of prescribed pressures at stations on the body

Pressures may be prescribed at 6-wise stations on the body in addition
to those prescribed at wing stationse

With bedy shape defined by

N

aR _ !

= =t Z an(x) cos 2 nb
n=0

the pressure coefficient on the body due to body distortion is given by (4),
in the case B = 1, as

PB(d) = 2% i [an(x) - /x an(?-;) Wzn(x - &, 1) dg] cos 2 no.
o

n=0

Ir PB( a) is prescribed for © = 0;5 approximate algebraic equations

analogous to (27) are cbtained in the form

N
z gzn(mé) {1 —--,S'Wzn(o, 1)} cos 2n §; = Qi(mﬁ)
n=0

- 47 =



where

Qi(mS) = %{PB(d)}eze +i 8 {:—% g2n(0) W2n(m5, 1) +
i 10

g2n(8) W?_n(m-‘i 85 1) + ose + g, (m~1 8) WZn(B, 1)} cos 2n 8, «

Since w2n(o, 1) = 0.5, for all n, the algebraic equations can be
written

['i --&} i gpp (W) cos 2n 8; = Q;(md) . (30)
n=0

The equations (30) can be used in conjunction with the equations (27)
to determine the body shape. The resulting set of algebraic equations will
be ill-conditioned if the pressure coefficients are prescribed at two or

more wing stationse

Le3 Inclusion of constraints on the shape of the body

Le3+4 General remarks

In sddition to prescribing pressures as previously described in this
section, two sorts of constraint on the body shape can be imnosed.

The first constraint is to prescribe the streamwise slope on onz2 or
more body generators, The second is to prescribe the streamwise area

distribution of the body.
Le3.2 Prescribed streamwise slope on body generatars

The body slope, o , is prescribed at O-wise body stationse

With body shape defined by

N

AR N A

= = ¢ Z an(:.) cos 2 nd
n=0

equations are cbtained of the form

- 18 ~



N

AR
Z g,,(m8) cos 2n 0; = t{—ax‘L .
i
::Qi

n=0

These equations can be used in conjunction with equations (27) or (30)
to determine the body shape.

The method fails if pressure and slope are prescribed on the same
generator for then the determinant of the resulting set of algebraic equations
vanighes. An important example of this is the case of prescribed pressure and
shape in the wing root and this is discussed in Appendix 2

As an illustrative example body shaping is designed to produfe a pre-
scribed pressure distribution in the wing root and to impose the restriction
R

3= = 0O on the top body generator®,

The body shape is defined by the equation

-g% = % {go(x) + 8,(x) oos 26} .

Yhen
s R _
® = 3> X 0.
So

g (m8) ~ g,(ms) = 0., (31)

it

The prescribed value of PB(d) in the root (8 = 0) is taken to be tPo(x),

where
PO(X) = = 2X .
Corresponding to (30)
1
[ 2)) o) = o) (32)
n=0

¥ This particular problem has been solved in Ref,5.,

“

K]



I

where

1
- md +2_/ & {“ 8oy, (0) W, (m&, 1) +

n=0

i

o, (u5)

+ an(a) WZn(m~1 By 1) + eoe + g?_n(m~'2 &) WZn(G, 1)} .

Equations (31) and (32) give

go(mb) = g2(m6) J - AR (33)

The error in g, (x) for a given valae of x, cbtained from (33), is
0(6 ); the equations are not ill-conditiocned as they were in L.1.2.

Values of go(x) = gz(x) corresponding to two interval lengths of
81 = 0.1 and 5 = 0,05 are presented in Table 6, A comparison suggests that

the error in uhe values corresponding to &, = C.1 is not mcre than 0,0005.
g

1

Le343 Prescribed streamwise area distribution

The ability to obtain prescribed pressures together with a prescribed
stresmwise area distribution irplies that the methods described in this
repart can, in principle, be used in conjunction with 'area rule!design.

The body cross sectional area is given by

K(x) = —"é-f R? a0 .
Q

N
« =

oL oL g Z_, an(x) cos 2 md , [where R 2 1]
n=0



we have

2%
R
- [ =8
o

Rig

I\_T\ 2%
t Z gzn(x) / cos 2 nd 4o + O(tz)
n=0 o

]

2wt gy(x) + 0(+%) .

That is, neglecting O(tz) s the only Fourier couponent of body shape to
affect area distribution is the first. So the first Fourier component is
determined by the prescribed area distribution, and the higher order com-
ponents can be defined by the prescribed presswre distribution..

Suppose, for example, it is required to obtain a prescribed area dis—
tribution and a prescribed pressure distribution in the wing root.

The body shape is defined by

1

R

i tz an(x) cos 2 nd ,
n=0

Taking

12

2 xt M(x) , x>0,

and

[Pw(d)l. = t Po(x) s x>0,
=1

where M(x) and Po(x) are given functions, there is cbtained
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g,(x) = 1(x)

and, from (5), teking B = 1,

1 X
K‘ . " P (x)
) [zn(x) S ECRANCELR) | - o
n=0 o
Hence
3 P () 3
gz(x) —f gz(a) Wzix ~Z 1) & = —5 - H(x) + / 1(x) Wo(x -~ E, 1) AE &
o 0

This is an integral equation for g2(x) of the type solved mumerically
in Section 3.2

Thus go(x) and gz(x) , defining the body shape, can be cbtained.

Lel Limitations on prescribed wing pressure distributions

The body shape corresponding to a prescribed wing pressure distribution
must satisfy the following conditicns if the prescribed pressure distribution
is to be achieved in practice.

Firstly, the resulting body must not deviate too much from the basic
cylinder; otherwise the theory is not applicable.

Secondly, the configuration must be such that the pressure gradient is
nowhere so adverse as to cause the boundary layer to separate. In particular,
the pressure gradients on the body must be checked for each body shape.

No rigid rules can be 1lz2id down to ensure that the configuration
corresponding to a prescribed pressure distribution satisfies these conditions.
This is partly a matter of trizl and error. However, it is important to
realise that the effect of body distorticns on the wing pressure distribution
decreases with distance from the body. For example, for small ¥, to a first
order approximaticn, the pressure distribution due to any Fourier component
of body shaping falls off along a mach line as 1/vr, This implies that if a
sensible body shape is to be derived, the pressures due to body distortion
prescribed on the wing rmst fall off with distance in roughly this fashions

5 LIFTING CQIBINATICNGS

5¢1 Body parallel to free stream

As for combinations with a horizcntal plane of symmetry, the potential
for the combination, ¢, can be written

B = Pyt Pyt Py (2)
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The pressure coefficient on the cambination can be written in
corresponding form

P = P(W) + P(i) + P(d) (3)

where P(w) + P( 1) is the pressure coefficient on the corresponding unshaped
cambina tion.

If the wing is non lifting, or has supersonic leading edges, P(w) + P(i)

can be found using Nielsen's interference theory, The problem of finding
P(w) + P(i) for lifting wings with subscnic leading edges is discussed in

Ref,.410.

P( a) is the pressure- coefficient due to body distortions, Nen-symmetrio

body distartions can be written as the sum of a symmetric part and an anbi-
symmetric part; this Section is concerned with antisymmetric body distortions.
These can be treated by the methods already described in the special cases

in which the upper and lower halves of the flow field due to body shape are
independent. The two halves are treated separately and body shape and
corresponding pressure coefficients are expanded in Fourier series that
contain only cosines of even multiples of 6., Examples of combinations which
can be treated in this way are illustrated in Fig.7 (a and b)e Fig.7a
illustrates a combination with supersonic leading edge wing; the upper and
lower halves of the flow field due to body shape are independent in the shaded
regions Fig.7b illustrates a combination with subsonic leading edge wing with
the antisymmetric shaping started so far downstream that the flow field due to
waisting lies entirely downstream of the subsonic leading edge.

If the leading edge of the wing is subsonic, and the flow fields above
and below the wing due to body shaping are not independent (Fig.7c), then the
methods developed in this paper are, strictly, not applicable. However, even
in this case, there may well be examples where the interference between the
upper and lower surfaces can be neglected, sand useful results cbtained 1181
practice. BSuch an example has been described briefly by Lock and Rogers©.

52 Body at angle of attack

It is shown in Ref.{1 how the pressure distribution on a combination of
wing and unshaped cylindrical body can be found when the body is at an angle
of attacke Pressures on a corresponding wing and shaped body combination can
therefore be prescribed, because, to the accuracy of linearised theory, the
pressure field due to body shape is independent of body angle of attack.

6 CONCLUSIONS

A numerical method has been developed, based on the supersonic inter-~
ference theory of Nielsen1’2, which enables body distortions to be designed
which produce prescribed pressure distributions on the body, or at several
spanwise stations on the wing, of a wing~body combination at zero lift or
under special 1lifting conditions, The numerical computations can be carried
out on a desk calculating machine,

Illustrative examples have heen presented of each type of problems, The

first type reduces to the solution of a Volterra integral ecuation, the second
to the solution of a system of such equationss In the examples considered
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the errors due to the approximate method have been checked, and found small
enough, by performing the calculations using intervals of different lengths
in the step by step numerical procedure,

Work is proceeding to investigate the applications of the methods of
this note to the design of body shapes for particular purposes, for example,
the control of the flow near the body on swept wing-body combinations at low
supersonic speeds with the purpose of postponing the drag rises

LIST OF PRINCIPAL SYMBOLS

g, (x amplitude of body distortion due to 2nth harmonie
{g%(x)} numerical solution for an(x) obtained using interval length &
6

iW semi wedge angle of rectangular wedge wing

M free stream Mach number

B = x,[ W -

PZn(x) amplitude of 2nth harmonic of the pressure coefficient on the
body due to body distortions

K, (x) emplitude of 2nth harmonic of the pressure coefficient on the
body due to the wing alone

LZn(x) amplitude of 2nth harmonic of the pressure coefficient on the
body due to interference

Pc pressure coefficient on the cambination

P(W) pressure coefficient due to wing alone

P(i) pressure coefficient due te interference

P( a) rressure coefficient due to body distortions
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Pw pressure coeffioient on the wing
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v free stream velocity

W2n(x, r) influence function
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APPENDIX 1

SOLUTION OF THE SYSTEM OF INTEGRAL EQUATIONS
FOR SMALL ¥

1 INTRODUCTIOL

A system of two equations for two unknown functions is considered,

In this case the equations (20) reduce to

&g, (1) P (x)
L% . /X g, (B, (x -&, 7 ) déi} °2X

4}

; (34)

:

;i: B (1) ~jx o (5, (-5, =) dfn} P1§x) -

n=0

The Taylor expansion for the Wm(x,r) function is given in Ref.3 and

begins
Wm(x,r) = Wm(o,r) + 0(x) (35)
where
1 3 m2 1
Wm(O,r) = <3+-r-_-) +:-2-:/-_; <1 —;) . (36)
2 BODY SHAPE WITH RIDGE LINE

Initial values, go(O) and gz(O), {rom which to start the step by step

process of Section /4.1.2 are to be found

Expanding in Taylor series:

p(x) = P (0)+P '(0) x+ o(x") (37)
P1(x) = P1(O) + P1'(O) X + O(xz)
g (x) = &,(0) + g, '(0) x + 0(:x°)

° (38)
g,(x) = g,(0) + g,"(0) x + 0(") .

H

+

From (21)

1

vr P (0) = Vr, ,(0) (39)



Appendix 4
Substituting from (35) through to (39) in (34) gives
8,(0) + g '(0) x g,(0) + g,'(0) x

i - g,(0) W _(O,r ) x + = - 8,(0) W (0,r ) %
0 o]

P (0) + P *(0) x

= ) + O(xz).
And
g,(0) + g,'(0) x 6,00 + 5,0 x
< ) - 8,(0) W (0,r.) % « ) ~ £,(0) W,(0,r,) x
fro
W, P,(0) + P,*(0) x ,
= 5 — 4+ 0(x°) .

Equating coefficients of powers of X in these equations

J}o PO(O)
50(0) + gy(0) = —— (14,0)
. . {ro Po' (0)
g,'(0) - vr_ g (0) Wo(o, r) + 8,'(0) - vr_ &,(0) W,(c, r) = 5
ceee (41)

\/'r1 P1'(O)

g,'(0) = Vr, £,(0) W (0, r,) + &,'(0) - ¥, g,(0) W,(0, r,)
cers (82)

Subtracting (72) from (71)

{«i1 WO(O,r1) -V wo(o,ro)} 8,(0) + {4}1 W2(O,r1) - Vr wz(o,ro)7 gz(O)

J
w/'ro wfr1 . \
- ———cen ! - ——
= S PO (O) 5 P’l (O) . (L!-B

Equations (40) end (43) cen be solved for g (0) and gy(0).

3 SMOOTH BODY SHAPE

gé(o) and gz'(O) are to be found, An example of their use is given
in Section 4.1.3.
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Aprendix 1

From (22) : 8,{0) = ,(0) = © (L)
From (23) : PO(O) = P{(0) = 0 (15)
From (24) : \fro PO'(O) = wfr1 (o) . (46}
Equating terms O(y) in (34)
g,'(0) g,'(0) P *(0) (47
vr * Vr - 2 ’
o) (o}
Equating terms O(xg) in (34)
g,"(0) g,"(0) g '(0) 8,'(0) P "(0)
2Vr ¥ ovy 2 wo(o’ro) R WZ(o’ro) - L. (48)
[0} (o}
g,"(0) g,"(0) g '(0) g,'(0) 70
eve, eV, 2 Mo(0ry) - =5 W, (0m)) = == (49)
From (48) and (49)
fo1 V}o ) V'1 V¥
{-—2-- W (0,r,) - =2 wo(o,ro)) g '(0) + { W,(0,r,) = == ,(0,r )} 8,'(0)
Yr_ P "(0) e, P,"(0)
_ o o -1 (
= T " 50)

Equations (47) and (50) can be solved for go'(O) and gz'(O)
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APPENDIX 2

DESIGN OF BODY SHAPE WITH PRESCRIBED PRESSUHE
AND SHAPE IN THE WING ROQT

1 INTRODUCTION

It was indicated in Section 4,.3.2 that the method there described for
prescribing pressure distribution and body shape on several body generators
fails if pressure and shape are prescribed on the same gonerator, It is
shown in this Appendix how the equations can be solved numerically in this
case, Restrictions on the prescribed functions are discussed.

2 SOLUTION OF THE EQUATIONS

Suppose the body shape is defined by the equation

-~

R 4 {go(x) + gz(x) cos ZQJ . (51?

3x

The prescribed shape and pressure in the wing root due to body distortion
are denoted by the functions £t &(x) and ‘tPO(x) respectively,

That is B
_%% o " t6(x), (x > 0), (52)

and *
_%(a)ld - P (x), (x> o0). (53

Then from equations (51) and (52)

g,(x) + g,(x) = &(x). (54)

And from equations (5) and (53\, taking B = 1

L 3 P (x)

CCEESORENCOEI R (55"
n=0 °

Equations (54 and (55 form the system of equations to be solved.
Substituting from (54 in (55' there is obtained

/ g, (&) {Wz(x— E,1) = Wo(x—an)} dg
° P () x
= 02 - G(x) + /5 G(E) Wz(x-€,1) ag . (56)

O
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Appendix 2

In this integral equation for g, (&) the function in brackets (influence
function) on the left hand side of (50) vanishes at the upper end of the
interval of integration (Wén(0,1) = 0.5, all n).

The equation camnot be solved by the method previously used in this
report, i.e. by approximating to the integral by the trapezium rule and
solving step by step.

2

However, a completely different numerical approach to the solution of .
equations such as (56) exists. This depends on the transformation of the
integral equation to one with constant limits of integration (Fredholm
equation). The method is described in detail in Ref,9, Essentially, it
depends on replacing the unknown function by a polynomial which is deter-
mined by satisfying the equation at a finite number of points., The problem
then reduces to the solution of a system of simultaneous linear algebraic
equations; the number of algebraic equations is equal to the number of
points at which the integral equation is satisfied. It has been verified
in a particular case, by evaluating the left hand side of (56) using the
trapezium rule where go(E) is the solution obtained as described, that this
method can be used to solve equation (56), Quite good accuracy waes obtained
by satisfying the equation at six points, in general the number of algebraic
equations it is necessary to solve depends on the accuracy required and on
the nature of the prescribed functions Po(x) and G(x).

3 LIMITATIONS ON THE PRESCRIBED FUNCTIONS

It has been found by congidering a perticular example that if the
resulting body slope on the top body generator t{go(x) - g2(x)} from

equation (51) is of much greater magnitude than the prescribed slope in the
wing root t{go(x) + gz(x)} values of the pressure coefficient due to body

distortion occurring further out on the wing may be of correspondingly greater
magnitude than the values prescribed in the wing root. In practical
applications it will usually be required that, in general terms, the values

of pressure coefficient due to body distortion are greatest in the wing root
and decrease smoothly away from the body, Hence a necessary condition is

that the solution go(x) is not of much greater magnitude than the prescribed

function G(x) = go(x) + gz(x). To fix ideas, suppose that G(x) is prescribed
first. Then, from (56), it follows that a solution go(x) satisfying the

above condition is only obtainable for suitably chosen prescribed functions
Po(x). Thus for the method to be useful in a practical application the

rrescribed functions G(x) and Pb(x) must be compatible in this sense.

In any particular case to determine if the prescribed functions are
compatible is largely a matter of trial.
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TABLE 1

Numerical solution of integral equation using 51 = 0.1

N

+

p () | B0 |56 B0 |g() |eyx) |g,() |el)

L]

0,000 { 0,000{ 0,000} 0,000 0,000| 0,00 0,00 0,00
-0,060 | -0.121 | =0.417 | -0.112 | -0,062 | -0,12 | -0.12 | -0.12
-0,115 | =0,229 | =0,210 | 0,181 | 0,121 | =0.24 | -0,23 | -0,22
0,167 | ~0.320 | =0.265 | -0,193 | =0.180 | =0,36 | -0.32 | -0,29
0,216 | ~0,539 | =0.281 | =0,15L | 0,238 | =0.45 | 0,0 | -0,33
-0,259 { =0,439 | =0,265 | =0,060 } =0,292 | =0.54 | =0.45 | ~0,34
~0.296 | <0479 | 0,225 | +0,001 | =0.342 | =0,63 | =-0.49 | -0,32
-0.331 | 0,506 | =0,163 | +0,075 { =0.392 | ~0,71 | -0.51 | -0.30
«0.362 | 0511 | =0,099 | +0.124 | =0.439 | =0.77 | =0.52 | ~0.27
0,390 | =0,510 | =0.028 | +0,132 | -0, 484 | -0,84 | -0.52 | ~0,24
0,422 | =0,487 | +0.026 | +0,084 | 0,534 { -0,89 | -0.52 | -0,25
“0450 | =0 466 | +0.076 | +0,040 | 0,582 | «0,9%4 | 0,51 | -0.2
“0.475 | =0,438 | +0,108 | +0,003 | =0,627 | =-0,98 | =0.50 | -0.23
-0.499 | -<0.406 | +0,120 | -C,030 | -0.672 | =1.,03 | =0.49 | =0.23
-0,518 | =0.368 | 40,418 | =0,051 | -0,713{ -1.07 | -0.48 | -0.23
—00537 "00327 +O¢106 "0.056 _00755 -1010 -0.48 *0.21-4-
~0.556 | ~0.282 | +0,089 | <0048 | =0,797 | =1.12 | =0.47 | =0.25
-0.575 | =0.236 | +0,066 | -0,030 { =0,840| =1.14 | =045 | -0.25
-0.590 | -0.,192 | +0,037 | -0,005 | ~-0.879| -1.16 | -0.45 | ~0.25
~0.606 | =0.151 | +0,011 | +0,012 { 0,920 | -=1.,18 | ~0.b4 | ~0,26
-0,622 | <0.113% { ~0,010 | +0,020 | =0,961 | =1.20 | =044 | ~0,26
0,638 | =0,080 | =0.027 | +0,022 | =1,003| =1.21 | =0.45 | =0,27
-0.652 | =0,048 | 0,038 | +0,020 | -1,043 | =1,22 | -0.46 | -0.26
-0,664 | -0,022 | -0.041 | +0,008 | ~1.080 | ~1.23 | =0.45 | -0.27
-0.675 | +0,002 { -0,040 | 0,005 | -1.1417| =1.24 | «0.45 | =0,28
-0.686 | +0.024 | -0,034 | 0,010 | -1.455| -1.25 | -0.45 | -0,28
-0.698 | +0,038 | ~0.026 | ~0,015 | -1,19% -1.25 | =0.45 | -0.28
-0,708 | +0,050 | 0,016 | =0,015 | -1,232 | =1.26 | =0,45 | -0,28
0,716 1 +0,058 | -0,01C | =0,012 | =1,267 | -1.,27 | -0.46 | -0.28
0,72 | +0,062 | +0.003 | =0,010 | =1.303 | ~1.,27 | =046 | ~0,29
0,732 | +0.066 | +0.010 | 0,000 | ~1,339| -1.27 | 0,46 | -0.29

{ '
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TABLE 2

Body shape for zero pressure coefficient on body in
combination with wedge wing

- L] L] . - - L] L

cNeoRoNoNoNoRoRoRoNe!

e % & @ & 0 ® ¢ 6 e @ & * & v e &

NN MNONON =S =% o e

*

1R (g.0) [L1=B /e=1‘-> 1:-3-(6--’5> 1‘R<e=
. i, 6 i, 3 i,
0.000 0,000 0.000 0.000
0,021 -0,003 0.003 -0.003
0,087 -0.013 0,009 -0.007
0.189 ~0,024 0.018 -0,015
0.316 -0,031 0,031 -0,028
0.466 -0.034 0.0 -0.042
0,635 -0,030 0.056 -0,057
0,821 -0.015 0.065 -0,069
1.018 0,009 0.073 -0,078
1.222 0.043 0.079 -0,086
1.434 0.086 0,084 -0,094
1.656 0.136 0.092 -0.102
1.889 0,197 0.103 -0.111
2.130 0.265 0.117 -0.122
2.378 0.340 0,134 -0.13L
2.633 0.421 0.153 -0.,145
2,89 0,506 0.176 =0.,154
3.160 0.598 0,192 -0, 164
3,430 0.696 0.232 -0.174
34706 0.797 0,267 ~0,182
3,989 0,903 0. 305 -0.189
4,278 1.012 0.348 -0.194
L.57h 1.124 0.396 0,196
4.876 12044 0.445 -0.196
5.182 1.353 0.499 -0.19,4
5.492 1.489 0,557 ~0.,188
5-806 1.619 0.619 "00178
6.125 1.753 0.685 -0.165
6.451 1,892 0.752 -0.149
6.782 2.035 0.323 ~-0.130
7.116 2,179 0.895 -0,108
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TABLE 3

Numerical solution of integral equation obtained
using § = 0.1 and 52 = 0,05

g (x) g (x)

X (510= 0.1) (620= 0.05)
0.00 0.0000 0,0000
0,05 -0.0304
0.10 -0,0615 -0,0615
0.15 -0,0913
0020 —001208 -011208
0.25 -0,1520
0.30 -0.1797 -0.1796
0.35 ~-0.2100
0.40 =0.2379 -0.2380
0.45 =0,2643
0050 “'O. 2923 “Oo 2924
Oo 55 "‘O- 31 83
O. 60 -00 32'&-2}'? "‘O. 314-21-{-
Oo65 "Oc 3673
O;?O -0.3918 -0.3917
oo 75 "Olzl'1 26
0.80 -0.4389 -0.4386
0085 —O.li»61|-0
0,90 -0,4838 -0.4839
0.95 -0.4986
1.00 ~0.5342 ~-0.5337
1;05 -OQ 5583
1.10 -0.5816 -0.5813
1.15 -0.6031
1.20 ~0,6271 -0,6262
1.25 -0.6488
1.30 -0.6722 -0.6716
1 .35 "Oo 6926
1.40 -0.7131 -0.7130
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TABLE 4

Prescribed pressure coefficients at spanwise wing stations

| Po 2 P1 -5
X b =X =05 5 = X:f-x“
0.G0 0.00000 0.00000
0.05 0.04875 0.03359
0.10 0.0950C 0,06364
0.15 0.13875 0.09016
0.20 0.18000 Q11314
0,25 0.21875 0,13258
C.30 0,25500 0, 14849
0.35 0.28875 0. 16087
0.40 0.32000 0.16970
0.45 0.34875 017501
0.50 0.37500 0,17678
0.55 | 0.39675 0.17501
0.60 0.42000 0.16970
0.65 0.43875 0.156087
0.70 0,45500 0.14849
0.75 0.46875 0,13258
0.80 0.48000 011314
0.85 C.48875 0.09016
0.0 | 0.49500 0.06364
0,95 | 0.49875 0.03359
1.00 0. 50000 0. 00000
i ]
TABIE 5

Numerical solution of the first system of integral equations

| g~(x 8o\X)

x 1(51 = 0.1) °(ng2 = 0,09 (51 = 0.4) (52 = 0,05)
0,00 0.,0000 Q,0000 0,0000 0,0000
0.05 -0,0036 0.0529
0.10 | -0.0086 -0.0172 C,1064 0.1149
0.15 -0.0318 0.1769
0,20 | -0.0547 -0,0578 0.2459 0.2496
0.25 -0,0842 0.3223
0.30 | -0,1131 ~0,1225 0.3961 0.4065
0.35 -0,1610 0.4910
0.40 | -0,2067 -0,2127 0.5810 0.5886
0.45 -0,2645 0.6866
0.50 | -0.3182 -0,3286 0.7849 0.7975
0.55 -0, 3959 0.9124
0.60 | ~C.L65L -0.4729 1.0272 1.0378
0.65 ‘0.5551 101675
0.70 | =0.6338 -0, 64714 1.2951 1.3124
0-75 H "0074‘13 101"590
0.80 | -0.8382 ~0.84.96 1.6050 1.6216
0.585 -0. 9591 1.7871
0,90 | ~1.0685 -1.,0838 1.948 | 1.9702
0.95 i -1.2081 l2.1551
1.00 | -1.333% § =~1.3494 2.3362 © 2.3597
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TABLE 6

A s

Numerical solution of the second system of integral equations

. 8,(x) = g,(x) | g (x) = g,(x)
(51 = 0.1) (6, = 0,05)
0,00 0.0000 0.0000
0,05 -0,0253
0.10 -0,0513 -0,0513
0.15 -0.0780
0,20 -0.1055 -0,1055
0.25 -0, 1338
0.30 -0,1630 ~0,1630
0.35 -0.1931
0.40 ~0.2242 ~0.2242
0.45 -0.2561
0.50 -0.2890 -0.2391
0.55 ~0,3231
0.60 -0, 3582 -0, 3582
0065 “0359”-‘4
0070 -01}4-3'15 "'Ool{-316
0.75 . ~-0.4701
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0.85 -0, 5504
0.90 -0.5917 -0.5919
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1,00 | -0.6788 -0.6791
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FIG. | GENERAL ARRANGEMENT.

FIG.2 RECTANGULAR WEDGE WING-CIRCULAR
CYLINDRICAL BODY COMBINATION.
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FIG.3 PRESSURE COEFFICIENT ON THE BODY
DUE TO THE WING ALONE.
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FIG.4 BODY SHAPE FOR ZERO PRESSURE COEFFICIENT
ON BODY IN COMBINATION WITH WEDGE WING.
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FIG. 5 (aeb) APPROXIMATE PRESSURES ON
CYLINDRICAL BODY IN COMBINATION WITH
WEDGE WING.
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FIG. 7 (a -¢) COMBINATIONS WITH
ANTISYMMETRIC BODY SHAPING.
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