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SUMMARY
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distributions over delta wings with rhombic cross sections. A DEUCE
programne has been written for the calculation and some of the results
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1 INTRODUCTION

To evaluate the pressure distribution over the surface of a thin wing
at zero lift in a supersonic stream it is usual to make such assumptions
anent the thickness of the wing and the Mach number of the stream as allow
the potential equation to be linearised together <writh the boundary conditions
that govern its solution., Under these assumptions the pressure is also
linearised and may be expressed in the form of a double integral. The ease
with which this expression can be evaluated depends on the planform of the
wing and its thickness distribution, For a few wings of simple geometry at
least one integration can be done analytically, but in general numerical
methods are needed and these are complicated by the singular nature of the
integrand.

If, hovever the wing is not only thin but sufficiently slender in plan-
form the expression for the pressure can be reduced to a form which is far
more amenable to both analytical and numerical evaluation, To take advantage
of this, however, some assessment is needed of the extent to which the extra
assumption of slenderness is valid; some comparison of the pressure distri-
butions produced by slender thin wing theory with those produced by thin wing
theory is required.

In the 8 £t tunnel at Bedford, a series of tests is in progress on a
feamily of wings which have delta planforms, rhombic cross sections and sextic
ares distributions. Pressure distributions have been obtained at several
}Mach numbers for each wing tested. At Bedford too the corresponding slender
thin wing theory pressure distributions have been computed. The thin wing
theory pressure distributions have been computed at Farmborough using a
programme written for DEUCE,

The purpose of this note is simply to present a few of the thin wing
theory results in a form vhich makes simple the calculation of pressure
distributions for other wings of the same family, and to use the results to
show how the pressure distributions of slender thin wing theoary compare with
those of thin wing theory for such wings.

2 CALCULATION OF Cp BY THIN WING THEORY

. Consider a thin pointed wing at zero 1lift in a supersonic stream which
is uniform ahead of the disturbance caused by the wing., Let viscosity and
he.:at corduction be neglected. Choose co-ordinate axes Oxyz as shown in Fig.1,
with 'E:he origin at the apex, Ox along the centre line and Oxy in the plane of
the wing. Let the wing be symmetrical asbout the xy plane and let the function
z(x,y) define its upper surface, Let Vo’ Mo be the velocity and Mach number
of the uniform stream and let Mo2 -1 = B2,

By the linearised theory of thin wings the perturbation velocity
potential ¢ at the point x,y,z is

v
Hxyyys) = - =2 [[elkyt) dx! ay!
X,y n ././ ox \/(x_x')z - Bz(y-y')z - 3222 1)

where the integration is over that part of the wing for which

/ 2
x=x'>B /(y=y")* + 2%, This expression is the solution of a linearised partial

differential equation with linearised boundary conditions. The assumptions
implicit in its derivation are:
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(1) The local thickness of the wing is small compared with the local span
and chord and all tangent planes to the surface are inclined to the uniform
stream at angles that are small and not rapidly changing.

(2) The Mach number of the uniform stream is not too near unity nor too
large, ’

The pressure distribution on the wing surface to the same linear
approximation is

Cpl59) = =5 52 (s0) (2)

so the expression we wish to evaluate is

o (ry) = 2L [[ey) oo ap (3)
’ =] Viaext) 2= 62 (-3 1)°

where the integration is over that part of the wing for which x-x!' > ﬂlyﬁy'i.

For a wing with delta planform of unit length and semi span s, and with

rhombic cross sections
2(x,y) = z(x,o)(’l-l'Y-L) , ()

8X
and ‘
g; z(x,y) = g(x) + 'Lg-h(X) ) (5)
where
g(x) = % al(x0), n(x) = - E2E (6)

Whatever the shape of the centre section z(x,0) thc integration with respect
to y' can be done analytically giving

,[aZ(X:‘Y‘) oA - 2 R ) - Pyt
ox / N2 2, N2 8%
J(x=x')" - 8°(y=y")

- %(g(x') + % n{x*)) sin”] =y

x=-x!

+ an arbitrary function of x!'

(7)

the upper sign belng required when y' > O and the lower when y'< 0O,
By looking at PMig.2, which represents a delta wing with a pair of Mach

1%nes)d€fining the area of integration, we can see that for any function
fix,y



/] f(x!yt)dx'dy! over that part of the wing for which x-x!' ply~y'l

. 3 2
x-By 0 e X e
=/ d:c'<[ f(x,'y')dy'*[ f(x,'y'>dy'>+[ dX'f £(xy')ay?
-x! ct
x'=0 y‘:yux X yt=0 xX*=x~pfy y! :y-—-w--—---xB
x~By et x+8y X-x'
1+Bs X 1+Bs r* B
- Gx’/ f(x,‘y‘)dy‘~[ dX'f £(x)y*)ay! (8)
N
=N y! =y XBX xt=0 yl=sx'

If we allow (4) to define the function z(x,y) both on and off the wing we can
use (7) and (8) to write

x-By

n(x') o, \2 522 2yh(x') . ~ '
- 3 4,0 = | <_B-g£-l st g% s 320D i 2L o 28) e
xt =0
X
+/ %(g(X‘)+'§-h(X')>wdx'
xt = x~By

1 '
[ +Bs(’-i£l Sixex1)2 - 2 (yaoxt)?

- %@(y) ~§h<x'>)<sin"‘* yeox! ..zzs»ax
xeBy

f”ﬁs (—f-’f—l Somt)? = g2 (ynoxt)?

xt =0
-'Zg(g (=") +-§h( )><€»1n ;__;s,x' ~%>>d.x‘
(9)

Since the limits in (9) are all continuous functions of X, as are also
the integrands and their derivatives between those limits, we may differentiate
the integrals with respect to x and cobtain



™

=Py PRI
= Zé(g (x) +§-h(x)> + f 2h§x‘) ‘/(x"cx_x"'ﬁl_ ax!
B7s
x'=0
x=By
1+8s '
- !
_/ (hi;zc!) , X=X +<g(x‘)-—§h(x‘) __JtsX — \ax!
, |
Do B S 2t ey (e W ) 2p2(y 3+ 501)
x

_/” Bs(h(x') x-x é+<g(x')+§h(x'> ~y+sx! 2>dxs

2 f
w0 P8 (xmxt)2op? (ayrex ) (') () P32 (=yesx")

(10)

These last two integrands bcecome infinite at their upper limits in the
same way as | /Vx when x » O, In order to evaluatec then numerically therefore
we sulit the range of integretion and introduce a transformation to remove
the iwfinity, Writing, for cxample,

g
1+PBs ( ‘) ‘ / > '

S = {e(x)-L n(x) TEX e ax?
X/~=o B% | (:x-x'>‘°~-c32<y+sx'>2+K (sem "W (s0m 1) 22 (v )2

x=ty/ 8,

1+%
=[ (h(;;l) ’ x=-x! — g(x‘)—%h(X')> ; y+sx! !
D120 N P70 ex ) g2 () ? (m' W (=ic") 2P (a5 )

(.'Y/ +x) /
= +lg(xt)~ & n(x! b Vav .
> \g( )~ = n( )> )d 11)

+ A h(x!) e
f (3( j1—v2(ﬁs+/‘l -v2) Bs+f1—:-v2

/1 2
where t is an arbitrary constant in the range Bs < % < x/g and x! = Z31=V =fy

\/1--V2+BS |



If we treat the other singular integral in the same way, splitting the range at

2
x' = _}&F_L_Xé% and weiting x! = }-f:ﬂ;ﬂ, and also simplify the first integral
- 1=wet+Ps

by writing x!' = X—-\/u2+£32y2 we obtairn finally

5 ¢, (%) _
g2

h(x! u au

=5 (B p(x) )+ / 2y 2R

X-—‘bxfs =0

] 1/+‘t (h(;cf) Kmx ! “_;+r/g(x’)--xh(x')> v+5x? \dx’

8% 2_g° 2 ° [ (e 2
x!'=0 (=) "=p" (ysx!) (x=x' N (x-x')"= B (y +sx")
x+ty/s
1+t

- [ + h(32C') X-x! +<g(x')+§h(x')\, ~y+5%! >dx
;Uzo e \/(X'-X')Z—Bz(—y"LSX')Z /(X‘X’)&/(X-X')2~52('Y+sx‘>2

../' %h(x’) mEy/8+X> N <g(xg)__ls_h(xt)> -———1--_:>dv
_ \/1—v2(;38+\/1 -vz)2 Bs + T
v=0
22,2
\/1-—6 s“/t
L (—y/S+X) / v R
- E\h(x | — — +kg(x')+s h(x') dus (12)
WJ__: 0 ) J1—v¢2 (8 s+ \Vi-vf )a : /Bs +V 1-w2)
where x!' = x - \/112 452y2
iy
\/1-V2+Bs
sy

) \/1-‘»’12_ +Ps

and t is an arbitrary constant in the range 8s < % <x/%’-. By choosing t so
that none of the integrands become too large at their limits the expression
for C,(x,y) in this form can be evaluated quite simply using standard formulae
for integration,

There now exists a DEUCI programme to do this, which leaves open the
choice of function z(x,0) from which g(x) and h(x) derive., There is freedom
also in the choice of the constant t, but a value of 1 was found to be
suitable for all calculations so far, The programme uses weddle's rule over
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30 steps (or any nmultiple of 50), which expresses an integral as a weighted
sum of equally spaced function values,’ Thus we have the means of calcula-
ting the pressure distribution over any wing of delta planform, rhombic

cross sections and arbitrary centre section shape z(x,o) at supersonic speeds,
according to the linearised theory of thin wings,

3 WINGS WITH SEXTIC AREA DISTRIBUTIONS

The cross sectional area S(x) of a wing with delta planform of unit
length and semi span s, and with rhombic cross sections is

8(x) = 2sxz(x,0) , 0O <x <1 (13)

S(x; may therefore be used instead of z(x,0) to define the functions g(x) and
h(x) which appear in equation (12) for Cpe From (6)

. 12 8(x) _ o_ L3 s(x)
g(x) T 8 0X 2x ’ h(x) - s 8X 2x2 (14)

The wings chosen for the series of tests in the 8 ft tunnel at Bedford
are members of the family having area distributions of the form

S(x) = x2(1 - x)(A + Bx + Cx° 4 DXB) (15)

Four simple nmembers of this family are

S1(x) = x2(1-x),
5,(x) = x(1x),
5,(0) = x(1%),
5,00 = (1), (16)

I the pressures corresponding to thesc wings are Cp1, sz, ij, 094 then

the pressure on the general wing of the family is

C = AC_ +BC_ +CC_ +DC (17)
P P, Py Pz B,

From (14) and the form of cquation (12) for Cp

given S(x), Cp is a function of x, y/s and Bs only. If therefore we use
DEUCE to work out these four elementary pressure distributions for a range of
Bs we have the pressure distribution over any wing of the family for a
corresponding range of Mach number by simply adding together appropriate
multiples of the DEUCE results., As an illustration Tables 1 and 2 give the
four elementary pressure distributions for Bs = 0,416 and 0.577 along

y/s = 0.05 and 0,575. From these we can deduce the pressure distributions
along the same chords for each of the wings in the Bedford tests at two Mach
numbers, For those wings which have s = 1/3 these Mach numbers are 1.6 and
2,0

we cen see that for any



There are three types of wing involved in the tests; they are wings
I, IT and V of references 2, 3% and I, The area distributions which define
them are

I S(x) = 0,12 x2(1-x)
I S(x) = 0.3 x2(1-x)2
and Vo 8(x) = 0,07 x2(1-x) (h-6xthx*-x")

which is known as the "Lord V" area distribution, The extent of the
computations has been governed by the requirements of the tunnel tests which
have dictated both the Mach numbers to be considered and the distribution of
points over each wing, These theoretical results were primarily intended to
help in the analysis of the tunnel results, They are also given at the end
of this note in order to form some comparison between the thin wing theory
from which they derive and the results of slender thin wing theory,

L DISCUSSION

Figs, 3, 4 and 5 show the pressure distributions of thin wing theory and
slender thin wing theory [lor each of the three wings urder consideration,
The calculations stop short of the leading edge since the thin wing
assumptions are not valid there and both theories give logarithmic infinities,
A technique for circumventing this difficulty has been devised by Randalld,
At the trailing edge theory predicts a gradual compression without shocks;
the physical interpretation of this result has been discussed by eber2,

The values of the slenderness paramecter Bs are rather too high to be
realistic; not only is the slenderness assumption violated but thin wing
theory itself becomes suspect as fs aporoaches 1, But they serve to illus-
trate the nature of the discrepancies between the two theories,

All three wings illustrate how the pressures of slender thin wing
theory approximate more closely to thosc of thin wing theory as Ps decreases,
On wings I and V slender theory gives smaller suctions towards the trailing
edge and hence lower drag but on wing II the situation is reversed, This
agrees with the results of reference 4 (in Pigs.7,8 and 9) which considers
the variation of drag with Bs.

At all values of fBs agreement is better for wing V than it is for the
other wings with their larger expansions and compressions, Such a wing,
without large pressure gradients, is also favourable to boundary layer
development so that the predictions of these inviscid theories are likely to
be fulfilled in real flow,

LIST OF SYMBOLS

Cp(x,y) pressure coefficient at the point x,y
g(x) = &= 2(x,0)

n(x) - _ %E Z z o

Mb Mach number of the uniform stream

8 semi span of a delta wing of unit length
S(x) cross sectional area at the point x
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LIST OF SYMBOL3 (Contc,)

t arbitrary constant in the range Ps < t < x/%&

V velocity of the unifiorm strean
2 22
u =\/(X—X') By ]
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J(X-x')z-ﬁz(y+sx')%/(x-x') ' transformations used in
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i

integration
w :\/(x—x')2~62(-y+sx')%/(x—x') |
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LIST OF REFERENJES

Ref, No, Author Titls, etn.
1 - Interpolation and allied tables., P, 70
H.,M.S.0. 1956
2 Lord, W.T. Supersonic flow past narrow wings with
Brebner, G.G. ‘similar' cross sections at zero 1lift,
Unpublished 1, 0,A, Repart,
3 Weber, J. Slender delta wings with sharp edges at zero
1ift.
ARC 19543,
lay, 1957.
4 Weber, J. Some notes about the zero 1lif't wave drag of
slender wings with unswept trailing edge.
Urpublished M.0.A. Report.
5 Randall, D.G, An improvement of the velocity distribution

predicted by linear theory for wings with
straight subsonic leading edges.,
ARG CP No.418

Septemder, 1958,

10~



TABLE 1
Bs = 0,416 (s = 1/3, ¥, = 146)

] C C
¥/s x o - ij

0. 05 O 1 0e 901 0,218 0, 035 0. 005
0.2 0.560 0351 0.125 0, 037
0e3 0,282 0392 0, 228 0.105
Ocli | 0,012 | Qo341 | 0,303 | 0,196
05 | =0s255 0.198 0. 311 0.275
0e6 | =0e522 | =0,035 0, 211 0. 289
07 | =0e788 | =0e359 | =0,035 0.160
oo 8 -1 . 0524- =0y 7724- =0 11-69 ~0s 209
0e9 | =319 | 1,280 | 14128 | ~0,937
1 +0 -1 . 585 -1 . 876 -2 053 -2 1 63

0u575 | 0s6 | 0,284 | 0,463 | 0,393 | 04279
Ce7 ~0,321 ! 0,106 0. 257 0.278
Oo 8 “0. 71 1 “Oo 280 "‘0. 020 Oo 1 20
0a9 | ~1a047 | ~0.753 | =0,509 | -0a32l
1.0 ! =1 4360 ~16320 | =1,252 ~-1¢188

TABLE 2

Bs = 0,577 (s = 1/3, N = 2,0)

¥/s x cp1 %, czp3 cp4

0605 | Out | 0,778 | 0.178 | 0,027 | 0,004
0s 2 06 184 0s 291 0,101 0. 029
0s 3 0. 253 0. 328 0,185 0. 083
Osk | 0p 031 0290 | Qo249 : 0.157
0s5 | =0.188 00180 0, 260 0. 223
O. 6 "'O. l}. 07 "‘O. OOL[- 0. 1 87 Oc 211-0
OQ ? “‘O. 625 “"On 260 "'O. 001 0- 147
0e8 | ~0s8L42 | ~0s590 | =0s336 | =0a131
O, 9 -1 . 060 =0y 993 =04 82-'—9 "'Oo 686
1. 0 -1 278 -~} .469 ~1e 571 et 628

0.575 | 0.6 0u i3 Ou 6L, 0331 0,213
0a7 | =0s1ldy 0,169 0. 238 0. 223
X Oo8 ~C, Ll-93 ~0a 1 32 Oe OL!-5 Os1 21'-
| 0e9 | =0s785 | =0s503 | =0s314 | =0,184
i 1 » 0 -4 3 051 “‘O. 9}-(—8 "'O. 865 : —0. 809

#Ie2078.C4Pa525.K3. Printed in fngland,






FIG.2 DELTA PLANFORM WITH MACH LINES
SHOWING AREA OF INTEGRATION
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