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1 INTRODTJCTION 

. 

To evaluate the pressure distribution over the surface of a thinsTing 
at zero lift in a supersonic stream it is usual to make such assumptions 
anent the thickness of the wing and the M!ch number of the stream as allow 
the potential equation to be linearised together zith the boundary conditions 
that govern its solution. Under these assumptions the pressure is also 
linearised and may be expressed in the form of a double integral. The ease 
with which this expression can be evaluated depends on the planform of the 
3&g and its thickness distribution. For a fez- *&ngs of simple geometry at 
least one integration can be done analytically, but in general numerical 
methods are needed and these are complicated by the singular nature of the 
integrand. 

If, hwever the wing is not only thin but sufficiently slender in plan- 
form the expression for the pressure can be reduced to a form t.hich is far 
more amenable to both analytical and numerical evaluation. To t&e advantage 
of this, however, some assessment is needed of the extent to which the extra 
assumption of slenderness is valid; some comparison of the pressure distri- 
butions produced by slender thin wing theory with those produced by thin wing 
theory is required. 

In the 8 ft tunnel at Bedford, a series of tests is in progress on a 
family of wings which have delta planforms, rhombic cross sections and sextic 
area distributions. Pressure distributions have been obtained at several 
Kach numbers for each wing tested. At Bedford too the corresponding slender 
thin wing theory pressure distributions have been computed. The thin Wi.ng 
theory pressure distributions have been computed at Farnborough using a 
programme written for DEUCE. 

The purpose of this note is simply to present a few of the thin wing 
theory results in a form which makes simple the calculation of pressure 
distributions for other wings of the same family, and to use the results to 
show how the pressure distributions of slender thin wing theory compare with 
those of thin wing theory for such wings. 

2 CALCULATION OF C- BY THIN 'ZING THEORY 

Consider a thin pointed wing at zero lift in a supersonic stream which 
is uniform ahead of the disturbance caused by the wing. Let viscosity and 
heat conduction be neglected. Choose oo-ordinate axes Oxyz as shown in Fig-l, 
with the origSn at the apex, Ox along the centre line and Oxy in the plane of 
the wing. Let the wing be symmetrical about the xy plane and let the function 
z(x,y) define its upper surface. Let Vo, Ivio be the velocity and P&oh number 
of the uniform stream and let M2 - 1 = p. 

0 

By the line‘orised theory of thin wings the perturbation velocity 
potential $ at the point x,y,z is 

dx' dyt 

- P2(y-yt )2 - P2z2 
(1) 

where the integration is over that part of the wing for which 

x-xi >P &y-yq2 $ z2. This expression is the solution of a linearised partial 
differential equation with linearised boundary conditions. The assumptions 
implicit in its derivation are: 
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(1) The local thickness of the wing is small compared with the local span 
and chord and all tangent planes to the surface are inclined to the uniform 
stream at angles that are small and not rapidly changing. 

(2) The Mach number of the uniform stream is not too near unity nor too 
large. 

The pressure distribution on the wing surface to the same linear 
approximation is 

CJX,Y) = - +- $ (X,Y,O) 
0 

so the expression we wish to evaluate is 

dx' ?iv'_ 

(x-x') 2- P2(Y-Yt12 

(2) 

(3) 

where the integration is over that part of the wing for which x-x' > ply-y']. 

For a wing with delta planform of unit length and semi span s, and with 
rhombic cross sections 

lid Z(X,Y> = bd-l-sx 9 
( > 

and 

’ & &Y) = g(x) + s h(x) , lid 

where 

g(x) = $ &,o) , h(x) = 

04 

Whatever the shape of the centre section z(x,o) the integration with respect 
to y' can be done analytically giving 

a&y1 dy t 
bX’ 

ZZ 

\ (x-xq2 - P2(Y-Y 'I2 

7 y- &xq2 - p2(y.-yq2 

- $(g(xl) 2 $ h(x')) sin-' 

-t an arbitrary function of 

the upper sign being required when y' > 0 and the lower when y'< 0. 

of Mach By looking at Fig.2, which represents a delta wing with a pair 
lines defining the area of integration, 
f b&Y) 

we can see that for any function 

e(.v-y’ 
x-x ’ 

x’ (7) 

. 

(6) 



/I ' f(xJy')dx'dy' over that part of the wing for which x-x! > @Iy-y'I 

x-PY 

I 

* 
= dx’ 

X’ =O 

/ - t 

i 

y~x~~(x:y*)dy~+ / q+Ff(x:y 

y' = 0 X1 = x-py y' =y-y 

‘h’ 

If we allow (4) to define the function z(x,y) both on and off the wing we can 
use (7) and (8) to write 

dx' 

i g(x')+t h(xl) 
> 

71. dx' 

. 

X’ so 

-; h(x') 
x 

sin-' ,E.kECl,z 
x-x ' 2 

&t 

g (x’) + f h(x’) 
>( 

sin 

Since the limits in (9) are all continuous functions of x, as are also 
the integrands and their derivatives between those limits, we may differentiate 
the integrals with respect to x and obtain 
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-i” Cp(x’Y) 

---- --- 

= $ g(x) +$h(x) 

ii!LI& l+p 
h(x') x-x' _ 

-I ( P2S 
/ 

x)=0 Li' 

y+sq - dx! 
3 (x-x')/r(x-x')2-p2(y + sx') 

. 

u,,,L;7& 
r 3 

dx' ---. 

(x-x'>/ (x-x' )2-p2(-y+sx') 

These last two inkgrands become infinite at their upper limits in the 
same way as '/ti when x + 0. In order to evaluate them numerically therefore 
v:e s?Lit the range of intqgetio;i and introduce a transformation to remove 
the LtiTinity. Writing, for example, 

x-c.---,, / 
I 

g-(x+$ - 

= --_ 
XL(-) g2s j(x-x')2-f32(y+sx')2 

__t: dx' 
3 

where t is an arbitrary constant in the range fis < t < e and x* = x 
m+ps ' 
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If we treat the other singular integral in the same way, splitting the range at 

*I $GiYk x ,-w2+& r- 
1+t and writing X' = _.. -i and also simplify the first integral 

by writing x1 = x-\u2+P2y2 we obtain finally I 
J I-w&+;?S' 

p Cp(X’Y) 
* 

d T 
J----- 

‘\ 
x2-p2y2 

= yj+ jp(x)+;h(x) + 
/ s 

211(x') 
2 

P s 

u2du 
2 ,2 2 

u -+I> Y 
u=o 

ty/s x+ 
/ 
i 

\ g(x')+$h(x ') 1 -ytsx' b24 
'(x-x' (-ytsx') 2/ 

+ 
. 

J I- p2s2/t2 

r A/ 
- I 

J 
p\"(d) -- 

(-Y,,+x) / 

\ 
w= 0 J l-VT2 (p s-l- l-w ) iI--- 

2-2 +pw+ 

' 
(12) 

where x' = x - J u2G2y2 

x J-- = I -v"-,py 

I 
-- 

\ I-v2tps 

and t is an arbitrary constant in the range ,Bs < t <x/g. By choosing t so 
that none of the integrands become too large at their limits the expression 
for C (x,y) in this form can be evaluated quite 
for igtegration. 

simply using standard formulae 

There now exists a DETJCZ programme to do this, which leaves open the 
choice of function 2(x,0) from which g(x) and h(x) derive, There is freedom 
also in the choice of the constant t, but a value of 1 was found to be 
suitable for all calculations so far. The programme uses tireddle's rule over 
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30 steps (or any multiple of 30), which expresses an integral as a weighted 
sum of equally spaced function values.' Thus we have the means of caloula- 
ting the pressure distribution over any wing of delta planform, rhombic 
cross sections and arbitrary centre section shape z(x,o) at supersonic speeds, 
according to the linearised theory of thin wings, 

3 KINGS VJIT!3 SEXTIC AREA DISTRIBUTIONS 

The cross sectional area S(x) of a wing with delta planform of unit 
length and semi span s, and with rhombic cross sections is 

s(x) = 2sxz(x,o) ) 0 s x d I (13) 

S(x 
h(x 

may therefore be used instead of 2(x,0) to define the functions g(x) and 
which appear in equation (12) for Cp, From (6) 

is(x) = Ids& 
=xFzx ' h(x) = ,sLti 

s ax 2x2 
04) 

The wings chosen for the series of tests in the 8 f-t tunnel at Bedford 
are members of the family having area distributions of the form 

S(x) = x2(, - x)(k -I- Bx +'Cx2 -I- Dx3) (15) 

Four simple members of this family are 

s, w = x2(1-x>, 

s*(x) = x3(1-x>, 

sp = xlyl-x), 

s)+(x) = x5(1-x). (46) 

If the pressures corresponding to thesc wings are CPl, C p29 

the pressure on the general wing of the family is 
Cp3’ c&+ l&x-l 

C = AC +BC + CC +DC 
P PI P2 "3 P4 

(17) 

From (14) and the form of equation (12) for Cp we can see that for any 
given S(x), Cp is a function of x, y/s and ps only. If therefore we use 
DEUCE to work out these four elementary pressure distributions for a range of 
@s %e have the pressure distribution over any wing of the family for a 
corresponding range of Kach number by simply adding togother appropriate 
multiples of the DEUCE results. As an illustration Tables I and 2 give the 
four elementary pressure distributions for @s = 0.416 and 0.577 along 
Y/S = 0.05 and 0.575. From these we can deduce the pressure distributions 
along the same chords for each of the wings in the Bedford tests at two Mich 
numbers. For those wings which have s = l/3 these %ach numbers are I .6 and 
2.0 

. 
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. 

There are three types of wing involved in the tests; they are wings 
I, II and V of references 2, 3 and ,!+, The area distributions which define 
them are 

I s(x) = 0.12 x2(,-x) 

II SW = 0.3 x2(1-x)2 

and V s(x) = 0.07 x2(,-x)(&.6x+&x2-x3) 

which is known as the "Lord VI' area distribution. The extent of the 
computations has been governed by the requirements of the tunnel tests which 
have dictated both the Mach numbers to be considered and the distribution of 
points over each wing, Tkiese theoretical results were primarily intended to 
help in the analysis of the tunnel results. They are also given at the end 
of this note in order to form some comparison between the thin wing theory 
from which they derive and the results of slender thin wing theory. 

4 DISCUSSIOM 

Figs,J, 4 and 5 show the pressure distributions of thin wing theory and 
slender thin wing theory for each of the three wings under consideration. 
The calculations stop short of the leading edge since the thin wing 
assumptions are not valid there and both theories give logarithmic infinities. 
A technique for circumventing this difficulty has been devised by Randalls. 
At the trailing edge theory predicts a gradual compression without shocks; 
the physical interpretation of this result has been discussed by iJeber3. 

The values of the slenderness parameter /3s are rather too high to be 
realistic; not only is the slenderness assumption violated but thin wing 
theory itself becomes suspect as Ps approaches I. But they serve to illus- 
trate the nature of the discrepancies between the two theories. 

Al.1 three wings illustrate how the pressures of slender thin wing 
theory approximate more closely to those of thin wing theory as Ps decreases. 
On wings I and V slender theory gives smaller suctions towards the trailing 
edge and hence lower drag but on wing II the situation is reversed. This 
agrees with the results of reference 4 (in Figs.7,8 and 9) which considers 
the variation of drag with @s. 

At all values of 0s agreement is better for wing V than it is for the 
other wings with their larger expansions and compressions. 
without large pressure gradients, 

Such a wing, 
is also favourable to boundary layer 

development so that the predictions of these inviscid theories are likely to 
be fulfilled in real flow. 
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