**C.P. No. 517** { 22,103 } A.R.C. Technical Report



C.P. No. 517 (22,103) A.R.C. Technical Report



# MINISTRY OF AVIATION AERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

# Wind Tunnel Experiments on a Model of a Tandem Rotor Helicopter

By

A.S. Halliday, Ph.D., B.Sc., D.I.C., and Miss D.K. Cox, B.Sc., of the Aerodynamics Division, N.P.L.

LONDON: HER MAJESTY'S STATIONERY OFFICE

1961

PRICE 10s 6d NET

Wind Tunnel Experiments on a Model of a Tandem Rotor Helicopter - By -A. S. Halliday, Ph.D., B.Sc., D.I.C., and Miss D. H. Cox, B.Sc. of the Aerodynamics Division, N.P.L.

July, 1960

#### 1. Introduction

At the time of the initiation of the present tests little or no research had been done in this country on helicopter models, other than on single rotors at the R.A.F. A programme of research on a twin rotor helicopter was therefore suggested to be carried out at the N.P.L.

The main feature of the research was to be the investigation , of mutual interference; the front rotor to be fixed in position relative to the body whilst the rear one could be varied in height as well as in distance from the front one. The angle of the axis of the rear rotor could also be varied in a fore and aft direction.

The present report gives the results of the experiments described in A.R.C.19,829<sup>1</sup> after the effect of flapping hinge offset has been taken into account using the method given in report A.R.C.20,561<sup>2</sup>.

#### 2.1 Description of model and measuring equipment

The tests on a model of a twin-rotor helicopter were made in one of the 9'  $\times$  7' wind tunnels at the N.P.L.; a photograph of the model viewed from the rear is shown in Fig.1.

The rotors were driven by two squirrel-cage induction motors, coupled together in tandem and each capable of developing about 3 h.p. The motors were fed from a variable frequency set and the motor speed was controlled by varying the frequency of the supply current. Fig.2 shows the arrangement for driving the rotors through bevel gears. Rotational speed was measured by means of a Maxwell Bridge circuit operated by a contact breaker driven by the main motor shaft. The bridge circuit was calibrated by timing a flashing lamp also operated by a contact from the motor shaft via a 50:1 worm reduction gear.

The rotors were driven in opposite directions at three-fifths of the motor speed and provision was made in the coupling of the two motors to alter the relative angular positions of the rotor shafts so that there was accurate intermeshing of the rotor blades. As the primary object of the experiments was to determine the interaction of one rotor on the other it was essential that their relative positions could be altered. The front rotor was fixed in position but the rear rotor position could be varied to give three different distances from the front rotor  $L_4 = 3'-2"$ ,  $L_2 = 3'-7"$  and  $L_3 = 4'-3\frac{1}{2}"$ . The height, H, could clso be varied to give the same height as the front one  $(H_4)$  and also increased by 5" or 8",  $H_2$  and  $H_3$  respectively. The shaft angle, A, of the rear rotor could be altered by approximately 4° and 8° in a fore and aft direction. All these variations are indicated in Fig. 3.

#### 2.2 Rotors

The three-bladed rotors were 4'-3'' diameter and identical in construction. The blades were untwisted, 1.5" constant chord of NACA 0012 section and effective length 19". Due to the high stresses

involved/

involved the hub was relatively large compared to full scale. Details can be seen in the photograph, Fig. 4.

During the early part of the tests the rotors were run at 1,800 r.p.m., at which speed the radial acceleration was approximately 2,350 g, resulting in very high forces at the hub. The blades were provided with both flapping and drag hinges, the former being freely mounted on ball races and the latter having adjustable cork friction dampers. The blades were found to vary slightly in weight so provision was made for final balancing by means of small adjustable weights on screwed rods radiating from the hubs between the blades. These can be seen in the photograph, Fig.4.

In order to avoid the possibility of resonance it was at first thought advisable to run the rotors with drag hinges locked. Eventually however fatigue cracks were noticed in the roots of two of the blades and it was suspected that the lack of freedom in the drag hinges was the possible cause. Later, after new blades had been fitted, it was thought better to run with drag hinges free and so reduce root stresses, experience having shown that the possibility of resonance was small. As a further precaution, to eliminate fatigue failure, the new blades of a modified design were run at a reduced top speed of 1200 r.p.m. This question of blade fatigue is more fully discussed in the Appendix.

#### 2.3 Equipment for m asuring tracking of blades and flapping angle

The front rotor carried a commutator with a single brass segment contacting four carbon brushes mounted on a ring attached to the front rotor spindle housing. Three of these brushes were approximately 120° apart and the fourth diametrically opposite to one of the three. The brush contacts were used to trigger off a stroboscope lamp illuminating the blades whilst rotating. The three contacts at approximately 120° spacings were set so that, with all three in circuit together, they were successively out of phase by about one chord length when the ends of the rotor blades were observed. By this method it could be seen if the blades were tracking correctly.

The two diametrically opposed contacts were used to facilitate the observation of flapping angles. Each contact had a switch in circuit and the timing adjusted so that the stroboscope flashed when a particular blade was parallel to the longitudinal body axis either in a fore or aft direction. The height of the blade tips in each position was measured by means of a travelling periscope projecting vertically downwards into the tunnel. The difference in height of the blade tips in these two positions gave a measure of flapping angle. The periscope was of the type used on midget submarines. The stroboscope lamp was mounted on gimbals and the direction of the light, shining through a thick perspex window, could be adjusted by the observer to illuminate the particular blade tip under observation. It was estimated that the accuracy of the measurements was of the order of one tenth of a degree. A photograph of the head of the periscope is shown in Fig.6 from which can be seen one of the two vertical slides behind which is the measuring scale.

As the periscope weighed about 60 lb it had to be counterweighted and the wires carrying these weights, passing over pulleys, can be seen in the photograph.

#### 3. Safety Precautions

Due to the high value of centrifugal force on the rotors and the possibility of instability, resonance, or fatigue, it was thought expedient to protect the personnel by reinforcing the tunnel inside with sheet steel and outside with shutters. These shutters were of sandwich construction comprised of blocks of paper between  $\frac{1}{4}$ " thick plywood, totalling about two inches in thickness.

To minimise the possibility of stopping the rotors before the tunnel and thereby losing the stabilising effect of centrifugal force on the blades, an interlock was incorporated in the electrical circuits, with a time delay of about a quarter of a minute, to ensure that the rotors attained a reasonable speed before starting the tunnel and also that the tunnel speed had dropped sufficiently on shutting down. As the electrical supplies to the 'unnel and rotors were separate there remained the danger arising from a failure of the current to the rotors but as that was thought to be very improbable, no attempt was made to cover that eventuality.

#### 4. Method and Scope of Experiments

The model was suspended from the main roof balance by two struts spaced  $22\frac{1}{2}$ " apart. These struts carried at their ends a spindle mounted on ball races, passing through and fixed to the helicopter body  $29\frac{1}{2}$ " from the nose. This spindle being freely mounted acted as a pitching axis. A further support was provided towards the rear of the body, using a pair of V-wires attached to an overhead split-beam balance, see Fig.2. These wires were adjustable by means of a windlass carried on the balance, so that the attitude of the model could be varied.

The earlier tests were made at 1800 r.p.m. giving a tip speed of about 400 ft/sec. Later the speed was reduced to 1200 r.p.m. and a tip speed of 267 ft/sec. Lift, drag, and pitching moments were measured at wind speeds of 40, 80, 120, 160 and 180 ft/sec for the tests at a rotor speed of 1800 r.p.m. giving approximate values of tip-speed ratio,  $\mu$ , of 0.1, 0.2, 0.3, 0.4 and 0.45. When the rotor speed was reduced to 1200 r.p.m. the wind speeds used were 25, 55, 80, 100 and 120 ft/sec giving values of  $\mu = 0.094$ , 0.206, 0.300, 0.374 and 0.449 respectively.

Measurements were made for blade angles,  $\theta$ , of  $4^{\circ}$ ,  $8^{\circ}$  and  $12^{\circ}$ . The angles were set by a worm and wheel at the blade roots using a surface table and scribing blocks to measure the difference in heights at leading and trailing edges.

Flapping angles were also measured by the method described in para. 2.3.

Although it would have been desirable to make measurements at very low values of  $\mu$ , less than 0.1, difficulty was experienced due to the flow induced by the rotors themselves, especially at the higher body angles. For example, without the tunnel motor running, a vane anemometer indicated a wind speed of about 15 ft/sec at  $\theta = 8^{\circ}$  and  $\theta = 20^{\circ}$ . As the flow was unreliable these tests were abandoned.

Table 1 gives a summary of all the tests on the various rotor combinations together with references to the tables giving the results.

#### 5. Corrections

The tunnel measurements were converted to the coefficients  $C_{\rm T}$  and  $C_{\rm m}$  where  $C_{\rm T}$  is the coefficient of the force normal to the longitudinal axis of the helicopter and  $C_{\rm m}$  is the pitching moment coefficient about the axis shown in Fig. 3.<sup>M</sup> A further correction was made for the forces and moments on the body and rig, etc., by making the appropriate measurements with rotors removed and substracting from the total. No account is therefore taken of forces due to the interference between rotors and body.

As the final results were to be presented for constant values of tip speed ratio,  $\mu$ , and the wind speeds chosen did not give exact values and also as  $\mu = V \cos \theta / \Omega R$ , where  $\theta$  is the body angle, the correction varied with attitude of the model and so all the results had first to be plotted against  $\mu$  and then the values for  $\mu = 0.1$ , 0.2, 0.3, 0.4 and 0.45 taken from the curves. Corrections had also to be made to  $\theta$  due to tunnel interference and therefore the values corrected for  $\mu$  had then to be plotted against  $\theta$  and values read off at the chosen values of  $\theta$  viz., 0°, 5°, 10°, 15°, 20° and 25°. For convenience  $\theta$  has been taken to be positive with the nose of the model downwards which is opposite to the normal convention.

For the 9'  $\times$  7' wind tunnel the correction to body angle (0) has been taken to be

$$\Delta \theta = 0.111 - C_{\rm L} (\rm{rad})$$

where A is the total rotor disc area C is the cross-sectional area of the wind tunnel, C<sub>I</sub> is the overall lift coefficient based on total disc area. The correction is such that the effective inclination is less than the geometric inclination. It is felt that the above correction is not entirely satisfactory as it is based on fixed wing theory. I' is hoped that at some future time a systematic series of experiments will be made to establish the order of wind tunnel corrections to be applied to helicopter model testing.

The corrections to pitching moment due to flapping hinge offset are included in para. 6.

#### 6. Results

#### 6.1 Effect of flapping hinge offset

In addition to the corrections mentioned in para.5 account had also to be taken of the effect of flapping hinge offset which, due to design difficulties, was of necessity rather large, about 6.275%.

The effect of flapping hinge offset on the characteristics of a rotor is dealt with in a report by Meyer and Falabella3 and the analysis given in that report has been used to estimate the theoretical values of rotor thrust and flapping angles and also the effect on overall pitching moment.

#### 6.2 Thrust coefficient

Assuming uniform distribution of induced velocity and neglecting blade tip losses the theoretical value of  $C_{\rm T}$  is given by equation (38) of Ref.3.

$$C_{\rm T} = \frac{\sigma_{\rm a}}{2} \left\{ \frac{A_{\rm o}}{3} \left[ (1-\xi^3) + \frac{3}{2} \mu^2 (1-\xi) \right] - \frac{\mu B_{\rm 1}}{2} (1-\xi^2) + \frac{\lambda}{2} (1-\xi^2) + \frac{\mu a_{\rm 1}}{2} (\xi-\xi^3) \right\} \dots (1)$$

As there is no cyclic pitch  $B_1 = 0$  and the term involving  $a_1$  is small and may be neglected and therefore approximately

$$C_{T} = \frac{\sigma_{a}}{2} \left\{ \begin{array}{c} A_{o} \\ -\frac{\sigma_{a}}{3} \\ 3 \end{array} \right| \left( 1-\xi^{a} \right) + \frac{3}{2} \mu^{2} \left( 1-\xi \right) \\ 2 \end{array} \right] + \frac{\lambda}{2} \left( 1-\xi^{2} \right) \left\{ 1-\xi^{2} \right\} \cdot \dots \cdot (1a)$$

For zero forward speed where  $\mu = 0$ 

$$C_{T} = \frac{\sigma a}{2} \left( \frac{A}{-\frac{O}{3}} \left( 1 - \xi^{3} \right) + \frac{\lambda}{2} \left( 1 - \xi^{2} \right) \right) \cdot \dots (2)$$
Also/

Also 
$$\lambda = -\sqrt{\frac{C_{\mathrm{T}}}{2}}$$
. ...(3)

- 5 -

In order to determine "a" the slope of the lift curve of the blade section  $C_T$  was required for zero wind speed. As the tunnel was of the return flow type itwas difficult to obtain a true zero wind speed due to the flow induced by the rotors. This was cut down to a minimum by closing the tunnel with a screen, but even so there was a circulation of air in the neighbourhood of the model, particularly at the larger blade angles. It was assumed that at zero tunnel speed the induced circulation at  $\theta_0 = 4^\circ$  would be very small and the measured value of  $C_T = 0.00142$  was inserted in the equations (2) and (3). This gave a value of a = 5.0 (per rad) which was subsequently used in equation (1a). A curve of static thrust coefficient using the above value of "a" is given in Fig.7. The theoretical values of  $C_T$  using equation (1a) for  $\theta_0 = 4^\circ$ , 8° and 12° are included in Figs.9, 13 and 19. It is of interest to note that the effect of flapping hinge offset on  $C_T$  is negligible, particularly at the lower values of  $\mu$ .

#### 6.3 Division of thrust

From a knowledge of the total thrust and the pitching moment about a defined axis the contribution of thrust due to each rotor has been calculated. It was assumed that the thrust of each rotor acted at the disc centre and normal to the body axis and also that the rotor drag force, parallel to the longitudinal axis, acted at the mean height of the two rotors.

The pitching moments as measured in the experiments included a contribution due to the effect of the offset flapping hinges and therefore before the thrust due to each rotor could be calculated the pitching moments had to be corrected for offset.

In the report by Meyer and Falabella<sup>3</sup> an expression is given for pitching moment due to hinge offset  $(M_v)$ . This expression is

$$M_{y} = [\mu a_{0} P-b_{1} N] \Omega^{2} + \frac{bI_{1}}{2} \zeta \Omega^{2} a_{1} \qquad \dots (4)$$

$$\frac{P}{I_{1}} = \frac{by}{8} [\xi - \xi^{3}]$$

where

$$\frac{N}{I_1} = \frac{by}{4} \begin{bmatrix} \xi & \xi^2 & \xi^4 \\ - & - & + & - \\ 3 & 2 & 6 \end{bmatrix}.$$

Values of  $a_0$ ,  $b_1$ , and  $a_4$  are obtained by solving three simultaneous equations; these solutions are given in equations (27), (28) and (29) in the report. As there is no cyclic pitch, i.e.,  $B_4 = 0$  in the case of the model, these solutions become

$$a_{1} = \frac{2\mu A_{0}C + \lambda\mu E + \frac{\zeta\mu C}{1+\zeta} \left[ A_{0} \left( \frac{B^{\mu} + \frac{\mu^{2}}{2}}{B + \frac{-E}{4}} \right) + \lambda C \right]}{A + \frac{\mu^{2}}{4}E} \dots (5)$$

$$z^{2} - \frac{\zeta\mu^{2}C^{D}}{1+\zeta}$$

$$A - \frac{\mu^{2}}{4}E + \frac{-\frac{\mu^{2}}{4}E}{A + \frac{\mu^{2}}{4}E}$$

$$a_{0}/$$

$$a_{0} = \frac{A_{0} \left(B + \frac{\mu^{2}}{2}E\right) + \lambda C + \mu a_{1} \frac{D}{2}}{1 + \zeta} \dots (6)$$

$$b_{1} = \frac{\mu a_{0} C - \zeta a_{1}}{A + \frac{\mu^{2}}{4} E} ...(7)$$

The value of  $\lambda$  is given by the expression

$$\lambda = \frac{-\frac{\sigma a}{2}}{2} \left\{ \frac{A_{Q}}{3} \left[ (1-\xi^{3}) + \frac{3}{2}\mu^{2} (1-\xi) \right] + \frac{\mu a_{1}}{2} (\xi-\xi^{2}) \right\} + 2\mu^{2} \tan \alpha}{2\mu + \frac{\sigma a}{4} (1-\xi^{2})}$$
(see footnote) ...(8)

and

$$\tan \alpha = \frac{C_{T} + 2\mu\lambda}{2\mu^{2}}$$

$$A = \frac{\gamma}{2} \begin{bmatrix} 1 & 2 & \xi^{2} & \xi^{4} \\ -1 & -2 & \xi + \frac{\xi^{2}}{2} & \frac{\xi^{4}}{12} \end{bmatrix}$$

$$B = \frac{\gamma}{2} \begin{bmatrix} 1 & \xi & \xi^{4} \\ -1 & -3 & \frac{\xi^{4}}{12} \end{bmatrix}$$

$$C = \frac{\gamma}{2} \begin{bmatrix} 1 & \xi & \xi^{3} \\ -1 & -3 & \frac{\xi^{3}}{12} \end{bmatrix}$$

$$C = \frac{\gamma}{2} \begin{bmatrix} 1 & \xi & \xi^{3} \\ -1 & -2 & -\xi^{2} & \frac{\xi^{3}}{2} \end{bmatrix}$$

$$D = \frac{\gamma}{2} \begin{bmatrix} \xi & \xi^{2} + \frac{\xi^{3}}{2} \\ -2 & \xi^{2} & \frac{\xi^{3}}{2} \end{bmatrix}$$

$$E = \frac{\gamma}{2} \begin{bmatrix} 1 & \xi + \frac{\xi^{2}}{2} \\ -2 & \xi^{2} & \frac{\xi^{3}}{2} \end{bmatrix}$$

Using the wind tunnel values of  $C_T$ , in equation (9)  $M_y$  has been calculated for various cases and it was found that the terms involving  $a_0$  and  $b_1$  were quite small compared with the  $a_1$  term. Typical results are shown in Fig.8 for a blade angle  $\theta_0$  of 8°, and a rotational speed,  $\Omega$ , of 1200 r.p.m. The first set of curves shows  $M_y$  in lb/ft varying with  $\mu$  for zero pitch angle, whilst the second set refers to a change in body angle at a constant value of  $\mu = 0.3$ . The contributions of the  $a_0$  and  $b_1$  terms together are given by the curves marked A whilst the  $a_1$  term is given by curves B and the total by curves C.

On examination of these curves it will be seen that, for all values of  $\mu$  of the one curve and all values of  $\theta$  of the other, the magnitude of all points on the C curve are very nearly 1.09 times the corresponding values on the B curves. It was therefore decided, in order to avoid much laborious computation, to use the third term only in the expression (equation (4)), for  $M_y$ , that is the one involving  $a_1$ , and add  $9_{,0}$ . In the above calculations the observed

values/

...(9)

Note In the expression for  $\lambda$  (equation (41)) given in Ref.3 the sign of the last term in the numerator,  $2\mu^2 \tan \alpha$ , is given as negative, this should be positive.

values of flapping angles, rather than the theoretical ones, have been used. The pitching moment due to offset may therefore be expressed as

$$M_{y} = 1.09 \text{ b} \frac{I_{1}}{2} \zeta \Omega^{2} (a_{1}_{F} + a_{1}_{R})$$

which has to be subtracted from the total measured pitching moment,  $a_{1,r}$  and  $a_{1,R}$  being the observed values of flapping angle for front and rear rotors respectively.

Figs. 9-19 and Tables 18-43 show the thrust distribution taking into account blade offset.

It was considered that the configuration  $L_2H_2A_0$  was the closest approach to a helicopter of the type Bristol 173 and therefore fuller experimental work was done for that arrangement.

For  $L_2H_2A_0$  and blade angles  $\theta_0 = 4^\circ$  Fig.9 gives the curves  $C_T$  against  $\theta$ , the body angle, for values of  $\mu = 0.1$ , 0.2, 0.3, 0.4 and 0.45. For each value of  $\mu$  five curves are given, two showing the contribution of thrust due to each rotor of the twin rotor combination, two the thrust of each rotor acting singly, the fifth curve the theoretical value of  $C_{T}$ .

It will be seen from further examination of the curves that the front rotor contributes considerably more thrust than the rear. There is an increase in thrust from the front rotor compared to the single front rotor, but this increase is less than the loss on the rear one. The result is that the twin rotor configuration gives less thrust than the sem of the thrusts of the two rotors separately; this is as one would expect.

The theoretical curves show quite good agreement with the mean values of the two separate rotor curves.

In order to compensate for the loss of lift on the rear rotor its blade angles were increased to 6° leaving those for the front one at 4°. Fig.10 shows the results of these experiments. For values of  $\mu$ up to 0.3 it will be seen from the curves that the compensation is more than adequate, that is the rear rotor contributes more thrust than the front one. For values of  $\mu$  of 0.4 and 0.45 a differential blade setting of 2° is roughly the best compromise.

Although the presence of the rear rotor causes an increase of thrust from the forward rotor, the increment of thrust by increasing  $\theta_0$  from  $\mu^0$  to  $6^0$  of the rear rotor blades reflects little increase from the front one.

Figs.11 to 18 all apply to blade angles  $\theta = 8^{\circ}$ , the curves again, as for  $\theta = 4^{\circ}$ , refer to twin rotors, single rotors and theoretical cases.

If one compares Figs.11, 13 and 14, which refer to  $L_1H_2$ ,  $L_2H_2$  and  $L_3H_2$  the effect will be seen of altering the distance between the rotor axes. The total thrust appears almost independent of distance between the rotors but at the higher values of  $\mu$  and  $\theta$  there is a small shedding of thrust from the rear rotor to the front one on reduction of distance apart.

۰,

•

There is a small effect on thrust from varying the height of the rear rotor relative to the front one (Figs.12, 13 and 15). This effect, which is a slight increase with height, is on the rear rotor only and confined to values of  $\mu$  below 0.2. Experience with full-scale tandem rotor helicoptors has shown that there is little alteration in thrust due to changing the distance apart of the rotors but that there is a definite effect from height change of the rear rotor for very low values of  $\mu$ .

With a view to compensating for loss of thrust from the rear rotor, experiments were made with the rear rotor axis tilted at 7.7° and  $4.4^{\circ}$  backwards and also 4° forwards. The results of these measurements for  $\theta = 8^{\circ}$  are given in Figs.16-18. Again the change of attitude of the rear rotor has little effect on the thrust from the front one as has already been noted when the angles of the rear rotor blades were made greater than the front ones. There is however a gain in thrust from the rear rotor when it is given a backwards tilt.

Fig.20 shows the results of tilting the axis of the rear rotor when acting alone;  $C_{\rm T}$  has been plotted against  $\theta + A$ , A being the angle of tilt, forwards being positive. For each value of  $\mu$  it will be noted that all the values of  $C_{\rm T}$ , for the various angles of tilt, lie substantially on a single curve. This shows that for a single rotor, axis tilt produces the same effect as an equal change in body angle, that is body interference is independent of angle between rotor and body. In the case of the twin rotor model there is more scatter of the points when plotting  $C_{\rm T}$  of the rear rotor against  $\theta + A$ but these curves are not reproduced.

Fig.19 gives curves for  $L_2H_2$  with blade angle  $\theta = 12^{\circ}$ and, as before, there is wide spacing of the two thrust curves for front and rear rotors. Except for low values of  $\mu$  the values of  $C_{\rm T}$  for the individual rotors differ considerably and this deviation increases with body angle. The theoretical curves, however, agree well with the mean value of  $C_{\rm T}$  for the separate rotors except for values of  $\mu$  below 0.3.

#### 6.4 Centre of rotor thrust

From the curves of division of thrust it is easy to calculate the position of the centre of thrust, examples of which are given in Fig.21. The distance of the centre of thrust from the centre of the front rotor divided by the distance between the rotor centres is plotted against body angle for the various values of  $\mu_{\bullet}$ 

It is normal practice in twin rotor helicopter design to make the two rotors identical. As there is a loss of thrust from the rear rotor, trim can only be maintained by applying a suitable blade angle mixing ratio. An example showing the effect of differential blade setting is given in Fig.21d where the front rotor has a blade angle setting of  $4^{\circ}$  and the rear  $6^{\circ}$ . This results in more satisfactory curves of centre of thrust position.

The effect on position of centre of thrust due to tilting the rear rotor axis is shown in Fig.22 and it will be noticed that a backwards tilt of about 7.7° has roughly the same effect on the shapes of the curves as a differential blade setting of 2°, shown in Fig.21a.

It will also be seen that when the axis of the rear rotor is tilted backwards 4.4°, the position of the centre of thrust varies little with either a change in  $\mu$  or in  $\theta$ , Fig.22b.

#### 6.5 Equivalent downwash

Fig.23 gives curves of equivalent downwash for the rotor configuration  $L_2H_2A_0$ . These curves have been estimated by comparing the curves of thrust coefficient of each rotor of the twin-rotor

combination/

2

combination with the thrust of each as a single rotor. In other words the equivalent downwash is taken to be the angle change on the single rotor to give the same thrust as the corresponding rotor in the twin-rotor condition i.e., downwash angle =  $\theta_{\text{S.R.}} - \theta_{\text{T.R.}}$  where  $\theta_{\text{S.R.}}$  and  $\theta_{\text{T.R.}}$  apply to single rotor and the same rotor of the twin rotors respectively when  $C_{\text{T}}$  is same value for both cases.

#### 6.6 Longitudinal flapping angle

The longitudinal flapping angle is given by equation (5) and the relationship between shaft angle i, rotor disc angle, i<sub>d</sub>, and flapping angle is given by i = i<sub>d</sub> + a<sub>1</sub>. Figs.24-30 give longitudinal flapping angles for a limited number of cases and for each blade angle. They are plotted against body angle for each value of  $\mu$ . The theoretical curves are given in Figs.24 and 25; the observed values for each rotor of the arrangement L<sub>2</sub>H<sub>2</sub>A<sub>0</sub> in Fig.26 and single rotors in Fig.27. Figs.26-27 are shown in a different form in Figs.31-34 where the flapping angle, a<sub>1</sub>, is plotted against  $\mu$  for various body angles.

On examination of the curves it will be seen that the experimental values are less in magnitude than the corresponding theoretical ones except for low values of  $\mu$ . There are two possible explanations for this deviation; firstly the close proximity of the body and secondly tunnel constraint as the tunnel height was only 1.65 times the rotor diameter.

Results of experiments at the R.A.E. on a 12 ft diameter rotor<sup>4</sup> and on a 6 ft diameter rotor<sup>5</sup> differ from the present ones. In the R.A.E. experiments the flapping angles increased more rapidly than indicated by theory both with increase of tip speed ratio and reduction of shaft inclination. Their experiments were made without a body being present and the tunnels concerned were the 24 ft open jet for the 12 ft rotor and the  $11\frac{1}{2}$  ft tunnel as well as the 24 ft one for the 6 ft rotors.

The discrepancy between the observed and theoretical values of flapping angles could be explained by a non-uniform distribution of downwash across the disc; theory assumes uniformity of downwash.

#### 6,7 Longitudinal forces

The forces parallel to the body axis were estimated but were not regarded with any great significance, due to the relatively large size of hub, and have, therefore, been omitted in the present report.

#### 7. Conclusions

(a) The curves of thrust distribution show that the front rotor contributes more thrust than does the rear one and a little more than it does as a single rotor, that is without the presence of the rear rotor.

(b) Fig.10 shows the results of the contribution to  $C_T$  by the individual rotors when the blade angle of the rear rotor is increased to 6° leaving the front one at 4°. It will be seen that for the lower values of  $\mu$  the compensation for loss of thrust from the rear rotor is more than sufficient.

(c) At values of  $\mu$  above 0.1 a backward tilt of the rear rotor of 7.7° (Fig.16) gives a considerable degree of compensation (c.f. Fig.13).

(d) The increase of thrust brought about by increasing the blade angle of the rear rotor or by giving a backward tilt is borne almost entirely by the rear rotor there being a negligible effect by the front rotor. (e) The effect of varying the height of the rear rotor above the front one (Figs.12, 13 and 15) is small and confined to the rear rotor and to values of  $\mu$  below 0.2 there being a slight increase of thrust with height.

(f) There appears to be no apparent effect on total thrust due to a change of longitudinal spacing of the rotors (Figs.11, 13 and 14).

(g) When the axis of the rear rotor is tilted backwards by  $4.4^{\circ}$  (Fig. 22b) the position of the centre of thrust varies little with either a change in  $\mu$  or in  $\theta$ .

(h) The calculated flapping angles are greater than the measured ones, particularly at the smaller values of  $\theta$ .

#### 8. <u>Acknowledgments</u>

The authors wish to express their thanks to Mr. C. A. Culverhouse who was responsible for the design of the model and ancillary equipment and also to Mr. A. R. S. Bramwell of R.A.E., Bedford for his helpful suggestions in the analysis of the results.

References

| No. | Author(s)                                           | Title, etc.                                                                                                                                                                            |
|-----|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | A. S. Halliday<br>and<br>Miss D. K. Cox             | Wind-tunnel experiments on a model of a<br>tandem rotor helicopter.<br>A.R.C.19,829 - H.342.<br>10th January, 1958                                                                     |
| 2   | A. S. Halliday<br>and<br>Miss D. K. Cox             | Analysis of results from wind-tunnel<br>experiments on a model of a tandem rotor<br>helicopter allowing for flapping hinge<br>offset.<br>A.R.C.20,561 - H.360.<br>18th November, 1958. |
| 3   | J. R. Meyer<br>and<br>G. Falabella Jr.              | The effect of blade mass constant and<br>flapping hinge offset on maximum blade<br>angles of attack at high advance ratios.<br>Massachusettes Institute of Technology.                 |
| 4   | H. B. Squire,<br>R. A. Fail<br>and<br>R. C. W. Eyre | Wind-tunnel tests on a 12 ft diameter<br>helicopter rotor.<br>A.K.C. R. & H. 2695.<br>April, 1949.                                                                                     |
| 5   | T. B. Owen,<br>R. Fail<br>and<br>R. C. W. Eyre      | Wind-tunnel tests on a 6 ft diameter<br>helicopter rotor.<br>A.R.C. C.F.216.<br>(Also published as A.R.C. R. & M.3022)<br>May, 1955.                                                   |

List of Symbols/

Æ

3

List of Symbols radius of rotor = 2.125 ft  $\mathbf{R}$ chord of blades = 1.5 in. С number of blades per rotor = 3b solidity =  $bc/\pi R = 0.0562$ σ θ blade section pitch angle body angle, positive nose down θ total rotor disc area =  $2\pi R^2$ Α rear rotor shaft inclination relative to body axis (see Fig. 3) Adeg  $L_1$ ,  $L_2$ ,  $L_3$ ,  $H_1$ ,  $H_2$ ,  $H_3$  see Fig. 3. distance of centre of thrust from front rotor axis l ia incidence of tip path plane coning angle a longitudinal flapping angle  $a_1$ lateral flapping angle  $b_1$ angular velocity of rotor (rads per sec) Ω tunnel speed (ft/sec) V  $^{Q}_{
m D}$ fluctuating drag torque lb/ft total thrust in 1b normal to body axis  $\mathbf{T}$ thrust coefficient =  $T/\rho(\Omega R)^2 A$ С<sub>т</sub> thrust coefficient contribution by front rotor  $C_{T_{T}}$ thrust coefficient contribution by rear rotor  $C_{TR}$ pitching moment (lb/ft) Μ C<sub>m</sub> pitching moment coefficient =  $M/\frac{1}{2}\rho AV^2 R$ tip speed ratio =  $V\cos\theta/\Omega R$ и component by V parallel to rotor shaft u λ  $u/\Omega R$ slope of lift curve of blade section = 5.0a Symbols used in Ref. 3 not appearing above <sup>A</sup>o blade section pitch angle corresponding to  $\theta$ above rotor angle of attack α

- m<sub>b</sub> mass of each blade =0.5/g slug L distance of blade tip from flapping hinge
- $I_1$  mass moment of inertia of blade about flapping hinge
- $\gamma$  blade mass constant =  $\rho ac R^4 / I_1$
- e distance of flapping hinge to rotor centre
- $\xi$  flapping hinge offset = e/R = 0.06275
- ζ EmpRZ/I1

#### - 11 -

APPENDIX/

#### - 12 -

#### APPENDIX

#### Blade Fatigue Failure

At the outset of the tests it was decided to run the rotors with drag hinges locked, as it was thought that resonance would then be less likely to cccur, particularly as the natural frequency of the model and rig was low and of the order of 6 to 7 per sec. When the rotors were being run up a small vibration was noticed at low speed, but this region was soon run through and no violent disturbance was ever experienced.

During the experiments two sets of blades have been in use, see Fig.5. In order to avoid blade twist it was essential to design the blades so that the position of the section centre of gravity was on the quarter chord line, necessitating composite construction. The first set had the front part made of brass and the rear part hollow magnesium alloy, tongued, riveted and resin bonded together.

After a considerable time of running the first set of blades at 1800 r.p.m., perhaps 30-40 hours, it was noticed that one blade on each rotor had cracked through the magnesium at the root. These cracks were examined by H. L. Cox of N.P.I. who suggested that the failures were caused by frotting fatigue starting at the inner rivets. The remaining blades were carefully examined under a stereo-microscope for incipient cracks and indications were observed on one other blade.

The hubs were then stripped down and several features indicated that they had suffered from severe hammering. The flapping thrust races were badly indented, two of the drag hinge pin keys were sheared and the remainder had their corners rounded off. All these factors indicated that the forces in the direction of the blade drag were more serious than envisaged.

The fluctuating drag torque due to the combined action of flapping and coning and neglecting flapping hinge offset is given by the equation

 $Q_{D} = -2I_{1}\omega^{2} \left[a_{0}\left(a_{1}\sin\psi - b_{1}\cos\psi\right) - \frac{1}{2}\left(a_{1}^{2} - b_{1}^{2}\right)\sin2\psi + a_{1}b_{1}\cos2\psi\right].$ 

A similar equation has been developed including offset from which the maximum drag torque has been estimated to be about 8.8 lb/ft. With a torque of this value the local force on the balls in the flapping thrust races could be as high as 140 lb. With a reversal of load of this magnitude at a frequency of 30 per sec it is fairly certain that indenting of the ball races could take place.

The shearing force on the drag hinge keys due to the fluctuating drag torque was estimated to be a little over 480 lb which, no doubt, was the cause of the ultimate failure of the keys.

It is reasonable to assume that with a drag torque of the above magnitude on the blades and no freedom in the drag direction, and with the presence of ball indents in the flapping thrust races, there would be a considerable flapping friction hinge moment. This was probably the primary cause of the blade fatigue failures.

It was therefore decided to have new blades made to a modified design. They were made of spherodised steel for the front portion tongued and grooved into a boxwood rear portion and resin bonded, but not riveted, see Fig.5. Again the centre of gravity of the section was at the quarter chord.

As a procaution the top speed was reduced from 1800 r.p.m. to 1200 r.p.m., the drag hinges were unlocked but had friction damping. After a considerable period of running with the modified blades there have been no indications of blade failure or bearing trouble.

Table 1/

3

| The       Let       Let <thl< th=""><th>na a chuirean chuire fann an tar a chuirtine c</th><th>ne a character a contrato decare da Farre e a com</th><th>nden verher verher framerikansenkenker</th><th>0 V</th><th>rannyanyangka sanya Anga Anga sanyangka s</th><th>V</th><th>Δ</th><th>Δ</th><th></th></thl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | na a chuirean chuire fann an tar a chuirtine c                    | ne a character a contrato decare da Farre e a com | nden verher verher framerikansenkenker | 0 V    | rannyanyangka sanya Anga Anga sanyangka s | V                                                                                                              | Δ                | Δ               |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|----------------------------------------|--------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------|-----------------|----------------------|
| I         Io         Ia         Ia         Ia         Ia         Ia         Ia         Ia $F + R(20)$ $F + R(25)$ $F + R(24)$ $R(6)$ , $F + R(26)$ $R(5)$ , $F + R(25)$ $R(5)$ , $F + R(25)$ $R(11)$ , $F + R(25)$ $F + R(35)$ $F + R(31)$ $R(10)$ , $F + R(30)$ $R(11)$ , $F + R(29)$ $R(11)$ , $F + R(29)$ $F + R(26)$ $F + R(26)$ $F + R(10)$ $R(15)$ , $F + R(38)$ $R(14)$ , $F + R(37)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A<br>0                                                            | A<br>0                                            | A<br>0                                 | 1      |                                           | A+4.0                                                                                                          | A-4, 40          | A7.90           | : <sup>A</sup> -7.7° |
| F + R(20) $F + R(25) F + R(24) R(6), F + R(26) R(5), F + R(25)$ $F + R(35) F + R(31) R(10), F + R(30)$ $F + R(35) F + R(31) R(10), F + R(30)$ $R(11), F + R(29)$ $F + R(36) F + R(40) R(15), F + R(36)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $I_1$ $I_2$                                                       | $I_1$ $I_2$                                       | L2                                     |        | Ta                                        | ЦЗ.                                                                                                            | ся<br>С          | 12              | Γ.                   |
| F + R(25) F + R(24) R(6), F + R(26) R(5), F + R(23) $F + R(35) F + R(31) R(10), F + R(30) R(11), F + R(29)$ $F + R(36) F + R(40) R(15), F + R(36) R(14), F + R(37)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H <sub>4</sub> $F(2,3)$ , $F + R(18)$ $F + R(19)$                 | F(2,3), $F + R(18)$ $F + R(19)$                   | F + R(19)                              | 1      | F + R(20)                                 | And a second description of the second s |                  |                 |                      |
| F + R(35) F + R(31) R(10), F + R(30) R(11), F + R(29) F + R(26) F + R(10), F + R(30) R(11), F + R(29) F + R(26) F + R(10) R(15), F + R(38) R(11), F + R(37) R( | H <sub>2</sub> R(4), F + R(22)                                    | R(4), F + R(22)                                   | R(4), F + R(22)                        |        | -                                         | F + R(25)                                                                                                      | F + R(24)        | R(6), F + R(26) | R(5), F + R(23)      |
| F + R(35) F + R(31) R(10), F + R(30) R(11), F + R(29) $F + R(36) F + R(40) R(15), F + R(38) R(141), F + R(37)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | д <sub>з</sub> F + R(21)                                          | F + R(21)                                         | F + R(21)                              |        |                                           | •                                                                                                              |                  |                 |                      |
| F + R(35) F + R(31) R(10), F + R(30) R(11), F + R(29) $F + R(36) F + R(40) R(15), F + R(38) R(14), F + R(37)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ha                                                                |                                                   |                                        | ŀ      |                                           |                                                                                                                |                  |                 |                      |
| F + R(35) F + R(31) R(10), F + R(30) R(11), F + R(29) $F + R(36) F + R(40) R(15), F + R(38) R(14), F + R(37)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H <sub>2</sub> $R(7), F + R(27)$                                  | R(7), F + R(27)                                   | R(7), F + R(27)                        |        |                                           |                                                                                                                |                  |                 |                      |
| F + R(35) F + R(31) R(10), F + R(30) R(11), F + R(29)<br>F + R(36) F + R(40) R(15), F + R(38) R(14), F + R(37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Щз                                                                |                                                   |                                        |        |                                           |                                                                                                                |                  |                 |                      |
| F + R(35) F + R(31) R(10), F + R(30) R(11), F + R(29) $F + R(36) F + R(40) R(15), F + R(38) R(14), F + R(37)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $H_1$ F + R(32)                                                   | F + R(32)                                         | F + R(32)                              |        | general end manufacture statements        | provember water to a second with the second second second second                                               |                  |                 | ••                   |
| F + R(36) F + R(40) R(15), F + R(38) R(14), F + R(37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H <sub>2</sub> $F + R(34)$ $F(8)$ , $R(9)$ , $R(9)$ , $F + R(28)$ | F + R(34) $F(8)$ , $R(9)$ , $F + R(28)$           | F(8), R(9),<br>F + R(28)               |        | F + R(35)                                 | F + R(31)                                                                                                      | R(10), F + R(30) |                 | R(11), F + R(29)     |
| F + R(36) F + R(40) R(15), F + R(38) (R(14), F + R(37)) (R(14), F + R | Нз F R(33)                                                        | F + R(33)                                         | F + R(33)                              |        |                                           | ·                                                                                                              | ·                |                 |                      |
| F + R(36) F + R(40) R(15), F + R(38) R(14), F + R(37)<br>. R(14), F + R(37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H <sub>1</sub> $R(16), F + R(41)$                                 | R(16), F + R(41)                                  | R(16), F + R(41)                       |        |                                           |                                                                                                                |                  |                 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $H_2$ F + R(4.3) F(13), R(12)<br>F + R(39)                        | F + R(4.3) $F(1.3), R(1.2)F + R(3.9)$             | E(13), E(12)<br>E + E(39)              |        | F + R(36)                                 | F + R(40)                                                                                                      | R(15), F + R(38) |                 | R(14), F + R(37)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R(17), F + R(42                                                   | R(17), F + R(42                                   | R(17), F + R(42)                       | $\sim$ |                                           |                                                                                                                |                  |                 |                      |

SUMMARY OF TESTS

•

TABLE 1

•

٠

ţ

- 13 -

TABLE 2/

- 14 -

### TABLE 2

| $C_{\eta} \times 10^3$ | for | Single | Rotor | Cases |
|------------------------|-----|--------|-------|-------|
|------------------------|-----|--------|-------|-------|

| θ  | Arrangement                                  | θ°  | μ=0 <b>.</b> 1 | μ=0 <b>.</b> 2 | μ=0 <b>.</b> 3  | μ=0 <b>.</b> 4   | μ=0.45 |
|----|----------------------------------------------|-----|----------------|----------------|-----------------|------------------|--------|
| 4° | L <sub>1</sub> H <sub>1</sub> A <sub>O</sub> | • 0 | 2.21           | 3.43           | 3.89            | : 4 <b>. 3</b> 0 | 4.62   |
|    | Forward<br>Rotor                             | 5   | 2 <b>. 3</b> 0 | 2.46           | 2 <b>.</b> 34   | 2.30             | 2.20   |
|    | 1,200 r.p.m.                                 | 10  | 1.78           | 1.36           | • 0 <b>.</b> 54 | <b>-</b> 0, 29   | -0.63  |
|    |                                              | 15  | 1.33           | 0,12           | -1.27           |                  | :      |
|    |                                              | 20  | 0.76           | <b>-1.1</b> 8  | •               | •                |        |
|    |                                              | 25  | 0.09           | :              | :<br>:          |                  | :      |

### TABLE 3

| )  |                  |         |       |       |       |
|----|------------------|---------|-------|-------|-------|
| 4° | $L_1 H_1 A_0$    | 0       | 2.62  | 3.84  | 4. 58 |
|    | Forward<br>Rotor | : 5     | 2.17  | 2.32  | 2.32  |
|    | 1,800 r.p.m.     | 10      | 1.64  | 0.53  | -0.42 |
|    |                  | :<br>15 | 1.1.6 | -1.11 |       |
|    |                  | 20      | 0.64  |       |       |
|    |                  | 25      |       |       |       |

#### TABLE 4

| 4° | L <sub>2</sub> H <sub>2</sub> A <sub>O</sub> | 0  | 2.50  | 3.05  | 3.26  | 3.51  | 3.65                  |
|----|----------------------------------------------|----|-------|-------|-------|-------|-----------------------|
|    | Rear Rotor                                   | 5  | 2.02  | 2.00  | 1.82  | 1.55  | 1.57                  |
|    | 1,200 r.p.m.                                 | 10 | 1.49  | 0.77  | -0.19 | -0.97 | -1.36                 |
|    |                                              | 15 | 0.94  | -0.60 |       | ;     | ·<br>·<br>·<br>·<br>· |
|    |                                              | 20 | 0.33  |       |       |       |                       |
|    |                                              | 25 | -0.29 |       |       |       |                       |

TABLE 5/

### - 15 -

### TABLE 5

 $C_{\rm T} \times 10^3$  for Single Rotor Cases

| θο                                                                                                             | Arrangement  | θ° | ; <i>μ</i> =0 <b>.</b> 1 | μ=0 <b>.</b> 2 | μ=0.3       | µ=0.4 | µ=0.45 |
|----------------------------------------------------------------------------------------------------------------|--------------|----|--------------------------|----------------|-------------|-------|--------|
| 4°                                                                                                             | L2H2A_7.7°   | 0  | 3.21                     | 4.32           | 5.27        | 6.27  | 6.57   |
| name - a de la gara de | Rear Rotor   | 5  | :<br>2.77                | 3.46           | 4.02        | 4.48  | 4.70   |
|                                                                                                                | 1,200 r.p.m. | 10 | , 2 <b>.</b> 29          | 2.55           | 2.67        | 2.62  | 2.56   |
|                                                                                                                |              | 15 | 1.76                     | 1.48           | 0.80        |       |        |
|                                                                                                                |              | 20 | 1.26                     | 0.06           | :<br>:<br>: | ;     |        |
|                                                                                                                |              | 25 | 0.76                     |                | :           | :     | ,      |

### TABLE 6

| Billing, man papersonal situation | renneng a universityishar soʻshtiring soor var kinage a soʻob |     | *** |       | nga kar tu konstrukturu dinanter iti is i | te in of Med Lines of American Proceeds |             | nata anto baselat presidentati presidente di B |
|-----------------------------------|---------------------------------------------------------------|-----|-----|-------|-------------------------------------------|-----------------------------------------|-------------|------------------------------------------------|
| 4°                                | L2H2A7.9°                                                     | : 0 | :   | 1.66  | 1.12                                      | 0.35                                    | -0.35       | -0.58                                          |
|                                   | Rear Rotor                                                    | 5   | :   | 1.16  | -0.19                                     | -1.54                                   | -2.50       | -3.10                                          |
|                                   | 1,200 r.p.m.                                                  | 10  | :   | 0.62  | -1.51                                     | -3.17                                   |             | :                                              |
|                                   | ·<br>·                                                        | 15  |     | 0.09  |                                           |                                         | :           | :                                              |
|                                   |                                                               | 20  | :   | -0.45 |                                           | ;                                       |             |                                                |
|                                   |                                                               | 25  |     | -1.07 | :                                         | :<br>:                                  | ,<br>:<br>: |                                                |

### TABLE 7

| 6° | LizIizAo     | 0  | . 3.71    | : 4.10 | 2<br>4•54  | 4.93   | ;<br>5 <b>.</b> 12 |
|----|--------------|----|-----------|--------|------------|--------|--------------------|
|    | Rear Rotor   | 5  | 3.35      | 3.34   | 3.28       | 3.08   | 3.03               |
|    | 1,200 r.p.m. | 10 | · 2.86    | 2.32   | 1.52       | 0.76   | 0.34               |
|    |              | 15 | 2.35      | 1.14   | -0.50      | ,<br>, |                    |
|    |              | 20 | 1.84      | -0.27  |            | :      | :                  |
|    |              | 25 | 1.35<br>: |        | -<br>-<br> | •<br>• | •<br>•<br>•<br>•   |

#### TABLE 8/

### - 16 -

### TABLE 8

 $C_{\rm T}$  × 10<sup>3</sup> for Single Rotor Cases

| θο | Arrangement                                  | θ° | <i>∙µ</i> =0 <b>.</b> 1 | μ=0 <b>.</b> 2 | µ=0 <b>.</b> 3 | μ=0∙4  | μ=0 <b>.</b> 45 |
|----|----------------------------------------------|----|-------------------------|----------------|----------------|--------|-----------------|
| 8° | $\mathbf{L}_{2}\mathbf{H}_{2}\mathbf{A}_{0}$ | 0  | · 4•59                  | 5.62           | 6.06           | 6.64   | 7.11            |
|    | Forward<br>Rotor                             | 5  | . 4 <b>.</b> 29         | 4•76           | 4•95           | 5.02   | 5.05            |
|    | 1,200 r.p.m.                                 | 10 | : 4.04                  | 4.07           | : 3.88         | : 3•53 | 3.33            |
|    |                                              | 15 | 3.69                    | 3.14           | 2.24           | 1.29   | 0.80            |
|    |                                              | 20 | 3.27                    | 2.11           |                | :      | :               |
|    |                                              | 25 | 2.81                    | 0.64           | 4<br>4<br>4    |        |                 |

#### TABLE 9

| 8° | L <sub>2</sub> H <sub>2</sub> A <sub>0</sub> | 0  | 4•54 | 5.20 | 5.62                  | 6.13  | . 6.37 |
|----|----------------------------------------------|----|------|------|-----------------------|-------|--------|
|    | Rear Rotor                                   | 5  | 4.30 | 4.62 | 4.72                  | 4.68  | 4.64   |
|    | 1,200 r.p.m.                                 | 10 | 4.02 | 3.82 | 3.25                  | 2.70  | 2.40   |
|    |                                              | 15 | 3.66 | 2.79 | 1.48                  | -0.01 | -0.75  |
|    |                                              | 20 | 3.27 | 1.52 |                       |       |        |
|    |                                              | 25 | 2.85 |      | •<br>•<br>•<br>•<br>• |       |        |
|    |                                              |    |      |      |                       |       |        |

### TABLE 10

| 8° | L <sub>2</sub> H <sub>2</sub> A-4•4 | 0   | 4•90 | 5.91 | 6.40   | 7.04 | 7.49 |
|----|-------------------------------------|-----|------|------|--------|------|------|
|    | Rear Rotor                          | : 5 | 4•53 | 5.29 | 5.65   | 5.98 | 6.20 |
|    | 1,200 r.p.m.                        | 10  | 4.23 | 4•49 | 4.• 37 | 4.29 | 4.31 |
|    |                                     | 15  | 4.00 | 3.62 | 2.83   | 2.12 | 1.85 |
|    |                                     | 20  | 3.66 | 2.58 | 0.77   |      |      |
|    |                                     | 25  | 3.23 | 0.99 |        |      |      |

TABLE 11/

| - 17 | - |
|------|---|
|------|---|

 $C_{\rm T}\,\times\,10^3\,$  for Single Rotor Cases

| θο                   | Arrangement                         | . <b>0</b> 0 | μ=0 <b>.</b> 1 | μ=0 <b>.</b> 2 | μ=0 <b>.</b> 3 | : μ=0•4 | · μ=0•45                   |
|----------------------|-------------------------------------|--------------|----------------|----------------|----------------|---------|----------------------------|
| 8°                   | L <sub>2</sub> H <sub>2</sub> A-7.7 | : 0          | 5.19           | 6.28           | 7.02           | 8.00    | . 8.48                     |
| a humanan makata ke  | Rear Rotor                          | . 5          | 4.80           | 5.72           | 6.25           | 6.80    | <sup>:</sup> 7 <b>.</b> 20 |
|                      | 1,200 r.p.m.                        | 10           | 4•44           | 5.10           | 5.26           | 5.45    | 5.72                       |
|                      |                                     | 15           | 4•16           | 4.28           | 4.05           | 3.64    | 3.90                       |
| are a recommendation |                                     | 20           | 3.90           | 3.33           | 2.36           |         |                            |
|                      |                                     | 25           | 3.41           | 1.97           | :              |         | յ<br>։<br>                 |

### TABLE 12

| 12° | L <sub>2</sub> H <sub>2</sub> A <sub>0</sub> | : 0  | . 6.14         | 6.67                                  | aan 1 maantaan ne ku a ammika ayya | n och fungassenen hängslagsmender unträ i neut | nyan yan jan sejanthan Musehen Musehen Musehen<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I |
|-----|----------------------------------------------|------|----------------|---------------------------------------|------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|     | Rear Rotor                                   | . 5  | . <b>5.9</b> 0 | 6.30                                  | 6.65                               |                                                | •<br>•<br>•<br>•                                                                                                                              |
|     | 1,200 r.p.m.                                 | 10   | 5.82           | 5.87.                                 | 5.72                               | 5.56                                           | 5.49                                                                                                                                          |
|     |                                              | . 15 | 5.78           | 5.39                                  | 4.38                               | 3•44                                           | 3.22                                                                                                                                          |
|     |                                              | 20   | 5.48           | · · · · · · · · · · · · · · · · · · · | 2.55                               | 0.73                                           | 0.15                                                                                                                                          |
|     |                                              | . 25 | 5.05           | 3.26                                  | 0.66                               |                                                | ,<br>,<br>,<br>,<br>,                                                                                                                         |

#### TAPLE 13

|     | nte port koltiner nassanti pli – sono of antichtenfaggenetise i – sungan spane a stat kanna pe spane – noro | in way plantationspecial da | is the holowing long of without a monthly region of |        | han. In here and a survey | Set he special world a set from in 18 Million | later an eleft provided of arm app, but or forbuilt at task<br>A |
|-----|-------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------|--------|---------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 12° | $\mathbf{L}_{2}\mathbf{H}_{2}\mathbf{A}_{0}$                                                                | 0                           | 6.36                                                | 7.24   |                           |                                               | •                                                                |
|     | Forward<br>Rotor                                                                                            | 5                           | 6.10                                                | 6.70   | 7.19                      |                                               |                                                                  |
|     | 1,200 r.p.m.                                                                                                | 10                          | 5.96                                                | 6.26   | 6.53                      | 6.82                                          | 6.98                                                             |
|     |                                                                                                             | 15                          | 5.88                                                | 5.80   | 5.43                      | 4.99                                          | 4.85                                                             |
|     |                                                                                                             | 20                          | 5.72                                                | 5.21   | 4.05                      | 3.26                                          | 2.58                                                             |
|     |                                                                                                             | 25                          | 5.12 <sup>±</sup>                                   | 4.06 · | 2.48                      | 1,04                                          |                                                                  |

TABLE 14/

#### - 18 -

### TABLE 14

 $C_{\rm T}\,\times\,10^3\,$  for Single Rotor Cases

| θ               | Arrangement                          | θ      | - μ=0 <b>.</b> 1 | μ=0 <b>.</b> 2 | · μ=0.3 | μ=0•4                                   | µ =0•45                                                     |
|-----------------|--------------------------------------|--------|------------------|----------------|---------|-----------------------------------------|-------------------------------------------------------------|
| 12 <sup>0</sup> | L <sub>2</sub> H <sub>2</sub> A-7.7° | 0      | 6.63             | 7•37           | 14      | 9 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | antigene de la participa de la conservação - su antigene de |
|                 | Rear Rotor                           | :<br>5 | 6•24             | 6.94           | 7.35    | ,<br>;<br>;                             |                                                             |
|                 | 1,200 r.p.m.                         | 10     | 5.91             | 6.50           | 6.71    | 7.18                                    | 7.36                                                        |
|                 |                                      | 15     | 5.69             | 6.01           | 6.12    | 6.17                                    | 6.40                                                        |
|                 |                                      | 20     | 5.62             | 5•47           | 5.05    | 4.56                                    | 4.26                                                        |
|                 |                                      | 25     | 5.68             | 4•75           | 3.55    | 2.42                                    |                                                             |

### TABLE 15

| 12 <sup>0</sup> | L <sub>2</sub> H <sub>2</sub> A <sub>-1+•14</sub> | 0  | 6.31 | 7.07 | ) en |      | y mananalasana (ny sanaha karsan - / yahayyyah |
|-----------------|---------------------------------------------------|----|------|------|------|------|------------------------------------------------|
|                 | Rear Rotor                                        | 5  | 6.00 | 6.55 | 7.00 |      |                                                |
|                 | 1,200 r.p.m.                                      | 10 | 5.83 | 6.17 | 6.25 | 6.57 | 6.65                                           |
|                 |                                                   | 15 | 5.76 | 5•73 | 5•40 | 5.14 | 5.03                                           |
|                 |                                                   | 20 | 5.64 | 5.20 | 4.22 | 3.19 | 2.71                                           |
|                 |                                                   | 25 | 5.18 | 4.14 | 2.47 | 0.68 |                                                |

### TABLE 16

| 12 <sup>0</sup> | L <sub>2</sub> H <sub>1</sub> A <sub>0</sub> | 0  | 6.04 | 6.67 |      | 9                | antonini - yo kung danahasin ayor at simorani <b>gana</b> .<br>K                            |
|-----------------|----------------------------------------------|----|------|------|------|------------------|---------------------------------------------------------------------------------------------|
|                 | Rear Rotor                                   | 5  | 5.87 | 6.33 | 6.50 | •<br>•<br>•<br>• | 6<br>6<br>7<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |
|                 | 1,200 r.p.m.                                 | 10 | 5.80 | 5.94 | 5•79 | 5.60             | 5•57                                                                                        |
|                 |                                              | 15 | 5•74 | 5.36 | 4•55 | 3•74             | 3.43                                                                                        |
|                 |                                              | 20 | 5•52 | 4•57 | 2,99 | 1.51             | 0.73                                                                                        |
|                 |                                              | 25 | 5.12 | 3.58 | 1.25 | -1.11            |                                                                                             |

TABLE 17/

.

.

| ~ | 19 |  |
|---|----|--|
|   |    |  |

### PARLE 17

| $C_{\eta_1} \times 10^3$ | for | Single | Rotor | Cases |
|--------------------------|-----|--------|-------|-------|
|--------------------------|-----|--------|-------|-------|

| θο  | Arrangement                                           | 00             | μ=0 <b>.</b> 1 | µ=0.2  | μ·=0 <b>.</b> 3                          | μ=0• <i>ι</i> <sub>1</sub>                  | μ=0 <b>.</b> 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|-------------------------------------------------------|----------------|----------------|--------|------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12° | $\mathbf{L}_{2}\mathbf{H}_{3}\mathbf{A}_{\mathbf{O}}$ | 0              | 6.02           | . 6.57 | an a | nen a sa s | name and a for the material of the material state and states and a second states and s |
|     | Rear Rotor                                            | <sup>:</sup> 5 | 5.82           | . 6.04 | 6 <b>.</b> 30                            |                                             | n, va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 1,200 r.p.m.                                          | 10             | 5.74           | 5.77   | 5.65                                     | 5.60                                        | 5.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                                       | 15             | 5.66           | 5.22   | . 4•47                                   | 3•54                                        | 3.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                                       | 20             | 5.1,4          | . 448  | 2.83                                     | 1.23                                        | -0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8   |                                                       | 25             | 4.78           | 3.34   | 0,88                                     | <b>-</b> 1 <b>.</b> 88                      | <b>Republications</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

17.61,6 18

 $c_{\mathbb{T}_{\overline{F}}}$  and  $c_{\mathbb{T}_{\overline{R}}}$  for Twin Rotors

| θ <sub>0</sub> .          | Arrangement                                    | θ         | Coeff × 10 <sup>3</sup>                                        | µ=0.1.         | µ=0•2           | µ=0 <b>.</b> 3 | μ=0.4           | µ=0 <b>.</b> 45 |
|---------------------------|------------------------------------------------|-----------|----------------------------------------------------------------|----------------|-----------------|----------------|-----------------|-----------------|
| 2+ <sup>0</sup>           | L <sub>1</sub> .H <sub>1</sub> .A <sub>0</sub> | 0         | CTF<br>CTR                                                     | 1.30<br>0.68   | 1.69<br>1.02    | · 2.04<br>1.33 | 2.45<br>1.37    | 2.52<br>1.56    |
| •                         | 1,800 r.p.m.                                   | 5         | $^{\mathrm{C}_{\mathrm{T}_{E'}}}_{\mathrm{C}_{\mathrm{T}_R}}$  | 1.05<br>0.63 · | 1.17<br>0.76    | 1.23<br>0.75   | 1.33<br>0.62    | 1.27<br>0.64    |
|                           |                                                | 10        | C <sub>TF</sub><br>C <sub>TR</sub>                             | 0.79<br>0.57   | 0.61<br>0.35    | 0.25<br>0.03   | 0.02.<br>:-0.39 | -0.35<br>-0.32  |
|                           |                                                | , 15<br>, | $C_{T_{R}}$                                                    | 0.55<br>0.47   | -0.03<br>-0.05  | -0.64<br>-0.67 |                 |                 |
|                           |                                                | 20        | $C_{\mathrm{T}_{\mathrm{F}}}$<br>$C_{\mathrm{T}_{\mathrm{R}}}$ | 0.30<br>0.31   | -0.144<br>-0.53 |                | ,<br>,          |                 |
| Autocher Meksipung par 15 |                                                | 25        | Cif<br>C <sub>TR</sub>                                         | -0.01<br>0.06  |                 |                |                 |                 |

.

TABLE 19/

- 20 -

| $\mathcal{O}_{\mathrm{T}_{\mathrm{F}}}$ and $\mathcal{O}_{\mathrm{T}_{\mathrm{D}}}$ for Twin Ko | tors |
|-------------------------------------------------------------------------------------------------|------|
|-------------------------------------------------------------------------------------------------|------|

|    | an ang ganggan pangang ang gang ang pangang ang sang sang sang sang sang sang | C <sub>T</sub> | $_{ m F}$ and ${ m C_{T}}_{ m R}$                                                | for Twi        | n Kotori       | 5              |                |                 |
|----|-------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|-----------------|
| θο | Arrangement                                                                   | :              | $Coeff \times 10^3$                                                              | µ <b>≃0.1</b>  | μ=0 <b>.</b> 2 | μ=0 <b>.</b> 3 | <i>µ</i> =0∙4  | μ=0 <b>•</b> 45 |
| 4° | $L_2 H_1 A_0$                                                                 | , 0<br>:       | $c_{\mathrm{TF}} \\ c_{\mathrm{TR}}$                                             | 1.33<br>. 0.67 | 1.74<br>0.98   | 2.01<br>1.26   | 2.32<br>1.46   | 2.56<br>: 1.48  |
|    | 1,800 r.p.m.                                                                  | 5              | ${^{C_{\mathrm{T}}}_{\mathrm{F}}} {^{C_{\mathrm{T}}}_{\mathrm{T}\mathrm{R}}}$    | 1.05<br>0.66   | 1.20<br>0.72   | 1.17<br>0.63   | 1.29<br>: 0.62 | 1.31<br>: 0.50  |
|    |                                                                               | 10             | $^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$ | 0.81<br>0.58   | 0.59<br>0.36   | 0.17<br>0.0/+  | -0.06<br>-0.49 | -0.18<br>-0.69  |
|    |                                                                               | 15             | $c_{\mathrm{T}_{\mathrm{F}}} c_{\mathrm{T}_{\mathrm{R}}}$                        | 0.58<br>0.44   | -0.08<br>0.02  |                |                |                 |
|    |                                                                               | 20             | $c_{\mathrm{T_F}} c_{\mathrm{T_R}}$                                              | 0.30<br>0.28   | : :            |                |                |                 |
|    |                                                                               | 25 :<br>:      | $\begin{array}{cc} c_{T_{E'}} & c_{T_{R}} \\ c_{T_{R}} & c_{T_{R}} \end{array}$  | 0.02<br>0.08   | · · ·          |                |                |                 |

### TABLE 20

| , 0 | <b>τ</b> το Λ | :   | ······································                                                  | A 70          | Martenberte F - Brunn rug ordunati<br> |                |                |                |
|-----|---------------|-----|-----------------------------------------------------------------------------------------|---------------|----------------------------------------|----------------|----------------|----------------|
| 4   |               | : 0 | $C_{\mathrm{TF}}$                                                                       | 1•30<br>_0•71 | 1.75                                   | 2.02<br>1.26   | 2•22<br>1•51   | 2.46<br>1.59   |
|     | 1,800 r.p.m.  | 5   | ${}^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$      | 1.08<br>0.69  | 1.23<br>0.75                           | 1.27<br>0.71   | 1.35<br>0.69   | 1.27<br>0.45   |
|     |               | 10  | $^{ m C_{T_F}}_{ m C_{T_R}}$                                                            | 0.80<br>0.61  | 0.59<br>0.32                           | 0.25<br>-0.06  | -0.14<br>-0.49 | -0.23<br>-0.69 |
|     |               | 15  | ${^{ m C_{T}}_{ m F}} {^{ m C}_{ m T_R}}$                                               | 0.56<br>0.45  | -0.01<br>-0.12                         | -0.65<br>-0.79 |                |                |
|     |               | 20  | ${}^{\mathrm{C}}_{\mathrm{T}_{\mathrm{F}}}$ ${}^{\mathrm{C}}_{\mathrm{T}_{\mathrm{R}}}$ | 0.29<br>0.27  |                                        |                | :              |                |
|     |               | 25  | ${}^{\mathrm{C}_{\mathrm{TF}}}_{\mathrm{C}_{\mathrm{TR}}}$                              | 0<br>0.06     |                                        |                |                |                |

TABLE 21/

•

-

# $\mathtt{C}_{\mathrm{TF}}$ and $\mathtt{C}_{\mathrm{TR}}$ for Twin Rotors

| θο                                       | Arrangement                                                    | θ  | $Coeff \times 10^3$                                     | μ=0.         | 1 μ=0 <b>.</b>            | 2 µ=0.3           | μ=0•} <sub>4</sub> | μ=0 <b>.</b> 4.5  |
|------------------------------------------|----------------------------------------------------------------|----|---------------------------------------------------------|--------------|---------------------------|-------------------|--------------------|-------------------|
| 4°                                       | $L_2H_3A_0$                                                    | 0  | $C_{TF}$<br>$C_{TR}$                                    | 1.2<br>0.9   | 8 1.7:<br>3 1.2           | 5 2.12<br>4 1.40  | 2.49<br>: 1.47     | 2.64<br>1.53      |
| na an a | 1,800 r.p.m.                                                   | 5  | ${}^{C_{T}}_{C_{TR}}$                                   | 1.0<br>0.8   | 5 1.20<br>0 0.8 <u>9</u>  | 0 1.24<br>5 0.73  | 1.31<br>0.54       | · 1.37<br>: 0.44: |
|                                          |                                                                | 10 | $c_{\mathrm{TF}}$<br>$c_{\mathrm{TR}}$                  | 0.8<br>0.6   | 2 0.6:<br>6 0.30          | 2 0.23<br>5 -0.05 | -0.02<br>-0.51     | -0.20<br>-0.68    |
|                                          |                                                                | 15 | $C_{T_{F}}$                                             | 0.5<br>: 0.4 | 9 0.0 <u>1</u><br>7 -0.12 | 3<br>+            |                    |                   |
|                                          |                                                                | 20 | $C_{\mathrm{T}_{\mathrm{F}}}$                           | 0.2          | 1 -<br>7                  |                   | ,                  |                   |
|                                          | بر ریس دو زن در بر میروند.<br>مربس از میروند از میروند میروند. | 25 | $c_{\mathfrak{T}_{L^{2}}} c_{\mathfrak{T}_{\tilde{L}}}$ | · 0.0        | 0<br>8                    |                   |                    |                   |

### TABLE 22

•

,

| 4- | $L_2H_2A_O$  | 0         | $c_{TF}$<br>$c_{TR}$ :                                                  | 1.31<br>0.85 | 1.75<br>1.15   | 2.07<br>1.31   | 2.37<br>1.44   | 2.55<br>1.46   |
|----|--------------|-----------|-------------------------------------------------------------------------|--------------|----------------|----------------|----------------|----------------|
| n  | 1,800 r.p.m. | 5         | ${}^{\mathrm{CTF}}_{\mathrm{CTR}}$                                      | 1.09<br>0.80 | 1.23<br>0.84   | 1.23<br>0.78   | 1.31.<br>0.57  | 1.27<br>0.51   |
|    |              | 10        | ${}^{\mathrm{CT}_{\mathrm{F}}}_{\mathrm{CTR}}$                          | 0.82<br>0.65 | 0.60<br>0.40   | 0.27<br>-0.03  | -0.04<br>-0.49 | -0.22<br>-0.68 |
|    |              | . 15<br>: | ${}^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{T}_{\mathrm{R}}}$   | 0.57<br>0.46 | 0.05<br>-0.15  | -0.65<br>-0.80 |                |                |
|    |              | 20        | $^{\mathrm{C}}_{\mathrm{TF}}$ $^{\mathrm{C}}_{\mathrm{T}_{\mathrm{R}}}$ | 0.31<br>0.28 | -0.58<br>-0.64 |                | :              | -              |
|    |              | . 25      | $c_{\mathrm{T}_{\mathrm{F}}}$<br>$c_{\mathrm{T}_{R}}$                   | 0.07<br>0.08 |                |                | :              |                |

TABLE 23/

#### - 21 -

| - | 22 | - |
|---|----|---|
|---|----|---|

| θο | Arrangement                          | θ    | $Coeff \times 10^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μ =0 <b>.</b> 1 | μ <b>=</b> 0 <b>.</b> 2 | μ=0 <b>.</b> 3 | μ=0•4        | μ=0 <b>•</b> 45 |
|----|--------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|----------------|--------------|-----------------|
| 4° | L <sub>2</sub> H <sub>2</sub> A_7.7° | 0    | ${}^{\mathrm{C}}_{\mathrm{T}_{\mathrm{R}}^{\mathrm{F}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.35<br>1.08    | 1.80<br>1.82            | 2.18<br>2.17   | 2•39<br>2•63 | 2.66<br>2.84    |
|    | 1,200 r.p.m.                         | 5    | $^{\mathrm{C}}_{\mathrm{TF}}_{\mathrm{C}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.14<br>1.01    | 1•31<br>1•50            | 1.27           | 1.39<br>1.89 | 1.34<br>2.07    |
|    |                                      | 10   | $C_{\mathbf{T}_{\mathbf{F}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.91<br>0.91    | 0.70<br>1.18            | 0•38<br>1•25   | 0.15         | -0.36<br>1.44   |
|    |                                      | 15   | $\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{{\overset{C}}}}{{{}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{{}}}}{{{}}}{{\overset{C}}}}{{{}}}{{{}}}}{{{}}}{{{}}}}{{{}}}{{{}}}}$ | 0.68<br>0.76    | 0.10<br>0.75            | -0.51<br>0.38  |              |                 |
|    |                                      | 20 . | $^{\mathrm{C}_{\mathrm{TF}}}_{\mathrm{C}_{\mathrm{TR}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0•42<br>0•58    | -0.49<br>0.14           |                |              |                 |
|    | :                                    | 25   | ${}^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.12<br>0.35    |                         |                |              |                 |

 $\mathtt{C}_{T_F}$  and  $\mathtt{C}_{T_R}$  for Twin Rotors

#### TABLE 24

| 4° | L <sub>2</sub> H <sub>2</sub> A-4.4° | 0  | $egin{array}{c} \mathbf{C_{T_F}} \\ \mathbf{C_{T_R}} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.37<br>0.99 | 1.76<br>1.49   | 2.12<br>1.82   | 2•49<br>2•09 | 2.52<br>2.15  | - |
|----|--------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|----------------|--------------|---------------|---|
|    | 1,800 r.p.m.                         | 5  | $^{\mathrm{C_{T_F}}}_{\mathrm{C_{T_R}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.13<br>0.91 | 1.28<br>1.21   | 1.29<br>1.29   | 1•38<br>1•26 | 1.33<br>1.27  |   |
|    |                                      | 10 | ${}^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.86<br>0.77 | 0.64<br>0.81   | 0.35<br>0.61   | 0.02<br>0.44 | -0.09<br>0.26 |   |
|    |                                      | 15 | $\stackrel{\mathrm{C}_{\mathbf{T}_{\mathbf{F}}}}{\overset{\mathrm{C}_{\mathbf{T}_{\mathbf{F}}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{T}_{\mathbf{F}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{T}_{\mathbf{F}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}_{\mathbf{T}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{{\overset{C}}}}{{\overset{\mathrm{C}}}}{{{\overset{C}}}}{{{\overset{C}}}}{{{\overset{C}}}}{{{\overset{C}}}}{{{\overset{C}}}}{{{\overset{C}}}}{{{\overset{C}}}}{{{\overset{C}}}}{{{\overset{C}}}}}{{{{}}}}{{{\overset{C}}}}{{{}}}}{{{}}}{{{}}}}{{{}}}}{{{}}}}{{{{$ | 0.61<br>0.61 | 0.07<br>0.27   | -0.61<br>-0.21 |              |               |   |
|    |                                      | 20 | $^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.37<br>0.43 | -0.50<br>-0.27 |                |              |               |   |
|    |                                      | 25 | $^{C_{T_{\mathbf{F}}}}_{C_{T_{\mathbf{R}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.16<br>0.25 |                |                |              |               |   |

TABLE 25/

٧

٠

| <br>23 | - |
|--------|---|
|        |   |

| 00 | Arrangement                                     | 6            | Coeff $\times$ 10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μ <b>=ว.</b> 1 | µ <b>=</b> 0 <b>.</b> 2 | :<br>μ=0.3    | μ=0•4          | μ=0 <b>.</b> 45 |
|----|-------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|---------------|----------------|-----------------|
| L  | ;<br>;                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                         |               |                | :<br>           |
| 4° | L <sub>2</sub> H <sub>2</sub> A <sub>+4</sub> ° | •<br>•       | $c_{\mathrm{TF}} \\ c_{\mathrm{TR}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.32<br>0.61   | 1.75<br>0.63            | 2.04<br>0.56  | 2.32<br>0.49   | 2.52<br>0.40    |
|    | 1,800 r.p.m.                                    | 5            | $C_{T_F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.08<br>0.53   | 1.18<br>0.28            | 1.16<br>-0.08 | 1.24<br>-0.48  | 1.23<br>-0.67   |
|    |                                                 | . 10         | $C_{\mathrm{T}_{\mathrm{F}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.85<br>0.40   | 0.59<br>-0.15           | 0.32<br>-0.83 | -0.06<br>-1.44 | -0.20<br>-1.66  |
|    |                                                 | :<br>15<br>: | $\overset{c_{T_{\mathbf{F}}}}{c_{T_{\mathrm{R}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.61<br>0.24   | 0.01<br>-0.63           |               | :              |                 |
|    |                                                 | 20           | $\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{\overset{\mathrm{C}_{\mathrm{TF}}}}{}}}}}}}}}}}}}}}}}$ | 0.31<br>0.06   | -0.64<br>-1.07          |               |                |                 |
|    |                                                 | : 25         | $^{C_{\mathrm{TF}}}_{C_{\mathrm{TR}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02<br>-0.12  |                         |               | :              |                 |

# ${\rm C}_{{\rm T}_{\rm F}}$ and ${\rm C}_{{\rm T}_{\rm R}}$ for Twin Rotors

### TABLE 26

سويتين الم

.

.

 $C_{\rm TF}$  and  $C_{\rm TR}$  for Twin Rotors

| 4° | L <sub>2</sub> H <sub>2</sub> A7.9°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 0       | $C_{\mathbb{T}_{\mathbf{F}}}$          | 1.36<br>: 0.30 | 1.79<br>0.06   | 2.05.<br>-0.24 | 2.37<br>-0.60  | 2.59<br>-0.69 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------|----------------|----------------|----------------|----------------|---------------|
|    | 1,200 r.p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5<br>;    | $C_{\mathrm{TF}} C_{\mathrm{TR}}$      | 1.14<br>0.22   | 1.28<br>-0.31  | 1.21<br>-0.92  | 1.25<br>-1.59  | 1.18<br>-1.80 |
| :  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : 10<br>: | $C_{\mathrm{TF}}$                      | 0.89<br>0.12   | 0.70<br>-0.70  | 0.32           | -0.07<br>-2.37 |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 15      | $C_{T_F}$                              | 0.64<br>-0.04  | -0.01<br>-1.13 | : .            |                |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : 20      | $C_{\mathrm{TF}}$<br>$C_{\mathrm{TR}}$ | 0.33<br>-0.23  | •              | ;              |                |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25        | $C_{T_{\mathbf{F}}}$                   | -0.03<br>-0.39 | :              |                |                |               |
|    | and a subscription of the state | :         | ,                                      | •              |                |                | :              |               |

TABLE 27/

# - 24 -Table 27

### $C_{\rm TF}$ and $C_{\rm TR}$ for Twin Rotors

|                                                                                                                 | and and and an even and and an experimental state of the second st |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                | water granter a | annumation. Mit is suffer a |               |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----------------|-----------------------------|---------------|
| θο                                                                                                              | Arrangement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ; Ø | $Coeff \times 10^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µ=0 <b>.</b> 1 | μ=0 <b>.</b> 2 | μ=0 <b>.</b> 3  | <i>μ</i> =0 <b>.</b> 4      | µ=0.1+5       |
| (F)<br>=4°                                                                                                      | $L_2H_2A_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0   | $^{ m C_{T_F}}_{ m C_{T_R}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.33<br>1.46   | 1.81<br>1.80   | 2.08            | 2.40<br>2.12                | 2.53<br>2.19  |
| (R)<br>=6°                                                                                                      | :<br>1,200 r.p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5   | $\stackrel{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.12<br>1.42   | 1.30<br>1.53   | : 1.34<br>1.47  | 1.33<br>1.30                | 1.29<br>1.35  |
| angenergen er van de service en de servic | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10  | $C_{\mathrm{T}\mathrm{F}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.88<br>1.31   | 0.71<br>1.13   | 0•38<br>0•81    | 0.09<br>0.38                | -0.04<br>0.26 |
| and a second  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15  | $\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.64<br>1.13   | 0.07<br>0.64   | -0.57<br>-0.11  |                             | · · · ·       |
| non an long and a standard and a sta | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20  | $^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.39<br>0.92   | -0.58<br>-0.01 | ,               |                             |               |
| unangenin en landiderijk renor - entligeningenen -                                                              | •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25  | $\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}}}{{\overset{C}}}{{\overset{\mathrm{C}}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}}{{\overset{C}}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}}{{\overset{C}}}{{{}}}}{{\overset{C}}}{{\overset{C}}}}{{\overset{C}}}}{{\overset{C}}}}{{\overset{C}}}{{{}}}}{{\overset{C}}}{{{}}}}{{{}}}{{}}}{{\overset{C}}}{{{}}}}{{{}}}}{{\overset{C}}}}{{{}}}{{{}}}}{{}}}{{{}}}$ | 0•13<br>0•68   |                |                 |                             |               |
| 1                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                |                 |                             | •             |

#### TABLE 28

| 8°                                                                                                              | L <sub>2</sub> H <sub>2</sub> A <sub>0</sub> | 0  | C <sub>TF</sub><br>C <sub>TR</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.39<br>1.78                           | 2•94<br>2•12 | 3.26<br>2.24  | 3.63<br>. 2.42 | 3.84<br>2.62   |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------|---------------|----------------|----------------|
| and the state of the | 1,200 r.p.m.                                 | 5  | $\stackrel{\rm C_{T_F}}{_{\rm C_{T_R}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2•21<br>1•76                           | 2.55<br>1.92 | 2.65<br>1.90  | 2•92<br>1•75   | · 2.92<br>1.83 |
| ladia den da constante en constante                                                                             | :                                            | 10 | ${}^{\mathrm{C}}_{\mathrm{T}_{\mathrm{F}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.07<br>1.71                           | 2.14<br>1.60 | 2.00<br>1.33  | 1.91<br>0.99   | 1.83<br>0.89   |
|                                                                                                                 |                                              | 15 | $\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{{\overset{C}}}}{{{}}}{{\overset{\mathrm{C}}}}{{{}}}{{\overset{C}}}}{{{}}}{{\overset{C}}}{{{}}}}{{{}}}{{\overset{C}}}{{{}}}{{{}}}{{}}}{{{}}}{{{}}}{{{}}}{{}}}{{{}}}{{{}}}}$ | 1.88 <sup>-</sup><br>1.58              | 1.66<br>1.21 | 1•14<br>0•61  | 0.67<br>-0.01  | 0.48<br>-0.36  |
|                                                                                                                 |                                              | 20 | $\stackrel{\rm C_{T_F}}{\rm C_{T_R}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.66 <sup>:</sup><br>1.43 <sup>:</sup> | 1.04<br>0.68 | 0.05<br>-0.20 | •              |                |
|                                                                                                                 | :                                            | 25 | $C_{TF}$<br>$C_{TR}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1•41<br>1•24 :                         | 0•28<br>0•04 |               |                |                |

TABLE 29/

-2

4

 $C_{\mathrm{TF}}$  and  $C_{\mathrm{TR}}$  for Twin Rotors

| θ,                                                                                                               | Arrangement                          | θ  | $Coeff \times 10^3$                                                     | μ=0 <b>.</b> 1 | μ=0 <b>.</b> 2 | μ=0 <b>.</b> 3               | µ=0∙4             | µ=0 <b>.</b> 45                   |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------|----|-------------------------------------------------------------------------|----------------|----------------|------------------------------|-------------------|-----------------------------------|
| 8°                                                                                                               | L <sub>2</sub> H <sub>2</sub> A_7.7° | 0  | $C_{\mathrm{TF}}$<br>$C_{\mathrm{TR}}$                                  | 2.43<br>2.00   | 2,97<br>2,58   | 3.30<br>2.91                 | 3.65<br>3.36      | 3.88<br>3.49                      |
| organization areas in the soundaries                                                                             | 1,200 r.p.m.                         | 5  | C <sub>TF</sub><br>C <sub>TR</sub>                                      | 2•27<br>1•98   | 2.61<br>2.33   | 2.73<br>2.6/+                | 2.88<br>2.79      | 2.95<br>3.03                      |
| fina viele en antenne a gan de antenne a ser                                                                     | :                                    | 10 | $c_{\mathrm{T}_{\mathrm{F}}}$<br>$c_{\mathrm{T}_{\mathrm{R}}}$          | 2.11<br>1.89   | 2.19<br>2.13   | 2.07<br>2.29                 | 1.95<br>2.31      | 1.95<br>2.46                      |
|                                                                                                                  | •                                    | 15 | $c_{\mathrm{TF}} c_{\mathrm{TR}}$                                       | 1.91<br>1.79   | 1.66<br>1.88   | 1.27<br>1.70                 | 0.87<br>1.56      | 0.67<br>1.46                      |
| and an and the second | :                                    | 20 | $^{\mathrm{C}_{\mathrm{T}_{F}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$ | 1.68<br>1.66   | 1.11<br>1.50   | 0.25<br>0.99                 |                   |                                   |
| submitted                                                                                                        |                                      | 25 | $C_{\mathrm{T}_{\mathbf{F}}}$<br>$C_{\mathrm{T}_{\mathrm{R}}}$          | 1.48<br>1.49   | 0.41<br>0.91   | 1 ) prinde a ( ) sine spanne | / booksmar / av a | - 1990 - 121 - 1990 - 1990 - 1990 |

#### TABLE 30

| 8°                                       | L <sub>2</sub> H <sub>2</sub> A <sub>-4•4</sub> °                         | 0                                               | $C_{TF}$<br>$C_{TR}$                                                             | 2.43<br>1.89                     | 3.02<br>2.31                                              | 3.19<br>2.73              | 3.71<br>2.88 :                            | 3•99<br>3•03                              |
|------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------|---------------------------|-------------------------------------------|-------------------------------------------|
|                                          | 1,200 r.p.m.                                                              | 5                                               | $C_{\mathrm{TF}}$ $C_{\mathrm{TR}}$ .                                            | 2.26<br>1.84                     | 2.64<br>2.13                                              | 2.70 <sup>:</sup><br>2.37 | 2.89<br>2.40                              | 3.05<br>2.54                              |
|                                          |                                                                           | 10                                              | $^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$ | 2.10<br>1.77                     | 2.18<br>1.88                                              | 2.05<br>1.86              | 1.94<br>1.71                              | 1.85<br>1.76                              |
|                                          |                                                                           | 15                                              | ${}^{\mathrm{CT}_{\mathbf{F}}}_{\mathrm{CT}_{\mathbf{R}}}$                       | 1.94<br>1.67                     | 1.73 <sup>1</sup><br>1.53                                 | 1.23<br>1.16              | 0.80<br>0.85                              | 0.62<br>0.65                              |
| n er |                                                                           | 20                                              | $\overset{C_{T_{F}}}{_{C_{T_{R}}}}$                                              | 1.73<br>1.52                     | 1.17<br>1.07                                              | 0.28<br>0.30              |                                           |                                           |
| tion volt my monthly in the second       |                                                                           | 25                                              | CTF<br>CTR                                                                       | 1.38<br>1.28                     | 0.42<br>0.43                                              |                           |                                           |                                           |
|                                          | anna a mandhana mabala a guu d'anyananan dikudhuu yu yuna a yu - u kuna k | e<br>;<br>;<br>;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | e<br>huindleist (est dennes al de kontekter van an be kontek                     | anweeld it vierpeature draws his | a<br>e<br>may may ang | w na na si the second     | 13 Nov - Hand (Standard Strangerstein ) - | r manue and the Migde or gate be disperie |

.

ŀ

TABLE 31/

- 25 -

- 26 -

### TABLE 31

 ${\tt C}_{\rm TF}$  and  ${\tt C}_{\rm T_R}$  for Twin Rotors

| θ  | Arrangement                        | θ               | $Coeff \times 10^3$                                                                 | μ=0 <b>.</b> 1 | · µ=0•2       | μ=0 <b>.</b> 3 | µ <b>⊨</b> 0•1 <sub>+</sub> | μ=0 <b>.</b> 45 |
|----|------------------------------------|-----------------|-------------------------------------------------------------------------------------|----------------|---------------|----------------|-----------------------------|-----------------|
| 8° | L₂ <sup>H</sup> ₂ <sup>A</sup> +4° | 0               | ${}^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$  | 2.39<br>1.65   | 2.93<br>1.75  | 3.24<br>1.77   | . 3.60<br>1.80              | 3•79<br>1•81    |
|    | 1,200 r.p.m.                       | 5               | $c_{\mathrm{T}_{\mathrm{F}}} c_{\mathrm{T}_{\mathrm{R}}}$                           | 2.24<br>1.61   | 2.52<br>1.58  | 2.66<br>1.30   | 2.87<br>0.94                | 2.99<br>0.88    |
|    |                                    | 10 <sup>°</sup> | $\overset{\mathrm{C}_{\mathrm{TF}}}{_{\mathrm{C}_{\mathrm{TR}}}}$                   | 2.08<br>1.51   | 2.10<br>1.20  | 1.96<br>0.58   | 1.84<br>0.08                | 1.90<br>-0.26   |
|    |                                    | ' 15            | $^{\mathrm{C}}_{\mathrm{T}_{\mathrm{F}}}$ $^{\mathrm{C}}_{\mathrm{T}_{\mathrm{R}}}$ | 1.88<br>1.39   | 1.62<br>0.69  | 1.18<br>0.24   |                             |                 |
|    |                                    | 20              | ${}^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$  | 1.66<br>1.24   | 1.03<br>0.12  |                |                             |                 |
|    |                                    | 25 :<br>:       | $\overset{c_{T_{F}}}{c_{T_{R}}}$                                                    | 1•41<br>1•09   | 0.47<br>-0.30 |                |                             |                 |

#### TABLE 32

|    | ayan da mahaman mandasatake na masanan menantahan sebagai ang |     |                                                                                  |   |                |              |                |               |                |
|----|---------------------------------------------------------------|-----|----------------------------------------------------------------------------------|---|----------------|--------------|----------------|---------------|----------------|
| 8° | $\mathbf{L}_{2}\mathbf{H}_{1}\mathbf{A}_{0}$                  | 0   | $CT_{\rm F}$<br>$C_{\rm T_{\rm R}}$                                              | : | 2.37<br>1.55.  | 2.96<br>2.01 | 3•34<br>2•31   | 3.62<br>2.50  | 3•79<br>2•60   |
|    | 1,200 r.p.m.                                                  | . 5 | $C_{\mathbb{T}_{\mathrm{F}}}$                                                    | : | 2.21<br>1.62 · | 2.54<br>1.81 | 2.74<br>1.77   | 2.92<br>1.83  | 3.04<br>1.83   |
|    |                                                               | 10  | $^{\mathrm{C}}_{\mathrm{T}_{\mathrm{F}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$ | : | 2.06<br>1.61   | 2.15<br>1.52 | 2.05<br>1.28   | 1.96<br>1.03  | 1.89<br>· 0.94 |
| •  |                                                               | 15  | ${}^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{R}}}$        |   | 1.88<br>1.54   | 1.65<br>1.12 | 1.23<br>0.56   | 0.72<br>-0.08 | 0.50<br>-0.32  |
| :  |                                                               | 20  | $^{\mathrm{C_{T_F}}}_{\mathrm{C_{T_R}}}$                                         |   | 1.68<br>1.40   | 1.06<br>0.65 | -0.04<br>-0.31 | •             | :<br>:         |
| •  |                                                               | 25  | $^{\mathrm{C}_{\mathrm{TF}}}_{\mathrm{C}_{\mathrm{TR}}}$                         | ; | 1.44<br>1.23   | 0.28<br>0.03 |                | :             |                |

TABLE 33/

# - 27 -

### TABLE 33

 ${\rm C}_{\rm T_F}$  and  ${\rm C}_{\rm T_R}$  for Twin Rotors

| θο                                                                                                             | Arrangement  | 0       | $Coeff \times 10^3$                                                                     | µ=0 <b>.</b> 1 | . <i>µ</i> =0.2 | μ=0 <b>.</b> 3 | 'µ=0∙4            | µ=0 <b>.</b> 45 |
|----------------------------------------------------------------------------------------------------------------|--------------|---------|-----------------------------------------------------------------------------------------|----------------|-----------------|----------------|-------------------|-----------------|
| 8°                                                                                                             | $L_3H_3A_0$  | 0       | CTF<br>CTR                                                                              | 2.42<br>1.90   | 2.95<br>2.15    | 3.33<br>2.30   | ;<br>3.72<br>2.41 | 3.94<br>· 2.57  |
| na n                                                                       | 1,200 r.p.m. | 5       | $C_{\mathrm{T}_{\mathrm{R}}}$                                                           | 2.23<br>1.84   | 2.54<br>1.93    | 2.74<br>1.97   | 2.87<br>1.90      | 2.94<br>1.87    |
| under andere |              | 10<br>: | $C_{T_{F}}$                                                                             | 2.05<br>1.74   | 2.12<br>1.63    | 2.02<br>1.36   | 1.92<br>1.10      | 1.83<br>0.90    |
|                                                                                                                |              | 15      | $c_{\mathrm{TF}} \\ c_{\mathrm{TR}}$                                                    | 1.85<br>1.59   | 1.67<br>1.20    | 1•15<br>0•55   | 0.61<br>-0.11     | 0.40<br>-0.30   |
|                                                                                                                |              | 20      | $c_{\mathrm{TF}} \\ c_{\mathrm{TR}}$                                                    | 1.62<br>1.42   | 1.05<br>0.66    | 0.04<br>-0.37  | · · · ·           |                 |
|                                                                                                                |              | 25      | ${}^{\mathrm{C}}_{\mathrm{T}_{\mathrm{F}}}$ ${}^{\mathrm{C}}_{\mathrm{T}_{\mathrm{R}}}$ | 1.30<br>1.22   | 0.24<br>0.03    |                |                   |                 |

TABLE 34

,

| 8° :                                  | L <sub>1</sub> H <sub>2</sub> A <sub>0</sub> | 0           | CTF<br>CTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,38<br>1.80     | 2.90<br>2.15  | 3.25<br>2.36  | 3.55<br>2.73  | 3.64<br>2.89  |
|---------------------------------------|----------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|---------------|---------------|---------------|
|                                       | 1,200 r.p.m.                                 | 5.          | ${}^{\mathrm{C}_{\mathrm{T}}}_{\mathrm{C}_{\mathrm{T}}^{\mathrm{T}}\mathrm{R}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.20<br>1.78     | 2.55<br>1.95  | 2.69<br>1.92  | 2.84<br>1.90  | 3.04<br>1.81  |
| a a a a a a a a a a a a a a a a a a a |                                              | 10<br>:     | $^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.04<br>1.70     | 2.14<br>1.59  | 2.12<br>1.27  | 1.86<br>0.99  | 2.10<br>0.70  |
|                                       |                                              | . 15 .<br>: | ${}^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.84<br>1.59     | 1.70<br>1.11  | 1.31<br>0.46  | 0.87<br>-0.25 | 0.81<br>-0.63 |
|                                       |                                              | 20 :        | $\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}_{\mathrm{T}}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{\overset{\mathrm{C}}}}{{{}}}}{{\overset{\mathrm{C}}}}{{\overset{C}}}}{{\overset{C}}}{{\overset{C}}}{{{}}}}{{\overset{C}}}{{{}}}}{{\overset{C}}}{{{}}}}{{\overset{C}}}{{{}}}}{{\overset{C}}}{{{}}}{{}}}{{{}}}{{}}}{{{}}}{{}}}{{}}{{}}}{{}}}{{}}{{}}}{{}}}{{}}}{{{}}}$ | 1.63<br>1.42     | 1.18<br>0.54  | 0.45<br>-0.62 | :             |               |
|                                       |                                              | 25          | $^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1•34 :<br>1•22 : | 0.38<br>-0.19 |               |               |               |
|                                       | ,                                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |               |               |               |               |

TABLE 35/

| - 28 | - |
|------|---|
|------|---|

,

#### TABLE 35

| $c_{\mathrm{T}_{\mathbf{F}}}$ | and | $c_{\mathrm{T}_{\mathrm{R}}}$ | for | Twin | Rotor |
|-------------------------------|-----|-------------------------------|-----|------|-------|
|-------------------------------|-----|-------------------------------|-----|------|-------|

| θ <sub>o</sub> Arrangemen | t Ə    | $Coeff \times 10^3$                                                                | µ=0 <b>.</b> 1 | μ=0 <b>.</b> 2 | ·μ=0•3         | μ=0•4         | μ=0 <b>.</b> 45   |
|---------------------------|--------|------------------------------------------------------------------------------------|----------------|----------------|----------------|---------------|-------------------|
| 8°. L₃H₂A <sub>O</sub>    | ;<br>0 | $c_{\mathrm{TF}} c_{\mathrm{TR}}$                                                  | 2.37<br>1.87   | 2.93<br>2.11   | · 3.28<br>2.23 | 3.66<br>2.36  | :<br>3.91<br>2.51 |
| 1,200 r.p.m.              | 5      | $^{C_{T_{F}}}_{C_{T_{R}}}$                                                         | 2.20<br>1.82   | 2•49<br>1•92   | 2.62<br>1.88   | 2.88<br>1.77  | 2•94<br>1•84      |
|                           | 10     | $^{\rm C_{T_F}}_{\rm C_{T_R}}$                                                     | 2.03<br>1.74   | 2.12<br>1.60   | 1.98<br>1.30   | 1.92<br>0.86  | 1.85<br>0.74      |
|                           | 15     | $c_{\mathtt{TF}} c_{\mathtt{TR}}$                                                  | 1.82<br>1.59   | 1.65<br>1.15   | 1•18<br>: 0•52 | 0.62<br>-0.12 | 0.42<br>-0.45     |
| •<br>•                    | 20     | ${}^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$ | 1.69<br>1.40   | 1.08<br>: 0.63 | 0.11<br>-0.37  |               | :                 |
| ,                         | 25     | $\overset{C_{T}}{\overset{F}{}}_{T_{R}}$                                           | 1.40<br>1.20   | 0.15<br>-0.03  |                |               |                   |

#### TABLE 36

| 12° L <sub>3</sub> H <sub>2</sub> A <sub>0</sub> | 0               | $\overset{C_{T_{T_{R}}}}{\overset{C_{T_{R}}}{\overset{T_{T_{R}}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}}{\overset{F}}{\overset{F}}{\overset{F}}$ | 3•30<br>2•73 : | 3•72 ·<br>2•87 · | :                         |                | 9            |
|--------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|---------------------------|----------------|--------------|
| 1,200 r.p.m.                                     | 5               | ${}^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.15<br>2.70   | 3•52<br>2•76     | 3•78<br>2•75              | •              |              |
|                                                  | 10 <sup>:</sup> | $c_{\mathrm{T}_{\mathrm{F}}} c_{\mathrm{T}_{\mathrm{R}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.11<br>2.64   | 3.27<br>2.64     | 3•41 <sup>:</sup><br>2•45 | 3•55<br>2•22   | 3.56<br>2.14 |
|                                                  | 15              | $\overset{\mathrm{C_{TF}}}{\overset{\mathrm{C_{TF}}}{\overset{\mathrm{C}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.08<br>2.52   | 3.03<br>2.37     | 2.88<br>1.98              | 2.60<br>1.49   | 2.52<br>1.25 |
| · ·                                              | 20.<br>:        | $^{C_{\underline{T}}\underline{F}}_{C_{\underline{T}R}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 2•98<br>2•27 | 2.71<br>2.01     | 2•23 <sup>.</sup><br>1•31 | 1.67<br>0.43   | 1.23<br>0.33 |
|                                                  | 25              | $^{\rm CT_F}_{\rm CT_R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2•79<br>1•96   | 2•18<br>1•55     | 1.33<br>0.55              | -0.01<br>-0.75 |              |

TABLE 37/

.

.

 $\mathtt{C}_{T_{\overline{F}}}$  and  $\mathtt{C}_{T_{\overline{R}}}$  for Twin Rotors

| 00 Arrangement                                         | ; <del>0</del> | $Coeff \times 10^3$                 | µ=0 <b>.</b> 1      | ΄μ=0 <b>.</b> 2 | μ=0 <b>.</b> 3 | μ=0 <b>.</b> 4 | μ=0 <b>.</b> 45 |
|--------------------------------------------------------|----------------|-------------------------------------|---------------------|-----------------|----------------|----------------|-----------------|
| 12°, L <sub>2</sub> H <sub>2</sub> A <sub>-7•7</sub> ° | . 0            | C <sub>TF</sub><br>C <sub>T2</sub>  | 3.30<br>2.80        | 3•79<br>3•23    |                |                | ,               |
| 1,200 r.p.m.                                           | 5              | C <sub>T</sub> F<br>C <sub>TR</sub> | 3.19<br>2.79        | 3•56<br>3•02    | 3.82<br>3.23   |                |                 |
| ·                                                      | . 10           | $C_{T_{R}}$                         | 3.12<br>2.76        | 3.33<br>2.83    | 3.50<br>2.96   | 3.67<br>3.06   | 3•71<br>3•19    |
|                                                        | 15             | $C_{T_{\mathbf{F}}}$                | : 3.10<br>2.72      | 3.11<br>2.72    | 2.99<br>2.73   | 2.86<br>2.74   | 2.81<br>2.76    |
| •                                                      | 20<br>:        | $c_{T_{F}}$                         | 2.96<br>2.67        | 2.80<br>2.54    | 2•33<br>2•24   | 1.83<br>2.02   | 1.60<br>1.87    |
| :                                                      | 25             | $c_{\mathrm{T}_{\mathrm{F}}}$       | : 2.69<br>2.50<br>: | 2.33<br>1.97    | 1.43<br>1.61   | 0•59<br>1•02   |                 |

TABLE 38

•

.

¥

•

| 12° L <sub>2</sub> H <sub>2</sub> A <sub>-4•4</sub> ° | 0    | $c_{\mathrm{TF}}$<br>$c_{\mathrm{TR}}$                                           | 3.30<br>2.79  | 3•74<br>3•00 | har if manyin our of the adaptive in | арадар (A 00) од цант Анрилиски, де<br>1 | naar na na na taa taa taa taa taa taa taa ta |
|-------------------------------------------------------|------|----------------------------------------------------------------------------------|---------------|--------------|--------------------------------------|------------------------------------------|----------------------------------------------|
| 1,200 r.p.m.                                          | ,    | $c_{\mathrm{T_F}} \\ c_{\mathrm{T_R}}$                                           | 3.18<br>2.76  | 3•55<br>2•83 | 3.86<br>2.93                         |                                          |                                              |
|                                                       | 10   | $^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$ | 3.12<br>2.68  | 3.36<br>2.71 | 3•47<br>2•76                         | 3.61<br>2,80                             | 3.80<br>2.72                                 |
|                                                       | . 15 | $^{\mathrm{C_{T_{F}}}}_{\mathrm{C_{T_{R}}}}$                                     | 3.09<br>2.61  | 3.07<br>2.60 | 3.03<br>2.34                         | 2.84<br>2.23                             | 2.81<br>2.22                                 |
| ,<br>:                                                | 20   | $\overset{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}{C_{\mathrm{T}_{\mathrm{R}}}}$    | 2.91+<br>2.50 | 2•77<br>2•34 | 2.29<br>1.87                         | 2.69<br>1.41                             | 1.49<br>1.17                                 |
|                                                       | 25   | $^{\mathrm{C}}_{\mathrm{T}_{\mathrm{T}}^{\mathrm{T}_{\mathrm{F}}}}$              | 2.60<br>2.28  | 2.15<br>1.81 | 1.38<br>1.06                         | 0.76<br>0.55                             |                                              |

TABLE 39/

### - 29 -

| - 30 | - |
|------|---|
|------|---|

| $c_{\mathrm{TF}}$ | and | $c_{\mathrm{T}_R}$ | for | Twin | Rotors |
|-------------------|-----|--------------------|-----|------|--------|
|-------------------|-----|--------------------|-----|------|--------|

| θο  | Arrangement                                  | θ    | Coeff × 10 <sup>3</sup>                                              | μ=0 <b>.</b> 1 | μ=0 <b>.</b> 2 | μ=0 <b>.</b> 3 | μ=0∙4         | [µ=0 <b>.</b> 45 |
|-----|----------------------------------------------|------|----------------------------------------------------------------------|----------------|----------------|----------------|---------------|------------------|
| 12° | L <sub>2</sub> H <sub>2</sub> A <sub>0</sub> | : 0  | $c_{\mathrm{T}_{\mathrm{F}}} c_{\mathrm{T}_{\mathrm{R}}}$            | 3•31<br>2•74   | 3•75<br>2•85   | :              |               |                  |
|     | 1,200 r.p.m.                                 |      | $\overset{c_{\mathrm{T}_{\mathrm{F}}}}{c_{\mathrm{T}_{\mathrm{R}}}}$ | 3.19<br>2.73   | 3.56<br>2.79   | 3.89<br>2.79   | :             | :                |
|     |                                              | 10   | $C_{\mathrm{TF}}$ $C_{\mathrm{TR}}$                                  | 3.1.0<br>2.66  | 3.29<br>2.72   | 3.50<br>2.53   | 3•57<br>2•41  | 3.62<br>2.45     |
|     |                                              | 15   | $c_{\mathrm{T}_{\mathrm{F}}} c_{\mathrm{T}_{\mathrm{R}}}$            | 3.03<br>2.56   | 3.04<br>2.43   | 2.91           | 2.64<br>1.49  | 2.69<br>1.46     |
| ;   |                                              | : 20 | $^{\rm C_{TF}}_{\rm C_{TR}}$                                         | 2.89<br>2.45   | 2.66<br>2.03   | 2.14           | 1.55<br>0.64  | 1.29<br>0.25     |
| ;   |                                              | 25   | $^{\mathrm{C}_{\mathrm{TF}}}_{\mathrm{C}_{\mathrm{TR}}}$             | 2.62<br>2.26   | 2.16<br>1.51   | 1.24<br>0.48   | 0.24<br>-0.54 | :                |

#### TABLE 40

| 12° L <sub>2</sub> H <sub>2</sub> A <sub>+4</sub> ° | 0    | $c_{\mathrm{T}_{\mathrm{F}}} \\ c_{\mathrm{T}_{\mathrm{R}}}$ | 3.25<br>2.62 | 3.71<br>2.73 |               | аналияния         | an a |
|-----------------------------------------------------|------|--------------------------------------------------------------|--------------|--------------|---------------|-------------------|------------------------------------------|
| 1,200 r.p.m.                                        | 5    | $c_{\mathrm{TF}} \\ c_{\mathrm{TR}}$                         | 3.11<br>2.57 | 3.57<br>2.59 | 3.80<br>2.43  | :                 |                                          |
|                                                     | · 10 | $c_{\mathrm{TF}}^{\mathrm{TF}}$                              | 3.04<br>2.51 | 3.26<br>2.43 | 3•37<br>2•05  | :<br>3•58<br>1•74 | 3.68<br>1.62                             |
|                                                     | 15   | $^{\rm C}_{ m TF}$ $^{\rm C}_{ m TR}$                        | 3.02<br>2.45 | 2.99<br>2.07 | 2.85<br>1.46  | 2.71<br>0.78      | 2.63<br>0.41                             |
|                                                     | 20   | c <sub>T</sub><br>c <sub>T</sub>                             | 2.91<br>2.36 | 2.65<br>1.68 | 2.10<br>0.74  | 1.52<br>-0.24     | 1.21<br>-0.82                            |
|                                                     | 25   | $c_{\mathrm{TF}} \\ c_{\mathrm{TR}}$                         | 2•70<br>2•27 | 2.04<br>1.18 | 1.15<br>-0.12 | 0.08<br>-1.22     | angen seingenstering de unser Dans       |

TABLE 41/

•

٠

•

## $C_{\mathrm{TF}}$ and $C_{\mathrm{TR}}$ for Twin Rotors

| θο                            | Arrangement       | θ       | $Coeff \times 10^3$                                         | μ=0 <b>.</b> 1 | μ=0 <b>.</b> 2 | μ=0 <b>.</b> 3            | μ=0•4         | μ=0•45       |
|-------------------------------|-------------------|---------|-------------------------------------------------------------|----------------|----------------|---------------------------|---------------|--------------|
| 12° .                         | $L_{2}H_{1}A_{O}$ | 0       | ${}^{\mathrm{CT}_{\mathrm{F}}}_{\mathrm{CT}_{\mathrm{R}}}$  | 3.27<br>2.59   | 3•78<br>2•90   |                           | ,<br>,<br>,   |              |
|                               | 1,200 r.p.m.      | 5 ;     | $^{C_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{TR}}}$ | 3.13<br>2.64   | 3.56<br>2.75   | 3.86<br>2.84              | •<br>•        |              |
|                               |                   | 10      | $^{\mathrm{C}_{\mathrm{TF}}}_{\mathrm{C}_{\mathrm{TR}}}$    | 3.05<br>2.60   | 3.32<br>2.63   | 2•55<br>2•48              | 3•75<br>2•32  | 3•79<br>2•22 |
| :                             |                   | 15<br>: | $^{\mathrm{C}_{\mathrm{TF}}}_{\mathrm{CTR}}$                | 3.00<br>2.54   | 3.06<br>2.36   | 3.00<br>2.00              | 2.76<br>1.59  | 2.67<br>1.46 |
|                               |                   | 20,     | $c_{\mathbf{T_F}} \\ c_{\mathbf{T_R}}$                      | 2.88<br>: 2.45 | 2.71<br>2.01   | 2•22<br>1•33 <sup>:</sup> | 1.58<br>0.69  | 1.40<br>0.37 |
| allefiger underströmsterfiger |                   | : 25    | $^{C}_{\mathrm{TF}}_{\mathrm{CTR}}$                         | ••••           | 2.14<br>1.58   | 1.23<br>0.59              | 0.21<br>-0.23 |              |

#### TABLE 42

.

•

| 12 <sup>0</sup> | $\mathbf{L}_{2}\mathbf{H}_{3}\mathbf{A}_{0}$ | 0               | CTF<br>CTR                                                                         | 3.22<br>2.82 | 3.68<br>2.85 |              | *<br>*        | en frankrikeringer og som en som det so |
|-----------------|----------------------------------------------|-----------------|------------------------------------------------------------------------------------|--------------|--------------|--------------|---------------|-----------------------------------------------------------------------------------------------------------------|
|                 | 1,200 r.p.m.                                 | 5:              | $\cdot$ $C_{\mathrm{T}_{\mathrm{F}}}$ $C_{\mathrm{T}_{\mathrm{R}}}$                | 3.05<br>2.75 | 3•48<br>2•72 | 3.76<br>2.71 |               |                                                                                                                 |
|                 |                                              | 10              | ${}^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}}$ | 2.99<br>2.68 | 3.19<br>2.63 | 3.32<br>2.46 | 3.53<br>2.24  | 3.61<br>2.24                                                                                                    |
|                 |                                              | 15 <sup>1</sup> | $^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}}_{\mathrm{C}_{\mathrm{TR}}}$               | 2.96<br>2.59 | 2•96<br>2•42 | 2.82<br>2.02 | 2.58<br>1.59  | 2.56<br>1.46                                                                                                    |
|                 |                                              | 20              | ${}^{\mathrm{C}_{\mathrm{T}_{\mathrm{F}^{i}}}}_{\mathrm{CT}_{\mathrm{R}}}$         | 2.85<br>2.49 | 2.60<br>2.06 | 2.09<br>1.36 | 1.42<br>0.58  | 1.20<br>0.29                                                                                                    |
|                 |                                              | 25              | ${}^{ m OT}_{ m TR}{}^{ m F}$                                                      | 2.52<br>2.29 | 2.02<br>1.58 | 1.15<br>0.41 | 0.28<br>-0.41 |                                                                                                                 |

TABLE 43/

#### - 31 -

# - 32 -

### TABLE 43

| $c_{\mathrm{TF}}$ | and | $c_{TR}$ | for | Twin | Rotors |
|-------------------|-----|----------|-----|------|--------|
|-------------------|-----|----------|-----|------|--------|

| $\theta_{0}$ ; Arrangement | θ   | Coeff x 10 <sup>3</sup>                                    | μ=0 <b>.</b> 1 | :<br>μ=0•2   | μ=0•3        | ·μ=0•4         | μ=0•45       |
|----------------------------|-----|------------------------------------------------------------|----------------|--------------|--------------|----------------|--------------|
| $12^{\circ}$ $L_1 H_2 A_0$ | 0   | $C_{TF}$                                                   | 3•24<br>2•68   | 3.66<br>2.78 | :            | :              | :            |
| :1,200 r.p.m.              | : 5 | $^{\mathrm{C_{T_F}}}_{\mathrm{C_{T_R}}}$                   | 3.09<br>2.67   | 3.46<br>2.76 | 3•77<br>2•69 | :              | :            |
| :                          | 10  | C <sub>TF</sub><br>CTR                                     | 3.03<br>2.61   | 3•24<br>2•67 | 3•30<br>2•50 | 3.47<br>2.25   | 3.61<br>2.25 |
| ;                          | 15  | ${}^{\mathrm{CT}_{\mathrm{F}}}_{\mathrm{CT}_{\mathrm{R}}}$ | 2•92<br>2•53   | 2•98<br>2•39 | 2•77<br>2•01 | 2•47<br>1•60   | 2.54<br>1.53 |
|                            | 20  | ${}^{\mathrm{OT}_{\mathbf{F}}}_{\mathrm{C}_{\mathrm{TR}}}$ | 2.76<br>2.45   | 2.54<br>2.03 | 1.99<br>1.39 | 0.96<br>0.35   | 1.13<br>0.22 |
| :                          | 25  | $c_{\mathrm{TF}}$<br>$c_{\mathrm{TR}}$                     | 2•51<br>2•39   | 2.01<br>1.58 | 0•98<br>0•47 | -0.27<br>-0.69 |              |





Fig 2.






Details of blade construction





Calculated static thrust coefficient.

FIG.8



Values of  $M_{y}$ ,  $\theta_{o} = 8^{\circ}$ , 1200 rpm



,























FIG. 12a













FIG. 13b



4

•



\*































÷

ĩ

Fig. 23.

Fig. 24.



ì

.....



Theoretical flapping angles (with and without offset)

FIG. 26.





-

د ۲

.

,

FIG. 28






FIG. 30



.



~

FIG. 33



٠

\*



ς

## C.P. No. 517 { 22,103 } A.R.C. Technical Report

© Crown copyright 1960 Printed and published by HER, MAJESTY'S STATIONERY OFFICE

To be purchased from York House, Kingsway, London w.C.2 423 Oxford Street, London w.1 13A Castle Street, Edinburgh 2 109 St. Mary Street, Cardiff 39 King Street, Manchester 2 50 Fairfax Street, Bristol 1 2 Edmund Street, Birmingham 3 80 Chichester Street, Belfast 1 or through any bookseller

Printed in England

S.O. Code No. 23-9012-17

C.P. No. 517