$\begin{gathered} \text { C.P. No. } 517 \\ (22,103) \end{gathered}$., remi	C.P. No. 517 (22.103)
A.R.C. Technical Report	तStises.		.C. Technical Repor

MINISTRY OF AVIATION
aERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

Wind Tunnel Experiments on a Model of a Tandem Rotor Helicopter

By

A.S. Halliday, Ph.D., B.Sc., D.I.C., and Miss D.K. Cox, B.Sc., of the Aerodynamics Division, N.P.L.

Wind Tunncl Exporinents on a Modcl of a landem Rotor FElicopter
- By -
A. S. Halliday, Ph. D., B. Sc., D. I.C., and Miss D. I. Cox, B. Sc. of the Aerodynamics Iivision, N. P. T.

July, 1960

1. Introduction

At the time of the initiation of the present tests little or no research had been done in chis country on helicopter models, other than on single rotors at the R.A. F. A programme of research on a twin rotor helicopter was therefore suggested to be carried out at the N.P.I.

The main feature of the research was to be the investigation of mutual interference; the front rotor to be fixed in position relative to the body whilst the rear one could be varied in height as well as in distance from the front one. The angle of the axis of the rear rotor could also be varied in a fore and aft direction.

The present report gives the results of the experiments described in A.R.C.19,8291 after the effect of flapping hinge offset has been taken into account using the method given in report A. R.C. 20,5612.

2.1 Description of model and measuring equipment

The tests on a model of a twin-rotor helicopter were made in one of the $9^{\prime} \times 7^{\prime}$ wind tunnels at the N.P. I. ; a photograph of the model viewed from the rear is shown in Fig. 1.

The rotors were driven by two squirrel-cage induction motors, coupled together in tandem and each capable of developing about $3 \mathrm{~h} . \mathrm{p}$. The motors were fed from a variable frequency set and the motor speed was controlled by varying the frequency of the supply current. Fig. 2 shows the arrangement for ariving the rotors through bevel gears. Rotational speed was measured by means of a Nazwell Eridge circuit operated by a contact breaker driven by the main motor shaft. The bridge circuit was calibrated by timing a flashing lamp also operated by a contact from the motor shaft via a $50: 1$ worm reduction gear.

The rotors were driven in opposite directions at three-fifths of the motor speed and provision was made in the coupling of the two motors to alter the relative angular positions of the rotor shafts so that there was accurate intermeshing of the rotor blades. As the primary object of the experiments was to determine the interaction of one rotor on the other it was essential that their relative positions could be altered. The front rotor was fixed in position but the rear rotor position could be varied to give three different distances from the front rotor $I_{1}=3^{\prime}-2^{\prime \prime}, I_{2}=3^{\prime}-7^{\prime \prime}$ and $I_{3}=4^{\prime}-3_{8}^{\prime \prime}$. The height, H, could also be varied to give the same height as the front one (H_{1}) and also increased by $5^{\prime \prime}$ or $8^{\prime \prime}, \mathrm{H}_{2}$ and H_{3} respectively. The shaft angle, A, of the rear rotor could be altered by approximately 4° and 8° in a fore and aft direction. All these variations are indicated in Fic. 3.

22 Rotors

The three-bladed rotors were $4^{\prime}-3^{\prime \prime}$ diameter and identical in construction. The blades were untristed, 1.5" constant chord of NACA 0012 section and effective length 19 . Due to the high stresses
involved the hub was relatively large compared to full scale. Details can be seen in the photograph, Fig. 4.

During the early part of the tests the rotors were run at $1,800 \mathrm{r} . \mathrm{p} . \mathrm{m}$. , at which speed the radial acceleration was approximately $2,350 \mathrm{~g}$, resulting in very high forces at the hub. The blades were provided with both flapping and drag hinges, the former being freely mounted on ball races and the latter having adjustable cork friction dampers. The blades were found to vary slightly in weight so provision was made for final balancing by means of small adjustable weights on screwed rods radiating from the hubs between the blades. These can be seen in the photograph, Fig. 4.

In order to avoid the possibility of resonance it was at first thought advisable to run the rotors with drag hinges locked. Eventually however fatigue cracks were noticed in the roots of two of the blades and it was suspected that the lack of freedom in the drag hinges was the possible cause. Later, after new blades had been fitted, it was thought better to mun with drag hinges free and so reduce root stresses, experience having shown that the possibility of resonance was small. As a further precaution, to eliminate fatigue failure, the new blades of a modified design were mun at a reduced top speed of 1200 r.p.m. This question of blade fatigue is more fully discussed in the Appendix.

2.3 Equipment for masuring tracking of blades and flapping angle

The front rotor carricd a commutator with a single brass segment contacting four carbon brushes mounted on a ring attached to the front rotor spindle housing. Three of these brushes were approximately 120° apart and the fourth diametrically opposite to one of the three. The brush contacts were used to trigger off a stroboscope lamp illuminating the blades whilst rotating. The three contacts at approximately 120° spacings wore set so that, with all three in circuit together, they were successively out of phase by about one chord length when the ends of the rotor blades were observed. By this method it could be seen if the blades were tracking correctly.

The two diametrically opposed contacts were used to facilitate the observation of flapping angles. Each contact had a switch in circuit and the timing adjusted so that the stroboscope flashed when a particular blade was parallel to the longitudinal body axis either in a fore or aft direction. The height of the blade tips in each position was measured by means of a travelling periscope projecting vertically downwards into the tunnel. The difference in height of the blade tips in these two positions gave a measure of flapping angle. The periscope was of the type used on midget submarines. The stroboscope lamp was mounted on gimbals and the dircction of the light, shining through a thick perspex window, could be adjusted by the observer to illuminate the particular blade tip under observation. It was estimated that the accuracy of the measurements was of the order of one tenth of a degree. A photograph of the head of the periscope is shown in Fig. 6 from which can be seen one of the two vertical slides bohind which is the measuring scale.

As the periscopo weighed about 60 lb it had to be counterweighted and the wires carrying these weights, passing over pulleys, can be seen in the photograph.

3. Safety Precautions

Due to the high value of centrifugal force on the rotors and the possibility of instability, resmance, or fatigue, it was
thought expedient to protect the personnel by reinforcing the tunncl inside with sheet steel and outside with shutters. These shutters were of sandwich construction comprised of blocks of papor between $\frac{1}{4}$ " thick plywood, totalling about two inches in thiclness.

To minimise the possibility of stopping the rotors before the tumel and thereby losing the stabilising effect of centrifugal force on the blades, an interlock was incorporated in the electrical circuits, with a time delay of about a quarter of a minute, to ensure that the rotors attained a reasonable speed before starting the tunnel and also that the tunncl speed had dropped sufficiently on shutting down. As the electrical supplics to the 'unnel and rotors were separate thero remained the danger arising from a failure of the current to the rotors but as thai was thought to be very improbable, no attempt was made to cover that eventuality.

4. Method and Scope of Experiments

The model was suspended from the main roof balance by two struts spaced $22 \frac{1}{2}$ " apart. These struts carried at their ends a spindle mounted on ball raccs, passing through and fixed to the helicopter body $291^{\prime \prime}$ from the nose. This spindle being freely mounted acted as a pitching axis. A further support was provided towards the rear of the body, using a pair of V-wires attachod to an overhead split-beam balance, see Fig. 2. These wires were adjustable by moans of a windlass carried on the balance, so that the attitude of the model could be varied.

The earlier tests wore made at 1800 r.p.m. giving a tip speed of about $400 \mathrm{ft} / \mathrm{sec}$. Later the speed was reduced to $1200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and a tip speed of $267 \mathrm{ft} / \mathrm{sec}$. Lift, drag, and pitching moments were moasured at wind speeds of $40,80,120,160$ and $180 \mathrm{ft} / \mathrm{sec}$ for the tosts at a rotor speed of $1800 \mathrm{r} . \mathrm{p} . \mathrm{m}$. giving approximate values of tip-speed ratio, μ, of $0.1,0.2,0.3,0.4$ and 0.45 . When the rotor speed was reduced to $1200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. the wind speeds used were $25,55,80,100$ and $120 \mathrm{ft} / \mathrm{scc}$ giving valucs of $\mu=0.094,0.206,0.300,0.374$ and 0.449 rospectively.

Moasurements were made for blade angles, θ, of $4^{\circ}, 8^{\circ}$ and 12°. The angles were set by a worm and wheel at the blade roots using a surface table and scribing blocks to measure the difference in heights at leading and trailing edges.

Flapping angles were also measurca by the method described in para. 2.3.

Although it would have been desirable to make measurements at very low values of μ, less than 0.1 , difficulty was experienced due to the flow induced by the rotors themselves, especially at the higher body angles. For example, without the tunnel motor running, a vane anemometer indicated a wind speed of about $15 \mathrm{ft} / \mathrm{sec}$ at $\theta=8^{\circ}$ and $\theta=20^{\circ}$. As the flow was unreliable these tests wore abandoned.

Table 1 gives a summary of all the tests on the various rotor combinations together with references to the tables giving the results.

5. Corrections

The tunnel measurements were converted to the coefficients C_{T} and C_{m} where C_{T} is the cocfficient of the force normal to the longitudinal axis of the helicopter and C_{m} is the pitching moment coefficient about the axis shown in Pig. 3. ${ }^{\mathrm{m}}$ A further correction was made for the forces and moments on the body and rig, etc., by making the appropriate measurements with rotors removed and substracting from the total. No account is therefore taken of forces due to the interference between rotors and body.

As the final results were to be presented for constant values of tip speed ratio, μ, and the wind spoeds choson did not give exact values end also as $\mu=V \cos \theta / S R$, whore O is the body anglc, the correction varicd with attitude of the model and so all the rosults had first to be plotted against μ and then the values for $\mu=0.1$, $0.2,0.3,0.4$ and 0.45 taken from the curves. Corrections had also to bo made to θ due to tunnel interference and therefore the values corrected for μ had then to be plotted against θ and values read off at the chosen values of θ viz. $, 0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}, 20^{\circ}$ and 25°. For convonience θ has been taken to be positive with the nose of the model downwards which is opposite to the normal convention.

For the $9^{\prime} \times 7^{\prime}$ wind tunnel the correction to body angle (θ) has been taken to be

$$
\Delta \theta=0.111_{-}^{A}-C_{L}(\operatorname{rad})
$$

whore A is the total rotor disc area C is the cross-sectional area of the wind tunnel, C_{C} is the overall lift coefficient based on total disc area. The correction is such that the effective inclination is less than the geometric inclination. It is felt that the above correction is not entirely satisfactory as it is based on fixed wing theory. I' is hoped that at some future time a systematic serics of cxperiments will be made to establish the order of wind tunnel corrections to be applicd to helicopter model testing.

The corrections to pitching moment due to flapping hinge offsct are included in para. 6.

6. Rosults

6.1 Effect of flapping hinge offset

In addition to the corrections mentioncd in para. 5 account had also to be taken of the effect of flapping hinge offset which, due to design difficulties, was of neccssity rather large, about 6.275\%.

The effect of flapping hinge offset on the characteristics of a rotor is dealt with in a report by Meyer and Falabella3 and the analysis given in that report has been used to estimate the theoretical valucs of rotor thrust and flapping angles and also the effect on overall pitching moment.

6.2 Thrust cocificient

Assuming uniform distribution of induced velocity and neglocting blade tip losscs the theorctical valuc of C_{T} is given by cquetion (38) of Ref. 3 .
$C_{n}=-\frac{\sigma a}{2}\left\{\frac{A_{0}}{3}\left[\left(1-\xi^{3}\right)+\frac{3}{2} \mu^{2}\left(1-\xi_{1}\right)\right]-\frac{\mu B_{1}}{2}\left(1-\xi^{2}\right)+\frac{\lambda}{2}\left(1-\xi^{2}\right)+\frac{\mu a_{1}}{2}\left(\xi-\xi^{2}\right)\right\}$

As there is no cyclic pitch $B_{1}=0$ and the term involving a_{1} is small and may be neglected and therefore approximately

$$
C_{T}=\frac{\sigma a}{2}\left\{\frac{A_{0}}{3}\left[\left(1-\xi^{3}\right)+\frac{3}{2} \mu^{2}(1-\xi)\right]+\frac{\lambda}{2}\left(1-\xi^{2}\right)\right\} . \quad \ldots(1 a)
$$

For zero forward speed whore $\mu=0$

$$
\begin{equation*}
C_{T}=\frac{-a}{2}\left\{\frac{A_{0}}{-\frac{\lambda}{3}}\left(1-\bar{\zeta}^{3}\right)+\frac{-}{2}\left(1-\xi^{2}\right)\right\} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\lambda=-\sqrt{\frac{C_{\eta}}{2}} . \tag{3}
\end{equation*}
$$

In order to determine "a" the slope of the lift curve of the biade section $C T$ was required for zero wind speed. As the tunnel was of the return flow type itwas difficult to obtain a true zero wind speed due to the flow induced by the rotors. This was cut down to a minimum by closing the tunnel with a screen, but even so there was a circulation of air in the neighbourhood of the model, particularly at the larger blade angles. It was assumed that at zero tunnel spoed the induced circulation at $\theta_{0}=4^{\circ}$ would be very small and the measured valuc of $C_{T}=0.00142$ was inscrted in the equations (2) and (3). This gave a value of $a=5.0$ (per rad) which was subsequently used in equation (1a). A curve of static thmust coefficient using the above value of "a" is given in Fig. 7. The theoretical values of CT using equation (1a) for $\theta_{0}=4^{\circ}, 8^{\circ}$ and 12° are included in Figs.9, 13 and 19. It is of interest to note that the effect of flapping hinge offset on C_{T} is negligible, particularly at the lover values of $\mu_{\text {. }}$

6.3 Division of thrust

From a knowledge of the total thrust and the pitching monent about a defined axis the contribution of thrust due to each rotor has been calculated. It was assumed that the thrust of each rotor acted at the disc centre and normal to the body axis and also that the rotor drag force, parallel to the longitudinal axis, acted at the mean height of the two rotors.

The pitching moments as measured in the experiments included a contribution due to the effect of the offset flapping hinges and therefore before the thrust due to each rotor could be calculated the pitching moments had to be corrected for of fset.

In the report by Meyer and Falabella ${ }^{3}$ an expression is given for pitching moment due to hinge offset (M_{y}). This expression is

$$
\begin{equation*}
M_{y}=\left[\mu a_{0} P-b_{1} N\right] \Omega^{2}+\frac{b I_{1}}{2} \zeta \Omega^{2} a_{1} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \frac{\mathrm{P}}{I_{1}}=\frac{b y}{8}\left[\xi-\xi_{3}^{3}\right] \\
& \frac{N}{I_{1}}=\frac{b y}{4}\left[\frac{\xi}{3}-\frac{\xi^{2}}{2}+\frac{\xi^{4}}{6}\right] .
\end{aligned}
$$

Values of a_{0}, b_{1}, and a_{1} are obtained by solving three simultaneous equations; these solutions are given in equations (27), (28) and (29) in the report. As there is no cyclic pitch, i.e., $B_{1}=0$ in the case of the model, these solutions become

$$
\begin{align*}
&-6- \\
& a_{0}= \frac{A_{0}\left(B+\frac{\mu^{2}}{2}-E\right)+\lambda C+\mu a_{1} \frac{D}{2}}{1+\zeta} \tag{6}\\
& b_{1}= \frac{\mu a_{0} C-\zeta a_{1}}{A+\frac{\mu^{z}}{4} D} . \tag{7}
\end{align*}
$$

The value of λ is given by the expression

$$
\begin{equation*}
\lambda=-\frac{\sigma_{a}}{\frac{1}{2}} \frac{\left.\frac{A_{0}}{3}\left[\left(1-\xi^{3}\right)+\frac{3}{2} \mu^{2}(1-\xi)\right]+\frac{\mu a_{1}}{2}\left(\xi-\xi^{2}\right)\right\}+2 \mu^{2} \tan \alpha}{2 \mu+\frac{\sigma_{2}^{2}}{4}\left(1-\xi^{2}\right)} \quad \text { (sec footnote) } \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
& \tan a=\frac{C_{\eta}+2 \mu \lambda}{2 \mu^{2}} . \tag{9}\\
& A=-\frac{y}{2}\left[\begin{array}{cccc}
1 & 2 & \xi^{2} & \xi^{4} \\
- & -\overline{3}+-\overline{2} & - \\
4 & 3 & 2 & 12
\end{array}\right] . \\
& B=-\frac{\gamma}{2}\left[\begin{array}{lll}
1 & \xi & \xi^{4} \\
- & - & - \\
4 & - & 12
\end{array}\right] . \\
& C=\begin{array}{c}
y \\
2
\end{array}\left[\begin{array}{ccc}
1 & \xi & \xi^{3} \\
- & - & - \\
3 & 2 & 6
\end{array}\right] . \\
& \left.D=\frac{y}{2}\left[\begin{array}{l}
\xi \\
- \\
2
\end{array}\right] \cdot \xi^{2}+\frac{\xi^{3}}{2}\right] . \\
& E=\frac{\gamma}{2}\left[\begin{array}{cc}
1 & \xi^{2} \\
- & \left.-\xi+\begin{array}{c}
- \\
2
\end{array}\right] ~
\end{array}\right.
\end{align*}
$$

Using the wind tunnel values of C_{T}, in equation (9) M_{y} has been calculated for various cases and it was found that the terms involving a_{0} and b_{1} were quite small compared with the a_{1} term. Typical results are shown in Fig. 8 for a blade angle θ_{0} of 8°, and a rotational speed, Ω, of 1200 r.p.m. The first set of curves shows M_{y} in $l b / f t$ varying with μ for zero pitch angle, whilst the second set refers to a change in body angle at a constant value of $\mu=0.3$. The contributions of the a_{0} and b_{1} terms together are given by the curves marked A whilst the a_{1} term is given by curves B and the total by curves C.

On examination of these curves it will be seen that, for all values of μ of the one curve and all values of θ of the other, the magnitude of all points on the C curve are very nearly 1.09 times the corresponding values on the B curves. It was therefore decided, in order to avoid much laborious computation, to use the third term only in the expression (equation (4)), for M_{y}, that is the one involving a_{1}, and add 9,0 . In the above calculations the obscrved

> values/

Note In the expression for λ (equation (41)) given in Ref. 3 the sign of the last term in the numerator, $2 \mu^{2} \tan \alpha$, is given as negative, this should be positive.
values of flapping angles, rather than the theoretical ones, have been used. The pitching moment due to offset may therefore be expressed as

$$
M_{y}=1.09 b \frac{I_{1}}{2} \zeta_{\Omega}^{2}\left(a_{1}+a_{1_{R}}\right)
$$

which has to be subtracted from the total moasurcd pitching momont, a:-. and a_{1} beirg the obscrved values, of flapping angle ficr front and rear rotors respectively.

Figs. 9-19 and Tables 18-43 show the thrust distribution taking into account blade offset.

It was considered that the configuration $\mathrm{L}_{2} \mathrm{H}_{2} \mathrm{~A}_{\mathrm{O}}$ was the closest approach to a helicopler of the type Bristol 173 and therefore fuller experimental work was done for that arrangement.

For $\mathrm{L}_{2} \mathrm{H}_{2} \mathrm{~A}_{0}$ and blade angles $\theta_{0}=4^{\circ}$ Fig. 9 gives the curves C_{T} against θ, the body angle, for values of $\mu=0.1$, $0.2,0.3,0.4$ and 0.45 . For each value of μ five curves are given, two showing tho contribution of thrust due to each rotor of the twin rotor combination, two the thrust of each rotor acting singly, the fifth curve the theoretical value of C_{T}.

It will be seen from further uxamination of the curves that the front rotor contributes considerably more thrust than the rear. There is an increase in thrust from the front rotor compared to the single front rotor, but this increase is less than the loss on the rear one. The result is that the twin rotor configuration gives less thrust than the sum of the thusts of the two rotors separately; this is as one would capect.

The theoretical curves show quite good agreement with the moan values of the two separate rotor curves.

In order to compensate for the loss of lift on the rear rotor its blade anglus were increased to 6° leaving those for the front one at 4°. Fig. 10 shows the results of these experiments. For values of μ up to 0.3 it will be seen firm the curves that the compensation is more than adequate, that is the rear rotor contributes more thrust than the front onc. For values of μ of 0.4 and 0.45 a differential blade setting of 2° is roughly the bost compromise.

Although the presence of the rear rotor causes an increase of thrust from the forward rotor, the increment of thrust by increasing θ_{0} from 4° to 6° of the rear rotor blades reflects little increase from the front one.

Figs. 11 to 18 all apply to blade angles $\theta_{0}=8^{\circ}$, the curves again, as for $\theta_{0}=4^{\circ}$, rofor to twin rotors, single rotors and theoretical cases.

If one compares Figs. 11, 13 and 14, which rofer to $\mathrm{L}_{1} \mathrm{H}_{2}$, $\mathrm{I}_{2} \mathrm{H}_{2}$ and $\mathrm{I}_{3} \mathrm{H}_{2}$ the effect will be seen of altering the distance between the rotor axcs. The total thrust appears almost independent of distance between the rotors but at the higher values of μ and θ there is a small shedding of thrust from the rear rotor to the front one on reduction of distance apart.

There is a small offect on thrust from varying the hoight of the rear rotor relative to the front one (Figs.12, 13 and 15). This effect, which is a slight incrense with hoight, is on the rear rotor only and confined to values of μ below 0.2 .

Experience with full-scale tandem rotor helicopters has shown that there is littlo alteration in thrust due to changing the distance apart of the rotors but that thore is a definite effect from height change of the rear rotor for very low values of μ.

With a view to compensating for loss of thrust from the rear rotor, experiments were made with the rear rotor axis tilted at 7.7° and 4. 4° backwards and also 4° forvards. The results of these measurements for $\theta_{0}=8^{\circ}$ are given in Figs.16-18. Agoin the change of attitude of the roar rotor has little orfect on the thrust from the front one as has already been noted when the angles of the rear rotor blades were made greater than the front ones. There is however a gain in thrust from the rear rotor when it is given a backwards tilt.

Fig. 20 shows the results of tilting the axis of the rear rotor when acting alone; C_{T} has been plotted against $\theta+A, A$ being the angle of tilt, forwards being positive. For each value of μ it will be noted that all the values of C_{T}, for the various angles of tilt, lie substantially on a single curve. This shows that for a single rotor, axis tilt produces the same effect as an equal change in body angle, that is body interforence is independent of angle between rotor and body. In the case of the twin rotor model there is more scatter of the points when plotting C_{T} of the rear rotor against $\theta+A$ but these curves are not reproduced.

Fig. 19 gives curves for $\mathrm{L}_{2} \mathrm{H}_{2}$ with blade angle $\theta_{0}=12^{\circ}$ and, as before, there is wide spacing of the two thrust curves for front and rear rotors. Except for low values of μ the values of C_{T} for the individual rotors differ considerably and this deviation increases with body angle. The theoretical curves, however, agree well with the mean value of C_{T} for the separate rotors except for values of μ below 0.3 .

6.4 Centre of rotor thrust

From the curves of division of thrust it is easy to calculate the position of the centre of thrust, examples of which are given in Fig. 21. The distance of the centre of thrust from the centre of the front rotor divided by the distance between the rotor centres is plotted against body angle for the various values of μ.

It is normal practice in twin rotor helicopter design to make the two rotors identical. As there is a loss of thrust from the rear rotor, trim can only be maintained by applying a suitable blade ancle mixing ratio. An cxample showing the effect of diffcrential blade setting is given in Fig. 21d where the front rotor has a blade angle setting of 4° and the roar 6°. This results in more satisfactory curves of centre of thrust position.

The effect on position of centre of thrust due to tilting the rear rotor axis is shown in Fig. 22 and it will be noticed that a backwards tilt of about 7.7° has roughly the same effect on the shapes of the curves as a differential blade setting of 2°, shown in Fig. 21a.

It will also be scen that when the axis of the roar rotor is tilted backwards 4.4°, the position of the centre of thrust varies little with either a change in μ or in θ, Fig. 22 b .

6.5 Equivalent downyash

Fig. 23 gives curves of equivalent downwash for the rotor
configuration $\mathrm{I}_{2} \mathrm{H}_{2} \mathrm{~A}_{0}$. These curves have been estimeted by comparing the curves of thrust cocfficient of each rotor of the twin-rotor
combination with the thrust of cach as a singlo rotor. In othor words the equivalent downwash is taken to be the angle change on the single rotor to give the sare thrust as the corresponding rotor in the twin-rotor
 apply to single rotor and the came rotor of the twin rotors respectively whon C_{T} is sanc valuc for hoth cases.

6.6 Longituainal flapping angle

The longitudinal flapping angle is given by equation (b) and the relationchip betwoen shaft angle i_{s}, rotor disc angle, i_{d}, and flapping anglo is given by $i_{s}=i_{d}+{ }^{s} a_{1}$. Figs. $24-30$ give longitudinal flapping angles for a limited ${ }^{\text {s }}$ number of cases and for each blade angle. They are plotted against body angle for cach value of μ. The theoretical. curves are given in Figs. 24 and 25; the observed values for each rotor of the arrangement $L_{2} H_{2} A_{0}$ in lig. 26 and single rotors in Fig. 27. Figs. 26-27 are shown in edifforent form in Figs. 31-34 where the flapping angle, a_{1}, is plotted against μ for various body angles.

On examination of the curves it will bo scen that the experimental values are loss in magritude than the corresponding theoretical ones cxcept for low values of μ. fincre are two possible cxplanations for this deviation; firstly the close proximity of the body and secondly tunncl constraint as the tunnel hoight was only 1.65 times the rotor diametor.

Results of experiments at the R.A.J. on a 12 ft diamoter rotor ${ }^{4}$ and on a 6 ft diametcr rotor 5 diffur from the presont oncs. In the R. A.E. oxperinonts the flapping anglos increased more rapidly thon indicated by theory both with increase of tip swoed ratio and roduction of shart inclination. Their experiments were made without a body being prosent and the tunncis concerned were the 24 ft opon jot for the 12 ft rotor and the $11 \frac{1}{2} \mathrm{ft}$ tumel as well as the 24 ft one for the 6 ft rotors.

The discrepancy betwoen the obsorved and theoretical values of flapping angles could be explained by a non-uniform distribution of downwash ocross the disc; theory assumes uniformity of downwash.

6.7 Lonritudinal forces

The forces parallel to the body axis wore cstimated but were not rogarded with any groat significance, due to the rolativcly large size of hub, and have, therefore, beon omitted in the present report.

7. Conclusions

(a) The curves of thrust distribution show that the front rotor contributes more thrust than does the ruar one and a little more than it docs as a single rotor, that is without the presence of tho rear rotor.
(b) Fig. 10 shows tho results of the contribution to C_{T} by the individuol rotors whon the blade angle of the rear rotor is incruased to 6° leaving the front one at 4°. It will bc seen that for the lower values of μ tho compensation for loss of thrust from the rear rotor is more than sufficient.
(c) At values of μ above 0.1 a backward tilt of the rear rotor of 7.7° (Fig. 16) gives a considerable dogroe of compensation (c.f. Fig. 13).
(a) The incroase of thrust brought akout by increasing tho blade angle of the rear rotor or by giving a backward tilt is borne almost entirely by the rear votor there being a nequigible efrect by the front rotor.
(c) The effect of varying the height of the rear rotor above the front one (Figs.12, 13 and 15) is small and confined to the rear rotor and to values of μ below 0.2 there being a slight increase of thrust with height.
(f) There appears to be no apparent effect on total thrust due to a change of longitudinal spacing of the rotors (Figs.11, 13 and 14).
(g) When the axis of the rear rotor is tilted backwards by 4.4° (Fig. 22b) the position of the centre of thrust varies little with either a change in μ or in θ.
(h) The calculated flapping angles are groater than the measured ones, particularly at the smaller values of θ.

8. Acknowlodgments

The authors wish to expross their thanks to Mr. C. A. Culverhouse who was responsible for the design of the model and ancillary equipmont and also to Mr. A. F. S. Bramwell of R.A.D., Bedford for his holpful suggestions in the analysis of the results.

References

No. Author(s)
Title, etc.

1

A. S. Halliday and
Miss D. K. Cox

2
A. S. Halliday and
Miss D. K. Cox

3 J. R. Meyer
and
G. Falabella Jr.

4 F. B. Squire,
R. A. Fail and
R. C. W. Eyre

5
T. B. Owen,
R. Fail
and
R. C. W. Eyre

Wind-tunnel experiments on a model of a tandem rotor helicopter. A.R.C. 19, 829 - H. 342 . 10th January, 1958

Analysis of results from wind-tunnel experiments on a model of a tandem rotor helicopter allowing for flapping hinge offet.
A. F.C. 20,561 - H. 360. 18th November, 1958.

The effect of blade mass constant and flapping hinge offset on maximum blade angles of attack at high advance ratios. Massachusettes Institute of Technology.

Wind-tunnel tests on a 12 ft diameter helicopter rotor. A. h.C. R. \& i. . 2695. April, 1949.

Wind-tunnel tests on a 6 rt diameter helicopter rotor. A. F.C. C.E. 216.
(Also published as A.R.C. R. \& M. 3022) May, 1955.

List of Symbols

```
    \(R\) radius of rotor \(=2.125 \mathrm{ft}\)
    \(c\) chord of blades \(=1.5 \mathrm{in}\).
    \(b\) number of blades per rotor \(=3\)
    \(\sigma \quad\) solidity \(=\mathrm{bc} / \pi \mathrm{R}=0.0562\)
    \(\theta_{0} \quad\) blade section pitch angle
    \(\theta\) body angle, positive nose down
    A total rotor disc area \(=2 \pi R^{2}\)
Adeg rear rotor shaft inclination relative to body axis (see Fig. 3)
\(I_{1}, I_{2}, L_{3}, H_{1}, H_{2}, I_{3}\) see Fig. 3.
    \(l\) distance of contre of thrust from front rotor axis
\(i^{i}\) incidence of tip path plane
\(a_{o}\) coning angle
\(a_{1}\) longitudinal flapping angle
\(\mathrm{b}_{1} \quad\) lateral flapping angle
    \(\Omega\) angular volocity of rotor (rads per sec)
    V tunnel speed ( \(f t / \mathrm{sec}\) )
    QD fluctuating drag torque lo/ft
    \(T\) total thrust in 10 normal to body axis
    \(\mathrm{C}_{\mathrm{T}} \quad\) thrust coefficient \(=\mathrm{T} / \rho(\Omega \mathrm{I})^{2} \mathrm{~A}\)
\(\mathrm{C}_{\mathrm{T}}\) thrust coefficient contribution by front rotor
\(\mathrm{C}_{\text {TR }}\) thrust coefficient contribution by rear rotor
    M pitching moment (Ib/rt)
\(C_{m} \quad\) pitching moment coefficient \(=M / \frac{1}{2} p A V^{2} R\)
\(\mu\) tip speed ratio \(=\operatorname{Vcos} \theta / \Omega \mathbb{R}\)
\(u\) component by \(V\) parallel to rotor shaft
\(\lambda \quad u / \Omega \mathbb{R}\)
a slope of lict curve of blade section \(=5.0\)
```


Symbols used in Ref. 3 not appearing above

```
Ao blade section pitch angle corresponding to \(\theta_{0}\) above
a rotor angle of attack
\(m_{b}\) mass of each blade \(=0.5 / \mathrm{g}\) slug
I distance of blade tip from flapping hinge
\(I_{1}\) mass moment of inertia of blade about flapping hinge
\(\gamma\) blade mass constant \(=\mu a \mathrm{Fi}^{4} / I_{1}\)
e distance of flapping hinge to rotor centre
\(\xi\) flapping hinge offset \(=e / R=0.06275\)
\(\zeta \quad \xi_{b} R \frac{L}{2} / I_{1}\)
```


APPENDIX

Blade Fatigue Failure

At the outset of the tests it was decided to run the rotors with drag hinges locked, as it was thought that resonance would then be less likely to cccur, particularly as the natural frequency of the model and rig was low and of the order of 6 to 7 per sec. When the rotors were being run up a small vibration was noticed at low spoed, but this region was soon run through and no violent disturbance was ever experienced.

During the experinents two sets of blades have been in use, see Fig. 5. In order to avoid blade twist it was essential to design the blades so that the position of the section centre of gravity was on the quarter chord line, necessitating composite construction. The first set had the front part made of brass and the roar part holl.cw magnesium alloy, tongued, rivetcd and resin bonded together.

After a considerable time of running the first set of blades at 1800 r.p.m., perhaps $30-40$ hours, it was noticed that one blade on each rotor had cracked through the magnesium at the root. These cracks were examined by H. L. Cox of N. P. I., who suggested that the failures were caused by frctting fatigue starting at the inner rivets. The remaining blades were carefully examined under a stereo-microscope for incipient cracks and indications were observed on one other blade.

The hubs were then stripped down and several features indicated that they had suffercd from severe hammering. The flapping thrust races were badly indented, two of the drag hinge pin keys were sheared and the remainder had their corners rounded off. All these factors indicated that the forces in the direction of the blade drag were more serious than envisaged.

The fluctuating drag torque due to the combined action of flapping and coning and neglecting flapping hinge offset is given by the equation

$$
Q_{D}=-2 I_{1} \omega^{2}\left[a_{0}\left(a_{1} \sin \psi-b_{1} \cos \psi\right)-\frac{1}{2}\left(a_{1}^{2}-b_{1}^{2}\right) \sin 2 \psi+a_{1} b_{1} \cos 2 \psi\right] .
$$

A similar equation has been developed including of iset from which the maximum drag torque has been estimated to be about $8.8 \mathrm{lb} / \mathrm{ft}$. With a torque of this value the local force on the balls in the flapping thrust races could be as high as 140 lb . With a reversal of load of this magnitude at a frequency of 30 per sec it is fairly cortain that indenting of the ball races could take place.

The shcaring force on the drag hinge keys due to the fluctuating drag torque was estimated to be a little over 480 lb which, no doubt, was the cause of the ultimato failure of the keys.

It is reasonable to assume that with a drag torque of the above magnitudo on the blades and no frecdom in the drag direction, and with the presence of ball indents in the flapping thrust races, there would be a considerable flapping friction hinge moment. This was probably the primary cause of the blade fatigue failures.

It was therefore iecided to have new blades made to a modified design. They were made of spherodised stecl for the front portion tongued and grooved into a boxwood rear portion and resin bonded, but not riveted, seo Fig. 5. Again the centre of gravity of the section was at the quarter chord.

As a procaution the top speed was reduced from 1800 r.p.m. to 1200 r.p.m., the drag hinges were unlocked but had friction damping. Af'ter a considerable period of running with the modified blades there have been no indications of blade failure or bearing trouble.

- 13 -
TABLE 1
SUMNARY OF TESTS

${ }_{\circ}$		$A_{0}{ }^{\circ}$			${ }^{\text {a }}+4^{\circ}$	${ }^{\text {A }}$-4.4 4°	A 7.9°	$\therefore \quad{ }^{\text {A }}-7.7^{\circ}$
		L_{2}	I_{2}	I_{3}	I_{2}	I_{4}	$\pm{ }_{2}$	I_{2}
4°	H	$F(2,3), F+R(18)$	$F+R(19)$	$F+R(20)$	$F+\mathrm{R}(25)$	$\mathrm{F}+\mathrm{R}(24)$	$R(6), F+R(26)$	$R(5), F+R(23)$
	H_{2}		$R(4), F+R(22)$					
	H_{3}		$F+\mathrm{P}(21)$					
$\begin{aligned} & \text { Front } \\ & 4^{\circ} \\ & \text { Rear } \\ & 6^{\circ} \end{aligned}$	H_{1}		$\mathrm{R}(7), \mathrm{F}+\mathrm{R}(27)$					
	H_{2}							
	H_{3}							
8°	H_{1}	$F+R(34)$	$F+\mathrm{R}(32)$	$F+\mathrm{R}(35)$	$\mathrm{F}+\mathrm{R}(31)$	$R(10), F+R(30)$		$R(11), F+R(29)$
	H_{2}		$\begin{aligned} & F(8), R(9), \\ & F+R(28) \end{aligned}$					
	H_{3}		$F+R(33)$					
12°	H_{1}	$F+\mathrm{R}(43)$	$R(16), F+R(41)$	$F+R(36)$	$F+\mathrm{R}(40)$	$P(15), F+R(38)$		$\mathrm{R}(14), F+\mathrm{R}(37)$
	H_{2}		$\begin{aligned} & F(13), R(12) \\ & F+R(39) \end{aligned}$					
	Hs		$R(17), F+R(42)$					

= Front Rotor only $R=$ Rear Rotor only $F+R=$ Both Rotors.

- 14 -

TABLE 2

$$
C_{T} \times 10^{3} \text { for Single Rotor Cascs }
$$

θ_{0}	Arrangement	θ°	$\mu=0.1$	$\mu=0.2$	$\mu=0.3$	$\mu=0.4$	$\mu=0.45$
4°	$L_{1} H_{1} A_{0}$	0	2.21	3.43	3.89	4.30	4.62
	Forward Rotor	5	2.30	2.46	2.34	2.30	2.20
	1,200 r.p.m.	10	1.78	1.36	0.54	-0.29	-0.63
		15	1.33	0.12	-1.27		
		20	0.76	-1.18			
		25	0.09				

TABLE 3

4°	$\mathrm{I}_{1} \mathrm{H}_{1} \mathrm{~A}_{0}$ $:$ 0 Forward Rotor $:$ 5 1,800 r.p.m. $:$ 10 $:$ 15 $: 20$ 25	2.62 2.17 1.64 1.16 0.64	$\begin{array}{r} 3.84 \\ 2.32 \\ 0.53 \\ -1.11 \end{array}$	$\begin{array}{r} 4.58 \\ 2.32 \\ -0.42 \end{array}$

TABLE 4

- 15 -

TABLE 5
$\mathrm{C}_{\mathrm{T}} \times 10^{3}$ for Single Rotor Cases

θ_{0}	Arrangement	θ°	$\mu=0.1$	$\mu=0.2$	$\mu=0.3$	$\mu=0.4$	$\mu=0.45$
4°	$\mathrm{L}_{2} \mathrm{IH}_{2} \mathrm{~A}_{-7.7} 7^{\circ}$	0	3.21	4.32	5.27	6.27	6.57
	Rear Rotor	5	2.77	3.46	4.02	$4 \cdot 48$	4.70
	1,200 r.p.m.	10	2.29	2.55	2.67	2.62	2.56
		15	1.76	1.48	0.80		
		20	1.26	0.06			
		25	0.76				

TSLE 6

4°	$\mathrm{L}_{2} \mathrm{H}_{2} \mathrm{~N}_{7} .9^{\circ}$	0	1.66	1.12	0.35	-0.35	-0.58
	Rear Rotor	5	1.16	-0.19	-1.54	-2.50	-3.10
	1,200 rop.m.	10	0.62	-1.51	-3.17		
		15	0.09				
		20	-0.45				
		25	-1.07				

TAELET

TABLE 8
$\mathrm{C}_{\mathrm{T}} \times 10^{3}$ for Single Rotor Cases

θ_{0}	Arrangement	θ°	$\mu=0.1$	$\mu=0.2$	$\mu=0.3$	$\mu=0.4$	$\mu=0.45$
8°	$\mathrm{I}_{2} \mathrm{H}_{2} \mathrm{H}_{\mathrm{O}}$	0	4.59	5.62	6.06	6.64	7.11
	Forward Rotor	5	4.29	$4 \cdot 76$	$: 4.95$	5.02	5.05
	1,200 r.p.m.	10	4.04	4.07	3.88	3.53	3.33
		15	3.69	3.14	2.24	1.29	0.80
		20	3.27	2.11			
		25	2.81	0.64			

TABLT 9

Thaste 10

8^{O}	$\mathrm{I}_{2} \mathrm{H}_{2} \mathrm{~A}_{-4.4}$	0	4.90	5.91	6.40	7.04	7.49
	Rear Rotor	5	4.53	5.29	5.65	5.98	6.20
	$1,200 \mathrm{r} . \mathrm{p.m}$	10	4.23	4.49	4.037	4.29	4.31
		15	4.00	3.62	2.83	2.12	1.85
		20	3.66	2.58	0.77		
		25	3.23	0.99			

TABLE 11

$C_{T} \times 10^{3}$ for Single Fotor Cases

θ_{0}	Arrangement	θ°	$\mu=0.1$	$\mu=0.2$	$\mu=0.3$	$1=0.4$	$1=0.45$
8°	$\mathrm{I}_{2} \mathrm{H}_{2} \mathrm{~S}_{-7.7}$	0	5.19	6.23	7.02	8.00	8.48
	Rear Rotor	5	4.80	5.72	6.25	6.80	7.20
	1,200 r.p.m.	10	$4 \cdot 44$	5.10	5.26	5.45	5.72
		15	$4 \cdot 16$	4.28	4.05	3.64	3.90
		20	3.90	3.33	2.36		
		25	3.41	1.97			

TABLE 12

TASLE 13

12°	$\mathrm{I}_{2} \mathrm{H}_{2} \mathrm{~A}_{\mathrm{O}}$	0	6.36	7.24			
	Forward Fotor	5	6.10	6.70	7.19		
	1,200 r.p.m.	10	5.96	6.26	6.53	6.82	6.98
		15	5.88	5.80	5.43	4.99	4.85
		20	5.72	5.21	4.05	3.26	2.58
		25	5.12	4.06	2.43	1.04	

LABLE 14
$\mathrm{C}_{\mathrm{T}} \times 10^{3}$ for Single Rotor Cases

θ_{0}	Arrangement	θ	$\mu=0.1$	$\mu=0.2$	$\mu=0.3$	$\mu=0.4$	$=0.45$
12°	$L_{2} \mathrm{H}_{2}{ }^{\prime}-7.7^{\circ}$	0	6.63	7.37			
	Rear Rotor	5	6.24	6.94	7.35		
	: 1,200 r.p.m.	10	5.91	6.50	6.71	7.18	7.36
		15	5.69	6.01	6.12	6.17	6.40
		20	5.62	5.47	5.05	4.56	4.26
		25	5.68	4.75	3.55	2.42	

TABLE 15

TABLE 16

TMEM 17

$$
\mathrm{C}_{\mathrm{I}} \times 10^{3} \text { for single Fotor } \mathrm{C}_{\mathrm{c}} \text { ses }
$$

M上I心 18

TABLE 19
CT_{F} and Cr_{R} for Twin Hotors

TABLE 20

MABIE 21

Um_{T} and $\mathrm{C}_{\mathrm{r}, \mathrm{R}}$ for Imin Rotors

TABLE 22

4°	$\mathrm{L}_{2} \mathrm{H}_{2} \mathrm{~A}_{0}$	0	$\mathrm{CTP}_{\text {P }}$ $\mathrm{CTR}_{\mathrm{R}}$	1.31 0.35	1.75 1.15	$\begin{aligned} & 2.07 \\ & 1.31 \end{aligned}$	2.37 1.44	$\begin{aligned} & 2.55 \\ & 1.46 \end{aligned}$
		5	$\mathrm{CrP}_{\mathrm{T}}$	1.09	1.23	1.23	1.31	1.27
	1,800 rop.m.		Cr R	0.80	0.84	0.78	0.57	0.51
		10	$\mathrm{Cr}_{\text {F }}$	0.82	0.60	0.27	-0.04	-0.22
			c_{TR}	0.65	0.40	-0.03	-0.49	-0.68
		15	$\mathrm{CrT}_{\text {P }}$	0.57	0.05	-0.65		
			Cm_{R}	0.46	-0.15	-0.80		
		20	$\mathrm{C}_{\text {TF }}$	0.31	-0.58			
			$\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}$	0.28	-0.64			
		25	$\mathrm{CITH}^{\text {H }}$	0.07				
			CP_{R}	0.08				

TABLE 23
$\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}$ and $\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}$ for Twin Rotors

θ o	Arrangement θ	Coeff $\times 10^{3}$	$\mu=0.1$	$\mu=0.2$	$\mu=0.3$	$\mu=0.4$.	$\mu=0.45$
4°		C_{T}	1.35	1.80	2.18	2.39	2.66
		$\mathrm{Cr}_{\mathrm{R}}^{\mathrm{F}}$	1.08	1.82	2.17	2.63	2.84
		$\mathrm{CTP}^{\text {P }}$	1.14	: 1.31	1.27	1.39	1.34
		Cr_{R}	1.01	$\vdots 1.50$	1.77	1.89 :	2.07
		Cr_{F}	0.91	- 0.70	0.38	0.15	-0.36
		$\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}$	0.91	: 1.18	1.25	$1.13:$	1.44
		${ }^{C_{T}}$	0.68	0.10	-0.51		
		$\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}$	0.76	0.75	0.38		
		${ }^{C_{T F}}$	0.42	: -0.49			
		$\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}$	0.58	0.14			
		CT_{F}	0.12				
		$\mathrm{C}_{\mathrm{T}} \mathrm{F}$	0.35				

TABLE 24

TABLE 25

$C_{T_{F}}$ and $C_{T_{\vec{R}}}$ for Twin Rotors

TABLE 26
C_{TF} and C_{TR} for Twin Rotors

TABLE 27
$\mathrm{C}_{\mathrm{T}_{\mathrm{F}}}$ and C_{TR} for Twin Rotors

TAELE 28

8°	$\mathrm{L}_{2} \mathrm{H}_{2} \mathrm{~A}_{\mathrm{O}}$	0	${ }^{\mathrm{C}_{1} \mathrm{~F}}{ }_{\mathrm{F}}$	$\begin{aligned} & 2.39 \\ & 1.78 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 2.12 \end{aligned}$	$\begin{aligned} & 3.26 \\ & 2.24 \end{aligned}$	$\begin{aligned} & 3.63 \\ & 2.42 \end{aligned}$	$\begin{aligned} & 3.84 \\ & 2.62 \end{aligned}$	
1,200 r.p.m.		5	Cr_{P}	2.21	2.55	2.65	2.92	2.92	
		Cr_{R}	1.76	1.92	1.90	1.75	1.83		
:			10	$\mathrm{C}_{\text {Tr }}$	2.07	2.14	2.00	1.91	1.83
		$\mathrm{Cr}_{\mathrm{R}} \mathrm{F}^{\text {r }}$		1.71	1.60	1.33	0.99	0.89	
.		15	C_{TF}	1.88	1.66	1.14	0.67	0.48	
		$\mathrm{C}_{\text {TR }}$	1.58	1.21	0.61	-0.01	-0.36		
			20.		1.66 !	1.04	0.05		
		$\mathrm{C}_{\mathrm{T}} \mathrm{F}$		1.43 .	0.68	-0.20			
		25^{\prime}	$\mathrm{Crp}_{\text {P }}$	$1.41{ }^{\text {¢ }}$	0.28				
			$\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}$	1.24 :	0.04				

$C_{T F}$ and $C_{\text {R }}$ for Twin Fotors

θ_{0}	Arrangement	θ	f \times	$\mu=0.1$	$\mu=0.2$	$1=0.3$	$1=0.4$	$=0.45$
8°	$\mathrm{I}_{8} \mathrm{H}_{2} \mathrm{~A}-7.7^{\circ}$	0	CT_{F}	2.43	2.97	3.30	3.65	3.88
			Cr_{T}	2.00	2.58	2.91	3.36	3.49
		5	$\mathrm{CrIF}_{\text {P }}$	2.27	2.61	2.73	2.88	2.95
	1,200 r.p.m.		$\mathrm{C}_{\mathrm{T}}^{\mathrm{F}}$	1.98	2.33	2.64	2.79	3.03
		10	$\mathrm{CTF}^{\text {P }}$	2.11	2.19	2.07	1.95	1.95
			CT_{T}	1.89	2.13	2.29	2.31	2.46
		15	$\mathrm{C}_{T T}$	1.91	1.66	1.27	0.87	0.67
			$\mathrm{Cr}_{\text {ch }}$	1.79	1.38	1.70	1.56	1.46
		$20 \stackrel{1}{1}$	$\mathrm{CTF}^{\text {che }}$	1.68	1.11	0.25		
			Cr_{R}	1.66	1.50	0.99		
		25	$\mathrm{CTF}_{\mathrm{Tr}}$	1.48	0.41			
			$\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}$	1.49	0.91			

TABL 30

TABLE 31
C_{TF} and $\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}$ for ITwin Rotors

TABIE 32

TABLE 33
$C_{T_{F}}$ and $C_{T_{R}}$ for Twin Rotors

TABLE 34

TABIE 35
$\mathrm{C}_{\mathrm{T}_{F}}$ and $\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}$ for Twin Rotor

TABLE 36

TABIE 37
$\mathrm{C}_{\mathbb{T}_{\mathbb{F}}}$ and $\mathrm{C}_{\mathbb{T}_{R}}$ for Twin Rotors

TBIE 38

TABLE 39

$\mathrm{C}_{\mathrm{T}_{F}}$ and $\mathrm{C}_{\mathrm{T}_{R}}$ for Twin Rotors

TABLE 40

$T A B L E 41$
$\mathrm{C}_{T \mathrm{~F}}$ and $\mathrm{C}_{T R}$ for Twin Rotors

TABLE 42

$\begin{aligned} 12^{\circ} & I_{2} H_{3} A_{0} \\ \vdots & \\ \vdots & 1,200 \mathrm{r} \cdot \mathrm{p} \cdot \mathrm{~m} . \end{aligned}$	0 $5:$ $\begin{gathered} 10 \\ 15 \\ 15 \\ 20 \\ 20 \\ 25 \end{gathered}$		$\begin{aligned} & 3.22 \\ & 2.82 \\ & 3.05 \\ & 2.75 \\ & 2.99 \\ & 2.68 \\ & 2.96 \\ & 2.59 \\ & 2.85 \\ & 2.49 \\ & 2.52 \\ & 2.29 \end{aligned}$	$\begin{aligned} & 3.68 \\ & 2.85 \\ & 3.48 \\ & 2.72 \\ & 3.19 \\ & 2.63 \\ & 2.96 \\ & 2.42 \\ & 2.60 \\ & 2.06 \\ & 2.02 \\ & 1.58 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 2.71 \\ & 3.32 \\ & 2.46 \\ & 2.82 \\ & 2.02 \\ & 2.09 \\ & 1.36 \\ & 1.15 \\ & 0.41 \end{aligned}$	$\begin{array}{r} 3.53 \\ 2.24 \\ 2.58 \\ 1.59 \\ 1.42 \\ 0.58 \\ 0.28 \\ -0.41 \end{array}$	$\begin{aligned} & 3.61 \\ & 2.24 \\ & 2.56 \\ & 1.46 \\ & 1.20 \\ & 0.29 \end{aligned}$

TABLE 43

${ }^{C_{T}}{ }_{F}$ and $C_{T_{R}}$ for Twin Rotors

Fig. 1.

Model in wind tunnel.

Fig 2

FIG. 4.

FIG. 5.
Type I blade

Type 2

Details of blade construction

FIG. 6.

Head of periscope.

Fig. 7.

Calculated static thrust coefficient.

Fig. 8

Values of $M_{4}, \theta_{0}=8^{0}, 1200 \mathrm{rpm}$

Fig. 9 a.

Division of thrust between rotors

$$
L_{2} H_{2} A_{0} \quad \theta_{0}=4^{0}
$$

FIG. 96.

Division of thrust between rotors

$$
L_{2} \mathrm{H}_{2} \mathrm{~A}_{0} \quad \theta_{0}=4^{0}
$$

Fig.10a.

Division of thrust between rotors

$$
L_{2} H_{2} A_{0} \quad \theta_{0_{F}}=4^{0} \quad \theta_{O_{R}}=6^{\circ}
$$

Fig. 106

Division of thrust between rotors.

$$
L_{2} H_{2} A_{0} \quad \theta_{O_{F}}=4^{0} \theta_{O_{R}}=6^{0}
$$

Fig. 11 a

Division of thrust between rotors $L_{1} H_{2} A_{0} \quad \theta_{0}=8^{\circ}$

Fig. 116.

Division of thrust between rotors

$$
L_{1} H_{2} A_{0} \quad \theta_{0}=8^{\circ}
$$

FIG. 122

Division of thrust between rotors $L_{2} H_{1} A_{0} \quad \theta_{0}=8^{\circ}$

Fig. 126

$\frac{\text { Division of thrust between rotors }}{L_{2} H_{1} A_{0} \quad \theta_{0}=8^{\circ}}$

Fig. 13a

Division of thrust between rotors

$$
L_{2} H_{2} A_{0} \quad \theta_{0}=8^{\circ}
$$

Fig. 13b

Division of thrust between rotors

$$
\begin{array}{ll}
L_{2} H_{2} A_{0} & \theta_{n}=8^{\circ}
\end{array}
$$

FIG. 142.

Division of thrust between rotors $L_{3} H_{2} A_{0} \quad \theta_{0}=8^{\circ}$

Fig. 146.

Division of thrust between rotors

$$
L_{3} H_{2} A_{0} \quad \theta_{0}=8^{\circ}
$$

Fig. 15 b .

Division of thrust between rotors.

$$
L_{2} H_{3} A_{0} \quad \theta_{0}=8^{\circ}
$$

Fig. 16 a.

Fig. 16 b.

Division of thrust between rotors
$\begin{array}{llll}L_{2} & H_{2} & A_{-7.7^{\circ}} & \theta_{0}=8^{\circ}\end{array}$

Fig. 17a

$$
L_{2} H_{2} A_{-4 \cdot 4^{\circ}} \quad \theta_{0}=8^{\circ}
$$

Fig. 17 b.

Division of thrust between rotors.
$\mathrm{L}_{2} \mathrm{H}_{2} \mathrm{~A}_{-4.4^{\circ}} \quad \theta_{0}=8^{\circ}$

Fig. 18a

Fig. 18 b

Twin rotor $\left\{\begin{array}{ll}-\infty & \text { Front } \\ \text { Single rotor } \begin{cases}-\infty-\infty & \text { Rear } \\ -\infty-\infty-\infty & \text { Rear }\end{cases} \end{array} . \begin{array}{l}\text { Rean }\end{array}\right.$

Fig. 19a

Division of thrust between rotors. $L_{2} H_{2} A_{0} \quad \theta_{0}=12^{\circ}$.

Fig. 196

Division of thrust between rotors
$L_{2} H_{2} A_{0} \quad \theta_{0}=12^{\circ}$

Fic.20a.

Rear rotor only.
$L_{2} \mathrm{H}_{2} A \quad \theta_{0}=8^{\circ}$

Fig. 22

Fig. 23.

Fig. 24.

Fig. 25

Theoretical flapping angles (with and without offset)

Fig. 26.

Fig. 28

FIG. 29

Fig. 30

Fio. 31

Twin roEors. Forward rotor. $L_{2} H_{2} A_{0}$

Fig. 33

Flapping angles.
Forward rotor only. $L_{2} \mathrm{H}_{2} A_{0}$

Fig. 34

Flapping angles.
Rear rotor only. $L_{2} H_{2} A_{0}$

C.P. No. 517

$(22,103)$
A.R.C. Technical Report
(C) Crown copyright 1960

Printed and published by Her, Majesty's Stationery Office

To be purchased from
York House, Kingsway, London w.c. 2
423 Oxford Street, London w. 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
50 Fairfax Street, Bristol 1
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast 1
or through any bookseller
Printed in England
S.O. Code No. 23-9012-17
C.P. No. 517

