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SUMMARY 

The method for calculating the unsteady pressure force acting on the 
high pressure end of a shock tube after the rupture of the diaphragm is 
set out, The mathematical develo ment, 

? 
using a solution due to Riemann, is 

taken from Courant and Friedrichs . For air or hydrogen (y = T/5) a simple 
closed expression for the pressure is obtained, and the first and second 
integrals of this with respect to time are given. It is shown how these 
permit one to estimate the recoil of a typical dynamical system, Calculated 
pressures are found to be in good agreement with a set of experimental 
results, 
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LIST Ol? SYMBOLS 

a local speed of sound 

A cross sectional area of shock tube 

f(Q f(g) 

g 
$9 M* 
P 

r, s 

R 

t 

U 

X 

X 

Y 

first and second integrals of unsteady pressure force, 
defined by equation (2) 

gravitational acceleration 

masses of the high pressure chember and of the buffer block 

pressure 

Riemann variables, equation (3) 

retarding force on Id, 

time 

one-dimensional flow velooity 

distance along the tube (used for displacement of tube) 

reaction between masses &I, and M2 

defined by (8) 

2 used in definition 3 hypergeometric function, section 3 

Y ratio of specific heats of driver gas 

coefficient of friction 

Suffix 0 refers to the initial conditions before the arrival of the 
head of the expansion at the closed end of the tube 



1 IRTRODUCTION 

When the diaphragm in a shock tube is ruptured, the high pressure 
section is subjected to an unbalanced foroe due to the pressure acting on 
the closed end, snd will, if not rigidly mounted, be displaced a distance 
backwards. The purpose of the present note is to show how this displacement 
may be estimated. It depends primarily on 

(i) the magnitude of the pressure force, and the time for whioh it acts, 

(ii) the mass of the driving end of the tube, and the retarding forces 
in the system. 

The dynamical equations for a typical system sre set out in section 2, 
and it is seen that the displacement depends on the way the pressure on the 
closed end varies with time; the solution for this is given in section 3 and 
its first and second integrals with respect to time in section 4. Pressures 
oslculated by the formula of section 3 are compared with a set of experimental 
values in section 5 and good agreement is found. 

2 DYNAMICS OF THE SYSTEM 

In the design of a shock tube installation, oonstrsints may be introduced 
to resist displacement due to the unsteady load in a variety of wsys. The 
retarding force may be constant, a function of t, x, dx,/dt, or of a combination 
of these. It msy be neoessery to oonsider two or more components, and in the 
soheme proposed for the R.A.E. 6 inoh High Pressure Shook Tube, shown diagramma- 
tically in Fig.1, the retarding foroe R, (acting on the high-pressure &amber M,) 
is due, for example, to a precnmpressed spring of very high hysteresis and so 
may be regarded as constant, srd is of such magnitude that during the 
recoiling motion, the two masses M and M of the high-pressure chamber and of the 
buffer block separate. To describi the m&ion fully, it is oonvenient to i&r+ 
duce the force of reaction between the two masses, X. Then the equations of 
motion for each component of the system are 7 

d2x2 
M2 - 

dt2 
= x-pM2g 

% 

d2x, 
- = p(t) A-R-X 
dt2 

where A is the cross sectional area and p the pressure on the end of the tube. 
For X > 0, i.e. before seTsration, x, 
to give 

= x2 and the equations may be combined 

2 
(M, + M2) dx = 

dt2 
p(t) A - R - ~1 M2 g 

but whenX = 0, i.e. at and sfter the time t, such that 

04 

the displacements x3 and x2 of the masses M, and M2 become distinct, and the two 

equations must be used, with X z 0. 



The integration of the equation of motion (1) is straightfo~srd, 
although if p(t) and R are not given as simple functions of t or xI it may 
have to be done numerically. In the remainder cf' this note, an 
expression is obtained for p/p, as a function of t/t,, where p, is the initial 

pressure in the driver and to is the time that elapses between the rupture of 

the diaphragm and the arrival of the head of the expansion fan at 
end of the high pressure chamber. (For t c to, P = PO') 

This expression is then integrated to give the functions 

and 

the closed 

(2) 

which represent the contributions of the unsteady pressure to the velocity and 
displacement of the tube, for the case where the expanding gas in the high 

. pressure chamber has the oonstsnt specific heatratio Y = 1.4. . 

3 VPLRIATION OF FmSSW AT THE CWXB3;ND 0-F THE HIGHl333Y~R.b (ZEMEXR 

The pressure-time history at the closed end of the tube is found from a 
solution for the reflection at a rigid wall of the centred rarefaction wave 
travelling upstream from the diaphrw This is given in seotion 82 of 
Courant and E'riedriohs~, and outlined here. 

The equations of motion and continuity of a one-dimensional unsteady 
isentropic flow may be written in the form 

r = 2a dx 
y-l+” = 

con&. along a line at = u + a 

(3) 

2a 
S 

= Y-- = 
con&. along 9 line& = dt u-a I 

The r and s characteristics are indicated in Fig.2. r is constant throughout 
the region unaffected by the refleotion, in which region the flow is a "simple 
wave". At the end wall u = 0, so that at any time t rwall = slVtil and, with 

the notation of Fig.2, r, = sl, r2 = s2 etc. 

iJi.thin the region of interaction, by (3) 

iE= 
as (U + a> $ , 22 as = (u - a) $ l (4) 



Thus, eliminating x and putting u and a in terms of r and sj we obtain 

a2t +- at+at = 0 h 
ar r+s 2r as 

where 

The solution of this equation which satisfies the boundary oonditions imposed 
by the initial centred nature of the incident wave, and by the refleotion at 
the wall is* 

r 
t(r, s) = to 

( > 
O*s 

h 

0 

r+s w - h, h; 1; - y) 

where 

trO - d (so - f-4 

y  = (r r 
0 

+s 0) ( + 9) 

F is the hypergoemetric function, defined by 

F(a, b; c; s) = I +$$ . . 
5 + ,* a2 + . . . , 

and to is the time at which the incident wave first meets the end of the tube. 

A-t the end of the tube r = s = 2a/(Y - I), where a is the local speed of sound 
at time t; thus by (7) a and t are connected by 

where 2 
-- 

x = ( > ' : 
0 

8 
-T-J- 

s 
a 

0 

ao being the initial speed of sound in the undisturbed driver. 

*This may be verified by assuming a solution of the form 

t = r. + so h 
tO 

( > r+s F(Y) t 

in which case a seoond-order linear equation is obtained for F which may be 
solved in series. A fuller account is given by Steketee2.. 



The hypergeometric function reduces to a polynomiaL of degree h - 1 
when h is a positive integer. 
(2n + 3)/ 23-i + I>, 
gas (Y = i 

This is so whenever y is of the form 

/3) 
as is the case for polyatomic gases. Thus for a monatomio 

we should have F s 
diatomio, (Y = 7/5), 

I + 2x, while for hydrogen or air which are 
we have the quadratic expression 

F(-2, 3; 1; - y) = 1 + 6y + 6y2 (11) 

w 

The pressure is given in terms of the speed of sound by $$L) :; ($ . . 

The last three equations enable us to write the pressure4ime history at 
the end of the tube as 

oitito, p=p, 
I 

to< t 9 
a = $ (zJ5i7 +ggj3'7 +$ (f7 ] (12) 

4 ImEGRALS OFF'RGSSUREFilITHRFSPECT TOTDIE 

The integrals defined by equation (2) which give the contributions of * 

the unsteady pressure to the velocity and displacement of the system may now be 
calculated, using (12). The first is 

. 

For 

sndfor 

0+1 
t 

0 

t 

0 
‘6 =to 

16f$ 
0 0 

From this the second integral, defined by 

1 (13) 

J 



is found as 

for 

16g9 = 0 0 

for -$ > 1 . 
0 

P/P,* f ati g are tabulated for t/to > -l in Table 1 and plotted in 

Figs.3 anl 4. 

5 CWARISON CF THEORETICAL WD l!XE'ERMbi& V.ARIATIONS GE' PRESSURE WITH Ts 

. 

Fig, 5 compares pressures calculated from equation 12 with measurements 
(unpublished) made at the closed end of the RAE. 6 inch high EYessure Shock 
Tube, for a particular operating condition with hydrogen driver at 2,300 p.s,i, 
and 2YO'K. The experimental results were obtained with an SIU PA 14 pressure 
transducer, 

The experimental value of to was 7.0 milliseconds. This agrees with the 

time that would be calculated for the head of the expansion fan to travel the 
30 ft from the diaphragm to the closed end of the high pressure chamber, 
assuming that it moves at the speed of sound in hydrogen at 2900x, namely 
4270 feet per second. 

After that, there is extremely 
theory, at least up to times between 
the diaphrw, when the pressure has 
the initial value of 2,300 p.s.i.). 

good agreement between experiment and 
35 and 40 milliseconds after rqture of 
dropped below 100 p.s,i. (ooqared with 

. 
For times in excess of 40 milliseconds, the experimental results drop 

below the theoretical curve. The reason for this is not yet understood; it 
may be furdamental, or arise from experimental error, or be a combination 
of both. 

However, with the exception of the long drawn out Utail" of the theoreti- 
cal estimate (note that pig.3aovers only the region up to t/to = 8 of Pig.3) 
the comparison would indicate that the theoretical formulae of this note may 
be applied with fair confidence to the calculation of the recoil of a shock 
tube. 

-8- 
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TABL;E I 

P 
PO 

I.0 

a9 
0.8 
O-7 
o. 6 
a 5 
0.4 
0.3 
0.2 
0.15 
0.1 
0.08 
y&75 

do5 
aa- 
a02 
oeOl3 
0.012 
o.olo 
0.009 
0.008 
0.007 
0.006 
0.005 
0.004 
0.003 
0.002 
0. ool 

Vslues of f- ) +- , fdl!i 
0 0 

t 

tO 

1.0 

I.046 

1.102 
1.169 

: ‘$65 

I: 520 
1.750 
2.139 
2.53 
3.14 
3.540 
3a69 

:g4 

5.336 
8.123 

10.65 
11.20 
12.58 
13.46 
14.53 
15.84 
17.51 
19.23 
22.84 
27.65 
36.26 
57094 

f 

1.000 a5 

1.0912 0.609 

1.1969 0.784 

1.3264 1.119 

1.5051 2. @4 

1.6429 3*574 
I.6805 h270 

1,725 5.359 

1.780 
le859 
1.9061 
I.9103 
1.9213 
1.9296 

:*iz: 
1:9593 
1.9714 
1.9854 
2.0020 
2,023 0 
2.0534 

7.344 
12.45 
17.09 
18.13 
20.89 
22.59 
25.64 
27.19 
30.46 
34.82 

';"Q$ 
67e89 

112rl 
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HIGH PRESSURE CHAMBER 

MASS M,, DISPLACEMENT Xl- 

9UFFER BLOCH 

MASS M2 

DISPLACEMENT X 2’ 

L/!/qzL //////; ,//I RAILS 

FRICTIONAL FORCE = )I hIa g 

FIG. 1. DIAGRAM OF SHOCK TUBE INSTALLATION, 
SHOWING FORCES GOVERNING RECOIL. 
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+I 

dr 
dt = u+a 

SLO’POS $T = u-a 

FIG. 2. CHARACTERISTIC DIAGRAM SHOWING 
INTERACTION BETWEEN INCIDENT (s) AND 

REFLECTED (r) WAVES. 
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FIG. 4. VARIATION OF f WITH TIME. 
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