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FRCY A COMBINAIION CIF THLORY AND DXPERILINT

by

D, Williams, D.Sc., h.I.Mech,E., F.R.4e.S.

SULTEARY

the purpcse of this note is to cnable the crack prepagaticon properties
of sheet naterial to be determined in a nuch mere ecconomical way than has
hitherto been possible. This cbjective is scught by establishing simple
Formulee feor cerrelating the results for small flat sheet specimens under
tensicn cr cylindrical specimens under interasl pressure, with those for
larger but similar specimens, and for ceorrclating results for a flat sheet
with these fer the cerresponding (i.e. the same flat sheet rolled into a

cylinder) cylindricel sheet under the same tceuszion preduced by internal

PreEssure.,
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1 INTRODUCTION

It will be agreed that in spite of intensive experimental work there is
still much to be learnt about the mechanism of crack propagaticn in thin sheet
material. There are a number of facts that are known with certainty. We know,
for example, that the behavicur of a crack - the way it extends under repeated
application of tensile ferces across it and the urstable length it can reach
before it finally self-propagates at speed - depends profoundly on the material
of the sheet. Apart, however, from expeccting ductile matcrials teo give better
results then those less ductile, there is no quantitative basis upen which to
estimate the perfcrmence of a matcrial by reference to its specification. It
is also known that, under the same nominal applied tensile stress, a crack
propagates faster and has a lower unstable leagth when the tension is induced
by pressure in a cylindrical cshell than when it is dircctly applied to a flat
sheet, Moerecver, for the same hoop stress, o crack becomes mere ready to
spread as the radius of the cylinder is reduced.

It follows frem the abeve remerks that, in the absence of cerrelating
factors, the behaviour of a crack in a pressure cabin of a particular diameter
can only be determined by carrying out a test on a cylinder of equal diameter
and identical sheet materisl, By the same token an estimate of the crack
behaviour in the skin of a wing makes it necessary to carry cut tests on a
corresponding extent of flat sheet. Such multiplication of ‘ad hoc' tests is
highly uneconcmic and wasteful of time and cffert. What is obviously required,
and what appears tc be to some extent feasible, is the establishment of cerre-
lating facters that will allew the results of tcsts carried out on a flat sheet
to be apolied with scme confidence in ferecasting ihe behavicur of a sheet of
the same material built into a pressure cabin of any diameter - and vice versa.
It is with the object of suggesting methods -~ based on a physical intcerpretation
of hitherto unexplained experimental results - for dbtaining such Lfactors that
the present note is put forward. The phrase "same material" is underlined
becauce it is not thought poseible in the present state of lmowledge to corre-
late the behavicur of a sheet of one material with that of a sheet of a
different material on the basis either of their chemical composition cr their
material properties, Dircet cxperiment appcars here tc be the only guide., It
is, however, reascnable to oxpect that, if cne material is gshowm by expoeriment
to have better crack preperties than snother when both arc tested as flat
sheet, the ssme supcriority will be shown when both arc built into pressurised
cylinders.

2 CRACKS IN FLaT SHEET

The behaviour of cracks in flat sheet will be considered first, An
important question that needs to be considercd is the degree to which, for
the same applied stress, sheet thickmess affccts the results. If the sheet
does not buckle in any way it is rcascnable to supposc that a state of plane
stress exists, i.e. the stress romains sensibly constant acress the thickness
In that event one weould not cxpect shecet thickness te enter inte the problem
so leng as the neminel applied stress remalns the same, Experiment seems to
confirm this expectation not cnly for flat OHcetq, but also for pressurised
cylindrical shells?,J3, t con be assumed, therefere, that in moking a scale
medel of a flat sheet or cylindrical s p601mon, tuere is nc rcal need to scale
down the shecet thickness ceorrespondinsly. Onc is cenfirmed in this view by
the fact that, for sheets of comparsble thickness under uniflerm tension in cne
dircction, onc would not expcct the stress coucentration facter at a circular
hele to be other than the expected threc-to-cne value whatever their actusl
thicknesges, s long as ia each case the beoundaries of the sheet arc far cneugh
away frcm the hele.



2.1 Small hole or crack in large c¢xpanse cof sheet

If we consider a small hole with a smooth boundary - rcund cr oval
for example - in a large cxpanse of sheet in which the stress is unifomm,
it will readily be accepted that any departure from that uniformity of stress
is only lccal, and that at a good distance from the hole the stress retains
its original uniformity. Furthermore, subject to the hole being small com-
pared with the size of the sheet, thc stress distribution around the hole
should, to a different scale, be exactly the same whatever its size; and
this should be true whether the local stress recaches beyond the elastic
range or not. To fix ideas we may ccntemplate a circular hcle in an infinite
expanse of sheet in simple tension. As the hole is enlarged the disturbed
area becomes progressively wider, but the stress distribution over that area
remains the same., It follows that two such cxpanses cf sheet with circular
holes of different size would be expected tc fail at the same nominal applied
tensile stress.

If, however, the stress disturbance is caused by a narrow slit or crack
lying across the direction of tension, it is nc lenger pessible to ensure
geametrical similarity between the short crack and the long crack. This is
particularly true at the extremities ¢f the crack where, if it has becn
formed naturally - by the extension of a shorter crack for cxzample - its
sharpness is the same whatever its length., As a result one would expect the
sheet, under a progressively increasing applied stress, to fail at a lower
stress for the longer than for the shorter crack, and onc would also expect
the difference to be greater the greater the ratic between the crack lengths.

Suppose, for example, that & short crack of length 60 in a large sheet

(which simulates a crack in an infinite shcet) leads to failure of the sheet
under an applied stress o, A crack of length 2 60 would be expccited to cause

failure at a lower stress (do - 605) say, as a result of the end radii cf the

erack not being cerrespondingly doubled. Doubling the crack length thus
reduces the failing stress in the ratic (Go - 5cb§/cb er r (say). If the

crack is again doubled to a length of I 60 a reduction ratio of r2 would be
expected.

On the basis of the above argument the relaticn between failing stress
and crack length is known for all crack lengths once the reduction caused by
2 single increase is known. Suppeosc, under the cffect of a short crack of
length € across the line of tension, the experimentally observed nominal

applied Pailing stress (the uniform stress, i.e. remete from the crack) is
%, and that an increase in crack length fraom 60 to 1160 is cbserved teo reduce

the failing stress to rob. It follews that, if the crack length is increased

to any length x, where

X 6
7= n s (1)
0

[e3
X . 0 (2)



From (1) Jog /e )
0 = — (3)
leg n

and therefcre, from (2)

/log (X/60)>
I
X log n
G'e/o = T s (21-)

which gives the failing stress Gi for any length of crack in terms cf the

reduction factor r initially cbtained.

This applies only so long as the crack length is suall compared with
the width of the sheet. As soon as it becomes an appreciable fraction of that
width the stress at points remote fram the crack can no longer be assumed to
remain constant as the crack grows, and a stage is scon reached where the
reduction in failing stress calculated on the gross area is almost entirely
due to the reduction in the net cross-sectional area of the sheet, and where
equation (L) becomes irrelevant.

The only reliable way of checking the validity of the relation given by
equation (4) is to compare the failing stresses of two sheets of different
size, but of the same shape., As a matter of interest, however, use will also
be made of the alternative but less relisble method of comparing, as indicated
ebove, the failing stress of a wide sheet with short cracks of different
lengths.

262 Similar cracks in similar sheets

We choose two sets of results from among the available data, one
American and cne British., The Tirst set is taken from a paper4 by McEvily
et al., which quotes experimental results lor twe sheet svecimens, one 12 in.
wide and 36 in. long and the other 35 in. wide and 36 in. long. The widths
are thus in the ratio 3:1, but the lengths are the same. However, so long as
the cracks are well below half the length, the error in not having the length
properly scaled has been shcown experimentally by Harpur5 not tec be important.

The results given in Table 1 have been taken from Figs., 10 and 11 of
McEvily's paper4 and show the nominal failing stresses for the two sizes of
sheet against corresponding crack lengths.

TABLE 1

(Sheet material 202),-T3)

Failing stress (1b/in.2 on
gross area) -+ 1000 Stress-reduction
Ratio

Crack length (including
central hole) as % of
sheet width

12 in, sheet | 35 in. sheet

10 52 12 0.81
20 L6 32 0.7

30 36 26 0.72
2,0 30 2145 0.72
L5 27 «5 20 0.73




It is not possible here to make comparisens of failing stress for a
crack length (including central hole) less then 1/12 the sheet width because
the central hole for the 12 in. sheet takes up 1/12 of the total width. It
is unfortunate for cur purpese here that in these experiments the same size
of central hole - 1 in. diameter - was mode in both the 12 in. and the 35 in.
sheet, Thus, whereas the figure of 10 per cent in the first row cf the abcve
table is nearly all accounted for by the central hele in the case cf the
12 in. sheet, less than half of it is se¢ acccunted for in the 35 in. sheet.
Similarity between the two sheets for crack lengths between 10 and 15 per cent
of the sheet width is not, therefore, achieved. That presumably is the reason
why the stress ratic given in the last column is slightly higher for the
shortest crack length, TFor the longer crack lengths the stress ratio is
fairly constant so that an average value cen be taken of about 0.73.

According to the argument already put forward, if the crack-end radius
for the larger sheet had been made greater than that for the smaller sheet
in the proper 3:1 ratic we should expect the same failing stress and, there-
fore, a stress ratio of unity. The drep in failing stress from wnity to 0.73
is consequently to be attributed to lack of scaling up the crack-end radii in
the proper ratio.

Following the analytical approach implied by equations (1) to (4) we
are now in a position to estimate the failing stress corresponding to any
size of crack in any size of (similar) sheet of the same material. Thus, let
% be the applied stress at failure for a croack extending a certain percentage

width of a sheet of width &o and let this stress fall tc rob when the sheet

(and correspondingly the crack) is increased in size in the ratio n. It then
follews that, for a similar sheet of width x and crack length X/ﬂo times

greater than that in the sheet of width 60, the failing stress is given by

r<"““"“log XMO) . (5)

log n

<§f% qu

Q

In the present case we have

n = 3, r = 0.73, 60 = 12
and therefore
<%og X/12>
o
fo

If therefore it is desired to estimate the applied failing stress
(by which is always meant the applied stress at failure) Gx for a sheet

100 in. wide (and length of the same order) for any percentage width of
central crack, we write

<%0g 100/42
. e -
log 3 )
= = 0.73 g
[e]
= 0.75147° = o.55 (7)

where % is the applied failing stress for a 12 in. sheet with the same
percentage crack length.
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A crack of 30 in. for example in the 100 in. wide sheet is a 30 per cent
crack, and from Table 1 we see that a 30 per cent crack cerresponds to a
failing stress of 36,000 1b/in.¢ in a 12 in. sheet, The failing stress for
the same percentage length of crack in the 100 in. sheet is therefcre, by
equation (7), 0.55 of 36,000 or 20,000 1b/in.%.

Results arc also given in Table 3 of Ref. 3% for the same sizes of
sheet in material to specification 7075-T6. A smooth curve thrcough these
gives the values shown in Table 2 belaow.

TABLE 2

(Sheet material 7075-T6)

Failing stress (1b/in.? on
Crack length (including gross area) + 1000 Stress-reducti
central hole) as % of e R—ze.: uction
sheet width 12 in, sheet | 35 in. sheet abie
8. &, 33 0.52
10 52 31 0.59
15 39 2l,. 0. 61
20 32 19 0.6
25 26.5 15.2 0.58
30 22.5 13 0.59
35 20 12 0.6

This shows that trebling of sheet size and crack length for sheet
material 7075-T6 reduces the failing stress teo an average of about 60 per cent
of that for the smaller sheet., The corresponding figure for sheet material
202.-13 as found above is 7% per cent.

Thus, as well as having much lower absolute valucs of applied stresses
at failure than 202,-T3 sheet for the same percentage crack length, 7075-16
sheet suffers a greater reduction in failing stress with increased size than
202),-T3, Following equation (6) and taking Table 2 as a basis™, we can write
the failing stress T for any width x of sheet to Specification 7075-T6 and

for any percentage crack length in the form

log x/12
e

Gi = 66(0.6) »

For example, again taking a 30 in. crack in a 100 in, wide sheet, we

find the failing étress to be <%og 100/1%>
oo = 107x2.5(0.6)" 1083 = 8 x 10° W/in%.  (9)

(WVhere the figure of 22.5x105 is taken from Table 2).

* This is a rough basis because the experimental work was never designed for
the purpose of evaluating the scalc effect for the particular material.

-7 -



One nctes that the applied failing stress for the same crack length
in the same size sheet to Specification 2024.-T3 as found above is more than
three times greater.

These figures serve to illustrate the general trend of the scale effect
for the two materials concerned, but,cwing to the central hole being the same
size in the 12 in. and 35 in. wide sheets, they cannot be talken as providing
reliable data for use in quantitative calculations. A carefully carried out
set cf tests on two sheets with linear dimensions in the ratio 3:1 (say)
should, however, provide a firm basis for calculating the scale effect that
could then be used for estimating the failing stress of any size of (similar)
sheet in the same material,

The second set of results we shall gquote are taken from experiments1
carried out for the Ministry of Supply by the Bristol Aircraft Company. The
experimental values shown in Figs,1 and 2 for sheet material to Specification
D.T.D. 746 are typical in general character of others obtained feor aluminium
alloy sheets to other specifications. The peints pletted in these figures are
the actual experimental values and the smcoth curves have merely been drawn in
by eye to represent as nearly as possible the average failing stress for each
crack length, Fig.1 refers to a sheet 20 in, x 10 in. x 0,04 in. and Pig.2
to a double-size sheet LO in. x 20 in. x 0.0L in. The r'ew experimental values
that were obtained on a sheet 40 in, x 20 in, x 0.08 in. shcw that they differ
to a negligible extent from those for the same size sheet of half the thickness.
There is, therefore, no cockling effect sc that, apart from the crack-end
radii, the dimensions of the two sheets are effectively in the ratio 2:1.

Table 3, which is based on the smcoth curves of Figs.1 and 2, shews the
failing stresses for the two sheets at varicus crack lengths. It alsc shows
in the last column the failing stress in the larger sheet as a fraction of
that for the smaller. This fraction varies from 0.76 to 0.8, abcut an average
value of approximately 0.8. According, therefore, te the theory put forward
here, the effect of nct scaling up the crack-end radii when cother dimensions
are doubled is to reduce the failing stress by scme 20 per cent for sheect to
Specification D.T.D. 74.6.

TABLE 3
(Sheet material D.T.D.746)

Failing stress (average on |
Crack length gross area) Failing stress, larger sheet
Sheet Sheet Failing stress, smaller sheet
Sheet width 20"x10"%0, 0" | LO"x20"x0, 01" = Stress~reduction ratio

0.15 4.6 35 0.76
0.2 36.3 28 0.77
C.25 30.5 2l 0.78
0.3 26.6 21.5 0.8

0.35 23.7 19.7 0.83
0.4 21.4 18 0.8,
0.5 19.5 16 0.82
0.5 17.8 W 0.82
0.55 16 13 0.81
0.6 e 2 1.5 0.81
0.65 12.5 10 0.8

0.7 10.7 8.5 0.79
0.75 8.3 7.0 0.79
0.8 7.0 5¢5 0.78
0.85 5¢5 4.0 0.73
0.9 l 3.7 2.8 0.76
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Using equation (5) and putting r equal te 0.8 and n equal to 2, we
express the failing stress Gk fer a sheet of any width x in the ferm

<1og x/10\

o log 2
X
- 0.8 , (10)

where %, is the corresponding failing stress fer the smaller sheet.

Thus, feor a three-to-one increase in size of sheet, the failing stress
falls to

(U)BO in, 0.8(1og j/log 2)

- = 0.695 (11)
9740 in.

of that for the smaller sheet.

This stress-reduction ratio for D.T.D.7,6 for a scale-up in sheet size
of 3:1 may be compared with the corresponding reduction ratic of 0.73 for
sheet material 202-T3 and 0,6 for 7075-T6. This makes the scale effect for
D.T.D. 746 slightly more proncunced than for 202),-T3 sheet material, but much
less pronounced than for 7075-T6.

2¢3  Reduction of failing stress due to increasing crack length
in wide sheet

As suggested in paragraph 2.1, an lncrease in length of a short crack
in a large sheet is approximately equivalent to the same percentage increase
in a crack of any length in an infinite shect. In either case the stress at
peints remote from the crack is sensibly unchanged and so would be the stress
concentratien were the crack-end radii scaled up in propertion. It feollows
that doubling ihe size of o shert crack in a large sheet should have much the
same effect in reducing the failing stress as doubling the size of crack and
sheet at the same time. This peint can be checked against the experimental
results by neting, for example, the effect of increasing a short crack length
in the 35 in. wide sheet to Specification 7075-T6 whose failing stress against
crack length is given in Table 3 of Ref. L.

From this it is secn that doubling the crack-length)which always includes
the central hele) from 0.05 of the sheet width tc 0.1 dreps the failing stress
from 51 per cent to 38 per cent of Gﬁlt ieee to 0.74 of its value before

extension. The corresponding effect of scaling up both sheet and crack in the
ratio 2:1 is scen from equation (8) to be

<log 2./ 2>

log 3
(0.6) = 0.72 (12)

The two figures are, therefore, in fair agreement,



A similar calculation can be made for D.T.D.74.6 on the basis of the
results quoted in Table 3, Taking the 4O in. x 20 in, sheet and the two
crack lengths 0.2 and 0.25 of sheet width, we find the failing-stress-
reducing factor tc be given by

log ?/
log 0.25/0.2
(—g—%\ - 0.63 (13)

for a doubling of the crack length.

This compares with the value 0,77 in the last column of Table 3 chtained
by scaling up sheet and crack together. The lower figure is to be expected in
view of the reduced net cross-section.

2.}  General remarks on cracks in flat sheet

It seems fair to conclude from the abeve observations that

(a) In a sheet subjected to a uniform tensile stress alcng edges that
are parallel to a central crack the value of the failing stress progressively
drops as the size scale increases, i.e. as the length <f the crack and the
linear dimensions of the sheet are increased in the same ratic. This is mest
clearly shown when sheets of the same shape but different size are tested.

(b) Theoretically an increase in the length of a crack in a sheet of
infinite size is equivalent to an increase in scale and sheuld lead to the
seme drop in failing stress. This seems to be borne out by the few tests
that have been made on short cracks in large sheets.

(c) The scale effect noted in (a) above, once detcrmined for a
perticular scele ratio, can be found at once fer any cther scale ratio by
a simple formula sc long as the sheets are of the same material,

(d) The magnitude of the scale cffect depends upen the specification
of the sheet material. It is somewhat greater for D.T.D.746 than for
2024,~T3 and much greater for 7075~T6.

(e) It seems rcasonsble to suppose that the cause of the scale effect
here noted is the fact that, as the crack length and sheet size are scaled
up proportionately, the sharpness of the crack extremities (i.e. the crack-
end radius) remains unchanged and, therefere, in relation to the crack length,
becomes mere prcnounced.

3 CRACKS IN PRESSURISED CYLINDERS

In passing from flat sheet under uniform tensile stress to circular
cylinders under the hoop stress caused by internal pressure we need to con-
sider two distinct aspects of the matter. In the first place we are interested
in comparing the bechaviour cf cracks in cylinders of the same shape, but
different size in order to see whether the same scale effect 1s present as
that already noted fer flat sheet. In the second place is the problem cf
cerrelating the behaviour of flat sheet under tensile stress with that of the
same sheet formed into a cylinder under an equal hoop stress.

The experimental data ngecessary for discussing these matters is contained

in a paper by Peters and Kuhn“ who carried out tests on some fifty-cight
unstiffened cylinders made up of shect to 3pecification 2024-T3 and 7075-T6,

- 10 -~



Failing stresses in cylinders of different sizes

361

A salient conclusion from the experiments carried out by the above
authors is that sheet thickness is not a relevant parameter so leong as the
hoop stress is kept constant.

They varied the skin thickness of a particular cylinder over the range
0.006 to 0,025 in, without changing any cther parameter than the internal
pressure, which was adjusted sc as to maintain a constant hoop stress, and
found the ncminal failing stress to be practically unaffected. It can be
concluded from this that the cylindrical sheet in these experiments must have
been approximately under 'plane-stress' conditions.

Twe sizes of cylinder were used, one 3,6 in. radius and 20 in. long and
a larger cylinder 4.4 in. radius and 7. in. long. Thus the ratio of the two
radii - four to one - was slightly different from the ratio of the lengths,
which was 3.72 to 1. If we can legitimately assume this small discrepancy in
the length ratio to be unimpertant, we can compare the behaviour of cracks cf
length ratio 4 to 1 and expect to obtain identical results except feor the
scale effect introduced by the constant crack-end radius.

On pletting the cxperimental results given in Ref. 2, it is found that
for each cylinder size and each material a fairly smceth curve can be drawn
through the plotted pcints. The following tables have been cbtained by
reading off from these smocth curves.

TABLE
(Sheet material 2021-T3)

Unstable crack Failing %oop—sgress
length (in.) 1b/in. < + 10 Stress-reduction
. - . . ratio
Cylinder | Cylinder | Cylinder | Cylinder
disneter | dismeter | diameter | diometer
5-6 il’l. ‘“4...[1{. iIl. 3;6 in. /“.{..L}‘ iIl.
0.3 142 10 30.5 0.8 ]
0.5 2 30.6 240 0.78 §”\
1 N 19.5 .0 0.72 ¢ g
1.5 6 13,3 10,0 0.75 | £°
2 8 9.7 8.0 0.82 1 <
TABLE 5
(Sheet material 7075-T6)
Unstable crack Failing Boop—stress
length (in.) 1b/in. ¢ + 10 Stress—reduction
Cylinder | Cylinder | Cylinder | Cylinder ratio
diameter diameter | diometer diameter
3.6 inc J”_‘_ol}. in. 306 j.n. )“].-.Ll» il’l.
0.3 1.2 32.5 25 0.75 Y o
0.5 2 25 18 0.72 ] ¥
0.75 3 19 12,5 0.66 i
1 L 15 10 0.67 E
1.25 5 12,2 8.5 0.7

-1 -



We note from these tables that scaling up cylinder size and crack
length in the same ratio has the effect of reducing the ncminal failing
hoop-stress in both materials, the reduction being more pronounced for
Specification 7075-T6. This is in accordance with what has already been
observed and reccrded in Tables 1 and 2 for flat sheets. There the average
stress-reduction ratios for 202,-T3 and 7075-T6 materials and a size scale
of 3:1 are 0.73 and 0.6 respectively. Using equaticn (6) we find the
cecrresponding stress-reduction ratio for a ):1 size scale for these twe

materials to be 0.75log 4/log 5 and 0.610g 4/log 5 i€, 0,65 and 0.53 res-
pectively. These are samewhat lower than the ratios (0.77 and 0.7 respec-
tively) obtained sbove for the same sheet materisl in cylindrical form. It
must be remembered, however, that apart from the fact that the flat sheet
specimens had central holes, they werc also without the buckling-preventing
action of the longitudinal tension present in the cylindricel spccimens.

b RETATION BETWEEN THS FATLING TLNSILE STRESS IN A FLAT SHEET AND
THE FATLING HOOP STRESS IN A CYLINDERVHEN A CRACK CUTS ACROSS
THE DIRECTION OF TENSION

It has been shown above that, once we have cbtained by experiment the
stress-reduction ratio for two similar flat sheets (of the same material)
with similar cracks, we can estimate the failing stress in any similar sheet
whatever its size. The failing hoop stress of a pressurised cylinder can be
found in the same way based on the experimental values found by testing two
similar cylinders of different sizes.

What has not so far been discussed is the sccond problem mentioned in
para. 3 above, i.e., the relation between the failing tensile stress of a flat
sheet with a given length of crack and the failing hoop stress of the same
sheet (with the same crack) rolled up intc a cylinder and subjected to internal
pressure. At first glance these two stresses might be expected to be equal.
In peint of fact, however, as Peters and Kuhn have shcwn in Ref. L, they are
far from equal., These authors found that, as the length of the flat sheet -
and hence the circumference of the corresponding cylinder - was reduced, the
failing hcep stress in the cylinder fell far short of the failing tensile
stress in the flat sheet, They were unsblc te explain this phenomenon and
expressed the opinicon that "the strong effect of curvature is not explained
by known theory", and that "the physical nature of the curvature correction
is obscure at present”.

They failed to point out that,although they were unable to explain this
strong effect of curvature, it was, nevertheless, an effect to be expected.
For it is known from straightforward dimensional theory that, if two similar
structures of different size are subjected to similarly distributed lcads,
the stresses induced are identical hcwever complicated the structures may be.
It fellows that two similar cylinders with similar disceontinuities - circular
holes for example - will have identical stresses under equal internal pressures.
Thus if each linear dimension - length, diameter, sheet thickness and diameter
of circular hole -~ of the larger cylinder is n times that of the smaller, the
stresses should everywhere be identical under the same pressure; but, on ocur
assumption of 'plane stress' in the sheet, the stresses in the larger cylinder
will remain unchanged if we reduce its sheet thickness in the ratio 1/n and
reduce its internal pressurc in the same ratio., We have now two cylinders,
with the same sheet thickness and the sawac hocp tension, in which, accerding
to dimensional theory,; the stresses are identical in spite of the fact that
the larger cylinder has a holc diameter n times that of the other. Thus, in
comparing the results for the two.sizes of cylinder, the authors should .
have expected the same failing stress not for cracks of the same length but
for cracks proportional to cylinder size.
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If the experimental results obtained by them feor the two sizes of
cylinders tested are compared on the latter basis, the strong curvature-effect
they refer tc disappears, leaving only the comparatively small discrepancy
consequent upon the incorrect scaling of the crack~end radii, The result
according te this, is that curvature has a small beneficial effect rather
than a large deleterious effect on the nominal failing stress,

The above attempt at clarification is, it may be ncted, of little
assistance in solving the problem of correlating flat-sheet results with
those for cerresponding cylinders (i.e. cylinders made by rolling up the flat
sheet). PFor, in order to deduce the nominal failing stress for a cylinder of
infinite radius (representing the flat sheet case) from the results for
cylinders of finite size, we have necessarily to contemplate cracks of infi-
nite length in the infinite cylinder.

To overcome this difficulty use can be made of a simple empirical
formula evelved by Peters and Kuhn to correlate experimental results for
flat sheets with the results they obtained for their two cylinder sizes.

According to this formula the stress concentration at the end of a crack
in a cylindrical sheet is given by

T = o, (’l+£{;@- (1)
where Op = stress concentration in the corresponding flat sheet
(i.e. the resultant stress at the crack-end)
£ = length of crack
r = radius of cylinder
k = empirical constant

For materials 2024-T3 and 7075-T6 they found the empirical constant k to have
the same value, i.e. L.6. At failure the stress given by equation (14) mast

equal the ultimate stress of the material Gult so that we write

e
Cqp = O, /\55 <1 + 3—%—) (1)

where Go is the nominal applied stress (i.e. average stress on gress area of

cross-section) at failure. It follows that

a
_ ult. (1410)

(e} =
° O A
) (5

Thus, if we know the stress-concentration factor <§i> for the flat sheet and
o

also know the value of the constant k we can, for any length of crack and any
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radius of cylinder, derive the failing hcop stress from the failing tensile
stress of corresponding flat sheet obtained by opcning out the cylinder to
form a plane sheet.

As already mentioned, formula (12) is purely an empirical relaticn that
happens to £it the experimental results cbtained fer the twe materials 202,-T13
and 7075-T6, Having no rational thecretical basis it cannot be applied with
any confidence to other materials. Igdeed Peters and Kuhn, on the basis of
certain tests carried out by CGriffith® on glass bulbs, issue a warning that
formula (12) may be of limited sccpe and "should not be applied to other
materials without check tests fer verification'.

Among the purposes of this ncte is to put fornula (14) on a rational
basis and so enable one to answer the question whether the constant k is
likely or not to have much the sawe value for all structural materials.

The essence of relation (1)) is that the added stress concentration
around the crack extremities as a result of converting a flat sheet intc the

corresponding pressurised cylinder is equal to <§§> times that in the flat

sheet, i.e. it is directly proportional to the length & of the crack and
inversely preportional te the radius r of the cylinder. The following argu-
ment, in conjunction with the analysis given in the Appendix, in the first
place demonstrates that this experimentally obtained relation is in accordance
with theoretical consideraticns., In the second place it demonstrates that the
value of the constant k should be much the same for all materials. This
second conclusion is in conflict with Peters' and Kuhn's interpretation of
Griffith's experiments on glass bulbs - a pcint that will be discussed later.

4.1 Basic argument of anslysis in Appendix

~ I\ 7 The
i N & ’ ‘
f E B A
f/ e ) 1X ﬁ) \‘ \
i | \} c--n%@_,u \
j e Lo
t &3.’ R
\ ;
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Pig. 3
Pig. 3 shows part of a cylinder of radius r under an internal
pressure p . Before the crack A'OA appears the heoop tension is constant
everywhere and has the value p,T per unit length of generatcr, Imagine now

that a crack AA' is made in the skin, but that the hoop tension originally
present across the twe edges of the crack is maintained by an external
agency so that (assuming no leakage) the heoop tension is nowhere changed.
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We now assume a rigid sleeve to envelop the cylinder, which sleeve,
while constraining the skin in the region of the crack against any radial
expansion, allows free circunfcrential displaccuent. In the presence of
this constraint the external agency meintaoining the original hoop tension
acress the edges of the crack is next remeved. In other werds we apply a
hoop compression p r (per unit length) across the edges of the crack, which
campression, by difrusion into the surrounding area, diminishes in value
with distance from the edges in the same way as in a {lat sheet. 4s a result
of this and the prevailing curvature of the sheet a radial vressure amcunting
to P, in the immediatc vicinity of the free edges of the crack - and pro-
gressively smaller pressurcs with increasing distance from the crack - is
applied to the censtraining cylindrical sleeve, which may be ccnsidered kept
in balance by a uniformly low pressure over the opposite side of the cylinder.
The 'plane stress' distribution over the disturbed regicn BB'C'Bi'BiC (dincluding
the stress concecntrations at A and A') is now identical with that in the
cerresponding® flat sheet under an applied tension p,r per unit length and a

cross tension of pox',/2.

To obtain the additicnal stresses nresent in the cylindrical sheet, but
absent from the corresponding flat sheet, we need ncw to find the effect of
removing the constraining enveleping sleeve™®™ while the original pressure P,

and the compressive forces at the crack edges arc still maintained. Remcving
the sleeve, however, is equivalent to applying an additional internal pressure
over the region BBtBy'D' of the same amount as the cxternal pressure previcusly
applied by the sleeve, This additicunal pressiwwre is cverywhere in direct pro-
pertion to the maximum valuc of such pressure, namely P, clcse te the crack

edges. In the cbsence of centinuity cf the sheet across the arcs AB, A'B' the
area ABA'B' would fold back abeut the line BBE' without any resistance., As it
is, the pressure lcad on this arce induces an additional hcop tension {eorce
that, in the abscuce of the cracli, would be carried straight across the line
AA', Because of the cracl, however, the hcop load across AA' has tc be by-
passed across AC and A'C' in the same way as the original heop tension force
P.r ¢ alrcady treated.

Jde knew from general principles ¢f stress diffusion that, in the flat
sheet case (i.e. with the radial constraint still cperative), the stress
disturbance precduced by the crack extends in the circumfercntial dirceeticn
a distance proportional to the length € (say) of the crack. It follows from
what has been said abeve that the excess pressure (induced by remeval of the
constraint) extends the same distance. This mcans that the total load due to

* By 'corresponding flat sheet'we mean the sheet obtained by cpening out the
cylindrical sheet af'ter cutting all along the generator diametrically
opposite the crack,

** It is interesting to note that there is an allusicn in Ref. 3 to some
experiments carried out by the Douglas Aircraft Co., in which the effect
of such a sleeve was measured in terms of resistance to fatigue. The
following is quoted from Ref. 3 (para. 27). "In cne unpublished test by
Deouglas Aircraft Co.,, a crack in a cylindrical specimen was covered by a
plexiglacs sheet to prevent excessive bulging of the crack lips. Without
the plexiglass radial support to the edges of the crack a specimen failed
at 22,7 cycles at a hocp stress of 9120 p.s.i., but with the support a
similar specimen at the sane stress tcok 39,875 cycles befcore failure.
This gives further indication that the problem in a cylindrical structure
under pressure is very Gifferent from a flat tension specimen containing
a crack".
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the excess pressure over the region BB'B,B,' is proportional to 62 and to
the maximum value P, of the excess pressure. /e can therefcre write

Excess pressure load Q = kp ¢ (15)

where k1 is a factor that, depending as it does on the pressure distribution

over the region AA,B,'B, (Pig.3), is directly dependent on the pressures on
the constraining sleeve and hence on the 'flat-sheet' stress distribution
over that regicn., It is dependent thercfore on the ratics /v and P/L of
crack-length tc radius and of radius t¢ cylinder length L.

It has been shown in the appendix - equation (38) -~ that, if a sheet
ring of width b and radius r under internal pressure Py is further subjected
over an arc roe equal to ¢ in length, where 6 is small (< 40° say) ccmpared
with 1809, tc a radial load Q nc greater than b Epc (equilibrated by a uni-

form pressure over the opposite half of the ring) the extra pull or hoop load

in the ring is equal to Q/2.

If now, in Fig.3, we imagine the arcs BB, and B'B,' extended intc com-
plete circles, they may be considered as reoresenting the edges of a sheet
ring of width ¢ subjected tc a unifcrm internal pressure P, and lecally tc

an excess pressure load Q, that, accerding to equation (15), is directly

o

proportional tc boéz. Since thc ring is broken along the crack AA' the

pressure load Q, as already explained, is transferred tc the adjoining areas
beyond the becundaries of the "ring", and there gives rise to a total hoop
force acress AC and A'C' of amount, according teo the above argument, equal
to /2. This is in addition to, but distributed in a way very different
from, the hoop force P.r ¢ that is distributed over AC and A'C' as in a flat

sheet and that alse must be by-passed.

The maximum hoop tension due to each cccurs at A (Fig.3). That due to
the force porﬁ may be written in the form

e
m - — - prs
CANERIC N SRR ETIE (16)
1 /
\
where F(% s %) is a function of the length £ of the crack as a fraction cf
the radius and of the ratic of cylinder radius tec cylinder length., Division

by € is necessary because the length AC (and A'C') over which the hoop force
is by-passed is preporticnal to £.
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The ceorresponding hocp tension caused by the hcop ferce Q, which has a
very different distribution® cver AC, may similarly be written in the form

(TA)2 = f <—§ , §> . po€2 - 4 . (162.)

The tetal hoop tension at A is thus

As already noted the resultant pressure-load Q is the integral of
pressures whose distribution over the region BB'B,'B, (Fig.3) (by removal
of the constraining sleeve) is identical with the distribution of 'flat sheet'
compression forces (with constraining sleeve present and compression forces
applied to the edges cf the crack)., On this basis the ratic

f(% s %D,/F<§ s %) can be regarded as a constant k independent of both

ratios ¢/r and ¥/L. Bquation (17) may thus be written in the form

/ N

A
v = (7,) U b=, (18)
4 A et sheet r)

* This 'very different' distribution is caused (in the writer's opiniocn)
by the quite different mechanisms by which the 'flat-sheet' load por‘ﬁ

and the local pressure lecad Q are transmitted round the crack. The
former takes place by familiar stress diffusion in the plane of the
sheet, but the latter, since bending of the sheet is a negligible factor,
must be transmitted by membrane forces that perforce must be directed at
an angle to the crack direction and therefore in a direction along which
the sheet curvature is small (depending as it does on the squere of the
sine of that angle). Only thus can the very large value of the cxperi-
mentally derived constant k (i.e. L.6) be explained.
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Since the stress concentration at the crack-end 4 is directly pro-
portional to the hoop tension at A

Oy = (UA) + Ef) . (19)

/
K1
f1lat sheet

When the pressure P, in the c¢ylinder reaches bursting value ¢A becomes

equal to the failing stress % for the sheet material, so that, under these

1t
conditions,
(o
A .
o flat sheet . k&
“wt = % < o / <1 * r) (20)
o
pr
where o, = — = nominal hoop stress in cylinder,
t
and t = sheet thickness,
Thus
-
ult
(Gb)at failure =~ (GA) . ‘ (20a)
“ flat sheet| /, . k&
! = 1+";"
L o

This is identical with the empirical relation (12b) deduced by Peters
and Kuhn directly from experiment, and in which they found k to have the
value . 6.

An important point to note in equation (19) is that the expressicn feor

Oy is independent of the size of the cylinder and remains the same so long as

the ratio 6/r is the same. This is because the scale elfect is completely

taken account of in the leading factor (GA) . A further point that
flat sheet

is fundamental in regard to this equation is that any effect of sheet material

on the value of qA is alsgeo taken account of in that factor. That is why the

constant k is independent of sheet material.

L.2 Effect of axial tension in pressurised cylinders

The biaxial character of the stress in a pressurised cylinder does not
affect the value of the constant k., This is Dbecause it is derived as the
result of comparing a cylinder unler biaxial stress with a flat sheet under
the same biaxial stress., What we are after however is the relation between
a flat sheet in simple tension and the cerresponding pressurised cylinder
under the same (hoop) tension and an axial stress of half that amount.

For a constant stress ratio (herec 2:1) we can express the stress
concentration at the crack end A in a flat sheet in the form

kl

(21)

“A(biaxial stress) 0‘A(simple tensile stress)
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with the result that equation (19) becomes

(v) <1 » K
cyl. (flat sheet biaxially stressed)

<1 + %§> . (22)

(o))

H

k' (o)
flat sheet
simple tensile

Because, however, the longitudinally applied stress gives rise to
practically no stress concentration at the crack end, and what stress it
does produce normal to the crack direction relieves rather than accentuates
that due to the main tensile stress, the value of k' is very nearly, but
slightly less than, unity. The result is that, on introducing the factor k!
in the denominator of equation (20a) we find the applied failing stress o

to be slightly increased in the ratio 1/k', By assuming k' to have unit
value, i.e. by deriving the censtant k by directly comparing the cylinder
failing stress with that of the corresponding flat sheet in plain tension,
we ensure that formula (20a) gives a slightly comservative estimate of the
failing stress for a cylinder.

5 POINTS CLARTFIED BY THE THECRETICAL TRUATMENT

With the empirical formula of Peters and Kuhn now esteblished on a
theoretical basis, it becomes possible teo derive certain conclusions that
were previously inadmissible.

The main conclusion is that the constant k, already found by Peters
and Kuhn to be identical for two widely different aluminium alloys 2024.~T3
and 7075-T6, is likely to be the same for all structural materials and for
all sizes of cylinder. This view is put forward in sgite of the results
quoted by the above authors from the work of Griffith” cn glass bulbs and
tubes, They found the results for glass tubes to be somewhat inconclusive
because of the small range of tube diameters covered. In Griffith's

experiments on glass-bulbs, however, in which f;'varied frem 0.2 to 0,9,
they found the quantity (ﬁ + 559 to differ from unity by only L per cent at

most, so giving, by equation (20a), a nominal failing stress %, only L per cent
less than that for the corresponding flat sheet. If k had the same value,

o
namely L.6, for glass as for the two aluminium alloys, the factor <1 + %%a
would amount to (1 + 4.6 x 0.9) or 5.14, which, if used in equation (20a)
gives a naminal failing stress of abcout 1/5 of that for the corresponding
flat sheet. In other words, to make the formula agree with experiment, the
value of k for glass should be (0.04 + 5.1@) or less than one-hundredth of
ite value for the two alleys.

There is a simple explanation to acccunt for this apparent discrepancy
and hence to confirm the view that {he factor k for glass is unlikely to be
different fran that for any cther structural material.



It will be recalled that the heocp tensions produced in sheet cylinders,
extra to those in the cerresponding flat sheet, came abcout as a result of
removing the enveleping sleeve that resisted the cutward radial forces caused
by releasing the tensile forces holding the edges of the crack together.

Consider now what happens when the pressurised vessel takes the form of
a bulb ~ a spherical bulb let us say. As befere, if the edges cf the crack
are held together by an cutside agency the hocp tension - criginally uniform
over the whele surface remains unchanged, but at a value half that of the
cylinder of the same radius., This is because the pressure in the bulb is
resisted half by the hcop tension across the direction of the crack and half
by the hoop tension in the same direction as the crack.

Before removing the external constraint helding the crack edges together
we introduce, as before, an enveloping (ncw spherical) surface to prevent any
radial displacement consequent upon the local internal pressure caused by
applying the compressive edge stresses required to cancel the external con-
straint. The important point, however, is that this local pressure - unlike
the cerresponding pressure in the cylinder - never ccmes into action so far
as the enveloping surface is concerned. YWhat happens is that, as the hoep
tension acrcss the crack goes out of acticn the hoop tension in the direction
of the crack is doubled. Instead of the heop tensicns in the two directions
taking equal shares of the pressure, the hoop tensicn in the direction of the
crack now takes it all - accompanied mcrecver by radial displacements at the
crack edges that are negligible compared with these at the crack edges cf the
corresponding cylinder. In other words there are no extra stresses round the
crack ends caused by the local pressure induced by roemoval of the constraining
surface. The stress concentraticns around the crack ends are, therefore,
practically the same as those for the parallel case of the flat sheet.

6 CONCLUSIONS

The conclusions to be dravn from the above work (and the references
mentioned) may be surmarised as follows.

6e1 The failing stress of thnin sheet under tensile forces across a crack
is largely independent of its thickness whether the sheet is flat cor con-
stitutes the skin of a prescurised cylinder. It depcnds heavily, however,
cn the sheet material.

6.2 Cempariscn of results for similar flat sheet specimens (same planform,
and crack lengths proporticnal to the linear dimensions) shows that there is
a scale effect - different for different materials - that makes the larger
specimen fail at a lcower applied stress than the smaller.

6.3 That it is a true scale effect is indicated by the shape of the curve
that has applied stress at failure for ordinate and crack length as abscissa.
#hen the crack is still short compared with the width of the sheet, so that
the stresses at distances from the crack large compared with its length are
relatively unaffected as the crack extends, the curve follows clesely that
given by equation ().

6. The amount of this scale effect is readily cbtained by comparing the
applied stresses at failure of two similar sheet specimens (with similar
crack lengths) that are substantially different in size. Once this is
obtained for a particular sheet material the applied stress at failure of
any size of sheet (of the same shape and material) can be estimated from a
formula such as (4.).

- 20 -

*



6.5 A similar scale effect cccurs in pressurised sheet cylinders with
cracks. Once this is evaluated by comparing two similar cylinders (with
similar cracks) the stress at failure for any size of (similar) cylinder
and any length of crack can be estimated from the curve of stress at failure
against crack-length for one of the coriginal cylinders.

6.6 For corresponding flat sheet and cylindrical specimens the scale
effects referred to in (6.4) and (6,5) above should thecretically be the
same for the same material.

6.7 The relation (12b) between the nominal stress at failure for a flat
sheet in plain tension and for the same sheet rolled up to form a pressurised
cylinder with the same hgop tensicn and same crack length was obtained empiri-
cally by Peters and Kuhn®., The theoretical basis for this relation (based on
the analysis in the Appendix) has here been established and mekes it possible
to judge whether the empirical constant k included in formula (12b) is likely
to vary appreciably from one material to another.

6.8 On the basis of the theoretical considerations discussed above one would
not expect the empirical constant k in equation (12b) to vary much from one
structural material to another. The results quoted by Peters and Kuhn? fram
Griffith's work on glass tubes and bulbs, which seem at first sight to indi-
cate that the value of k for glass is less than cne-hundredth of that for
aluminium alloys, have here been explained and the apparent small value of k
shown tc be caused by the double curvature of the glass bulbs. Fer glass
tubes there is no reason to suppose that k has a different value from that of
any cther material. The constancy of the factor k widens the scope of the
formula and therefore greatly enhances its usefulness.

6.9 As a result of the above points the curve of failing stress against
crack length for a large unstiffened cylinder can be derived from that of &
similar small cylinder by using the scale effect for the particular material,
and the curve for the small cylinder can in turn be derived fram that of the
'corresponding' flat sheet by using formula (20a). The result is that the
behaviour cf a large cylinder can be estimated from that of a small flat

sheet, An alternative procedure would be to use formula (20a) tc derive

first the failing stress cf the large cylinder from that of the 'corresponding'
flat sheet and secondly to derive the failing stress of the latter from that
of a similar smaller flat sheet by using the appropriate scale effect.

6.10 As stated in the introduction the main purpose of this note is to
enable tests on crack-prcopagation in sheet metal structures to be carried
cut with greater econamy - to enable the ncminal stress at failure for large
flat sheets and cylinders to be deduced from results, obtained quickly and
cheaply, for small sheets and cylinders, and to enable results for cylinders
to be obtained from tests on flat sheets. The formulae derived above would
seem to go some way towards achieving this end.
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APPENDIX

EFFECT OF LOCAL INCREASE OF RADIAT
PRESSURE ON LOCAL HOOP TENSION

We consider first the hoop
tensions in a unit length of a
pressurised cylinder made of thin
sheet., We treat, in other words,
the two-dimensional problem of the
pressurised ring of uuit width.
The upper half of this is repre-
sented in Fig.A.1 by the semi-
circle ACA'. The ring is initially
under an internal pressure, and
hence a force per unit arc of p_,

and the problem is to determine
the new hecp tensions introduced
as a result cof applying a further
pressure (p1 - p,) of abcut the

same magnitude as b, over the

arc BB' that makes the resultant
Pig, A1 locol pressure equal to Py

Tt will be seen later that the conclusions reached from this analysis
are not affected by the simplifying boundary cendition that the points A and
A' are fixed in position. It will alsc be shown later that it is legitimate
to neglect the bending stiffness of the shecet forming the ring, which may,
therefore, be regarded as an inextensible membrane.

Let r, = original radius of curvature
= radius of curvature under uniform pressure P,
0, = angle BOC

r = new radius of curvature for arc BB' with centre of
curvature at O1

¢, = angle subtended by arc BB' at its centre O
1 (meking r,$, equal to r 6,) 1
11 o1
r, = new radius of curvature over arc AB (and A'B')
¢2 = angle subtended by arc AB at its centre O2
Py, = original pressure in cylinder
(p1 - Po) = additional pressure applied over the central arc BB'

From equilibrium considerations the centre 02 must lie on the same
straight line as the radius BO1.
-2% -



Appendix

By symmetry it is encugh to ccnsider the quadrant AC alone. The four
variables Tys Yoo ¢1, ¢2 may be evaluated from four equations, which are

derived as follows

To keep the peripheral length constant we have
. T
rd, T8, = r o5 . (23)
Por equilibrium at the Jjunction B of the two arcs
POrZ = p1r1 ) (dl-)
and from geametrical censiderations
ré, = r 0, . (25)

Because A and A' are fixed in position, we have the further
geometrical condition

. T . . . K
r2(51n ¢1 + ¢2 -~ sin ¢1) +r, sin ¢1 = rosins = r_. (26)

Making use of equations (23), (2) and (25) in (26) we obtain the
following equation in the single variable ¢4 tm

p ¢
ik isin (1 +c) ¢1 - sin ¢1} + gin ¢1 = A
o} 1
1 sin (1 + ¢) ¢1 /P, s, 8in $y 1
or = ¢ - \'_"‘ - 1) qv) = '6—— s (27)
0 1 Po 1 1
T
/s~ 0 P
where c = fEL?T—;l . —Q) . (28)
\ ¥ Py

For any given value cf 61 this equation can recadily be sclved by trial

and errcr., We take the case in which we are particularly interested*® where

Py is twice P, and 61 has varicus values, Fcr 61 = 10°,

We f£ind that

17°, r, 0.589 r_ -

1.178 T, J ]

?

(29)
6, = 68,

H

)

* See para. 4.1 of main text.



Apperdix
The tension in the ring is therefcre
T = pr, = pr, = 1.1Bpr . (30)

The effect of doubling the pressure over the central 20° of arc is thus to
increase the original tension PTo by the fraction 0,178,

£

It is important to ncte that the angle which the tangent at A mekes
with the horizontal is given by

(¢, +$,) = 85° (31)

i.e. only 50 off the vertical, This suggests at once an easy approximate way
for finding the new tensicn in the ring. Ve acrely assume that ihe tangent
at A makes 90° instead of the actusl 85° with the horizontal and that the
change in the projection c¢f the central arc BB' on the horizontal is ncg-
ligible (i.e. that r, sin ¢, ~ r_ sin 61).

In the present case the one assumption introduces an error that is the
difference between sin 90° and sin 85° i.e, an error of O.k per cent. The
other assumption involves the very slight differences before and alter
applying the extra pressure (p1— po) in the »rojecticns on the horizontal of

the arcs AB and BC, Vith these assumptions, the condition for equilibrium
of the vertical fcrces may be written in the form

T = p;r sin®, +pr (1 - sin 61) (32)
= P, (1 + sin 61), if py = 2P, (32a)
or T = PT, (1.174) (32p)

Thus the approximate fractional increase in the hcop tensicn is 0.174
as against the "correct" valuc of 0,178, an underestimate of only 2. per cent.

For 61 = 20° and with p, still twice p_ we obtain from equation (27)

—_ o ~ —
b, = 29.75°, T, = 0.673 r_ }
!
9, = 52.1°, r, = 1.36 71, ( (33)
(¢1 + ¢2 ) = angle of tangent at A = 82° J
T = pOI‘2 = p1r1 = 1.5[;.6 poro (_31;.)



Appendix

The approximate method gives by equation (32)
T = pr (1 +sin20%) = 1.32 pr (35)
oo o

which makes this fractional increase equal te 0.3,.2 as against the "ccrrect"
value of 0.346 - an underestimate of 13 per cent., It is clear in fact that

assuming points A and A' fixed) the greater the extent of the loaded central
arc the mere near to the trial-and-error answer the value given by equation (32)
becomes; when this arc covers the whole semi-circle the two values are, of
course, identical.

Neglect of sheet bending stiffness justified

Since the change of curvature preduced in the ring is now known the
energy absorbed in bending the sheet is easily calculated and so also is
the work done by the applied pressure. The relative magnitudes of these have
been worked out for the above numerical examples and it is found that the
bending energy constitutes a negligible proportion of the total. This fact
Justifies the criginal assumption that bending energy of the sheet may be
neglected in the present problem,

What has been established so far is that, in the two-dimensicnal case
of a ring the extra hecop-tension (per unit length of generator) caused by
increasing the pressure from P, to p, over an arc 61 of the ring is given,

according to equation (32), by the approximate formula

(T - TO) = (p1 - po) r, sin 6,
sin 61
- -2 5, 0 () (36)

where TO = original hecop-tension P, before application of the excess

pressure.

If, over the arc BB' of Fig.Al, the applied excess pressure (p1-po)

is not constant we can by the above adjustment still express the total pull P
over the ring cross-section in the form

P b(TC - To)

« b {(p ) - po} r o, <-Si;ifi> (57) |

.1

where (p,) is the pressure (constant along the generator) at the mid-point C
Py c

of the arc BB', This equation differs from (36) in bringing in the width b

of the ring and substituting the sign of direct propertionality for that of
equality.
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Appendix

If, further, the angle ©, is amall compared with 900 (less than 209,
say) equation (37) takes the form

~

P (o), AL (38)

where £ = r061 .

This relaticn, according to the argument developed here, holds equally well
even though the pressure at C is nc¢t constant along the generater, so long
as the excess pressure (p1) - pcz , where (p1) now stands fcr the maximum

value of p, in the generator through C, is no greater than , which it is
1 g ’ Po

not in the practical case one is here interested in. This is because, under
the stipulated conditions, the amcunt of the extra pull in the ring under a
local radial load superposed on uniform internal pressure and equilibrated
by a uniform reaction over the opposite half of the ring, is equal to half
the amcunt of that load.

- 27-

h1,2078,C. P 467 .43 = Printed in Fngland






o
_—

[\Y)
Z
—
: \
”
'o MATERIAL :- D.T.D. 746
x SHEET SIZE:- 20"x 10" x 0-04"
°\o (LOADED PARALLEL TO GRAIN)
< 30
w
o
< \L\
0
O
8 O‘NO
(U
20 \o
p N
(o] °
: AN
u N o o
1’4 °
10 "
\
[-) \p
oﬁ

o) o2 04 06 o8
CRITICAL CRACK LENQTH/PLATE. WIDTH

FIG. 1. BRISTOL TEST ON DT.D. 746 SHEET.
(1st SPECIMEN)

-0



40
N
z
=
0
) 3
LY
' 30
Q \ MATERIAL :- D.T.D. 746
x . " " "
SHEET SIZE :- 40"x 20"x 0-04
< (LOADED PARALLEL TO GRAIN)
o
4 \
) P
9 2o AN
o o N °
5 ) N ° o
13 \\o o
¥ 10 AN
+ o \
0 ‘3\
Rn.
o
o 02 0-4 06 08 1-0

CRITICAL CRACK LENGTH [ PLATE WIDTH

FIG.2. BRISTOL TEST ON D.T.D. 746 SHEET
(2nd  SPECIMEN)






© Crown Copyright 1960

Published by
HER MAJESTY’'S STATIONERY OFFICE

To be purchased from
York House, Kingsway, London w.c.2
423 Oxford Street, London w.1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol 1
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast
or through any bookseller

Printed in England

C.P. No. 467
(21,461)
A.R.C. Technical Report

5.0. Code No. 23-9011-67
C.P. No. 467



