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The 'Newtonianr theory of hypersonic flow (&I = co, Y3 1) 
originated by Buscmann (1933) and developed by the author is extended 
to flow past any three-dimensional body shape, Mathematical complexity 
ho7>rever limits the results obtained to those for slightly yawed axially 
symmetric bodies and in particular the cone is considered in some detail. 
Pressure distribution and shock shape ‘are obtained to a first 
approxiimation in (y - 4)/(y f I), and to a second approximation in 
sin 6 where 6 is the angle of attack. 

1. Introduction 

In a recent pai?er (1956) the author discusses the *Ikwtonian' 
theory of hypersonic flow for two-dimensional and axially symmetric 
bluff bodies. The theory enables the pressure distribution and the 
shock wave shape to be obtained for these blulf bodies under inviscid 
flaw conditions at infinite free stream Nach number when the ratio of 
the specific heats is nerar unity. Alt:hou& the theory was developed 
for a perfect gas with constant specific heats, it was shown that it 
is possible to develop the theory for a gas of arbitrary thermodynamic 
properties. The author has also used the theory (1957) in the case of 
thermodyzmic non-equilibrium to investigate the effects of dissociation 
rates on the flow pattern. 

In the present paper, * the author wishes to point out that 
this theory (and the above developments of it) can be generalised to 
give the pressure distribution and shock shape for z three-dimensional 
body shape in an explicit, though complicated, form. These results are 
of course onl,y valid under the conditions stated above, viz., that the 
free stream Mach number is infinite and the ratio of specific heats 
near one. The theory will be set out in the present paper only for 
the case of a perfect gas, although as in the first paper (1956) the 
extensions to arbitrary thermodUynamics are immediate. In principle, 
the extension of the theory is obvious, although to set it down in 
mathematical terms is a little more difficult. In fact, the procedure 
is exsct1.y the same as for the two-dimensional and axially symmetric 
cases and is the approach originally used by Busemann (I 933). 

First/ ------_-------------______I________ 

The authr ~~~lld rcfcr the reader t? a recent 2ublicatL)n by Hayes and 
Fn~bs'ccin(1959) far a mre dct* .~ilcd study of this problem. 
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First we proceed to build up an expression for the pressure on 
the body surface, This is composed of two parts. TJe have the initial 
rise of pressure at the shock wave which is reduced by the fall in 
pressure across the layer between shock and body. lhe only contribution 
to this fall which we consider to this approximation is that due to the 
curvature of the body surface. As a first approximation the shock wave 
is assumed to have the shape of the body itself. -Physically, therefore, 
we consider that the flow impinge s uIJon the body surface and there loses 
its normal component of momentum and then the particles skid along the 
curvedsurface causing a lower pressure than. would be given were the 
surface plane. 

Seoondly, we calculate the distance of the shock wave from 
the boci[J by integrating across the stre,atn tubes from the body to the 
shock wave at each point on the surface. 

2. The ;Shape of the Streamlines 

If we consider an arbitrq body shape, the streamlines no 
longer remain in a single plane. The first requirement therefore is 
to decide the form of the curves traced out by the streamlines themselves 
on the body surface. Ve assume that the normal component of momentum 
of the fluid is destroyed at the body surface and then that the particle 
of fluid moves along the smooth surface under the influence of the 
reaction normal to the surface only. Its path is then a geodesic of 
the surface (Grimminger et al. 1950, Whittaker 1927). Let the outward 
normal to the surface be in a direction z and choose curvilinear 
co-ordinates (x, y) on the body surface (Fig. I). The elements of 
length in the x, y and z directions are denoted by hLdx, hady 
and dz. The curvatures of the co-ordinate axes are denoted by 
ICI, K2 and 0. 

Now the particle will. proceed at constant velocity along the 
surface since there are no forces acting along the surface. Thus the 
time taken to pass along a curve C is 

r--- - 1 . -- .' 

ds = ; 1; (d, + ( t j) hLdx . ..(2.1) 

and this will be a minimu;n along the particle path @hittaker 1927). 
!l%e point (m, ya) is where the particle strikes the surface, and 
cl0 = b-b, Vi) is its velocity there. J3y the calculus of variations, 
Fe require for a minimum 

I a 
k - __ 
i 

j 

aY 

., 

with the boundar?,r conditions 

hz dy VO 
-- -- = -- 

hidx uo 

1 = 0 
. . . (2.2) 

at x = x0, y = yo. 

This/ 
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!i%is will give us an equation for the curve C of the form 

G(x, y, x0 3 YCY) = O* . . . (2.3) 

Also, the velocities in the directions x and y can be obtained by 
resolving the velocity go along the curve in the directions x and Y 
and hence we obtain u = u(x, y, x0, YO) and v = dx, Y, ~0, ~0) 
where 

c 
hzdy u = go (x0 , yo ) COB tari 1 ---- 
hldx 3 

c hady l 

v = 90 (x3 ,  YO ) sin 
ta$l ---- 

hidx 3 

. . . (2.4) 

Alternatively, we can look at equation (2.3) in a sl$ghtly different way 
and say that it represents the locus C of all points (xg, yo) on the 
shock wave (or, to this approximation, the body) from which a streamline 
passes through tne point (x, y). These streamlines are arranged in some 
order above the point (x, y) which is, however, not immediately obvious. 
The contribution of the stredine to the pressure depends on the 
curvature of the body in the direction of that streamline, and thus it is 
necessary to integrate the contributions of these streamlines to obtain 
the surface pressure. It would seem reasonable therefore to try to 
convert the integral across the layer between shock and body at the 
point (x, y) to an integral along curve C of all the points where the 
particles following the streamlines through (x, y) strike the body. 
This corresponds to the introduction of a stream function and Stokes' 
stream function for the two-dimensional and axially symmetric cases 
respectively. It can also be shown that, approximating to the full 
inviscid Navier-Stokes equations in three dimensions in a similar way to 
that of the previous paper (1956) (i.e., by assuming a thin "shock-l.ayer" 
near the body), the corresponding streamline curves are the geodesics. 
This derivation is left to Appendix A. 

3. 'l'he i?ressure Distributz - - 

The equation of momentum in the direction normal to the body 
surface (Appendix A) becomes to this approximation 

. ..(3.1) 

or 

P = P&X" Y) + Kx(x, Y) PI? dz + K P?' dz 
Y 

l .  .  (3.2) 

where pS(x, y) is the pressure on the shock wave at the point (x, y) 

assuming that shock and body coincide. p and P are the density and 
pressure at the po-int (x, y, z) between the shock and body. ICY and 

KY 
are the curvatures of the body in x and y directions. , We can 

further, following our suggestion in 9 2, vmito (3.2) in the form 

P/ 
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P = PS + Kx lc PU2 (;fJ aso + Kyjc PTjd (;i) as0 
l 

where ds~ is the element of length along the curve C defined nijr 
equation (2.3) assuming (x, y) are constant. 

Let us now consider the continuity of flow along a stream 
which starts at (xg, yo) and passes over the point (x, y). The 
amount of fluid flowing across the shock wave is approximately 

0. (3.3) 

tube 

. . (3.4) 

l (3.7) 

where P, is the free stream density, U is the vector of the free -03 
stream velocity, 20 is the normal and dSa the element of area at the 

point (x0, STO)* At the point (x, y), the amount of fluid is 

my dS 

= P(U dS + v dS 
YZ 

zy + 'VII dSw) l . . (3.5) 
L 

where q is the speed, dS the element of area of the stream tube; 
dS dS yz' zx and dS the elements of dS in the various co-ordinate 

v 
planes, ar,d (u, v, w) are the velocities in the (x, y, z) directions. 
To this approximation w dS is of smaller order than the other terms 

TY 
and may be neglected. Thus, by continuity, 

p&L, l 
p) dSo = P( u dSyz + v dS=). .  * l (3.6) 

Since however the normal to the stream tube cross-section is in the 
dire&ion of q, we also have 

dS 
drz? = dSE, 

U v 

from which (3.6) may be written as either 

as = 
up,&,~ ) dso 
----"----we--- 

YZ m2 
. . . (3.8) 

. . . (3.9) 

Alternatively, this is 

8(Y, z, 4 up,(&"o 1 
_----1M..-.e-- = mm.ms.--."--- 
a(XO, Yo6, 4 pq2 

. . . (3JO) 

ah x7 Y) VP,($.&$) 
------------ = SW-------- 
ab, m7 Y) FL2 

a( ) 
lJl&@m mew----- denotes a Jacobian. 

a( 1 

. ..(3.11) 
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aZ 3(Z, XY Y) 
Now 

ab, XY Y> +o 3 YOY Y> --- = ---------I- = ---...-w------ e.----------- 
aSO Nso, x, y) a(y, Y Yo J Y> a(%, x, y) 

or 

And hence 

y.&&b > G-0 J Yo , 4 
= ___-__-__- ------c-m--- 

PCL” Go, x, Y> 

“fQJrrw*rs > a (x0 J Yo , Y) 
= -----w-m-- ---e.---__&__ 

@I2 %% x, Y)’ 

. ..(3.12) 

.** (3.13) 

y so IIf (g&l J 3(x, , yo , x) 
p = Fs f ‘k Pm ----;;--‘- -3---------- aso 

ah x, Y) 
. . . (3.14) 

r% 3(&s~? a(%, yo, y) 
+ Kr, P co i 

1-------- ------------ aso 

JO q2 wso, x, Y) 

where the integgxnds am taken as functions of x, y and so and the 
integration is at const<mt x and y. Fran? equation (2.3) we know the 
curve C. in term3 or" (:b, yO) for any point (x, y). It is therefore 
possible by the nothods of differential geometry to obtain so in terms 
of x0 or y() at constant s and y. Inverting these relations we 
have m an.a yo as functions of a, x ana. y. 
in (3.14) can thus be e,xpressed as functions of 

The integrands 
&RI , x m-la Y¶ and 

the integrations made at constant x and y. The pressure on the body 
is then obtained by pu:;ting so = s, where s is the total lenpth 
of thu curve C, as the streamline closest to the surfz.ce is the &e 
ori,+nating at the stagmtlon point. The length s is that of the 
curve 0 from the poixt (s, y) t o t ne stagnation point which is given by 

U 
11 = - -_ 

C-3 Yx 

where n is the outward nomal to the surface and U is the free --CO 
strcm velocity vector, This is onQ the case for a bluff body in 
which the shock is detached. For a body with an attached shock wave 
vhero there is, strictly spmking, no stagnation point, the corresponding 
point will be the point of attadment of the shock wave. 

It ~~511 bc noted that in the p?revious theory the quantity SO 

plays the part of the stream f'unction (or Stokest stream function) in the 
two-dimensional (or axially symmetric) flow. In place of the usual 
von Mises'variables x and q used ti the two-&imensional and axially 
qmmetric theories we have the variables x, y and no in the 
three-dimensional theory. 

4. The %-LO& Shape 

Ten -i&e pressure Clistribution has been determined it is then 
relatively straightformrd to obtain the shock nhx+.~e. Bernoulli's 
equation may be written to this approximation 

. . . (4.7) 

=d 
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and thus since q = go, we have 

Using (3.13) we have 

. . . (4-2) 

’ 90 “P,(&$ 1 eo , Yo # Y) 
z = I ________-^ ----a------- as0 

8, s P$ Go, x9 Y) 

’ 
J 

so ??JV(&;~> ah, 570 ¶ Y> 
= e --c------- ------------ tie d- d4.3) 

s P*ci2 ah x9 Y) 

where E = (Y - MY -+ 1). The integral (1+.3) can be evaluated by 
expressing the integrand in terms of x, y and 30 and integrating with 
respect to 30 at constant x and y. The shock shape is then 
obtained by putting so = 0. 

5. particular Cases 

In the previous three sections, the procedure to be followed 
in working out the pressure and shock shape for any bluff body has been 
outlined. In theory, therefore, we should be able to do this, In 
practice however the task is rather formidable. The first difficulty 
arises from the fact that only in a few particular cases can the equations 
of the geodesics be obtained explicitly. Jn via-~ of the necessity to 
work out the quantity SO as a function of (x, y) and (x0, yo) 
this is virtually a necessity, The function so, however, is still 
difficult to obtain explicitly. In view-of these difficulties with 
the differential geometry of the theory, the only practical approach 
seems to be to consider the solution for a slightly yawed bluff body and, 
in particular, a slightly yawed body of revolution for which the geodesics 
can always be fou.n& Equation (2.2) becomes, for a body of revolution, 
with ha = hz(x) and hi = hi(x) 

constant = a (sw). . . . (5.4) 

Thus 

where 

dY 
-- = ----------- 

ax 

a 

.  .  l (5.2) 
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Let u3 replace (x, y) by a new system of curvilinear co-ordinates (x, $ ) 
on the body. 9 measures the angle of a plane of s-try to a fixed 
plane and x is the co-ordinate in the plane of symmetry Q5.g. 2). The 

OX- 

and 

angle of the tan ent 
the body is @(x , 'j 

to the body in a plane of symmetry to the axis of 
and the distance of the point from the axis T)(x). 

Let hi(x) = h(x) and hady = n(x>d$. 

We will now treat the -pressure distribution as in three parts - 
the contribution due to the pressure at the shook wave (p,), that due 

to centri.&gal effects in the x direction (p,), and that due to 

centrifugal effects in the $ direction (p,), then 

P = PQ * P, + P$' . . . (5.3) 

?Yritten in terms of the new co-ordinates the equation of the 
geodesics becomes 

--cI-- "-. 
d# a2h3(x) 
-.. = 

i 
----------- 

dx i7a(77a " a") 
. ..(5.4) 

i 

x hi 
4 - q& = .sL-C-e---- 

J 

--1.1. 
Tf= 

. . . (5.5) 
x0 

17 ---I 
a 

where the suffix o denotes that the quantity is evaluated at the 
point x = x0. If the body is plaoed symmetrically to the oncoming 
stream, the geodesics required sre then the curves made by the intersection 
of the plane through the axis with the body surface or $ = $0. If 
the body is slightly yawed, however, they will deviate slightly from 
these curves. Let us suppose that the body is yawed at a small angle 6 

mW 
to the oncoming stream in the plane $ = 0, Then --- 

( > 
= 0 (sin 6) 

hd.x o 
since this is the tangent of the angle on the surface which the O~COIII~Q$ 
stream makes with the x direction. Thus a= 0 (s~IIS) and we have 

71'(~o) d$ y x h(x) 
9-k = ----NM -.m 

( ,i 
..-w-- 

h(xo ) d.x o XY ria (d 
dx + 0 (sin36) 

c 

7&b) sin& sin6 

31 

x h 
= - ---------_-_---cI"--_1_____ -- dx -I- 0 (sin36). 

cots& sin6 sinI0 + cosQ(x~) 36 t7= 

. ..(5.6) 

The latter step follows by simple geometry as described in 
Appendix B. 

me/ 
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The part of the pressure pn 3 is deduced directly from the 

shock conditions which to this approx-imation give 

where Un is the component of the free-stream velocity normal to the 

body. 

Thus PS me...- = (sin Q cos 6 - cos Q cos Q sin 6)" 
%cv 

. ..(5.7) 

(see Appendix B). 

The pressure contribution from the cros s-flow in the $J direction 
is again simple to evaluate. Ve have K 

31 
= (v(x))-' and hence 

= b?bw Pm 
,a so v3 (??,y~ > +il, Yo , Y> 

pr; J 
____----- w-----c----- d- asg. . . . (5.8) 

0 s” eo, x, Y> 

Now 
b dy r7d# 

v M go -- -- :: qj --- 
hi dx hdx 

where qe is the velocity at (xg , ~0). 

w(5.9) 

by equation (5.6) for the geodesics. Thus the first term in equation (5.8) 
will be of order sin26; since v0 is 0 (sin S) and the Jacobian will 
be 0 ((sin 6)-l). It will be found more convenient, however, to 
introduce the identity obtained by equating equations (3.12) and (3.13) 
to obtain 

where (5.9) has also been introduced. To order sin'& it is then 
sufficient to substitute the values of the factors for 6 = 0 after 
substituting for VO. The equation (5.10) tiicn becomes, since 
so = x-x0 

p# 
-w-m 

%3* I  
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3 

p9 - MdP 
TX si.2~ sin'6 770 

--I = 
i 

----------m -- 
p,u" ( > 

COI3 430 sin $0 d2ql + O(sin3Y) 
xa co2 @Q rl 

sin26 sina$ 
= -----m----- 

n4 J 

x 
7); tan @tJ dz@. . . . (5.11) 

x0 

This equation gives the contribution to the pressure from the cross-flow 
component of the stream, It now remains to evaluate the contribution 
to the pressure from the component in the 
equation (3.14) as 

x-direction which is given by 

Px = KX %a 
so U3(ULpd qm, $0, 4 

------c-- ---m.-----w-- dSo. 
s2 6% x, 16) 

. ..(5.12) 

Now, from Appendix B, 

go = U{(cos 5 00s b + sin 6 sin GO cos #o)>" + sin" 6 cos2#0 ]'.,(5.13) 

and 

Hence (5.12) may be written 

qo (U&no > eb 60, 4 
P, = KX Q,, ..-----.,.IpI-------- m..-----------• 

loS0 (J;(;~f,” atso, x, $) d5A4) 

Now U .no is the component of velocity normal to the surface outside 
the s%%k wave, and is from Appendix B (equation (k)), 

UM(sin 6 cos $0 cos $0 - cos 6 sin Go). . ..(5.15) 

Also 
rt W I 

c 

v. sin $. sin 6 
_ -- = - - ---cm.--.-------- 

3 
+ O(sin26) . ..(5.16) 

h dx r cos @o 

from equation (5.6). 

It now remains to evaluate the Jacobian in (5.12) to the 
required approximation, Now, 
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eo, $0, x> 1 
---------I-” = ------------ 
a(-, x, $9 ab, x9 $1 . ------------ 

a(=, $0, d 

63, x, $> a(m, Qo , d = C-__-------.--------__C_ 
abo, x, #> ah x, $1 

G-0, x, $1 wo no 
= ---,a.-------* v-e* -- 

GO, X, 6) a$ v 
. ..(5J7) 

and 
a@0 a 

c 

sin 6 sin $ (cos 4%) + cos 0, sin 6.g (x, x0 )) 
--a. = I + -- --------------------_________________I__---- 
a# w cos @'o (cos $ sin 90 sin 6 + cos @o ) I 

. & (x, m > 

. ..(53) 

from equation (5.6). Here we have written 

Thus, we may mite (5.14) in the form 

PX -w-w = /( 

s 
x EC 

Pus xa 
cos 6 cos QO + sin fj sin QO cos 6)" + sin26 cos2#01~ 

moo 

rl0 

c ( 

cos /q&J sins cos 290 tan o;‘o 
we . I + sin 6. g(x, x3) ------ - -..e.m---m.-.-----.----- 

)I 
&O 

n cos @o cos @o 

f 0 (sir? s) . ..(5.19) 

sin 6 (cos ii20 + sin 6 cos $.g (x, x0 )) sin Q 
where do = $ + ---__--------^----------------------- ------- 

cos GO (co3 Q sin GO sin 6 + co9 Go) 

+ 0 (sin36) 

obtained by inverting (5.6). This becomes, after some tedious but 
straightforv~ard algebra, 

*Lx ---m 
%o% I 



- 11 - 

PY K x TX tan $3 m-z- = -- 
i 

7)lJ cos io sin &J I 1 + sin 6 cos $ r 
----WC - cot a'0 

pm": 'II x0 - cos 'PO 

dx ‘- I 
c -22 --i + si.ri2s 

cos a0 -J 1 

cos2 $6 
- ------- (2 - 2 COD a0 - cos2 @o) 
2 cos2 Qjo 

I 3 772 si2$ 

( 

tan 450 tml 90 1 
_ _ - - -- ------- -I- dx, d -----me - ----es - ---e-e 

> 
cos %$!I 

2 2 rl: COS2 Go COD2 -L&J cos @'o sin $0 

sin2$ - 7 
_ [g(,:, ti ) 3" ------- ' dYQ "I- 0 (sin3S) 

cos2 Qo - !J 

x 
h 

where g x, m> = i?o ( 
i 

-- dx. . . . (5.20) 
r% v2 

Hence we have the pressure to order sd 6 as a function Of X, $ avid x0. 
The pressure on the body surface is obtained by p~~tt:ing ~0 equal to its 
value on the bod,y. Tki.s will be the value of 7x1 at the stagnation 
point which is the point where the inward normalto the body coincides 
with the free stream direction. 'This normal is giver\ by 

- (- sin @, cos Q cos $, cos @ sin $) 

and this is ~JI the direction of the free stream, j-.e., (Cos 6, sin s, 0) 
when 

sin CI, = cos s, cos 9 co9 $3 = - sin 6 

and co3 0 s5.n $ = 0. 

Thus $ = x and 

7i 
9 = --6. 

2 

. . . (5.21) 

l .  .  (522) 

Hence if x = X(cos 0) we have 

x = X(0) + X'(0) sin 6 
. ..(5.23) 

+ 2 Xtt(0) sin"lj f O(s5.n" S) 

as the co-ordinate of the stagnation point to this approximation. 

6, T_he Case of a Sli.r&tly Yavred CkxIz 

In the case of a cone, the results of the previous section 
are simplified considerably since P = /: , where ,0 is the half-angle 
of the cone. Also Kx = 0, and we have therefore p, z C. Thus 

P 
---- 

i P,U"/ 
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P 
-m-e = 

P,U" 
(sin p cos 6 - cos p cos Q sin 6)2 

-' ( sin p)-l 
fx sin2$ si.r?G x3 3 

x 
I 

----------- -- 
( > 

cos ,3 sin ,!3 dxo 
-x3 Gosap X 

-I- o( sir? 6) 

= (sin p cos 6 - cos /, cos $ sin 6)2 

- 1 "?Y?i~~;:: ( ~~~2 ) + o(si&) 
x4 

= (sin 19 cos 6 - cos p COB $ sin 6)" 

sin2$ sin26 / m 4 
I -----m.---.-- II- LI 

\ i 9 
-t O(si.n3 6). . . . (5.1) 

4 cos ,9 '\ x / 

Hence the pressxe on the body is given by 

PI3 
sin2Q sin2s 

-we- = (sin /I3 cos tj - cos /Y cos # sin qa - ----------- c 0 (sin” 6). 

F,u” 4. cos .13 
. . ..(6.2) 

This result is shown in ?ig, 3 for the particular case 
/J = 6o", 6 = - 5'. The first term is denote6 by pS/DaUL, and 

the second by pc/~mU2 The vtxiation for ~5 = 0 to 90" onQ is shova 

as the portion of the body 90" < $6 < 270' is in the 'shadow where cne 
theory is no longer applicable. The shock shape is @mm (4.3)) 

s 

0 R4Jm*n,) eo 9 $0, 4 *x r)ou(um.l)O) +-o 9 $0, 4 
Z = e --a.------.-- -----------&~ = e __-_--___- ------.------ f-k3 

S P$ a(- 003 x, 99 & Pc12 eh x, $1 3 

(6.3) 

and here 

P f 
m--w 

I px2c~ 
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P 
e-w- = 
P u" 

(sin 0 cos 6 - co9 p cos $ sin 6)" 
Lxllx 

PO ^--- = (sin p COS s - cos p cos $0 sin 8)" 
P u" 0300 

(iJ,,r~)) = Uoo (sin S sos P cos $0 - cos d sin P), . ..(6.4) 

ciao 
-- = ( cos 6 cos D f sin 6 sin$ cos $J2 + sin'6 cos2& 

1 
and ": = Tz=fzy =: q. (1 - ; [x si.nB z:)+ 0 (sit?&). 

The value of $0 as a function of $, x and ;6 ma*y be deduced from 
equation (5.6) as 

sin S sin $ i cos 
\ 

$0 = #+ ----^-------------------------------------------- 
sin2p cos .3 (cos $ sin fl sin 6 i- cos n) 

. . . (6.5) 
ThUS 

800 -co3 Q sin 6 sin"lj cos 295 
w-w = I + e-e- ------- + 
w i 

----~~-----~~ ([I - t ] - sin",0 )] ( I - t ) 
sin/3cosP G' 

after a little manipulation. In a similar manner, 
expessions may be obtained 

PO 
-- =I+ 

P 

u no sin2$ sin26 
--X- -.--em = - sinP 1 - sin 6 cot 13 cos 9 -t -----...-----. 

u sin",3 
co 

+ 0 (sin36)...(6.6) 

the following 

( 1 - [:I), 

( 1 - f ) - 4. si& ),, 

I  cos2g 
- .  

-  -  w---w - I -  t;an2p cos2$ 

2 c*u”,3 
ii 

and 
U x$ S&T2 $a sin2 c, 

__ = - --- -------...--- 1 

qo 2x2 cos2p sin20 
. . . (6.7) 

where/ 
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where we have neglected terms of order sin36. Substituting these 
expressions in equation (6.3) and noting that x3 = 0 for a cone, 
we obtain 

"X 

i c 

2Q sin 6 cos q5 sin2s - x0 5/x0 2 
z = e 1 - me ------c---- + e---------- 1 + -- - - -- 

0 x cos B sin P oin2g cos2p 1c x 2 L > x 

+ ( '1 - -li 1 + ( 1 - g j sin,;]] t dxb c 0 (sin'&). 

. . . (6.8) 

Completing the integration, the shock shape can be written in the form 

z = e&(b) . . . (6.9) 

where 
1 I sin 8 cos $4 a-36 -1 2 Go / = ta p - - - ----------- + ----------- L -sin2ql( l-b- cos }!I + 2 cos2p 2 3 sin p cos P ai&? cos2.2 8 \ 3 > 

cos2p) -J. . . . (6.10) 

l!he first -hvo terms correspond to a conical 
I e sin 6 

inclined slightly to the cone at an angle - --m---s 
3 cos2P 

stream and cone axis but in the opposite direction to 

shock wave with axis 

in the plane of the 

the stream. The 
half-angle of this cone is greater than that of the body cone by an 
a??OurYt '2 ex tan 0 set [I. ?3is is the approximation used by Ferri (1951) 
in a more general treatment of flow Fast slightly yawed cones where the 
complete equations are used. 

1.e function F(g) 
p = 6o", S = - 5O. I"ne 
then presented to the flow. 

Conclusion 

is plotted in Fig. lb for the case 
portion of the body - 90" < Q < 90' is 

To the approximation of this paper, the surface pressure 
distribution and shock shape for any three-dimensional body can be 
derived, although mathematical com@!.exlty of the problem in the general 
case does not allow explicit expressions to be given. In the case of 
slightly ysTved bodies, hoTever, a series solution in powers of the angle 
of attack is feasible. The simplest case is that of a slightly yawed 
cone where complete solutions of the poblem to the first order in angle 
of attack have been derived by Perri ('I 951). The approximate solution 
of this paper is given to second order in angle of attack. 

The limitations on the problem of assuaing y near one and 
Xach number infinite remain a cause of concern about the applicability 
of the results to the practical case, 'iThe author believes, however, 
that the understandin of the general su5so;lic-supersonIc flow field CSII 
best be achieved b;y consideration of these essentially simple first 
approximations. 
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M?PlZNDIXA 

The equations of motion of a fluid in the orthogonal curviU.nesr 
three-dimensional co-ordinates (x, y, z) may be written in the form 

u au v au 
mm -- + -- -- + w 
hi ax ha ay 

~~-~~~~~~]-~-r~~~~]+~~+~~;~~ = 0. 

. . . (n.1) 

uaw vaw aw - 1 ah, --’ 

i i 

2 ah2 
mm -- + -- -- + w -- - u2 -- --- ’ al? 

- -- --- + - -- = 0. 
ha ax ha ay a2 

. *. (A.3) 
hl ai hz a2 p a:; 

Assuming that the shock wave is close to the body, and that the velocity 
a a a 

com-ponent w normal to the body is small we have -- >> --, --. 

a a a a2 ax ay 
However u--, v --, w -- are of the same order. The elements of 

ax ay a;: 

length hl and h2 ma 
hz! (x, Y> + Ha (x, N-P 9 

be written hJ (x, y) + HI (x, y, z) and 
.z where Ha and 1-b are small. Small in this 

PO 

( > 

a a 
context means that the functions are of order -- . --) and -- are 

P ax aY 
PO 

then O(l), -! = 0 -- 
( > 

and p = w. Substitution in (A.?), 

(2) and (3) tizn gives ' 

u au v au 
me -- + -- -- + w -- 
hi ax hz! ay 

11-3 (;;-; :z)+uv(;& ;) = 0. .(A.4) 

Uav v av av / 1 
WC -- $ -- -- + w -- -I- uv 
hd ax hd a~ t 

---- :!I! ) - 2 [;;A; :;Tt ] = 0. . (A.5) 
1 I 

a; -t,;--y;j 6: [ii ;;I = 0 . . . (A. 6) 

where we have neglected terms of order (PO/P). That the first two 
equations (3.4) and (A.5)) do in fact give the equations of the geodesics 
can be easily shm by considering the motion of a particle on the given 
surface. Such a particle will have kinetic energy 

T = ; (hi2 irz + hd2 s;") . ..(A.7) 

where/ 
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dx ay 
where k = --, y = -- and m is its mass. For the integral of 

dt dt 
this to be a minimum along a curve C, which is an alternative definition 
of a geodesic, we rewire by the calculus of variations 

i (hd' 3~) - $ ( -: ) (h22k2+h$2jjd) = 0 . . . (AA) 

ax k,jr 

plus a similar equation in the y-direction. This may be written 

~a v a 

> 

uv ah, J) al2 
Be -- + cm -- lJ + m-m- --- - -e-m -mm s . . (A.9) 
hj! ax hzl ay hiha ay hLhz ax 

d a a 
by noting that -- = u -- + v -- ma h-1 $C = u,bP = V. 

dt ax aY 
This is exactly equation (A.4). 
reduces to (A.5). 

In a similar manner, the other equation 
1-e equation (~.6) can be written to this 

approximation 

1 aP 
2 ..s-- = u Kl(X, y) + 9 K2(X, Y> . . . (A.10) 

P a2 

where ~1 SJIa K2 are the curvatures of the surfaoe in the x and y 
directions respectively. 

The energy equation may be written 

ua va a 
-- mm + -- -- + w -- > S = 0 
hi 8x ha ay 82 

as the constancy of entropy S along streamlines. 

l l .  (A. I  I  ) 

B/ A.PPENDIX 
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Geometry of the Axially Symmetric Case 

Let the stream be inclined at an angle 6 to axis of aymmctxy 
in the plaie # = 0 (Fig. 2). Choose axes (X, Y, Z) such that X 
lies along the axis of symmetry and Y is in the plane # = 0. If 
the speed of the stream is U then its velocity in this system of 
co-ordinates is 00 

@L cos 6, urn sin 6, 0). 

The x direction at a particular point on the surface is given by the 
unit vector, 

(cos 3, sin 9 cos 9, cos 9 sin 4); . . . (23.2) 

the q5 direction by 

(0, - sin 9, + cos sn); 

and the z direction by 

(- sin @, cos 3 cos 9, cos c5 sin $) 

and hence at impact 

U 

-- = (cos 6 cos P -b sin 6 sin m cos $3) 

U 00 

V 
mm = sin 6 cos Q 
U 00 

W 

-- = sin 6 cos 9 cos Q - cos 6 sin 53,. 
U co 

w(E.3) 

m(B.4) 

. . ..(B.5) 

. ..(LG) 

. . . 03.7) 

Note also that 

2.2 = wo. 
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