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SUMMARY.

The 'Newtonian! theory of hypersonic flow (M=o, vy 1)
originated by Busemenn (1933) and developed by the author is extended
to flow past any thrce-dimensional body shape. Mathemotical complexity
however limits the results obtained to those for slightly yawed axially
symmetric bodies and in particular the cone is considered in some detail.
Pressure distribution and shock shape are obtained to a first
approximation in (y - 1)/(y + 1), and to a second approximation in
sin 0 where & is the angle of attack,

1. Introduction

Tn a rccent naner {1956) the author discusses the 'Newtonian'
theory of hypersonic flow for two-dimcnsional and axially symmetric
bluff bodies. The theory enables the pressure distribution and the
shock wave shape to be obtained for these blulf bodies under inviscid
flow conditions at infinitec frce strecam Mach number when the ratio of
the specific heats is ncar unity.  Although the theory was developed
for a perfect gaus with constant specific heats, it was shown that it
is possible to develop the theory for a gas of arbitrary thermodynsmic
properties. The author has also uscd the theory (1957) in the case of
thermodynamic non-equilibrium to investigate the effects of dissociation
rates on the flow pattern.

In the present paper¥ the suthor wishes to point out that
this theory (end the above developments of it) can be generalised to
give the pressure distribution end shock shape for any three-dimensional
body shape in an explicit, though complicated, form. These results are
o' course only valid under the conditions stated above, viz,, that the
freec stream Mach number is infinite and the ratio of specific heats
near one. The theory will be set out in the present paper only for
the case of a perfect gas, although as in the first paper (1956) the
extensions to erbitrary thermodynamics are immediate. In principle,
the extension of the theory is obvious, although to set it down in
mathematical tcrms is a little more difficult. In fact, the procedure
is exactly the same as for the two-dimensional and axially symmetric
cages and is the approach originally used by Buscmann (1933).

* i . R
The author would refer the reader o a recent publication by Hayes and
Probstcin (1958) for a mre detalled study of this problem.
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First we proceed to build up an expression for the pressure on
the body surface, This is composed of two parts., We have the initial
rise of pressure at the shock wave which is reduced by the fall in
pressure across the layer between shock and body. The only contribution
to this fall which we consider to this approximeation is that due to the
curvature of the body surface. As a first approximetion the shock wave
is assumed to have the shape of the body itself.  Physically, thercfore,
we consider that the flow impinges upon the body surface and there loses
its normal component of momentum and then the particles skid along the
curved surface causing a lower pressure than would be given were the
surface plane.

Secondly, we calculate the distance of the shock wave from
the body by integr.ting across the stream tubes Trom the body to the
shock wave at each point on the surface.

2. The Shape of the Streamlines

I we consider an arbitrary body shape, the streamlines no
longer remain in a single plane, The first requirement therefore is
to decide the form of the curves traced out by the streamlines themselves
on the body surface. Wc assume that the normal componcnt of momentum
or the fluid is destroycd at the body surface and then that the particle
of fluid moves along the smooth surface under the influence of the
reaction normel to the surface only, Its path is then a geodesic of
the surface (Grimminger et al., 1950, Whittaker 1927), Let the outwsrd
normal to the surface be in a direction 2z and choose curvilinear
co-ordinates (x, y) on the body surface (Fig. 1). The elements of
length in the x, y and z directions are denoted by hidx, hedy
and dz, The curvatures of the co-ordinate axes are denoted by
Kq » Ko &nd O-

Now the particle will proceed at constant velocity along the
surface since there are no forces acting along the surflace. Thus the
time teken to pass along a curve C is

P — -~

Y- 1 X i 6:37 2
t = --j ds = --j (\/1+<-——>>h1dx ...(2-1)
go JC P I dx

and this will be a minimum along the particle path (Whitteker 1927).

The point (%, yo) is where the particle strikes the surface, and

g = (W, Y is its velocity there, By the calculus of variations,
We require for a minimum

s by \F ady
() 2 2
a i ha dx 9 he ,dy
- ﬁ momme e e Y = e hg_\/:l + - ( ——> = 0
dx hy dy 2 ay hy \ dx
J1 o - ....> ' ...(2.2)
! \ he dx

with the boundary conditions

hg dy Vo

at X = X0, ¥ = Yoo

This/



-3 -
This will give us an equation for the curve C of the form

G(x, ¥, X0, o) = O, eer (2.3)

Also, the velocities in the directions x and y can be obtained by
resolving the velocity ¢o along the curve in the directions x and ¥y

and hence we obtain u = u(x, y, X, vo) and v = v(x, ¥y, %, Jo)
where
- he dy
u = Qo{X, yo) cos {tan — ]
hs dx
. coo (2.)
ho dy
v = g%, yo) sin {:’ca.n"i --_..}
ha dx

Mlternatively, we can look at equation (2,3) in a slightly different way
and say that it represents the locus C of all points (%, yo) on the
shock wave (or, to this approximation, the body) from which a streamline
paszes through the point (x, y). These streamlines are arranged in some
order above the point (x, y) which is, however, not immediately obvious,
The contribution of the streamline to the pressure depends on the
curvature of the body in the direction of that streamline, and thus it is
necessary to integrate the contributions of these streamlines to obtain
the surface pressure. It would seem reasonable therefore to try to
convert the integral across the layer between shock and body at the

point (x, y) to an integral along curve C of all the points where the
particles following the streamlines through (x, y) strike the body.

This corresponds to the introduction of a stream function and Stokes'
stream function for the two-dimensional and axially symmetric cases
respectively, 1t can also be shown that, approximating to the full
inviscid Navier-Stokes equations in three dimensions in a similer way to
that of the previous paper (1956) (i.e., by assuming a thin "shock-layer"
near the body), the corresponding strcamline curves are the geodesics.
This derivaetion is left to Appendix A,

2. The Pressure Distribution

The equation of momentum in the direction normal to the body
surfece (Appendix A) becomes to this approximation

1 9p
- — = u?xx(x, y) + Ve _(x, ¥) cen(3.1)
p Oz J

or

m

p = pS(x, y) * KX(X, ¥) j p® dz + Ky j o Az ... (3.2)

where pS(x, y) ic the pressure on the shock wave at the point (x, y)

assuming that shock and body coincide. p and ¢ are the density and
pressure at the point (x, y, z) betwecn the shock and body. KX and

Ky are the curvatures of the body in x and y directions.  VWe can

further, following our suggestion in § 2, writc (3,2) in the form

v/
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; . 9z ~ f I oz
P = Pa t K j 7y ( —-—) dso + K Ji} ( - > dso ...(3.3)
v X e IR 7

350

where dsy is the element of length along the curve C defined by
equation (2.3) assuming (x, y) are constant,

Let us now consider the contimuity of flow along & stream tube
which starts at (x, yo) and pesses over the point (x, y). The
amount of fluid flowing across the shock wave is epproximately

y
[

o (U_, no) dSo ceo(308)

where o, is the free stream density, U is the vector of the free

stream velocity, na is the normel and dSo the element of aree at the
point (%, Y ). At the point (x, y), +the amount of fluid is

pg as

= plu dc’yz +*vas

/s

+ W dey) eee(3.5)

where is the speed, dS the element of area of the stream tube;

q
as._, d3 and d4S the eclements of dS in the various co~ordinate
yz Zx Xy

plenes, and (u, v, w) are the velocities in the (x, y, z) directions.
To this approximation w dsxy is of smaller order than the other terms

and may be neglected, Thus, by continuity,

p (U, .m) a% = n(u asyz + v dSzx). cee(3.6)

Since however the normal to the stream tube cross-gcction is in the
direction of g, we also have

as as,
“YE . lEX e (3.7)
u v

from which (3.6) may be written as either

upoo(_qoo.g_o ) aSe

dS TR e e s o o e o - o o X (30 8)
vz 0q®
vo (U o) dSo
or a_Szx = -.03-—-92—;——-———. soe (30 9)
pq
Alternatively, this is
3y, z, x) w_ (U _.1no)
__f_:,-i-_-- - __?.:Sz.--_ ...(3.10)
a(XO » Yoo x) rq
3(z, x, ¥) ve (U o)
and ———————————— t- T St tadecknd o haludaubend 003(3-11)
8(x0, w, ¥) pq

where «w———o—-— denotes a Jacobian.
a( ) Nowr/
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9z 9(z, x, ¥) 8(z, x, ) 3x0, yo, ¥)
Now m—— T e = —— —————
aSO a(SOy X’ Y) a(}:o, yQ} y) a(So, X: y)
we (U .1o) (%, o, x)
D emmem———— : ————————— v e o Y -.(3.12>
pa” d(s0, x, ¥)
vo (U o) 8(x0, yo, ¥)
AN LS
or = -——-—---c-}:— ——————————————— . .-:(3.13)
[2e) 8(80, Ky Y)
And hence .
r So u’ (:L_)_OO-?_O ) a(XO s Yo, X)
P = Pogt ks D " ————————————————————— dso
S Jo a®  8ls, x, ¥)
oo (3010)
" So v (EOO-EO> 8(3{03 Jo » Y)
+ Kz p / ———— ST T dso
40 a a(So, X, y)
where the integrands are tsaken as functions of x, vy and so and the

integration is a2t constant =x and .
(0, yo) Tor any point
possible by the methods of differential geometry to obtain
at constant x and .
as functions of
in (3,14) can thus be expressed as functions of
the integrations made ot constant x and .

curve C, in terms cf
of x or y
have % and

is then obtained by puisting
of the curve C,

S0

From equation (2,3) we know the
(x, y). It is therefore
8o in terms
Inverting these relations we
and y. The integrands
S, x and y, and
The pressure on the body
s 1s the total length

~r
P

%,

s, where

as the streamline closest to the surfoce is the one

s is that of the

originating at the stagnation point. The length

curve C from the point (x, y) to the stagnation point which is given by
U
0

where n is the outward normal to the surface and Hco

strcam velocity vector,
which the shock is detached,

is the free

This is only the case for a bluff body in

For a body with an attached shock wave

where there is, strictly speaking, no stagnation point, the corresponding
point will be the point of attachment of the shock wave,

Tt will be noted that in the previous theory the quontity

S0

plays the part of the stream function (or Stokes! stream function) in the

two-dimensional (or axially symmetric) flow.
and ¥ used in the two-dimensional and axially

von Mises!'variables x

symmetric theories we heve the variables x,

three-dimensional theory.

L.  The Shock Shape

In place of the usual

and sgo in the

57

“hen tue pressure distribution has been determined it is then

relatively straightforward to obtain the shock shape.
this approximation

equation may be written to

Bernoullils

P

i

——

oo (bad)

(%)

and/
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and thus since g = go, we have

P Yo (X0, ¥o)
- = e ———— . 000(14-.2>

Using (3.13) we have

Z = | emeemcememas s dSQ
v B pq2 8(30, X, Y)
“r S0 IbV(EN-BJ) a(:Xb, Yo » Y)
= € ,/ ------ ; ——————————————— dSO ol-(l{"})
8 b.q (=0, x, y)
where € = (y - 1)/(y + 1). The integral (L4.3) can be evaluated by

expressing the integrand in terms of x, y and so and integrating with
respect to =o at constant %z and . The shock shape is then
obtained by putting 8o = 0.

5 Particular Cases

In the previous three sections, the procedure to be followed
in working out the pressure and shock shape for any bluff body has been
outlined, In theory, therefore, we should be able to do this. In
practice however the task is rather formidable. The first difficulty
arises from the fact that only in a few particular cases can the equations
of the geodesics be obtained explicitly. In view of the necessity to
work out the quantity so as a function of (x, y) and (%, Yo)
this is virtually a necessity, The function so, however, is still
difficult to obtain explicitly. In view of these difficulties with
the differential geometry of the theory, the only practical approach
seems to be to consider the solution for a slightly yawed bluff body and,
in particular, a slightly yewed body of revolution for which the geodesics
can always be found. Tquation {2,2) becomes, for a body of revolution,

with he = ho(x) and ha = hg(x)
sy 2 dy
R ) i
ha dx
memmmmeeo——-w-- = constant = a (say). ceo (B.1)
hgd.y 2
1+ < _— >
hs dx
dy a®hf
Thus —_— =] ee—————— - ves (5. 2)
ax h3 (h3 - a®)
dy
o (2
where B = mmm —mm——eto = A E——— )

Tet/
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Let us replace (x, y) by a new system of curvilinear co-ordinates (x, ¢ )
on the body. ¢ measurcs the angle of a plane of symmetry to & fixed
plane and x is the co-ordinate in the plane of symmetry (Tig, 2) The
angle of the tangent to the body in a plene of symmetry to the axis of

the body is &(x), and the distance of the point from the axis n(x).

let hy(x) = h(x) end hedy = n(x)dgo.

We will now treat the pressure distribution as in three parts -
the contribution due to the pressure at the shock wave (pS), that due
to centrifugal effects in the x direction (px), end that due to

centrifugal effects in the ¢ direction (p 95), then

P = PS + Px + p¢- ¢¢0(5u3)

Written in terms of the new co-ordinates the equation of the
geodeslcs becomes

as J 823 (x)
i = ] e e see 5.#
dx n? (772 - aa) ( )
x hix)ax
or ¢ - ¢o = f "—"-:.r'..;r.:r-.'r ...(5. 5)
Xo n
nJ - =1
a2
15 (dg/dx),
and 8 = meeeeeeomeosmoosooses s
ns s dg 2
hixo) |1 +--<-~>
h3 dx /o

where the suffix o denotes that the quantity is evaluated at the

point x = Xo. If the body is placed symmetrically to the oncoming
stream, the geodesics requzred are then the curves made by the intersection
of the pla.ne through the axis with the body surface or ¢ = ¢o, If

the body is slightly yewed, however, they will deviete slightly from

these curves. Iet us suppose that the body is yawed at a smell angle &

nd¢
to the oncoming stresm in the plane ¢ = O. Then ( —— ) = 0 (sin §)
hdx
since this is the tangent of the angle on the surface which the oncoming
stream makes with the x direction. Thus a = O (sind) and we have

¢ - do = i@i-(cw) fx .}i(-}f)-dxa-o(sin“a)

-- dx + 0 (=in®$).
X n°

- i

n{% ) singo sin & x h
{cosgbo 8in & sindy + co:;@(xo)} f

vee(5.6)

The latter step follows by simple geometry as described in
Appendix B,

The/
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The part of the pressure Pq is deduced directly from the
shock conditione which 4o this approximation give

pg = A, U

o n
where Un is the component of the free-gtream velocity normal to the

body.

Thus =2~ = {sin ¢ cos & - cos & cos ¢ sin &) ees(5.7)

(see Appendix B).

The pressure contribution from the cross-flow in the ¢ direction

is again simple to evaluate. We have Ky = (n{x)y* and hence
3
;B0 V (_U ._l’J_o) a(Xo, Jo y)
p; = (a(x)* pmj mmmr e oo dso.  v.e(5.8)
o q a(sc; X, y)
he dy ndg
Now VvV 2 gp == == X @ ==
hs dx hdx
where gqo is the velocity at (%0, yo ).
n 4dg n d¢
N
h dx /! h dx o)
1 (%)
X Vo —meme e (5.9)
n(x)

by equation (5.6) for the geodesics. Thus the first term in equation (5.8)
will be of order sin®d,; since v is O (sin 8) and the Jacobian will
be O ((sin &)"*). It will be found more convenient, however, to

introduce the identity obtained by cquating equations (3.12) and (3.13)
to obtain

° (_U_.p_o)u 8(}(0, $o , X)

. [ So o
by = (1) o, | (VO ) et A a0

0 y ¢ 9(so0, x, ¢)
e (5-10)
where (5.9) has also been introduced. To order sin®8 it is then
sufficient to substitute the values of the factors for & = 0 after

substituting for vo. The equation (5.10) thcn becomes, since
S = X -X
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P X sin¢ sin®s , no
ek R O j .......... - ( -~ > cos & sin & dx + O(sin’y)
o 1P X  coffd n
sin®d sinf¢ x
2 me——— ===~ ] N3 ten @ Ax. eee (5.11)
7 Xo

This equation gives the contribution to the pressure from the cross-flow
component of the stream. It now remains to evaluate the contribution
to the pressure from the component in the x-direction which is given by
equation (3.14) as

%o W (U m0) 3(x0, fo, x)

p - 4 p j --------------------- dso- ou-(5.12)
* x Q q2 a(So, X, ¢)

Now, from Appendix B,

1
o = Uf{cos & cos & + sin & sin & cos ¢o)® + sin® & cos® o }%..(5.13)

and U = =—mmomemeemee I

S0
P, = Ky P f ittt , eoe(5a14)
X R P nquQaa(so,x,gS)
WeGz))
h dx

Now _I_I_oo.g_)o is the component of velocity normal to the surface outside

the shock wave, and is from Appendix B (equation ),

Uoo(sin 8 cos & cos ¢o - cos § sin & ). eee (5.15)
n 4o 1 o 8in ¢o 8in §
Also - I e { *************** } + O(Sin-zs) “o (5016)
h dx n cos $o

from equation (5.6).

Tt now remeins to evaluate the Jacobian in (5.12) to the
required approximation,  Now,

3/
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- s o S s s S

and
d¢o ] [sinﬁsingé (cos & + cos ¢ sin d.g {x, Xo))}
i N S
o¢ o¢ cos @ (cos ¢ sin % sin & + cos & )
. g (% %)
eee(5.18)
from equation (5.6)., Here we have written
ex h
g (x, %) = 77/ -~ ax,
JX N
Thus, we may write (5.14) in the form
X i . Ak
S KX/ [(cos & cos 3o + sin § sin B0 cos ¢ ) + sin® & cos® o J°
p b
> » 2
3 1 s No singo sind
. (sin8 cosd, cospo - cosd sin@o).<1 Rl B et >>
2 n® cos @o
No cos %o sind cos 2¢o tan @
.= {1+Sin G.g(x,xo)< -------------------------- >}dxo
n N\ cos 9 cos %

+ 0 (sin®5) eee (5.19)

sin & (cos & + sin § cos ¢.g (x, %)) sin ¢
Where  fo = § + mmmmmmmmmmmemmmcmemmmmmemeemeen e e
cos & (cos ¢ sin & sin § + cos &)

+ 0 (sin®8)

obtained by inverting (5.6).  This becomes, after some tedious but
straightforward algebra,
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pX Kx [X - tan &g
—mcs = =T j Ng cos 8o sin &, {1 + sin § cos ¢ (> —————— - cot &
pooUoo n JXo - cos B
g(x, @)~ cos® ¢
+ mm————— + gin®8 L‘ ——————— (2 ~ 2 cos 8 - cos® &)
cos &o 2 cos®
1 371 sin%¢ tan ®&  tan & 1
T e - LY ( ————————————————————— ) cos 24
2 2 o cos® & cos @o cos Q¢ sin O¢
gin® ¢ —
- lelx, %)]? == j dxo + O (sin®s)
0032 0 -~
x h
where alx, ) = 7o / - dx. ...(5.20)
J¥ 7

Hence we have the pressure to order sin® & as a function of x, ¢ and Xo.
The pressure on the body surface is obtained by putting % equal to its
value on the body. This will e the value of x at the stagnation

point which is the point where the inward normal to the body coincides

with the free stream direction. This normal is given by

- (- sin &, cos @ cos ¢, cos @ sin @)

and this is in the direction of the free stream, i.e., (cos §, sin §, 0)
when

sin® = cos &, cos dcos ¢ = - sind
and cos & sin 9 = O. e.. (5.21)
Thus ¢ = = and
Vs
@ = —-—6, 001(50(42)
2
Hence if x = X(cos &) we have

x = X(0) + %'(0) sin §
... (5.23)

+ % %x"(0) sin®s + O(sin®8)

as the co-ordinate of the stagnation point to this approximation.

6., The Case of a Slightly Yawed Cone

Tn the case of a cone, the resulis of the previous scction

are simplified considerably since & = {7, where /7 is the half-angle
of the cone. Also K = 0, and we have therefore Py =z C, Thus
=
Py
P



-

p U2
oo

il

(sin § cos & - cos B cos ¢ sin §)?

;X sin®¢ sin®$

3
, Xo
_(ij_n[j)”ij ----------- (--) cos £ sin B dxo
Xo cos®s x
+ 0(sin’ 8)
= (sin 8 cos & - cos f cos ¢ sin §)*
1 sin®¢ sin®s , x* - 2B
S < ....... > + 0(sir®5)
«* cos [ I
= (sin 2 cos & - cos £ cos ¢ sin §)>
.8 .2 4
8in“¢ sin*g§ , %o
e { 1 = ( — \ > + O(Sina 6). “ave (601)
4 cos 7 \ Nox /
Hence the pressure on the body is given by
Py sin®¢ in®§ .
~—Z- = (sin £ cos § - cos ff cog ¢ sin §)% = —mommmmmmnn + 0 {ain®d).

o heos £ (6.2)

This rcsult is shown in fig, 3 for the particular case
g = 60° & = =~ 5°  The first term is denoted by pg/poono, and
the second by pc/ DOOU:O. The varistion for ¢ = 0O +o 90° only is shown

as the portion of the body 90° < ¢ < 270° is in the 'shadow' where the
theory is no longer applicable.  The sheck shape is (From (4.3))

o POu(UOO'nO) a(XOa ¢0’ X) X Pou(Um'nO) a(Xo, ¢0, X)
z = € f ——————————————————————— dsg = € j —————— e s dxo
s pq® 3(s0, x, ¢) X rq’ 3(x0, x, ¢)
x poul{l .no) ndg
= - € j “““““ ?_o ——— < ————— > dXO » s e (6.3)
X pg no 3¢o
and here
P!
o U?

oo oct
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[solve]

o~
<

I

~—
1

o~
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(sin 8 cos & - cos 0 cos ¢ sin §)?

Ve s N\

= (sin B cos & - cos B cos ¢o sin §)?

U (sin & cos [ cos ¢o - cos & sin f), ... (60

- = (cos & cos £ + sin & sin £ cos ¢)° + sin®d cos’¢

ndg \?
(E)
hdx

1 ag -2
Qo <1 - - [‘x sin B -~ >+ 0 (sin®8).

2 dx

The value of ¢o as a function of ¢, x and x may be deduced from

equation (5.6) as

r X0 -
sin&sin¢(c0sﬂsinﬁ+cos¢sin{> 1—-—-—D
\

X Xo
Po = Pt mmmmm e e e < 1 - = >-
sin®f cos 0 (cos ¢ sin f sin & + cos 77) X
..’(6.5)

Thus
9o —cos ¢ gin § sin®§ cos 29 Xo - 4 X0
—-—=1+L ——————————— T ke T <{:1-——J—smﬁ>‘i<1—-->
09 gin B cos [0 sin®/ cos®f X x

after a little manipulation.
expressions may be obtained

+ 0 (sin®8)...(6.6)

In a similar manner, the following

Po 2 sin®§ sin®4 %o sin® ¢ sin®§ x4
e s (122, (-2
P sin®p x L cos 0 sin®8 \ x
U 19 sin®é sin®5 b
00 = . . 1 . :.2
—————= - gin B <1 - sin & cot B cos @ + mwmmmmm———— (1 - —-—> -5 sma>,‘
U sin®g x
o0
- sin®¢ Xo ]
(go)™ = (cos 0)’11‘1 - sin § tan B cos ¢ + sin” § {—«—:— < 1 = - > + 5
cos” /2 X
1 cos®¢ . -
- - e tan®f cosqu}J
2 cou” s
and 2 2 3
u %6 Sin®¢g =sin”o
e = 4 e e e e ... (6.7)
Qo 2% cos®p sin’o

where/
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where we havg neglected tetms of order sin®§. Substituting these
expressions in equation (6.3) and noting that x, = O for a cone,
we obtain 2
‘X X 8in § cos ¢ sins - % 5 /% \
R R b momtnn M()
o) x cos B sin S sinzﬂ cos?p b'e 2 x

1 Xo 4\ 1 Xo
+—cosﬁ<1—<—-->)} sin2¢+coss¢{- singﬁ—<1—-—>}
L x 2 X

X\ %o 9 %
+ ( T = - ) + ( 1 - - > sin ﬂ_}} - dx + 0 (sin®s).
X0 X X

vee(6.8)

Completing the integration, the shock shape can be written in the form

4 = e}fF(ﬁb) R (60 9)
where
1 1 sin § cos ¢ sin®5 -1 / 2
P(¢) = tan {:_ - m———————— d o ——————— l—- sin®¢ [ 1 + - cos J + 2 cos®s )
2 3 sinf cos 2 sin®p cos®p L8 \ 3
1 7
- (7+5 00826>~j} . ... (6.10)
12
The first two terms correspond to & conical shock wave with axis
1 ¢ gin &
inclined slightly to the cone at an angle - mmmmm—= in the plane of the
3 cos”f

stream and cone axis but in the opposite direction to the stream.  The
half-angle of this cone is greater than that of the body cone by an
amount % €x tan 2 sec /.,  This is the approximation used by Ferri (1951)
in a more general treatment of flow past slightly yawed cones where the
complete equations are used.

The function F(¢) is plotted in Fig, 4 for the case
g = 60°, & = =~ 5°  The portion of the body - 90°% < ¢ < 90° is
then presented to the flow,

Conclusion

To the approximation of this paper, the surface pressure
distribution and shock shape for any three-dimensional body can be
derived, although mothematicel complexity of the problem in the general
case does not allow explicit expressions to be given. In the case of
slishtly yawed bodies, hovever, a series solution in powers of the angle
of attack is feasible, the simplest case is that of a slightly yawed
cone where complete solutions of the problem to the first order in angle
of sttack have been derived by TFerri (1951).  The approximate solution
of this paper is given to sccond order in angle of attack,

The limitations on thc problem of assuming Y near one and
Mach number infinite remain a causc of concern sbout the applicebility
of the results to the practical case. The author believes, however,
that the understanding of the gencral subsonic~supersonic flow field can
best be achieved by consideration of these essentially simple first
approximstions,
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APPENDIX A

. The equations of motion of a fluid in the orthagsnal cwrvilinesr
three-dimensional co-ordinates (x, y, z) may be written in the form

u ou v odu ou 1 Bhy — - 1 9ohy — uw Ohy 1 op
——--+——-—+W———V2[ ------- \J-n—uv); ——————— -J+——--—-+-——--- = 0.

hy 9x ha Oy oz hihy 9x hihe 0z has 9z hyip Ox
eos (A01)
u v v v ov — 1 dhy — W Ohy vu Ohg 1 ap
e e e b W e b VW mm —me e e + m = 0,
his 9x hs 9y 0z oz _i hoha Oy hahs 0Ox ha p Oy
oo (4,2)
u ow v ow owr —1 8hy —; v° 8he 1 3p
e i —-—uZL ————— J—-—- ———t = - = 0, oo (M 3)
hy 0x hg Oy 0z hy Oz hy 0Oz p Ou

Assuming that the shock wave is closc to the body, and that the velocity
]

3 9
component w normal to the body is emall we have —- >> ==, ==,
3 3 3 Oz dx oy

However y-~, v ~=-, w ~~ are of the same order. The elecments of
ox Ay 0z

length hy and hs may be written hy (x, y) + B (x, y, z) and
hd (x, y) + B2 (x, vy, z) where H; and Hs are small, Small in this

Po 9 9
context means that the functions are of order < - > . ==, &and -~ are

o ox oy

G Po
then 0(1), -- = o<--> and p = O(1), Substitution in (A,1),

dz p
(2) end (3) then gives
u d%u v ou du 1 9ohd 1 o
--—-—+—-—-+W———-v‘2< ——————— >+uv< ——————— >=O..(A.1+)
ht 9x hd oy 9z hthd ox hihi oy
u av v ov ov s, 1 Ohd - 1 dhf —
e e mm e W o= e PV | s e >—u’°’[ ——————— J = 0. ,(A5)
hy 0x hd oy oz h'hd 8x hthd Oy

1 op — 1 dhy — 1  Ohy
- m—— = u_QL ————— J +v2 [—— -——] = 0 o--(A-6)
p 9z hy 9z hy 9z

where we have neglected terms of order (po/p). That the first two
cquations (A L) and (A.5)) do in fact give the equations of the geodesics
can be easily shown by considering the motion of a particle on the given
surface, Such a particle will have kinetic energy

T o o (? ¥ + nd? 3°) oo (827)
2

where/
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dx dy
where X = --, ¥ = -- and m is its mass. For the integral of

at dt
this to be & minimm along a curve C, which is an alternative definition
of a geodesic, we require by the calculus of veriations

d 3
- (b 5;)_-;-<5-> (0 2 + 0 ¥) = 0 ...(A8)
X
%5

plus a gimilar equation in the y-direction. This may be written

—— -} = e

u 9 v 9 uv  ohy v?  dhe
< ) U meer e o~ e ——— sse (Ao 9)

ht 9x hd dy hihs oy hihs Ox

d 3] ]
by noting that ~= = W -~=+v - and hy & = u,he ¥ = v,
dt ox dy

This is exactly equation (A1), In a similar manner, the other equation
reduces to (A.5). The equation (4,6) can be written to this
approximation

1 9p

- ez 1.12 Ki(x, Y) + 'V'2 Kg(x, Y) ooo(A.1o)
p 9z

where #; and k, are the curvatures of the surface in the x end y
directions respectively.

The energy equetion may be written

u 9 v @ o
(--— — - -—+W-—>S = 0 veo (A11)
hy O0x Ty Oy oz

as the constancy of entropy S along streamlines,

APPENDIX B/
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APPENDIX B

Gecometry of the Axially Symmetric Case

Let the stream be inclined at an angle & to axis of oymmetry
in the plane ¢ = O (Fig. 2). Choose axes (X, Y, %) such that X
lies along the axis of symmetry and Y dis in the plane ¢ = O. If
the speed of the stream is U then its velocity in this system of
co-ordinates is *©

(U, cos 8, U sin 3, 0). eeo(Ba1)

The x direction at a particular point on the surface is given by the
unit vector,

(cos &, sin & cos ¢, cos & sin ¢); .. (B.2)

the ¢ direction by

(O, - Sj_.n. ¢, + COS ¢); o.O(BOB)
and the 2z direction by
(- sin &, cos @ cos ¢, cos ¢ sin ¢) coe (Baly)
and hence at impact
u
-—-~ = (cos 8 cos & + sin § sin & cos ¢) ...(B.5)
U
[e0)
v
—— = Sil’l& Ccos ¢ ooo(Bn6)
i)
oo
w
—— = 8in & cos & cos ¢ - cos § sin 9. .. (B.7)
U
[ele]
Note also that
U.mo = V.
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