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INTRODUCTION 

A non-periodio manoeuvre has been devised, whioh will be called the 

"Poisson" target manoeuvre. Suppose we have three "tramlines", 10 nautioal 

miles apart, of which the middle one is the desired course; the target moves 

from one to another in sequenoe along a path inolined at 30' to the mean 

course and travels distanoes along the "tramlines" which are randomly 

distributed according to the Poisson distribution with a mean of 10 nautical ' 

miles. The target is assumed to change its heading instanlx.neously. A 

refinement would be to assume that the target takes up a new heading by 

means of a & g turn instead, but this has not been done in the analysis; it 

would add considerably to the difficulty of the problem and it seems unlikely 

that it would alter materially the results and oonolusions. 





Statistical analysis of the Poisson target manoeuvre. 

The autoccrrclation and cros s-correlation fumtioi? of the Poisson 
target xazoeuvre will he derived. This is most easily done by 
calculating the spectrum of tkc target manocuvrc 3isplacenEnt and taking 
its i70LEic3r transform. x short summary of the standard theory is given. 

lkt y(t) be a stationmy tim series and define yT(t) as 

Y#) = Y(t) -Tc~GT 

Y&) = o t<-T, ls>T. 

The Fourier transfcrm AT(f) of yT(t) is given by 

QD 
Jqf) = 

i 
y,(t) em2et 1 dt 

-00 

T 
m 

J 
y(t) eweat . dt 

4 

l?rm the Fourier integral theorem, it folluws that 

0 

Y# = 
I 

$(f) e27cift . df . 
-a5 

The spectrum of y(t) is defined as 

SyW = lim I 
T+C+J 

z A-# I I 2 l I 

The autocxmelation~funotion P(T) of y(t) is defined by 

Then 

(1) 

(2) 

(3) 

(4) 

(5) 
00 

2 
Y pM = 

I 
Sy( f) e3aT . df . 

-Qo 

The above definiticms are frequentIly given in terms of the mAable 

0 = 27cf 
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and in these terms the transform of y,(t) is 

Q) 
qu> = y,(t) eMih . dt (14 

with the inverse equation 

The three results following will also be employed in the analysis: 

where Cr is either +I or -1, then 

r=l 

jB(a)j2 = 2 [z + f 2 Cr C, cos w (xr-xs)j. 
-4 

I-1 s=l 

(2) If X,(8=1, . . . . r > is a set of 
variables, with probability distributicns 

p(x,) = Ps e -43xs 

r independent random 

-iLJ x (  

tM the mean value of e 
l + l ** + xr) 

is 

(6) 

[ 

-if&x 
e 1 

+ l ‘* + “‘1 E i [&“: J . (7) 

(3) If Y(t) and y(t) are stationary time series with spectral 
functions Sy(w) and Sy(o) and if 

t 

y(t) = 
/ 

Y(U) du 
0 

then 

s (4 sy(o) = - - 
fd* 

T 

if 
s 

y(u) du is bcunded. (There is a factor of propcrtionalitg -$ 
4n 

when'the spectrum is defined in terms of the variable f given abuve.) 
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A plot of target transverse velocity s against tim (shawn in 
Fig, la, together with a plot of zT against time) consists of a series 
of positive and negative pulses of height VT sin y, where y is the 
inclination to the mean track of the part of the course leading from one 

'tramline" to another, and dmation T 3 S 

VT sin y ' where s is the 

separation between the ~ttramlinesf~. By convention the series starts from 
the mean course with a single positive pulse and then the pulses are 
alternately two negative and two positive. The intervals between the 
pulses are denoted by x,, y,, 3, y2, . . . . where xi is the interval 
between adjacent pulses in opposite directions (the interval spent in one 
of the outer tramlines) and yi is the interval between adjacent pulses 
in the saae direction (the interval spent on the mean course). The Xi 

and Yi are all independent of each other, and each is distributed 
according to the Poisson probability law 

P(x) = p e+ 

1 where -= E m 
P 

zs- 
'T ' 

m is themeandistance 

tramlines, We are interested in an infinite 
least in one of considerable length, but the 
we consider first how such a sequence may be 

Single pulse pair 

Consider a single pair of pulses in the 

travelled along one of the 

sequence of this type, or at 
analysis will be clearer if 
built up. 

sequence: suPPose !+hasa 
unit positive pulse, 
duration T, 

duration T folluxed by a unit ne 
and separated frasn it by an interval x 

Taking the Fourier transform of zT 

T x.-d?2 
euiiwt dt 

= d!- 
iw 

- ,-i&t - emiu(mT) + e-io(xeZT) 1 . 
This is a series of the form considered in (I) above, and hence tican (6) 

iA( = ~~ - 2 co5 dr + cos fJx c- 2 cos w (x+T) + coso (x&T) 1 . 
An exponential series is easier to handle than a series of cosine terms, 
so this may be written as, 

To obtain the spectrum, IA(o) I2 must be divided by the duration of the 
sequence and the average overall values of x taken. New the mean dura- 
tion of a sequence of n pulses is n(T+$), andby (7) 

-4- 



. 
Writing ewrcRl = B, 8 

m = c, gives for the spectrum of ;'T' 

s. (cd) - 
=T 

i!- R [2(1-B) + C(l-B)2] . 
cd2 

By ( 8 ) the spectrum of zT is givenby 

- L R [2(1-B) e C(l-B)2] . 
cd4 

(9) 

Then, by ( 5 )# the autocorrelation titian for z, corresponding to a 
single pair of veloc+iQ pulses, i.e. one ahump" of 
to the Bourier transform of 

is proportional 

1 R [2(1-B) + C(143)2] . 
td4 

It shouldbe stressed that the term % pairs cf velwity pulses" 
describes only the length of manoeuvre which is being studied: it ws 
not neoessarily imply that the spectrum of k, is being oaloulated. 

Two pulse pah3 

We next consider two pairs of velocity pulses (see Fig.1~) of 
the kind treated in the previous paragraph. Proceeding as before, and 

writing e id! P 7 
= B, m = C, and the mean value [e'w] = Y, the 

spectrumof t+ is 

S%(o) - fi R 
td2 [ 

2 - 2B + [C + &Y] - loZE3C + BY] + iB2C + +B%] 

- [BCY) + @B2CY] - iB3CYj + $B2C2Y-B3C%+&+C2Y I 
s $ R + C(l-B)2] + @Y(l-B)2 (,43C)2]- . 

1 

Then, fraan( 8 ), the spectrum of zT is 

s 3 w - -1- R 
co4 

[2(1-B) + C(l-B)2] + [&Y(l43)2 (1-aC)2] 1 . (10) 
Somparicg this :lith (9) we see that the first term in (IO, gives 

the contribution of the individual pulse pairs and the second term that 
of the interaction bctwccn tv:o pulse pairs nith separation y. ic note 
t'qat ix the manoeuvre described in the Introduction adjacer.t pairs arc 
ir_ opposite directions and the separation y has the same distribution as 
x, so that Y = C, and the spectrum for the first four velocity :x&es, 
cm coq3lete cycle of the macoeuvrc, is 
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- 1. R 
. cd4 

12(1-B) + c(143)2] -  @c(ld3>2 

(I &) 

The meth&i of the previous tie paragraphs can be applied to a sequence 
of arty length. Por the first three pulse pirs in the sequence of ( la ), 
it leads to the SpeOtXUUl 

- -I, R 
cd4 

[2(M) + C(143)2] - 4 C(IIB)~ (143C)2] 

(11) 

and for the firstfourpulse pairs 

s (4 
=T 

d-R 
w4 

[2(1-B) + C(lmB)2j - ~~(143)2(143C)2] 

+ ~*B~c~(~-B)~(I-BC)~~ - ~$3+z5(lnB)2(l-43C)2~ 1 l (42) 

In a short sequence the spectrum and the autocorrelation function 
are very much affected by the ends of the sequence. Since the target 

.manoeusrre may be considered to be part of an endless series of cycles and 
its precise length is unknown, varying from one encounter to another, it 
is clear that such end effects should be ignored. We therefore calculate 
the sIxx+.rum for a large number, n, of pulse pairs and then let n tend 
to infinity. 

Let n be an even integer, so that a number of complete cycles of 
the manoeuvre is considered, The Fourier transform, A(w), of &T may 
be set up as described earlier for a single pulse pair. Then dividing 
IA(@) I2 by 2% 'the number of pulses, averaging over the x's and y's, 

an&writing e -iljy = B, (since though 

C it is helpful to distinguish between the two means) we 
obtainthe spectrum of + as 

SQd - 2B+c 

+tiB(-J&.4b&.j;?CY 
n n 

- G B2& +yB%Y2+2 

-~B6C%3+2+%%3+... . 

-6- 
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Grouping the terms in this expression according to the power of Y 

s Cd 
ZT 

-$ R 12(1-B) + C(l-B)2] - $ [Y(l-B)2 (+-BC)2j 

+ 5 lB2CY2(l-B)2 (1-BC>2] 

- % [B~c~Y~(~-B)~ (i-~c)~] + .OO 1 . 
Here, the first term gives the contribution of each pulse pair 

interacting with itself; the second term gives the contribution of each 
pulse pair interacting with its immediate neighbour; the third term 
gives the contribution of each pulse pair interacting with the pulse pair 
next but one and so on, 
of 2 is 

Now, setting Y = C and using (8), the spectrum 
T 

s b) 
ZT 

w $ R[[2(1-B) + C(~-B)~] - 9 {c(I-B)~(I-B~)~] 

+ 5 {B~c~(~-B)~ (i-~c)~j 

- % ~B~c~(~-B)~ (I-BC)~~ + . . . 1 e 

In the limit as n + co) the spectrum for an infinite sequence is 

SZTW --j R [(2(1-B) + C(bB2)] - [c(i-B)2(i-~c)~i 

+ [B2c3(i-~)2(i-~c)2] - lB4C5(i-~)2(i-~c)2j + . . . 1 , (14) 

where the terms still have the significance noted above. The infinite 
series in (14) may be summed to give the expression 

(15) 

but the inverse of (15) is not known 

We take a suitable number of terms from (14) to cover the range of z 
in which we are interested: the minimum distance between adjacent pulse 
pairs is zero, that between pulse pairs next but one is 2T and hence the 
third and successive terms in (14) cannot contribute to the autocorrelation 
function p,(7) for values of 'G < 2T. For values of 't such that 
2T < z <4T, the third term has to be included, for 4T < T < 6T the fourth 
term as well, and so on. 

The next task is to find the Fourier inverses of successive terms 
in (14). Considering the first term, it may be ncted that 

!2(1-B) + C(l-B)2] 

-7- 



is O(w) near the origin, but its real part behaves like 4 w , and it is 
therefore clear tnat the real part must be ta&n before the expression 
canbe inverted. Also since only real parts are involved, the required 
Pourier transform f(7;) of a function F(w) is given by 

w 

I f(?;) COG m d7 = F(w) g 

0 

W) 

The inverse of prcducts of functions may be derived using the 
convolution theorem, as follows: if 

F(w) = s f(c) cos ~7; dT , 

0 

and 

W 

G(w) = 
I 

g(2) cos wz dz , 

0 

then 

w T 
F(w) G(G) = 

ss 
f(u) g(wu) du cos N dz . (17) 

0 0 

Cunningham and Hynd (J.Roy.Stat.soc.(l94&!) state tit if' 5, and 
"02 denote any two linear operatars and if X(t) is a random variable 
with variance 2 cr 

x and normaltied autooarredation function p 
X' 

then 

cov [‘j-l x(u); ri2 x(v)] = cx2 q 8, p+wv) * 081 t 
As a particular case of this result, if Y(t) z J y(u) du, then 

0 
z U ‘F 

p&r) = au 

J J 
p,(v) d-v = b-d p(v) dv e (19) 

0 0 0 

t 

NCW ( 18 ) states that if Y(t) = y(u) du then 

and it therefore follows that the autocorrelation function which is the 
';j, (0) 

inverse of LL- 
a2 

may be obtained fran the inverse of Sy(w) by double 

integration. The functions whose inverses are the successive terms of 

-8- 



( 'I5 ) are found by a series of convolutions of simple forms and double 
integrations. The steps in the calculation are most easily seen by 

out the various f'ur&ions with their inverses, related by equation 
,in a table. In this table 6 is the Dirac delta function defined 

00 

by h(x) = 0, x $ 0; 
i 

6(x) dx = 1. 
00 

Q) 
w = I f(7) cos WC dq 

0 

R(l-B) ~1 - cos UT 

L R(l-B) 
&I2 

R(C) ~82 
p2+ Cd2 

R(l-B)2 

1 R(l-B)2 
td2 

-iim R [G(1-B)2] 
o2 

1 R [2(1-B) +C(l-B)2] 
cd4 

fb) 

6(z) - ~(TIcF) 

T-T 

0 

p emPt 

6('d - S(T-4 e S(2T4 

“T 

7-2T 

0 

i 

- T f jj (I - e”b) 

I 

-e + $ (1 -2ePP)-(2T+$)+7 

w e”@ $ (I - 2em 4. e2@!) 

1 
2T-J*+$ (1 - e--p") 

- em"+ (I-2em)-(2T+jj)+T 

-e + $ (I - 2em + e2pr) 

O<z<T 

T>T 

o<%<T 

T<7<2T 

z > 2T 

O<%<T 

Tcz <2T 

'F > 2T 

s > 2T 

Tj-5 L.+ 2T2+2T 
P2 P > 

+$ (2T+9 P 



I- 

F(w) = f(T) cm m dz 

L R [2(l-a>+C(149z] 
cd4 

R [B(~-B)~] 

L R [X2(l-B)2] 
w2 

J-R [B~(I-B)~J 
w2 

-+ R [B~c~(~-B)~] 
w 

c 

8(W) - 26(2T-z) + 6(3-d 

2-3T 

i 

0 

2T-7 , 

I z-4-T 
lo 

?; > 2'31 

Ozz<T 

T<T< 2T 

2T<a< 39 

T> 3T 

T<Q<~T 

2T<z< 3T 

rc > 3'1 

O<zc2T 



m 

F(o) = 
I 

f(c) cos m d% 

0 

L R [B2C3(.r-B)*] 
fd* 

ii R [C(l-B)*(l-BC)*] 
cd2 

f(4 

i,-p7~e26(~2~2+4T~~)+slpr(gpr2~~2T+~) 

I 

! 

+ e4m(-8pT2+&b$+ 7[e2pT(2gi!- 2) 

=I e3m(-6pT+ 4)+ ebpr(L$JJ-2)] 

+ -k$ (-e2pT+ 2e3pT-e4m)] 7BJ.a 

-Lecpl:+l~ 
P 

I " 

P 
O<lr<T 

e-m i-i+ efl (rr 
P (-2T +fj) + 2e 1;) 

(4T+j) c 3~ T<2<2T 

e- {-~+e@$-,.$).e2pr (9*BT*+ 42T-+f) P 

+ 2[2eCTP+ e2pr(2@!-6)f-e2PT f T*] 

+ (8-p ” 3% 2Tuz<3T 

emp7 i-$+ epT (-2T+$)+e2pT(-2@!2+12T-y) 

+ e3fl(gpT2m18T+~) 

+ T[2eBT+e2PT(-6+ 2pT)+ e3frr(-6f3T+ 6)] 

4-Z 2C-=*e 
& *PT +pe3?I 

- ($+&a f T 3T<7<4T 

euBT {-i+em(-2T+j)+e2m (-2pT*+ 12T-7) P 

+ e3p(Y@Jl'2-18T+~)+ e4pT(-8@?2+ 8T-=$ 

+ 7[2em+ e*@(-6+ 2p)+e3PT(-6~+6) 

+ e4aT (@T-2)] + $ (-e2pr+ 2e3m 

- e4pT)] 7 > 42 
L 
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OQ 
I+) = 

I 
f(z) cas wc dT f&d 

a 

f z [-2e m+ e2pT(-2pT+ 8)] 

L R [C(l-13)2(l-EC)2] 1 

cd4 1 + 3pz 2 eWT 3 *T<z<3T 

I 
10 J-+24 x+2& 

2 

P3 P2 
L,z T3_, 
P 3 ( 

6++12$+8~~ 
P > 

e- $ (4T+$ -i d+-$ e’w$+ epT(a--f) 

e e2m(2fiT2-16T+$f)+ e3m(-p~2+30T-~) 

+~[-2e@+ e2@!(-2p+8)+ eJPr(6p-qo)] 

+ z 2 1. 2flcp3PT>3 C&e . 3T<z<43 

? e---e -” 
P2 

[$+ eBT(2T -y) + e2pT(2p!p2- q&p +-$) 

f e3~T(_gpT2+30T+~),e4eT(8~T2~16~+~) 
P 

+2[-2em+e2PT(-2pT+8)+e3BT(6pT-10) 

+ e4'T(-4pT+4)]+ s2[&e2PT- pespT 

-I- $pe4pT]] a > 4T a. 

- 12 - 



Adding the inverse functions of 1 R [2(1-B) -I- C(1-3)*] and 
w4 

LL R [C(l-B)* (I-BC)*], gives a function proportional to the autocorrela- 

&on function for the Poisson target manoeuvre, valid 
since, by definition p(O) = 1, 

for 1~1 x 2T, and 

O<z<T 1 

The autooorrelation function for target velocity kT is available 
from the calculations leading to P,(T), Alternatively, in view of 
( I8 ), it may be obtained by differentiating ( 20 ) twioe with respeot 
to 't* 

Remembering that p&(O) = 1 

p&) = 1 - $ 
0 

(24) 
Tc~s2T. 

The ftmctians p,(z) and P,(T) are graphed in Pigs. 2 and !+. 
The values of the parameters are, 

Y = NO, 

s = 10 rh miles, 

m = IO n. miles, 

vT = 1,300 ft/seo, 

so that 

S 
T = 

VT sin y = 93.5 seos 

and prs 7 vT 
vTslny*iF = ** 

- 13 - 



We need to know the values of k = 2;T2 and k' = 5,'. FXOm 

Fig.la we have, for n pulse pairs 

zT2 = ~*[/$$)2dt+i"',dt+r"" (2T*2"t)2dt+... 

0 T T+X, 

(Zn-j)T+ x,+ .., + xn-) +y,+...+ynmd 
+ 

J 
2(n4)T+xl+...+xn4+y,+~~~i-ynm, 

. ..+y.,, 2 

1 dt 

(2n4)T+ x., + . ..+xn+y I f 

I 

l **f Yn-, 

-I- I dt 

(2~l)T+ x,~...+~~~,+y~+.~~fy~~, 

2nTcx +...+xn+y +...cy 

I 

I 1 n-l 
+ 

(2w1)T+x4+...+xn+y4+ . ..+ynw. 

r- 
nT+x +..*i-x 1 nl i-y +.r*+y 2 

X 
n-l-t dt 

T 1 1 3 

=. s2 ‘2.11 c 1 yj T + xl + x2 + . . . + xn e 

Dividing by the length of the sequence = 2nT+ x I + . ..+ xn+yl + . . . 

+ Yn' and averaging over all the x and y 

-7 s2 ZT 2: (22) 

2(T+$) 

* 2 ZT = (VT sin u>z [ / I dt + TX' I dt + e.. 

0 T+x, 

2rfI!+x +e**+x +y 

I 

I nl +*.*4-y 2-A 
+ I dt 

3 
(2n-1)Tex~~...~xn~y,~...+yn-, 

- 14 - 



Dividing by the length of the sequence and averaging over all the x and y 

82 
(VT sin d2 

T= T+i T 
B 

= (VT sin r)2 , rBr = kt2 . (23) 

i?inaQ, it is necessary to calculate the cross-correlation of iT and 

"T' Defining the cross-correlation function err YY 
of the stationary 

time series y(t) by 

then from (2) 

co 

Y,b) = 
I 

AJP) e2*ift , df , 
-co 

so that 

?#) = I 
2~if4r(f)e~~~. df. 

Let 

F(f) = TIFm & (2d.f qf) qm 

- 15 - 



W 

d = "dz I 
Sy(f) e-**% l df 

-43 

- 
= -&Y2 P(C) l (from (5.0. 

Now any autocorrelation function necessarily decreases near the origin. 

pw * 1 + &- p"(0) T2 forsmall c 

& fdd - + p"(0) z for small T 

and since pw 4 1 always, p"(O) is negative snd we have as a pez- 
fectly general. result that the cross-correlation function ~~(7) is 
positive for small positive 1; irrespective of the form of y(t). 

Returning to 4k.e Poisson target manoeuvre, the cross-correlation of 
transverse velocity x displacement is obtained by differentiating (20) 
with respect to z and changing Vne sign of the expression: 

i.e. 

This function is graphed in Fig. 3 again with T = 93.5 sets, p = 2. 

- 16 - 
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FIG. I (a-c) DIAGRAM OF ?!T AND ikT AGAINST 
TIME FOR POISSON TARGET MANOEUVRE. 
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POISSON TARGET MANOEUVRE. 
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