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INTRODUCTION

A non-periodic manoeuvre has been devised, which will be called the
"Poisson" target manceuvre. Suppose we have three "tramlines", 10 nautical
miles apart, of which the middle one is the desired course; +the target moves
from one to another in sequence along a path inclined at 30° to the mean
course and travels distances along the "tramlines" which are randomly
distributed according to the Poisson distribution with a mean of 10 nautical
miles. The target is assumed to change its heading instantaneously. A
refinement would be to assume that the target takes up a new heading by
means of a % g turn instead, but this has not been done in the analysis; it
would add considerably to the difficulty of the problem and it seems unlikely

that it would alter materially the results and conclusions.






Statistical analysis of the Poisson target manoceuvre

The autocorrelatior and cross-correlation function of the Poisson

farget manoceuvre will be derived. This is most easily done b
[}

calculating the spectrun of the target manocuvre Aisplacement and taking
its rourier transform. A short summary of the standard theory is given.

Iet y(t) be a stationary time series and define yT(t) as

¥p(t) = (%) <t T

¢} 'b("'T, t)To

Ip(t)
The Fourier transfarm Ag(£) of yp(t) is given by

() = [ a(e) FRE L

-~

T
= /' y(t) e 2T | gy
T

From the Fourier integral theorem, it follows that
(-]
2xif't
Tp(t) = fAT(f)emf . as,
=00

The spectrum of y(t) is defined as

5,(6) = 1 -}flAT(f)]z .

T >w

The autocarrelation function p(v) of y(t) is defined by

w—— - -]
. .
¥ pw) = M L y(t) yp(tew) at

-»
o0
Then
y2 P(T) = [ Sy(f) 3.-27‘]1.'; o 4df .
)
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(3)

(%)

(5)

The above definitions are frequently given in terms of the variable

w = 2xnf

-2 =



and in these terms the transform of yT(t) is

o«

AT(w) = j yT(t) g it . dt (1a)

0

with the inverse equation
[+
~iwh
Yp(t) = -é‘-'?-‘-fAT(w)el o Qu . (2a)
it )

The three results following will also be employed in the analysis:

2 ~iux
(1) ¢ B(w) = L C.e T, where C, is either +1 or ~1, then
r=1
2 X
]B(w)]z = 2 [% + ZJ Z_/ G, G, cos « (xr-xs)] . (6)

r=1 s=1

(2) 1r Xy (8 =1, aee, r) is a set of r indeprendent random
variables, with probability distributions

P(xs) = By ©

' "‘iw(x1 + eoe xr)
then the mean value of e is

[e---:i.m(:zc,I + oese + xzj:‘ z g [Eg}ﬁ] . (7),

(3) Ir Y(t) and y(t) are stationary time series with spectral
functions S, (w) and S y(w) and if

Y
t

Y(t) = [ y(u) au

0o

then
S ()
Sy(w) = - ) (8)
w
T
if f y(u) du is bounded. (There is a factor of proparticnality —-1-2-
bx

0
when the spectrum is defined in terms of the variable f given above. )
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A plot of target transverse velocity ﬁ,l, against time (shown in
Fige 12,  together with a plot of 2z, against time) consists of a series
of positive and negative pulses of height VT sin y, where ¥y is the
inclination to the mean track of the part of the course leading fram one

"tramline" to another, and duration T = where s dis the

—
Vp sin ¥ ’
separation between the "tramlines". By convention the series starts from
the mean course with a single positive pulse and then the pulses are

alternately two negative and two positive. The intervals between the
pulses are denoted by Xys Vg3 Fps Yos eees where x5 is the interval

between adjacent pulses in opposite directions (the interval spent in one
of the outer tramlines) and ¥y is the interval between adjacent pulses

in the same direction (the interval spent on the mean course). The xg
and y; are all independent of each other, and each is distributed
according to the Poisson probability law

P(x) = B e P*

I
2

Vp

tramliness We are interested in an infinite sequence of this type, or at

least in cne of considerable length, but the analysis will be clearer if
we consider first how such a sequence may be built up.

where % =X = m is the mean distance travelled along one of the

Single pulse pair

Consider a single pair of pulses in the sequence: suppose %T has a

unit positive pulse, duration T follawed by a unit negative pulse,
duration T, and separated from it by an interval x (see Fige 1b).
Taking the Fourier transfoarm of 2’1‘

T ) x4 2T
Alw) = / et gt o / e~ it gy
o x+T

I

_5;}5 4 - otub | -du(x+T) . e-iw(x+2T)] .

This is a series of the form ocnsidered in (1) above, and henoe from ( 6)

lA(w)l2 = -22— 2 ~2008 4T + cos wx = 2 cos & (x+T) + cosw (x+2T) |«
W

An exponential series is easier to handle than a series of cosine terms,
so this may be written as,

h@l* = 2=z [2 Lol el mia(mT) e"iw(sz)]'
(7]

To obtain the spectrum, [A( m)'z must be divided by the duraticn of the
sequence and the average overall values of x taken. Now the mean duraw-

tion of a sequence of n pulses is n(T+%), and by (7)
. l{. -



~iuwx B
[e ] = B + iw

Writing ot B, Bfiw = C, gives for the spectrum of %T’

8 (0) ~ LR [2(1-B) + c(1-B)7] .
T )

By ( 8 ) the spectrum of 2 is given by

5, (&) ~ S & [2(1-8) + o(1-8)%] . (9)
i\ .

1)

Then, by ( 5 ), the autocorrelation function for Zg corresponding to a

single pair of velocity pulses, i.e., one "hump" of Zps is proportiocnal
to the Fourier transform of

-11: R [2(1-B) + 0(1-B)?] .
W

It should be stressed that the term "n pairs of veloocity pulses"
describes only the length of manceuvre which is being studied: it dges
not necessarily imply that the spectrum of %T is being calculated.

Two pulse pairs

We next consider two pairs of velocity pulses (see Fig. 1c) of
the kind treated in the previous paragraph. Proceeding as before, and
il B
B+ iw

writing e = B, = C, and the mean value [e-w] = Y, the

spectrum of ET is
Sim(w) ~ -3512[2 - 2B+ {C + 3Y} - {2BC + BY} + {BZC-I-%'BZIZ
~ {0y} + §2B%CY} - {BoCY} + BN - B3czx+—‘2-B“nzr:|
= -3—2-13 [{2(1-13) + 0(1-B)%} + fy(1-8)? (1-130)2}] .

Then, fram ( 8 ), the spectrum of 2z, is

T

szT(w) ~ -35 R [:{2(1-13) + (1-B)%} + Hy(1-8)2 (1-30)2}]. (10)

Comparins this with (9) we see that the first term in (10, gives
the contribution of the individual pulsc pairs and the sccord term that
of the intersctior betwcen two pulse pairs with separstion y. ¢ note
that in the manoecuvre described ir the Introduction adjacent pairs arc
in opposite dircections and the separation y has the same distribution as
x, 50 that ¥ = C, and the spectrum for the first four velocity nulses,
cne couplete cycle of the marocuvre, is

_5...



0) ~ L r{1204-8) + c(4-8)21 - f2c(1-8)% (1=80)3} |.
S~ [iz(s) (1-8)%} - Ho(1-8)? ( nJ -
Many pulse pairs

The method of the previous two paragraphs can be applied to a sequence

of any length. For the first three pulse pairs in the sequence of ( 1a ),
it leads to the spectrum

s, (@) ~ LR [{2(1~B) + 6(1-8)?} - {-g- c(4-8)? (1-8¢)%}
T )

+ §} 87(1-p)° (1@0)23] , (11)

and for the first four pulse pairs

S5p(8) ~ R [ 2019) + 0(1-9)"] ~ 3p(1-)(1-30)7)
T

W

+ 18263 (1-8)%(1-80)%] - {%5%5(1-13)2(1-30)2}]. (12)

In e short sequence the spectrum and the autocorrelation funotion
are very much affected by the ends of the sequence, Since the target
-manceuvre may be considered to be part of an endless series of cycles arnd
its precise length is unknown, varying from one encounter to ancther, it
is clear that such end effects should be ignored. We therefore calculate

the spectrum for a large number, n, of pulse pairs and then let n tend
to infinityc

Let n be an even integer, so that a number of complete cycles of
the manoeuvre is considered. The Fourier transform, A(w), of ZT may

be set up as described earlier for a single pulse pair, Then dividing
|a(w)|? by 2n, the mmioer of pulses, averagn.ng over the x's and y's,

and writing e T - B, [e ] C and [e l] = Y (since though

=Y = -‘-3—_%-—(5 it is helpful to distinguish between the two means) we
cbtain the spectrum of é’l‘ as

szm(w)~;%R[:2-23+c~-’lrl’l1—Y—zBo+ 2 21 gy 4 5% - 221 By
¢ 2o poy . (81) 520y , 2A) gioy

~nd B2 + E;—?-BZCY n“" B0 - n"2 BoCY?

oy o B2 phoy? - o B2 oty o 4 B2 ghoBy
- 2 228 cy? , BB ghdy? . B Py’
- 2 B2 Py, o B2 oy, B2 8ociy?

..%21360213 + 211;'-;135031(3 + ...J.
-6 -



Grouping the terms in this expression according to the power of Y

5 ()~ R’:{2(1—B) ¢ 0(1-3)%) - EL fv(1-8)? (1-80)2)

+ 22 18%0v°(1-8)% (1-80)%)

- -rir'-l-é- {}34023{5(1-3)2 (1-Bc)2} + oeee ]

Here, the first term gives the contribution of each pulse pair
interacting with itself; +the second term gives the contribution of each
pulse pair interacting with its immediate neighbour; +the third term
gives the contribution of each pulse pair interacting with the pulse pair

next but one and so on. Now, setting Y = C and using (8), the spectrum

of zT is

5, (0) ~ R[{2(1—B) + 0(1-8)%} - 21 {0(1-8)%(1-B0)%)
T w

+ Eig {8°c%(1-)° (1-80)?}
_9.;;2 {13405(1-}3)2 (1-130)2} + :] (13)

In the limit as n - », the spectrum for an infinite sequence is

5, (w) ”"12; R[:{ZU-B) + c(1-8)} - [c(1-B)?(1-80)%}
T w

+ 18262 (1-8)2(1-80)%} - {B*CP(1-8)2(1-B0)%} + ] , (1)

where the terms still have the significance noted above. The infinite
series in (14) may be summed to give the expression

oA o[ 2(-B)(148¢7)
SZT<w) o R-[: (1+B2C2) ’ (%)

but the inverse of (15) is not known.

We take a suitable number of terms from (14) to cover the range of <
in which we are interested: +the minimum distance between adjacent pulse
pairs is zero, that between pulse pairs next but one is 2T and hence the
third and successive terms in (14) cannot contribute to the autocorrelation
function pz(m) for values of T < 2T. For values of 1 such that

2T < 7 <4T, the third term has to be included, for 4T < v < 6T the fourth
term as well, and so on.

The next task is to find the Fourier inverses of successive terms
in (14). Considering the first term, it may be noted that

f2(1-B) + 0(1-3)2}



is O(w) near the origin, but its real part behaves like wl", and it is

therefore clear that the real part must be taken before the expression
can be inverteds. Also since only real parts are involved, the required
Fourier transform f£(t) of a function F(w) is given by

[ £(v) cos wr dv = F(w) » (16)

o

The inverse of products of functions may be derived using the
cenvolution theorem, as follows:  if

F(u) = f £(<) cos wr dr ,
and )
&(o) = /w g(<) cos ur ar ,
then )
- 7
r(a) ¢(u) = ! Z £(u) g(vu) du cos ur At . (17)

Cunninghem and Hynd (J.Roy,Stat.uoc.(1946)) state that if 51 and
52 denote any two linear operatars and if X(t) is a random variable

with variance ¢ 2 and normalized autocarrelation function px, then

X
cov [, X(u); B, X(v)] = &0, 0, pyluv) . (18)
t
As a particular case of this result, if Y(t) = / y(u) du, then
Q
T u T
py(fc) = / du/ py(v) dv = f (vv) p(v) av » (19)
o [*] [v]
L7

Now ( 18 ) states that if Y(t) =/ y(u) du then

o

S (w)
Sg(w) = ~"Y;"2-";

and it therefoaé‘e)follows that the aubocorrelation function which is the
5 (w

inverse of -«'X--z-- may be obtained fram the inverse of Sy(w) by double
)

integration. The functions whose inverses are the successive terms of

-8 -



( 15 ) are found by a series of convolutions of simple forms and double

integrations. The steps in the calculation are most easily seen by

settln% out the various functions with their inverses, related by equation
in a table. In this table § is the Dirac delta function defined

[}
by &(x) =0, x % 0; f&(x)dx:

oo

Fw) c/ £(%) cos wr dv £(x)
(o]
R(1+B) =1 = cos uT 5(%) = 5(T~v)
g T O<T<T
—-'Z-R(1~B)
A 0 s> T
2
R(C) = -_2-&_2' B ehﬁt
B+ w
R(1-B)* 8(t) = 26(T—t) + 5(2T~t)
- O0<t<T
A oramy2
W R(1-5) { 2T T<v < 2T
0 T > 2T
["T*%U-e"ﬁ") 0< <t
-12- R [C(1~B)2] - e"m% (1 = 2¢FT) -(2T+-1§)+ T Tet <2T
[
‘[ue"ﬁ"%(‘l—ZeﬁT-ﬁezﬂ) T > 2T
2T~3¢+% (1 - 7Py 0<%<T
AR [2(1-8) + C(1-8)%] {-. e“‘*"% (1 - 2¢"T) —-(21'+-15) . T<T<2T
[}
—e“BTJB-(1~ZeET+e2m) T > 2T
(- -1—54-?-2- +—§- e L 1~%(2T+%)72
B B a
+ '121:'+—13- BT ocaer
g
1 2 {
—- R [2(1-B) +C(1-B)“] 2
" 4,20, 2% ko3 ( 2 2T> L2 omad
W + —- + 20%¢ (2T+=)
B 62 ﬁ ik g2 B) 2 P
L 15 -13- (1 -207) & B%  pocoop



Ma) = fo £(t) cos wr dt

£(7)

—1«2 R [2(1-B) +C(1-B)%]

W

R [B(1-B)?]

L & (8(1-8)%]
7

A g [3c2(1-8)?]

L » [B%(1-8)%]

A g [%6°(1-8)2]
2

L (1 -2ePT eZﬁT) e FT

8(Tmr) = 25(2T=1) + 6(3T~1)

73T

3
l

0

0
o~ Pr {em}(-

e"BT{eBT(—-

+ T(-e

2T
o~
L O

4

B
) +vr(-em?+ Zezm)} - (3T+%)+ T
—é«l- )+

{0, o3

e"BT{eBT(-— %+ T) —em‘"rh (T+%) -

2 +T) + ezmlp.(%-'l‘)

2 o267

1.
45 T)
2
("' '3"' BT)
B, 62BT _ 3PT);

+ 2¢

e PT1e?PT (Logr? . y1 ~%)+ e2PT(2pr-2)x

g %

"é"r

+ (2T+%) -

+ [62P7(2pr2) + PT(~6p0 + 1) ]w

+g(wwaﬂéwh%

..(%+

- 10 -

4T) + v

T > 27

O¢x<T
T<cte 2T
2T ¢t < 3T

T > 3T

O¢teT

T<crc 2T

2T <1< 3T

T > 3T

0<1t<c2T
2T <5< 3T
3T<T <4T

T > 47

O¢ v<2T

2T ¢ v < 3T

4 e”B":{ezﬁT(mZZﬁl’2 + 4T -%) + ejﬁT(9m,‘2- 12T + %)

3T<r< 4T



P(w) .—.-,[ (%) cos wr dg

O

(%)

L » [B%°(1-8)%]

%5 » [0(1-8)%(1-20)°]
W

‘fe“m{ezm(—Zﬁl‘z + 4T “‘%) + 83M(93T2 ~12T *"65)
+ o*(8pr" ¢ ar-2)+ o[ (2pr - 2)

= ePT(u6pr4 1)+ *PR(4pr w 2)]

2
. _%:__ (.-eZBT-;-Ze}BI‘-el"ﬁT)} T > 4T
(’
n%e"&q-%—wc 0<t<T

e P? {- -15+ em(~2T +%) + ZeBTq:}

~ (4T +%) + 3t T< T< 2T

1
p

+ v[26P 4 2P (2pr . 6)]- ezBT-g 1'2}

e BT . +em(-2'l‘+%)+ezm (~28T%+ 12T-162-)

+ (81‘+19) - 3n 2T ¢ v < 3T

e~ b7 §- -154- ePT (-2'1‘+%) * ezBT(~ZBT2+ 127 --162-)

+ e3m(9ﬁ’l‘2~ 18T + 1‘39'

+ rc[ZeBT + ezﬁT(—6+ 2pT) + ejm“(-6;3T+ 6)]
+ @ [ 5 2 7]

-(%Hﬂ) + T I < T< AT

e PT §- Jé-i- em(-2T+%) +2fT (—26T2+ 12T —-152-

+ e5m(9BT2~18T+‘LBQ)+ 34‘3'1’("831‘2"' 8T"'%)
+ T[26m+ ezm(-G + 2pT) + eBﬂr("éﬁT*‘ 6)

2
+ T (upre2)] + B (-e?PT . 27T

-ehm)} T > IT

-4t -



Fw) = [ (=) cos wr dr ()
o

i A 2.1 .3, 0 B
S S 'rw'c +7 3 4=z e O<T<T
N . ¢ T
1 T 2 m3
9--+8---+3-—-+--T
‘33 [32 B3
-¢<7-§-2—+6%+2T2>+%¢2(4T+%)
-pT {_.

P op . A0
Be(ZTB

'-2'5 +""é‘ ]
P T
- 27 eﬁ} T<T<2T

13 ~pt (1 fT 10
+ 2%+ e Gre (20 ~ =)
BZ p B
+ eZBT(ZﬁT 16T+-z)

+T [-2eﬂr + ezBT(—25T+ 8)]

A » [o(1-8)%(1-20)%] |1 + e o2}

W

2T <t < 3T

3 6 P g

2
10-—1-+21+ +2&~-——-+£—T (6'-12-+12~—+8T>
B 12 B
(1+T+ ~—g'tj+--e {% B’]‘1(25['--10)
B

+ e%T(ZBTz- 16T+-%Z) + ejm(—9ﬂr2+30‘r-—2§

s [20PT 4 &2PT(2pm 4 8) + 2PT(60T = 10) ]

+ 7 (3pePT — pe?PT )} S DYDY
4 v L. BT, 10\ 2T, 2 2
52 e {B +e" (27 - 5 J+e 7 (2pT° = 16T +~BZ)

+1 [~2ePT 4 e2PT(opn, 8) + 7P (61 10)

(T 4 1) ]+ 2 [5pe?PT - pe>T

lﬁel"ﬁm]} . T > 4T

_12-



Adding the inverse functions of -11-; R [2(1-B) + c(1-B)°] amad
W

-12; R [c(1 —3)2 (1-BC)2] s gives a function proportional to the autocorrela-
W

tion function for the Poisson target manceuvre, valid for |t| < 2T, and
since, by definition p(0) = 1,

2 3
BT T 1 pr T D
p, (%) = 1 = ("—) + 3 (‘) O<t<T
g (1+3 )\ 2 (142 )
N e
“r A madm V) e\

3
b3 BB (ay,__8-28T  -B(xT)
3 Bsz

2 T 2
1+5 6T (1+5 gT)
+ 2 5 (—%) oB(v-T), T<r<2l
pT (1+‘5 pr) y

(20)

The autocorrelation function for target velocity é‘l‘ is available
from the calculations leading to pz(’!.'). Alternatively, in view of

( 18 ), it may be obtained by differentiating ( 20 ) twice with vespect
to 7.

Remenbering that pz(o) = 1

p&('r) = 1 - (LT’:') O<ct<T

0 = 1) DB @) e

The functions p (7) and pﬁ(q:) are graphed in Figs. 2 and 4.
The values of the parameters are,

Y = 30°

10 n. miles,

§

"

S

m = 10 n. miles,
Vo = 1,300 ft/sec,
so that
T m 93.5 seos
o VT
and m = - = 2 3

VTsiny"nT

—15_



Sn— e

We need to know the values of k = zTZ and k¥ = z
Pige 1a we have, for n pulse pairs
T+x 2T+x

T 2
2 2 4
ot e [ ae [ e

o T T+x

2T+x
) dt'i' eavs

(2n~1)T+ IR RITEE VR + PR RTTL D S

2(n-1)T+ Ky onat X 4Ty teeet ¥ g

tm (2(n~1)T+ Xy eaet Xy g+ Tyt eee + T 2
N - at

(2n=1)T+ Xyt aast X 4T boeet I

+ 1 dt

(on-1)T+ e WL ZE ETTR R A
/2n’l‘+ Xyt oees E ET, coet Vg
3

(2n~1)T+ Xyt ooet BTt eoet ¥ g

nT + Xyt oee+ Xy F Yykoee vV g g 2
T dt
o

2(. 1
= 8 {21'15T+x1+x2+000+xn}0

Dividing by the length of the sequence = 2nT+ Kptoeet Xyt Jy + eee

+ Yy and averaging over all the x and ¥y

— 2 2 1
T - 1y \3 B 2 " (1+00)
2(T+ -é) + T
Again
T 2T+ x
« 2 1
2" = (Vg smy) {[1dt+/ 13t + cee
o] '13+x1
21'ﬂ.‘+x1 bae c+xn+y1+o . o+yn“1
+[ 4 dt}
(211"‘1 )T+x1+.u+xn+y1+u.+y ]
= (Vo sin y)~ 2nl.



Dividing by the length of the sequence and averaging over all the x and y

. 2
-5 (Vp sin y) .

T = 1
T + B
= (VT sin Y)z q—-g-?*é-l; = k'2 . (23)

Finally, it is necessary to calculate the cross-correlation of i'l‘ and
Zpe Defining the cross~correlation function GS’Y of the staticnary
time series y(t) by

-3

¥ oy (%) = o / yp(%) Fpltaw) at

b - ¢
then from ( 2)

yp(t) = f ag(£) &Y ar

-
so that

So(t) = [ZwifAT(f) AT | ar .

haad - -

Let

F(f) = Tl_i:m«n .éli (2nif AT(f) m)
Tlim& -2% M( f’ (%) o2l at> ( f y(s) e2™E8 d,s)]

0

= Tlimm'aif :/ o2t { j” y(%) y(ﬁr)dt} d'c]

[~-)
P oif
. e « d
[ y crm,('v) T,

«0

u

n

- 15 -



@«©
f P(p) e~2MLT | gp

-]

tql\)
2
:2/\
a
it

/ 2if Sy(f) e2MET | 4p (from ( 3)),

o0

o0
_@_ Sy(f) e"sz’ﬂ . af

]

~ dr

-

-él:; e o(T) . (from (5)).

i

Now any autocorrelation function necessarily decreases near the origin.

(v) ~ 1+ %p"(0) 5 for small «
P

g ( n £ 1
K3 7 (7)) ~ +p"(0) or swall T

and since p(7) <1 always, p"(0) is negative and we have as a pev
fectly general result that the cross~correlation function c'&y('c) is

positive for small positive < dirrespective of the form of y(t)e
Returning to the Poisson target manceuvre, the cross-carrelation of

transverse velocity x displacement is cbtained by differentiating (20)
with respect to ¢ and changing the sign of the expression:

i.ee
Bl - (1‘,,'2_2'5.";,5')' ®)- (1+'§ ) ®2 pemer

6+ LBT 2(2+ BT) /[« P e 2
o
4z BT2(4 +-§- gr) T(1+% ar) \T (1+-32- gr) \I

. 26-ng3 o~B(7-1T) +._.._..§é__.__ o—B(7-1) (.TE) T<s< 2T.
AT (1+-.3- gr) T(1+-3' pr)

This function is graphed in Fig. 3 again with T = 93.5 secs, AT = 2,
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