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Summary. 
Harmonic and subharmonic solutions are determined numerically for the forced oscillations of a 

system governed by Duffing's equation, and the stability of these oscillations is discussed. 
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I. Introduction. 

The non-linear ordinary differential equation 

d2x/dt 2 + c~x + fix 3 = E cos cot (1) 

is the well-known Duffing's equation 1. It describes the forced oscillations of several mechanical and 
electrical systems (e.g. a circuit consisting of an iron-core inductance in series with a linear capacitance 
driven by a source of alternating voltage). 

There are many solutions of this equation 2, but the ones of interest here are the periodic oscillations 
which have the fundamental frequency equal to the frequency of the forcing term (harmonic response) 
or equal to an integral factor of it (subharmonic response). 

Methods are discussed in this" Report for determining the response curves for both the harmonic and 
subharmonic oscillations of (1), and for examining the stability of these oscillations. The response" curves 
were determined numerically to check some theoretical work by Neumark 3. 

Equation (1) is sometimes used to describe the forced oscillations of a mass on the end of a spr ing; in  
this case, if c~>0, f l < 0  then the spring is said to be 'soft', and if c~>0, f l > 0  then the spring is said to be 
'hard'.  

This report deals only with the case of a 'soft '  spring, although the methods described can be applied 
to the case of a 'hard '  spring. 

Using Neumark ' s  notation, since c~ > 0, fl < 0, equation (1) can be written as 

d2x/dt 2 + coZx-co2x3/c 2 = co2fcos cot, (2) 

where a~ = a, c 2 = -a / f i ,  f = E/a .  

The results in this Report  were obtained using a digital computer;  they agree closely with results 
obtained using an analogue computer 4'5. 

2. Determination of  Response Curves for Harmonic Oscillations. 

2.1. Equilibrium Positions. 

It is assumed that the solution of (2) can be written as a Fourier series 

x = c ~, (a. cos n cot + b, smn  cot) ; 
n = 0  

substituting this expansion in (2) gives 

a,  = 0 if n is even 

and 

b, = 0 for all n .  

The solution of (2) can therefore be written simply as x = c ~  a, cos n cot (n odd), with the a, satisfying 

) -coZc,,= lnZa" c°sncot +°j2c,= xa"c°sncot--°~2°c , aa, cosncot 3 = COZof cos o~t. 



Putting a = c ~ a. which, in most cases, is the amplitude of the oscillation, we obtain at t = 0 
n = l  

- co2 c E n %  + co a - o" a3 /c = co'of, 
n = J. 

o r  

(3) 

When co = 0, corresponding to equilibrium, (3) gives 

a 3 - a c  2 +fc 2 = 0. (4) 

Equation (4) has three real roots if the discriminant D of (4) given by D = - 4 ( -c2 )  3 -  2 7 f  2 ¢4 is non- 

negative, i.e. i f l f / c l~  2 v / ~  . 

Hence, if If~el < 2 w / ~ ,  there are three static equilibrium positions given by the roots of (4). However, 

if I f ie  I > 2 ~ / ~ ,  there is only one equilibrium position given_ by the real root of(4). Finally if if/el= 2 ~ ,  

there are two equilibrium positions given by a = c/~/3, which is a repeated root of(4), and a = -2c /~f3 ,  
The roots of (4) have been calculated for various values of f / c  using Newton's method, and are given 

in the Table. 

2.2. Solution by Simple Iteration. 

In general,whenco+0, a solution of(2) can be found by iterating on an approximationx,  to the solution x. 
The iterative scheme is defined by 

5~. + co02x. = co02fcos cot + cooX.2 2_ ffc 2 (5) 

We first observe that if x is known to be a Fourier series of the form 

x = c ~, a i cos i cot (i odd) 
i = 1  

then we have 

x 3 = c 3 ~ a l  aj ak COS i cot cos j  COt COS k ~ot ; (6a) 
i j k  

but 

cos i cot cos j cot cos k cot = ¼ [cos (i + j  + k) cot + cos (i + j  - k) cot + cos ( i - j  + k) cot + cos (i - j  - k) cot] 

so that 
(6b) 

X3 = C3 ~ bi cos i cot (i odd), 
i = l  

and each bi can be obtained in terms of the a~'s fro m (6). 



Inserting these expressions for x,, and x,  z_ ~ into (5) gives the set of  linear equations 

[ - (0)./0)0) 2 + 1 ] a(~ '' = f / c  + b]"- '  I 

[ - (3~o./O9o) 2 + liar"' = b(3 "-  1, 

[-(5~o./~Oo) 2 + 1]a~ ") = b~"- ') 

[ _ (pco,]tn0)2 + 1]@,) = by(.-  tl; 

(7) 

where a~ "~ is the nth approximat ion  to the coefficient ak; ~o, the nth approximat ion  to the frequency (~; 
and the infinite series for both x, and x,3_ 1 have been truncated after ½(p + 1) terms. 

Now,  if al  is given and held fixed th roughout  the iteration, o), can be calculated from the first equat ion 
of (7), which can be written as 

(eo,,/e)o) z = - f / c a t  -b(1 "-  1)~at + 1. (8) 

The iteration is started by giving al ~i fixed value and specifying initial values for a ~°) . . . . . .  @o~. The initial 
values b] °~ .... h ¢°) are then obtained from (6), and coa from (8). Using this value of  to1, a ~1) . @1) • , --, 3 ,.. ., are 
calculated from the remaining equations in (7). This process is continued until o), a3 ...... ap are all suffi- 
ciently accurate. 

In practice, the iteration was carried out with p = 9, as it was found that there was no significant 
difference between the results with p = 9 and p = 27. Although this method converged for most  values 
of al,  it was found that in certain cases it did not. The regions in which this method fails to converge 
are shown shaded in Fig. 1. In these regions other methods  were used and these are described in the 
following sections. Fig. 4 shows the lower parts of  the harmonic  response curves, and, as can be seen, 
certain solutions obtained by the above method do not lie on the expected response curves; this agrees 
with certain solutions obtained using an analogue computer  4. 

2.3. Particular M e t h o d  for  o~ = O)o/m. 

It is found that when o7 = o%/m (where m is an odd integer), the iterative scheme defined by (5) fails, 
due to the ruth equation in (7) becoming 

F r o m  (9) it follows that for ~o = (no~m, 

O. a~ ~ = b~-  1) (9) 

b m = 0 for all n .  (10) 

Now, since b,, is a Fourier  coefficient of x 3, it follows that b,, is a cubic in am, where a,, is the correspond-  
ing Fourier  coefficient of  x. Hence (10) can be written as 

A a ~ + B a ~ + C a m + D  = O, (11) 

where A, B, C, D can be calculated from a~ . . . . . .  am-2, am+2 . . . . . .  ap. 



The linear equations corresponding to (7) are now given by 

at  ") = [f/c + b~"- 273 / (1 - m 2) 

a(2.) = bg.-1) / ( 9 - m  2) 

0 = 5,,, 

#~+~2 = ~ " + - ~ / ( 4 + 4 m )  

a~") = b~ "-"  (p2-m2) .  

(12) 

A numerical solution is sought as follows : a first approximation Xo is used to calculate the coefficients 
A, B, C, D in (11). Equation (11) is solved for a root a~ ) which is used, together with the old values a~ °) ..... , 
atO ) ~o ) ., @o), to find the coefficients b~°),. .... b~ °) and these are inserted into (12) to obtain a second m -  2~ t~m + 2 ~ " "  

approximation xl.  This process is continued until the coefficients a k are of the required accuracy. 
Using this modified iterative method, solutions hre obtained which lie on the lower parts of the response 

curves. However, when co = ½, the solutions obtained do not lie on the expected response curves and an 
example of this kind of solution is shown in Fig. 7. 

2.4. Variation of Rauscher's Method. 

It is also found that when a 1 is increased beyond a certain value (approximately 0-8) the simple iterative 
procedure fails, with (8) giving a negative value for co2 throughout the iteration. 

In order to determine these parts of the response curves, a variation of Rauscher's method 6 is used 
and the iteration now proceeds as follows. 

The equation of free oscillation 

+ co~x-  ~o~x3/¢ 2 = 0 (13) 

is integrated with the initial conditions x (0) = a/c, :~ (0) = 0 where a is, in most cases, the amplitude of 
the oscillation. Assuming the motion to be periodic with frequency co 1, the time taken to reach the point 
x = 0 is n/2o91, from which 092 can be calculated. 



The iteration is continued by integrating 

51+co2o x-co2ox3/c2 -- co20fcos co,t 

with the initial conditions x (0) = a/c, k (0) -- 0, and with co2 then given by x(~/2coz) = 0. The iteration 
proceeds in this way until co is of the required accuracy. The convergence of this method depends on 
f/c; if this is sufficiently small, then four or five iterations suffice. However, in general, convergence is 
very slow and a simple acceleration process is used. This process uses the three previous iterates to estimate 
a new value for co which is given by 

( u - c o . +  1)/(co- co.) = (o~.+ 1 - co.) /(co.-  co._ 0 ,  

where the three previous iterates are co,_ 1, co,, co,+ 1- 
I r a  > c, it is known that (13) has no periodic solution 6, so in this case col is taken to be zero. 
Rauscher's original method depends on the solution being monotonic over quarter of a period, but 

the present method does not suffer from this limitation and in fact solutions have been obtained which 
are non-monotonic over this range. However, if the first zero of the solution occurs after a time less than 
a quarter of a period, then the sequence {co,}, obtained as described above, oscillates. In this case a 
solution can usually be found by assuming that the second zero occurs after a quarter of a period. 

On the lower part  of the response curve for f >  0, the above method failed to give any results with 
o~/O~o less than a certain value (approximately 0'25). It did, however, produce some unexpected solutions 
and one of these is shown in Fig. 1 I. 

Fig. 3 shows the response curves for the harmonic oscillations, with a/c plotted against co/co0 using 
f /c as parameter. As mentioned previously, Fig. 4 shows the lower parts of the response curves for f >  0, 
indicating which solutions were produced by the different methods. The most interesting feature of this 
figure is the set of solutions obtained using Rauscher's method with a less than the smaller positive root 
of (4). 

3. Determination of Response Curves for Subharmonic Oscillations. 

As well as oscillations having fundamental frequency equal to the forcing frequency, oscillations 
having fundamental frequency equal to an integral factor of the forcing frequency have been observed 
in systems governed by Duffing's equation. These are known as subharmonic oscillations. 

Methods of solution similar to those described above were tried for these subharmonic oscillations. 
The methods, however, failed to converge in some cases and the corresponding response curves are thus 
incomplete. 

Fig. 5 shows these response curves with a/c plotted against co/coo usingf/c as parameter. 

3.1. Solution by Simple iteration. 

This method is similar to the one described in Section 2.2., except that (2) is now assumed to have a 
solution of the form 

x = c ~ a i cos (i cot~m), i, m odd, 
i = l  

where m is the order of the subharmonic. 



The set of  l inear equat ions  of  the i terat ion corresponding to this solution is 

[ - (co,/mmo) 2 + 1]a(1 ") = b]"- 1) 

[_(3coffmCOo)2 + 1]ata.) = b(3 . -  1) 

(14) 

[ - (e)ffO)o) 2 + 1]a~ ) = f/c + b~- 1) 

[-(dm)ffmO~o) 2 + 1]@ ") = b~"-I) .  

T o  ensure that  a subha rmonic  oscillation is obtained,  a l  is specified as a non-zero  constant,  co k can 
now be calculated f rom the first equat ion  of (14), which is 

(~k/O~0)2 = m2(1 _(1 k- 1) /  a l ) .  (15) 

Using this value of co k, the i terat ion proceeds,  as described in Section 2.2., until mk, a~k),....,Up-(k) are suffi- 

ciently accurate.  

3.2. Variation of  Rauscher' s Method. 
This me thod  is described in Section 2.4., and the only difference here is in the end condi t ion in each 

iteration. 
The  general  i terat ion proceeds as follows : the equat ion  

+ o~gx- ,o~x3/c 2 = o ~ ¢ c o s , , . t  

is integrated with the initial condit ions x (0) = a/c, 2 (0) = 0 and with the end condit ion x(m~/2co, + 1) = 0 ,  
f rom which co,+ 1 is determined.  This process is cont inued unti  ! co, is sufficiently accurate.  However ,  in 
m a n y  cases, it is found in practice that  the sequence {co,} oscillates, and the method,  ment ioned in Section 
2.4., has to be used to obta in  solutions in this case. 

4. Some Peculiar Solutions. 
In the response curves, the ordinate  a/c is usually the m a x i m u m  displacement  of  the mot ion.  However  

for some solutions it was observed that  this was not  the case. The  condi t ions under  which these solutions 
arise are discussed below. 

Suppose  

oo 

x = c ~ a .  cos (no~t/m), m = 1,3,5, n odd, 
n m l  



is a solution of (2), then 

5~ = - co) 2 ~ n2a. cos (mot~m) m 2 . 
\ n = l  

At t = 0, 

x = c ~ a ,  = a (assumed always positive) 
n = l  

and 

= _ m 2 " 

Fo r  A to be the m a x i m u m  displacement,  we require 5~ < 0, and thus ~ n2a, > O. 
r t = l  

Now, inserting the expressions for i and x into (2) for t = 0 gives 

(co/rncoo) 2 = - (aa/c 2 - a -~f)/c ~ n2a , ,  
n = l  

(16) 

and co exists if and only if the numera to r  and denomina to r  of  (16) have different signs. 
Hence, if a is to be the m a x i m u m  displacement  we require 

a3/c 2 -  a + f <  0.  

If a 2, a 3 are the two positive roots  of (4) with a2 <. a3 for 0 < f 2 c x / ~ / 9  , and if a I is the positive root  of  
(4) for f <  0, then it follows that  a is the m a x i m u m  displacement  if a2 < a < a 3 for the case when 0 < f <  

2c~/3/9, and if a < al  for the case f <  0. 
It can therefore be seen that  a is not  the m a x i m u m  displacement  in the following cases: 

(a) when 0 < f <  2 c x / 3 / 9  , a is not  the m a x i m u m  displacement  if 0 < a < a2 or a > a3 ; 

(b) when f >  2c~/3/9 (subharmonics  only), is never the m a x i m u m  displacement ;  and 
(c) if f <  0, then a is not  the m a x i m u m  displacement  if a > al .  
However ,  in some cases (e.g. subharmonics  with F < 0) the point  t -- 0, x = a is a local max imum,  

but a is not the m a x i m u m  displacement  (see Fig. 10). 
Not  all of  the above  oscillations lie on the expected response curves;  examples  of  this and other  oscilla- 

t ions satisfying (2) are given in Figs. 6 to 11. 

5. S tabi l i ty  o f  Oscil lations.  

Before discussing the stability of  oscillations, it is necessary to define what  is meant  by stability in this 
context.  

Let  x(t)  be a solution of (2), and x ( t ) +  u(t) be a slightly per turbed  solution, then inserting x ( t ) +  u(t) into 
(2) and neglecting powers  of  u above the first gives a linear differential equat ion in u. If all solutions 
u(t) of this equat ion are bounded,  then x(t)  is said to be stable, otherwise it is said to be unstable. 

In the case of  Duffing's  equat ion (2) the related linear equat ion is 

fi + co~(1 - 3x2/c2)u = O. (17) 



Now put 

so that 

x = c ~  a, cos not  , n odd, 
. = 1  

x 2 = c  2 ~ b n c o s 2 n c o t ,  
n = 0  

where the b, can be obtained from the a,. Putting z = cot and the series for x 2 into (17) gives 

( 1 - 3 . ~ o b  . z) d2u/dz 2 +o9~ cos 2n u/o9 2 = O. 

Further, let 

and 

so that finally we have 

do = co~](1 - 3bo)/Co 2 

d. = - 3coZb./2co 2 , n+- O, 

This is a form of Hill's equation. 

(18) 

U = e t~z ~ One 2niz 
n = - o 3  

is a solution of (18). Substituting this in (18) gives 

multiplying out and equating coefficients of e 2i~ gives the following system of equations 

(#+2ni)2v,,+ ~ d,.vn_ m = 0(n . . . . . .  -2 , -1 ,0 ,1 ,2  ..... ). 
m = - o o  

For the existence of a non-trivial solution of this system, the matrix of coefficients of the v. must be singular. 
After dividing each equation of the system by (do-4n 2) to secure convergence the following infinite 
determinant is obtained (known as Hill's determinant): 

5.1. Hill 's  Me thod  o f  Solution. 

The method used to examine the stability is based on a method used by Hill V to find a solution of (18). 
Defining d_,  = d,, we suppose 



A(i,u) = 

(iP + 4) 2 - d o  

1 6 - d o  

- d  1 

4 - d o  

- d 2  

- d  o 

- d 3  

4 - d  o 

- d 4  

- d l  

1 6 - d  o 

(i# + 2) 2 -- do 

4 - d  o 

- d i  

- d  o 

- d 2  

4 - d  o 

- d 3  

- d 2  

1 6 - d  o 

- d  1 

4 - d o  

( i f l ) 2  _ do 

- d  o 

- d l  

4 - d  o 

- d 2  

- d 3  

1 6 - d  o 

- d 2  

4 - d  o 

- d l  

- d o 

( i # -  2) 2 - do 

4 - d o  

- d l  

- d 4  

1 6 - d o  

- d  3 

4 - d  o 

- d 2  

- d  o 

- d l  

4 - d o  

( i #  - 4 )  2 - d o 

1 6 - d o  1 6 - d o  1 6 - d o  1 6 - d o  1 6 - d o  .... 



The  equat ion for/~ is therefore 

It can be shown 7 that  

.and therefore (19) is equivalent to 

A(i#) = O. (19) 

A(i#) = A(0) - sin 2 (2~i#)/sin 2 (~d~o), 

sin 2 (2hri#) = A(0) sin 2 (2~d~o). (20) 

Now,  for the solut ion u of (18) to be bounded  for all t, Re (p) = 0 so that ½rciu must be real, and hence 

0 ~< sin 2 (½rci#) ~< 1, 

which from (20) can be expressed as 

0 ~< A(0) sin 2 (~rd&o) ~< 1. 

Assuming A(0) > 0 (which it was always found to be in practice), this becomes 

o < sin 2 (½~do) < l/A(0). 

If 2~do is real, than sin 2 (2~d~)/> 0. However,  if 2~d~o is pure imaginary then sin 2 @zdo ~) < 0; therefore 
u is unbounded  if d o < 0, i.e. if co 2 (1 - 3b0)/09 2 < 0, or 3bo > 1. Now, from above, we have 

bo ½ ~ 2 nodd ,  a n 
i 1 = 1  

therefore u is unbounded  if 

o r  

a~ ~< 2/3.  
n = l  

The other  condi t ion states that  u is bounded  if 

sin 2 ( ~  d~) ~< l/A(0) 

(21) 

- (A(0))- ~ ~ sin (neOo (1 -- 3bo)&/2m) ~< (A(0))- ~. (22) 

When  al  = aa . . . . . .  0, then bo = 0, A(0) = 1 and a = 0. These condit ions will give the limits of  
the unstable regions as a --, 0. Equat ion  (22) is now 

- 1 ~ sin 0rCOo/2Co) ~ 1. 

Limits of  the unstable regions are therefore given by 

sin (mOo/2Co) = _+ 1, 

11 



o r  

co/¢o o = 1/(2p+ 1), p . . . . . .  - 2 , -  1,0,1,2 .. . . .  

When  the coefficients a ,  have been obta ined by the simple iterative me thod  above  (Section 2.2.), the 
quanti t ies bo, b~, b 2 . . . . .  can be determined,  and hence A(0) evaluated. These values are then used to see 
if either of  the condit ions (21), (22) are violated. I f  they are not, then the oscillation is stable ; if they are, 
then it is unstable. 

5.2. Use of Floquet Theory. 
As stated previously,  for a part icular  oscillation of (2) to be stable, all solutions of  the cor responding  

Hill 's  equat ion (18) must  be bounded.  
Since (18) is linear, every solution of it is a linear combina t ion  of its fundamenta l  solutions s. 
Consider  the two fundamenta l  solutions ul(z), u2(z) of  (18), and let us suppose they have the initial 

condit ions 

u1(0)=1,  u i ( 0 ) = 0  (a) ] 

and I (23) 
u2(0) = 0, u~(0) = 1, (b) 

where ' denotes differentiation w.r.t.z. Then 

Ul(Z + 70 = u~(~) u,(z) + ui(~) u2(z) 

and 

u2(z + ~) = u~(~) ul(z) + ui(~) u~(z), 

or, in matr ix  notat ion,  

I I = U , (24) 
\ u2(z + / \ u21z) / 

where 

U = 

The characterist ic po lynomia l  of U is 

(udn) ui(n)). 
Uz(~) u~(n) 

2 z - (ul(n) + uh(g))2 + det U = 0 ,  

where det U = ul(n)u'z(n)-uz(zr)u'x(n) ; 

but this latter is independent  of  z and hence we have det U = 1 (the value at z = 0). The characterist ic  
polynomial  is therefore 

)~2_D2+  1 = O, 

where D = b/1(7~ )-[- u2(g) .  

12 



Hence, the eigenvalues of U are given by 

2 = D/2 + (D2/4 7-1) ~. 

From (24), it can be seen that 

I t \.2(z 

For the solutions of (18) to be bounded, the eigenvalues of U must have moduli less than or equal to 
unity. (In fact, the eigenvalues must have moduli equal to unity, since their product is unity.) That is, 
we require IDI <2 .  Hence if IDI < 2, the corresponding oscillation is stable, but if IDI ~> 2, the oscillation 
is unstable. 

Since the coefficients ai are known from the simple iterative method, the bi, and hence the d~, may be 
determined. Equation (18) is now itegrated for both sets of initial conditions (23); ul(~z) and u~(~) evaluated, 
and the value of D obtained is used to examine the stability of the motion. 

5.3. Discussion of Results. 
The two methods described above were used to examine the stability of the harmonic oscillations 

obtained previously by the method of Section 2.2. 

2/3 (n odd), such oscillations are found to be unstable (see Section 5.1.), When a,2 > a n d  this first 
n = l  

occurs when al-"-0-8 which is near the limit of convergence of the simple iterative method. 
Another unstable region was found to be bounded by the locus of vertical tangents of the response 

curves for f >  0, and by the response curve for f =  0. The region's limit point is ale = 0, co/o90 = 1, as 
expected from the results of Section 5.1. Other regions of unstable oscillations were found for the response 
curves for f >  0, and these regions have limit points a/c= O, o9/09o = 1/n (n odd). Only a few solutions 
were found in these regions because in most cases the simple iterative method fails to converge. Rauscher's 
method will give solutions here, but these cannot be conveniently used to check stability, as the method 
defines the solution only as a numerical function of time, and does not provide the necessary Fourier 
coefficients. 

As mentioned previously, the free oscillations of Duffing's equation are found to be unstable; this is 
due to the definition of stability used here: if Poincar6's definition is used instead, they are found to be 
orbitally stable. A full discussion of orbital stability may be found in Ref. 6. 

The approximate boundaries of the regions of stability and instability are shown in Fig. 2; the unstable 
regions being shaded. 

13 
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TABLE 

Static Equilibrium Positions of the Forced Oscillations of Duffing's Equation with 'Soft' Restoring Force. 

f/c Values of a/c 
-0 .50  1.1915 
- 0.45 1.1759 
- 0 . 4 0  1.1597 
-0 .35  1.1429 
-0 .30  1.1254 
- 0.25 1.1072 
- 0 . 2 0  1"0880 
-0 .15  1.0679 
-0 .10  1.0467 
- 0.05 1.0241 

0.00 0.0000 1-0000 
0.05 0.0501 0-9740 
0.10 0.1010 0.9457 
0.15 0.1536 0.9143 
0.20 0.2092 0.8789 
0.25 0.2696 0.8376 
0.30 0.3389 0-7865 
0.35 0.4289 0.7140 

The positive value off/c for which the system has only one equilibrium position is 2x//-3/9 ----- 0.3849. 

This position is given by co/COo = 0, a/c = I/v/'3-----0.5774. 
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