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Summary. 
A study is made of the linearized differential equation for supersonic flow of a gas relaxing in one mode, 

assuming a linear rate equation, in a two-dimensional non-uniform channel. An exact solution to this 
equation is found which includes the corner flow problem as a special case. This solution clearly demon- 
strates the exponential decay of disturbances along the frozen characteristics associated with the relaxation 
process. The results obtained for the corner flow problem agree with the earlier results ofJ. F. Clarke and 
J. J. Der. Approximate solutions are also obtained which are shown to be adequate for most practical 
values of the ratio of the equilibrium to the frozen speed of sound. 

Similar exact and approximate solutions are also found for the linearized case of a two dimensional jet 

expanding into a uniform pressure field. 
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1. Introduction. 

Non-equilibrium effects in gas flows may arise from chemical reactions between the various species 
comprising the gas or from a redistribution of energy among the internal energy modes of the molecules 
after the gas has been perturbed from an equilibrium condition. Kirkwood and Wood ~ have shown the 
basic similarity between the two types of relaxation. Both processes introduce a source of dissipation into 
the flow (i.e. the flow is no longer isentropic), and if the processes take a time of the same order of 
magnitude as the time for a typical molecule to pass through the flow field considered, the relaxation 
effects become important. 

In the present work, a simplified model of the gas, in which only one type of relaxation is present, 
is used in order to formulate the problem. In many cases, this approximation to the real gas bchaviour is 
not unreasonable as one type of relaxation is found to dominate all the others. For instance, in a dissoci- 
ation relaxation region the change in energy associated with the internal energy modes is very small com- 
pared with the change in energy associated with the dissociation ; and similarly in the case of a gas in 
chemical equilibrium, in certain temperature ranges one internal mode is found to have a much longer 
relaxation time than the others which are treated as active modes, i.e. reach equilibrium instantaneously. 

Gunn 2 investigated the effect of heat capacity lag in one-dimensional nozzle flows by linearising the 
equations to find the loss in available energy due to the temperature lag and hence the loss in total energy 
and found it to be a small effect. Chu 3 indicates how the problem of a relaxing gas may be solved by 
a step-by-step numerical calculation using the method of characteristics. Bray 6 and others showed that 
in the case where the amount of energy in the lagging mode is small, a criterion could be established for 
the 'freezing' position in the nozzle. This sudden 'freezing-out' of the flow where the lagging mode, having 
followed the equilibrium distribution closely at first, suddenly breaks away and rapidly approaches an 
apparently steady non-equilibrium value (frozen flow), is also borne out by the numerical calculations of 
Stollery and Smith s for vibrational temperature lag, Freeman 7 and Hall and Russo s for atomic recom- 
bination together with the recent analytic formulation of the problem by Blythe 4. 

The governing linearised differential equation satisfied by the two-dimensional perturbation velocity 
potential ~/~ (x,y) has been derived by Vincenti 9 and Clarke ~° in the form 

K (Br 2 ~xx-  ~y,,)x + 8e2 ~ = -  4',,,, = 0 

where K is the relation length, B f  = M r -  l, B,, 2 = Me 2 - 1, 
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where M: and M e are the free-stream Mach numbers based on the frozen and equilibrium speeds of sound 
respectively. The importance of the two speeds of sound was shown by Chu a and Clarke 1 o while Vincenti 
solved the equation for flow past wavy walls. The method of Laplace transforms has also been used by 
Clarke 11 to solve the equation for flow past a corner, and by Der 12 for flow past an arbitrary boundary. 
Moore and Gibson 13 approximate to the third-order equation by the second-order linear telegraph 
equation for flow past a wedge and a wavy wall. Clarke and Cleaver t4 find solutions to the third-order 
equation for qS(x,y) by use of a Green's Function technique for the flow past thin aerofoils. 

Clarke has also used the axisymmetric form of the equation to investigate relaxation effects on slender 

bodies ~s. 
In the sections that follow, the method of Laplace transforms is used to solve the equation for relaxing 

flow through a two-dimensional channel with sharp corners at x = 0. The solution includes, as a special 
case, the flow round an isolated corner, and thus Clarke's solution for the latter problem which will 
apply up to the first reflected characteristic from the opposite corner is obtained directly. The solution 
for a general point in the flow field in the case of the isolated corner is compared with that obtained from 
the analysis of Morrison ~6. Approximate solutions are also obtained for most practical values of the 
ratio of the frozen and equilibrium speeds of sound. 

At the suggestion of Professor N. H. Johannesen of Manchester University, the method is also applied 
to the case of a two-dimensional jet expanding into a uniform pressure field, and exact and approximate 

solutions are obtained. 

2. The Differential Equation, Boundary Conditions, and Solution by the Laplace Transform Method. 
Differential Equation. 
It has been shown by Vincenti that for the two-dimensional flow of an inviscid, non-heat-conducting, 

non-radiating gas, relaxing in one mode, when perturbations from an undisturbed uniform supersonic 
flow and deviations from equilibrium are both small, a perturbation velocity potential O(x,y) can be 

defined by 

u' v' 
= K x '  = 

where 

v = (u o, 0 )+(u ' ,  v') 

which satisfies the linearized differential equation 

K(By 2 ~)xx- q~yy)x + Be 2 ~)xx-- ~rr = 0 (2.1) 

K is a parameter proportional to the 'relaxation length', "cU~o, and B e, B: are the equilibrium and frozen 
Prandtl-Glauert factors respectively, v, the relaxation time, is assumed to be constant and the rate 

equation is 

"cDei( Ti) = e~( T~)- ei( Ti) 

where e~(Ti) is the internal energy of the inert (relaxing) mode specified by the temperature T i, and e~(Ta) 
is the energy of the active modes specified by the translational temperature T,. 

In 'equilibrium flow', when the relaxation processes are infinitely fast and all modes reach equilibrium 
instantaneously, v~0 ,  K--*0, and equation (2.1) reduces to the Prandtl-Glauert equation 

¢ .  = o 



At the other extreme, when the relaxation process takes a very long time ~ ,  K ~ o  , and equation 
(1.1) becomes 

(B~ ~b**- ~bry). = 0 

i.e. B~ ~bxx- ~bvy = f(y). 

But the equation must hold for all x, including the region of undisturbed flow, hencef(y)  = o, and the 
equation reduces to the Prandtl-Glauert  equation 

• 2 B / q ~ x . -  ~P. = O. 

This other limit of isentropic flow is known as 'frozen flow' 

Boundary Conditions. 

l I /  / I  
y=h  

Y=-hK • / / / 

Y 
/ 

/ 

It is assumed that the flow is uniform and in equilibrium upstream of the station x = 0, and the boundary 
conditions are therefore 

q~,,~x, 4,xx = 0, x ~< 0 

V '  - -  

Cy - 0, y = 0, by symmetry, and 

v' dy 
- dx on y = + (h + e x), or with sufficient accuracy U~+u'  

1 ~4~ dy 
U~ Cy - dx °n y -  +h. 

where the walls of the channel are given by y = +_(h+ex) and e, is a small parameter. 

Solution by the Laplace Transform Method. 

The Laplace transform ~(y,p) of qb(x,y) is defined by 

oo 

7~(y,p) = f e-  ~x 4~(x,y) dx .  
0 



Equation (1.1) transforms to 

(Kp÷o) 
d2~dy 2 p2 B} \ Kp + l ~ = 0 

where a = B e2/B, 2 and is greater than unity. 

This equation has the solution for ~ (y,p), 

(o (y,p) = A(p) e v'/ ~ B , ,  + B(p) e- vV ~k~p+ 1 ~,y " 

The boundary condition 

transforms to 

and this implies 

while the condition 

transforms to 

Thus 

8¢ 0 on y 0 
Oy 

d ~ _  0 o n y = O  
dy 

A(p) = B(p); 

3q~ _+U~oe ony  ±h 
Oy 

8 d~ U~ on y h 
dy p 

~(x,y) = 
f /-Kp+a B ) eVXc,~dl p 4 K - T ~  fY 

U°~e L- 
Bf p2 K p / ~ s i n h  / K p + a  

V Kp + 1 PVK-~-p~ Bfh 

where L- 1 denotes the Laplace transform inversion operator, viz: 

+ico 

1 I = - -  e w ~ (y,p) dp. 
2~i 

- ioo  



In the linearized theory 

Cp  - -  
2u' acb 

where u' - ~  
U~, ~x 

Hence the pressure coefficient is given by 

.f epXc°sh P. ~P+aB~yn . } 
. . . . . . . . . .  V F p + l  __Z 

-- g-1 | ~ 7 - a  f ~  • (2.2) 2~: 
I P, I ~ stun p , i  ~ r~fn 

The above equation (2.2) reduces to the pressure coefficient transform for 'equilibrium flow' on putting 
K = 0, and for 'frozen flow' on putting K = oQ. The inversion for these cases is performed in Appendix i 
by a straight-forward contour integration giving 

cpB2e - ffh+~X 2 ~ ( -  1)" sin" Bh-nnx cos--nnY 
n = l  n h 

whereB = B e o r B  s. 

The frozen and equilibrium pressure coefficients on the wall and on the axis are presented in Figures 1 
and 2 for comparison with the relaxing case. 

However, the same method cannot readily be applied to the inversion of (1.2). The integrand has a 
non-isolated essential singularity at p = - l/K, and although the correct answer was obtained by inte- 
grating round a 'dumb-bell '  contour around p = - 1/K and p = - a/K, it could not be proved rigorously 
that the integrand remained well-behaved at all points of this contour ; nor could an alternative suitable 
contour be found. 

In the case of one wall, the pressure coefficient for the flow round a sharp corner is 

e cpBf _ L-1 epX -v~/K%--~rBsy 
2~ K/-~+a 

g p+ l 

with y now measured from the wall, (2.3) 

and this has been solved by Clarke for Cpw, the pressure coefficient on the wall (y = 0). The evaluation 
for a general point in the flow field can be obtained from an analysis of Morrison (as mentioned above) 
which is outlined in Appendix II. 

In Section 3 below, an analysis by series expansion is given for the channel flow, which includes the 
corner flow as a special case ; and in Section 3, an approximate method is presented. 

3. Exact Evaluation of the Pressure Coefficient. 
The pressure coefficient for the relaxing gas in the two dimensional channel is given by equation (2.2), 

f 
C p B f  _ L -  t 

2e 

e px cosh p Y P  + a B~v V Kp+l JJ 
- , 

p ~ / ~  ]- stun p ~ / ~  Byh 
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and this can be simplified on transforming to the normalized co-ordinates, 

x' = x /K , y' - B yy 
K 

to 
c B fepc°sh   +a 

~ / ~ - ~  sinhp' ~ h 

where p' = Kp. 

Let ( = 1 + p', then, 

e -x' e ;~' cosh ( ( -  1) a -  1 y, ] 
CpBf = L- 1 ~ 

~ I ( ( -1)  ~+ - l s i n h ( ~ _ l )  - -  
(3.1) 

Write r = a -  1, and noting that 

cO 

1 =--2 V e-Z"x 
,ill!~x e x ~ 

n = o  

(3.1) becomes 

Ie~-l~ +e ~ 1~x//-@7~ 1 CpB f _ L- 1 e~X" r 

2e n=o (~_ 1 ) / ( +  r '~- l'x/-@h' 
V ~  e 

where 

%,- - - e - ~ ' ~ - ~ { e ~ ' ; ~ o - ~ - ~ ' ~ ' - " ~ "  } ~  ~ e , 

ev= e-X,L- l  { eel' ~ ~= -~¢-l'X/--@~h'+y'+2"h')} 
~ e . 

0 

For simplicity of notation, let 

y, = h ' -  y' + 2nh', 

z, = h' + y' + 2nh'. 



Then 

c m = ~ - ~  e 
n = o  

- e - ~ ' L - , { e ¢ X ' ~ r 2 o - ( { - 1 ) N / - @ ~  rz" } Cp2 = ~ C 

and cpB: _ 
2 e  cm + cp~ 

= ~ b .+  ~ c. say, (3.2) 
n=o n=o 

Where b, = e -~'' g - 1  { e~x' / ~ _./g'~+r)r.+ X//-@--7~,. ~ - i -  V, ~ e (3.3) 

but 

so that if 2 = ~ + r/2, 

and s = ~ / 4 ,  

(3.3) becomes 

~ r ) =  x/(~+r/2)Z-r2/4, 

_ a/777/2 °} b. = e - x' L- 1 e TM e-~ "' ~ y  
2 - 1 -  r/2V 2+r/2 e e 

- , - e ~ / , ~ - # Y ~  

+e-.X'L-1 ~ eXX' 2 / ~ e  a" ~ } (3.4) 

where = l + r / 2 , f l = r / 2 .  

Define t'. = x ' - y . ,  t',: = x ' - z . ,  and let the right hand side of cpl transform to semi-characteristic co- 
ordinates from the 'top' corner and for each n, along the (n+ 1) 'h characteristic parallel to the first; and 
similarly for cp2 : 



f i l l / l ~ /  
yo 

-h' I I I I I  

N•¢ 
/~(t= / ",, / 

t g o  / o / \ / 

\ / \ / / 
\ / \ , ~ /  \/,~_ 
/ \  / \  / /  \ 

/ \ / \ / \ 

Z =  t ~ = o  \ _ /  . . . . .  \ _ _ 

I I I I I I I I i i i i i i i i i i I ~  

X s 
v 

f et;, ~ ] 
Let L1 (t;,, y .)  = L -1 1 ~-Z~_ ~V/A--~  e ; 

So that if LI and L2 are known, b. is given by the convolution formula from equation (3.4), or 

th 

b. = e -=x' Ll(t'. , y.) + e-  ~' ! L2(z, y.) L l ( t ' . -  z, y.) dz (3.5) 

and similarly for % 

The inversion for L2(t'n, y.) is given in Reference 17, or 

ry. 11 (fl ~/(t'. + yn)  2 - yn 2 

L z (t'., y.) = -~- x/(t, " + y.)2 _ y 2  

where I1 is a modified Bessel Function of the first kind. 

Therefore 

th 

I ry. r 
b. = e -'~' L,(t'.,y.)+TJ L ( t ' . - z , y . )  

o 

I1 (flx/(z +Y.)2 _ y. d z ]  
(z + y . ) 2 -  y Z 

ry. ~ . , I, ( f i x / ~ - y 2 )  dz ] (3.6) 
= e-" J " 

Y. 

Now when n = 0, corresponding to the flow field between the corner and the first characteristic from 
the opposite corner, it is found from (3.6) that the solution in this case is similar to that found by Morrison 
(see Appendix II). However, the solution on the wall y = h, corresponding to Yo = 0, found from (3.6) is 

' [ e~Z ~ 2 - f l  
e - ~ '  Ll( to ,  O) = e - ~ '  a ~ V ,~+f l  d2, 

E' 



since the second term vanishes, and from Reference 17, 

x '  

0 

where I o is the modified Bessel function of the first kind. Hence Clarke's result, 
x '  

cpwBf2*: - e =x' io ( f l x ' )+ f  e - ~  lo(fl# ) d#, 

0 

is recovered directly. 

(3.7) 

For  duct flow it is seen from (3.6) that terms corresponding to the double system of reflected character- 
istics for the frozen flow are added to the solution when n = 0. In other words the duct flow-solution is 
constructed from a series of isolated corner-flow solutions. It remains to evaluate L~ (t',, y,). This requires 
some manipulation to reduce it to a standard form. The inversions are obtained in Reference 17 and the 
evaluation is performed in Appendix III giving 

L, (t. ,  y.) = e .Wom ! Pm(t'.) (3.8) 

where f '1 , ,  is a function defined in Appendix IlI which satisfies the recurrence relation 

t 

Pro(t) = P~_2(t)+re-' f e ~ Pro-2 (z) dz  

0 

and the infinite series ~ Y~ ,,= o ~.v Pm (t',) is absolutely and uniformly convergent for all y, and t, since 

(3.9) 

IP.,(t~,)] ~<a 2 for all m and t~, and,.=oZ x /a  m! is absolutely convergent for all y.. 

The exact expression for the pressure coefficient is therefore from (3.2), (3.6) and (3.8), 

2 e -  ~ '  e ~ta 5" Y~ p 
. : o  ~ o  m ! " (t'.) + 

X'  

f e~(X,_ ° ~ Y'~ ,_, , , I1 (f l~/z2---y 2) + e -  ~ '  fly. 2... Z i  r,.~x - z) dz + 
nl = O fFl , 

y" 

+ e-  ~x' e~t'. " ~ z'~ Pm (t~) + 
m = o  ~ , ,  

x '  

g~  

10 



Because Pro(t) = 0 for t < 0 for all m, b. = 0 for all n ~> k + 1 whenever  t~,+ 1 < 0 and c. = 0 for all n ~> k ' +  1 
whenever  t~,',+ 1 < O. Thus  the first two te rms are  summed  from n = o to n = k only, and  the last two 

f rom n = o to n = k' only,  in the region where t~ ~> O, t~,', >f 0 so that  

2e .=o L m=°m] 

x '  

I 1 ~_, --x P~(x - z) dz + f l y .  e y.  , I (fl  
Yn 

+ 

x '  

k r - ,~. ~ zm . . . . . . . .  f ~ ,  ~ z." . . . . .  r '  It(flx/~ -z2)  dz ] 
+,,~--o [e  2.. - ~ r , . t t . ; + p z .  | e L ~ 3 r m t  x -  J / z 2 _ z 2  I " 

= L m = o  " " "  d m = o  " '~" % /  n ..a 
z n  

(3.1o) 

yl 
l / i l l /  

1 /  // / / 

\ / \ / t;,,, 

\ / Ne/ /¢ ~-X' 
/ . .  / \  f ~  ~ \ / \ / \ ',. 

/ \ / ". 
/ N/ N 

D E l / / / / I / l l / l I 

It should  be no ted  tha t  k' = k, k +  1, or  k -  1, so that  in the  region A B C  in the d i a g ra m above  the first 
sum is f rom o to k, the second from o to k -  1. In the region C D E  the first sum is f rom n = o to k -  1, and  

the second from n = o to k. In the region BCEF,  bo th  sums are  from n = o to n = k. 
The  pressure  coefficient on the wall  and  on  the axis is shown in Figures  1 and 2 respectively,  together  

wi th  the frozen and equi l ib r ium values. In  compu t ing  these pressure  coefficients, the half-width of  the 
oo y,, 

channe l  was taken  to be h' = 0.5, a = 1'5, and  it was found tha t  ten terms of  the  series ~ ~5  P,,(t) 
m = o  m .  

were sufficient to  ob ta in  a value accura te  to two decimal  places for values of  y ,  (or z,,) up to 3. 
The  pressure  coefficient at  a general  po in t  in the flow r o u n d  a corner  is, f rom (3.10) 

x" 

m = o m :  m = o m :  ' 
Y o  

(3.11) 

11 



which is equivalent to 

cpB f 

X' 

2~ - H (t'o) e - ~ ' +  fle -~ '  I I ( f l ~ ) d ' c  

Yo 

x, i 
+ fix//7 e-,x' f e - :  e - ~  (# +#i *)'C~ 

yo 0 

- -  I , ( 2 x / / ~  I,(fl~_(x' + #)2_ (p + z)2! dpdr } 
,/(~'+ ~)~ - ( ~  + ~)~ 

as obtained by Morrison (see Appendix II). 

Both expressions show that cp = 0 for Y0 < x' since the disturbance from the corner is confined to the 
region downstream of the Mach wave associated with the frozen Mach number MI, a result which is 
well known. 

For y = 0, Morrison's method gives, 

x'  

cvBf f I ' ( f l ~ d z +  - e-p~'+fle-~' re- ,  X//~T~__~2 
0 

X' cto 

I ~ I1 (/~N/(Xt _.~/./)2 -- ('C "-~ ~)2) f e - ' .  (# +- z) V/7~ I ~ ( 2 x / ~ )  
+ fie -~*' 0 e- Jo x/~ x/(x' +/0 2 - (z +/~)2 d# d-c, 

and although this is equivalent to (3.7) the equality can only be established with some difficulty. (3.11) 
above has the merit that the simple form for cp~ found by Clarke, equation (3.7), is obtained directly in 
place of the rather intractable relation above. 

4. Approximate Evaluation of Pressure Coefficient. 

The .soh~t i(m.fi ; small d([l'erences between the /i'ozen and equilihrilml somul SlWed~. 

It is possible to obtain a very much simpler expression than (3.10) for the pressure coefficient if it is 
assumed t h a t r = a - 1  = (B2 /  i - 1  << 1. 

Equation (3.2) for the pressure coefficient is 

Cpmf -- g_l ~ ~ 1 ~Vr -({-1) ~-~--rz.] 
2e [ ,=o 

Now suppose r << 1, so that 

e-X'. 

.//~-A- r r 2 
V ~ - = ( l + r l O  i =  l + ~ + O ( r ) .  

12 



r 
The equation for c v when t e r m s  O(r 2) are neglected then becomes, remembering that fl = ~, 

%Bs-L-~ { ,=o [ e¢'~-'~-ay"+a~+e~t~'-a-a~"+p~] ( ~ )  ( ~ 1 ) }  

@ 

= ~ (b, + c.) as before, where now 
? l=O 

(4.1) 

Equation (4.1) retains all the important features of equation (3.1). It possesses an isolated essential 
singularity at ( = 0 and simple poles at ( = fl, ( = 1. 

The following results are obtained from Reference 17, with the aid of the convolution formula 

f e px (er/p_ f p - 1  1) d p =  y~t ~I t(2y ~t  ~)e ~-tdt, 
L" 0 

~ epX. ey/p p -  1 f p -- 1 dp = I o (2y ~ t ~) e ~-t dt 
L" 0 

and 

f ep x ~-1 dp = e x . 
L' 

Therefore, using the above results, 

t'~ 

bn=e-t:e-~r '{ f  (flyn)$#~Ii(2~v/-flynl~)et~'-Ud#+e t;~- 
o 

o 

t;, t~, 

{ f o o 

t~ 

= e-  ~y~ I o ( ~ )  e-  '~ + (1 - fl) e - PY"f I o ( ~ ] ~ )  e -"  dp 
0 

after integration by parts. 

13 



Therefore, substituting in equation (4.1), 

- t ; ,  

cpB:_ L {e-#Y"Io(x/2~y,t',)e-';'+(1-~) e-#y" f I o ( ~  )e-udp } 
2 ~ ,  n = O 

0 

+ e-P~" I o ( ~ )  e +(1-/~) e -Bz- ] o ( ~ )  e-U d/~ 
n = o  

o 

(4.2) 

where the summation is over a finite number of terms for the same reasons as in Section 3. 
This approximation to the pressure coefficient gives excellent agreement with the exact result, and 

remains a good approximation even for values of r as high as 0.5 as shown on Figures 1 and 2. It is parti- 
cularly good up to the first reflected characteristic and therefore for the corner flow problem (4.2) reduces 

to 

c,B:ze, - e-t~Y° e- 'a I ° ( ~ ) + ( 1 - / ~ ) e - ~ Y ° £  I o ( ~ ) e - "  d/~ (4.2a) 

and when Yo = 0, (on the wall y = h) 

e~B: _ (1 - fl) + fie- ~' (4.2b) 
2e 

whereas from (3.7), with r << 1, 

c~B: _ 1 tl . t~e_~X, ~ 
2~ o~ 

but since c¢ = 1 +[~, it is easily verified that these are the same to 0(r2), provided x' << 0(1/~q). 
The approximation (4.2b) for the pressure coefficient on the wall is compared with the exact expression 

(3.7) for various values of r in Figure 3. 
Figure 4 shows the variation of the pressure coefficient with t for different values of y (at different 

distances from the corner) for a = 1.1, calculated from equation (4.2a). Since for large values of t, 

m - 1  

Pm(~) = ( l + r )  2 

and 

/~Yo f 
Yo 

II(/~/~2--Y2)e -~¢ d'r = e - '° ' /I  +r _ e - ~ , o  

14 



it follows that the exact expression (3.11) gives, 

cpBf e -~r° 1 +~)yo) 
- -  ~ ~ e  " / l + ~ y °  + (1 - -e  -(1 +r/2-'/l 
2~ C l + r  ~/l+r 

1 
= ~r:------(e -~l+r/2-'/l+~)r° + l - e  -~l+~/2-'/l+r)r°) as t ~  Go, 

~/l+r 

showing that, for all y, 

cpS  f -~, B f 

2~ B e ' 

Thus the flow reaches equilibrium far downstream of the initial frozen Mach wave, corresponding to 
large values of t for a fixed y, and this is demonstrated in Figure 4 where the pressure coefficient approaches 

1 = B y  
(1--fl), for all y. (1 - f l )  is the first order approximation to 

~/1 + r B e " 

It is shown below that for small values of t  the disturbance decays exponentially as e -¢y° away from the 
corner. The approximation to % given by (4.2) is equivalent to replacing 2.1) by 

Ox,--- ~ -  ~ = 0 (4.~) 

in the normalised co-ordinates. But if (1.1) (in the normalised co-ordinates) is differentiated with respect 
to x', it becomes 

~4q5 ~-(l+r) ~3¢ ~3~ ~3~ = 0 
63X '4 0X '3 0x'Z0y '2 C3x'Oy '2 

r 4 O2~p 
and adding a term ~ ~ to both sides and rearranging gives 

+ Ox,-- 5 -  1 ~ Oy ' 2 -  4 Ox '2 ~-14t 

so that (3.3) is a form of the exact linearised equation when r << 1. 
It cannot be assumed that inclusion of the additional term in (4.3) modifies the rate cquation. Howcvcr 

the term involving r2/4 in (4.4) is a diffusion term and it is therefore this weak diffusion effect ~vhich is 
neglected in the approximate equation (4.3). Because this diffusion term is of small order, solutions to 
this simplified equation give reasonable agreement with these obtained from the original equation. 

Solution for small values oft. 

Certain useful results can be obtained from an investigation of the flow in the vicinity of the leading 
characteristics, i.e. for small values of t' or t". 

From Section 3, since Pro(O) = 1 for all m, 

L 1 (t'~, y~) e-~t;' ~ ey. as t'~ ~ O, 

15 



so, for small values of t',, 

t~ 

e-  =x' L1 (( ,  y,) = e -  ~Y" [e-=t" io (fit',) + f e-'~ Io(/~/~) dv] + e -py" - e -  ~Y" 

0 

(4.4) 

t --+ as t. 0 

Hence from (3.6) together with (4.5), 

b, = e- ' : "  Io(flt',) + (' " '  [ e- 'U Io(flp) d# + e -  ay" - e -  "Y" + 
0o 

x" x ' - , c  

+flY~e-"~' f f I l ([3~-Y~){ I°([~(x'-*),+e~'~'-~' I I o(/~/~) dtt + 

+ ey. e=(X" - ~) _ e=(X ' - o } dz. 

But 

I~(~/~-y2)  1 d I o ( / ~ ~ )  
y~ /~ d~ 

Therefore 

t'~ 

b =e-PY.+e-~Y.{e-t'~Io(flt'.)+I e-~Ulo(fi#)d#-I } 
0 

+ 

t; ,  

I e - ~  d I i o ( f l x / ( ~ + y . ) 2 _ y ~ ]  +Y~e-~Y" ~+y. d~ e ~ ~) Io(fl(t'~- z)) + 

t'n-r 

+ I e-~UI°(fitOd#+eYn-1} 
o 

& .  
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Therefore as t'~ ~ 0, 

t ~  le- ' ] 
b. = e-  oy" + y. e-  =Y" + y" Io(/Tvf~ +--~zy.) 

z + y .  dz 
0 

d~ 

t~ 

= e-ay- (1+ O(t)). Similarlyc.--+e -az" , 

showing that along leading characteristics, the disturbance decays exponentially with distance from 
the appropriate corner, as found previously by Clarke and others. In addition the reflected disturbances 
decay exponentially with distance from their points of reflection. As already noted above, it is seen that 
the nozzle flow solution is obtained from a series of isolated corner solutions. The results of numerical 
solution by Der 19 justify this approximation. 

5. Jet Expanding into a Uniform Pressure Field. 

Following a suggestion by Professor N. H. Johannesen of the University of Manchester, the case of 
a jet expanding into a uniform pressure field is also considered 

1 1 1 1  /ly 
~I I I I I ~ ~ j . _ . _ . ~ F r e l  boundary 

m 

[~ / / /  / /"  
P<,. F re¢  boundory 

I I I I I  

The free boundary, for a linearized problem, is assumed to be at y = _ h, and the boundary condition is 

P = P a  

where Pa is the external pressure. 

Ifpo is the stagnation pressure, p~ is the static pressure at the nozzle exit, and cp is defined as 

P --PoD 
Cp - -  - -  , 

Po-PoD 

Pa - -  PoD = - - ,  
cpo Po-PoD 

then the boundary condition on the free boundary is 

Cp : Cpa. 
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The case considered is when P~o > P.. Thus the first Mach wave is one of expansion, followed by one 
of compression and so on, but the analysis could equally apply to the case when p~ < p., when the first 
wave is a compression, provided that the pressure difference Poo - P .  is small enough to prevent the form- 
ation of shocks beyond the mouth of the nozzle. This condition must apply anyway to keep the problem 
within the scope of a linearized analysis. 

Applying the method of the Laplace transform as in Section 2, the equation for ~(y,p) is 

?fi (y,p) = A(p)eI, V ~ nsr + B(p) e- VV ~ + 1 sly 

The boundary condition v '  - 3 q ~  3y - 0 on y = 0 still applies and gives 

gives 

A(p) = B(p) 

or 

/--Kp + a  
~J(y,p) = 2A(p) cos/, p~/ ~ B1.y. 

The boundary condition cp = %° on y = ___ h gives 

Uoo 
q~x= 2 cpo o n y =  + h  

which transforms to 

p q~(y,p)= U~ cp. o n y =  _+h 
2 p 

giving 

~(y,p) = _ _ _  

Therefore 

q~(x,y) = - ~-~° 

in the notation used above, or 

/-Kp + a 
v cosh B .y 

2 %" /-Kp + a 
p~ cosh p~/ ~ B fh 

( ~ / - K p + a  
U~cp. L_ 1 ) ev c o s h p ¢ ~  Bfy 

2 Kp+a 2 ~ p  c o s h p ~ B y h  

vx Kp+a } 
% = L - ~  e c o s h p £ - - - - ~ B i y  

CPa ~ " 
p cosn p ~ / ~ / ~ r n  

(5.1) 
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The frozen and equilibrium solutions are obtained by putting K = oo, and K = 0 respectively, giving 

cp L- 1 { e px cosh (p By) 
c,o p cos--~ B-~ J ' (B = B I or Be) 

which is evaluated in a similar way as in Appendix I, giving 

cp = 1 _ 2  ~ (--1)" (n+½)xx (n+½)xy --cp. rr . =o - ~  COS ~-~ COS - - h  

On the axis of the jet, making use of the well-known result (Reference 18), 

cos 0 - ~  1 cos 30+~ cos 50 . . . . .  
7Z ~ :g 

4 '  2 < 0 < 2  ' 

c-2-v = 0  - Bh < x < Bh 
Cpa 

= 2 Bh < x < 3Bh 

etc. • 

Equation 5.1 is evaluated in exactly the same way as 2.2. On transforming to normalized co-ordinates 

x' = x/K,  y' Bjy_y and putting ( = 1 + p, 
= K ' 

Since 

cp L- 1 
Cpa { e ; ~ e - ~ ' c o s h ( ~ - l ) ~ y  ' } 

((-- 1) cosh t(~ - ' ) ~ / ~  h' 

oo 
1 _ 2 3-" (--1)"e -2"~ 

coshx e~.'7----'o" " 

¢p 
- -  = cm + cp2, where now 
Cpa 

f /9~x r oo 
- = e - x ' z - 1  Cm ~ - - i  ,~__o (-- 1)" e-'" } 

o~x' co -(~-1) } 
- = e -X 'L  -1 ~ 3' ( -1 ) "  x//-@~" cp~ ~-1~'~=o" . e 

= ~, ( - 1 ) " b . +  ~ ( -1 )"c .  say 
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where 

Let 

where 

Then, 

but now 

b,, = e -x' L- 1 e~X" e,/~(g+r)y, e V g y. 
F ~  

Ll(t'., Yn) = 1_7 a e 

, { [  ]} L2(G,y.) = L-1 e,.~ e t~-~)y"-I 

2 = (+r/2, s = ~ .  

L 2 (t'., y . )  = fly,, I I ( f l x / ( t "+Y")2  _ y ,  2) 
.,/(C. + y.)= - y~ 

as before, 

,,~:..,°)=e"~L-1 t~-I e , ~  e~'~ ,/-@~',.} 
_,,~Y.'-I{ } - e  2 ~ . v E  e~'~ : ( + r ' ~  "/2 

. = o .  G - ~ 7 - :  

=e Z~.L  
.=o • t - T 1 G s :  j 

m m 

= e-"~ 2__ ~,  e.+,(C;), 
w 

O 

where the P=(t) are the functions defined in Appendix III. Hence the exact expression for the pressure 
coefficient in the jet is 

k fe_=y" @ y~.e cA = Y, ( -1)"  z.  7 i  m+,(C.)+ 
CPa n = °  L m = O  ff~ " 

X ~ 

+f lY" f  e-e*~-~y~m=o -~..Pm+ ,,tx'--z ' I I ( f l ~ )  ] ,  ~ dz + 

Y. 

+ (-1)" e -~" P=+l(t")+ 

X" 

I" ~' z" I'(fl ~x/TY~-z"2)"~ I Z - ~ t T  n r 

~ n  m = °  " 
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As in the channel flow, a much simpler expression than (5.2) is obtained if it is assumed that the relaxation 
parameter r << 1, so that 

~//~---~= l+fl/~+O(r 2) 

and 

cp f eel' ~ " { -c~-l,x/~y. x/~ }d ~ 
cp--~ = ~--~,,=o ( -  1)" e +e -(~- 1) ~" 

L 

becomes 

cp= I Cpa 
L 

,,=o~ (-1)" { e ¢t"-t;-/~y"+~"~ q-eCt:-t"-[lz"+#'v¢} ~-ld~ 

as before, but now 

- ~. (-1)"(b.+c.)  
n = O  

b"=e-t~'-aY"Ife¢ta(eaY"/¢-l)d(+I e ¢ ' ; ' ( - 1  ~-S-ld(~'l 
L L 

t;, 

= e-ar"{ ~ ~---~ [Io(~)l e-Udlt+l } (Reference 17) 
0 

= e- ¢y" I o ( ~ ) e - ' a +  e-aY"I I o ( ~ ) e - U  d/~ 

after integration by parts. 

Hence 

Cp 

Cpa 

- t ; ,  

,~o(-1)"e-aY"IIo(~)e-'~+ ; I 0 ( ~ )  e-~ dp]  
0 

+ 

+~=o(-1)"e -az" I o ( ~ ) e - ' ~ ' +  I o ( ~ ) e - " d ~  , ( 5 . 3 )  

for sufficiently small values of r. 
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The exact solution (5.2) and the approximate one above (5.3) are presented in Figure 5 together with the 
frozen and equilibrium values of the pressure coefficient along the axis of the jet for a = 1-5, h' = 0'5. 

The summation over n in both (5.2) and (5.3) is over a finite number of terms as in the channel flow, 
and it can be verified that 

all terms but the first cancelling out. 

cp 1 on y' = + h', 
Cpa 

6. Discussion. 

An exact linearized solution has been found for the flow of a relaxing gas in a two dimensional channel, 
and in a jet, assuming a linearized rate equation where the relaxation time, z, is assumed to be constant 
along the channel. Of course it might be expected that z will vary with temperature and pressure and will 
increase with increasing distance downstream in a diverging channel. 'Freezing-out' is therefore not 
apparent in a solution with a constant z. This is verified in the one-dimensional analysis which is per- 
formed in Appendix V, and the resulting pressure coefficient on the axis is shown in Figure 2. This shows 
no evidence of 'freezing' found by Blythe who used a rate equation of the form 

de__!i = 
dt co(p, T) (e l (T) -  ei) 

(where e i is the equilibrium value and o) = p f) (T) where f~ (T) is assumed to be f~ e T s) for a one dimen- 
sional analysis (see Reference 4). 

Figures 1 and 2 show that the pressure approaches the equilibrium value between each reflected 
disturbance,but  does not remain between the frozen and equilibrium isentropic solutions as may at 
first be expected. This is because of the exponential decay of the disturbance along characteristics found 
in Section 4. In the isentropic case, disturbances are reflected with the same strength at each intersection 
with the channel wall, but by the relaxation process each reflection is weaker than the preceding one by 
an amount corresponding to the exponential decrease e-  ~ zh' where 2h' is the distance between reflections. 
This effect can also be observed for the flow in a jet in Figure 5. 

The approximation for small values of the relaxation parameter of Section 4.1 follows the same trend, 
and the reason why it remains a good approximation even for values of r as large as 0.5 is because it 
is equivalent to adding a term of smaller order than the existing terms to the original differential equation, 
as explained in Section 4. 

The method of solution of the isentropic channel flow by contour integration is immediately applicable 
to other wall shapes. It is just a matter of calculating residues at the poles of the integrand which are the 
origin, _+ inn/Bh, and any others introduced by the transform of the wall shape ; see Appendix I. However, 
the method of solution of the relaxing flow given in Section 3, is not easily extended to other wall shapes, 
as additional terms in the integrand will change the form of L 1 (t,y) radically. However, when the wall 

boundary condition produces an additional term such as -Ip (for walls + (h + ~ x2)) or p ~ i  for walls 

_+ [h + e (1 - c o s  x)] ~, the solution is immediately obtained from the exact solution above for the walls 
. J  

_+ (h + e, x), and the transform of the additional term with the aid of the convolution formula. 
In addition an alternative method of solution ofthe equation in the form (4.4) is outlined in Appendix IV 

for the corner flow problem which gives results correct to 0(fl 3) and it is shown that this method can also 
be extended to channels with different wall shapes with the aid of the convolution formula. 

The linearized duct theory used in this report as well as being restricted to values o fx  not too far down 

this nozzle from the corners will only be valid for values of eM2 << 1, since for larger values 
2B3(x/a - 1) 
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of this parameter, non-linear inertial effects will introduce a streamwise displacement of the equilibrium 
characteristics of the order of the spread between the equilibrium and frozen characteristics in the linear 
problem. Thus the present analysis is restricted to not too large x', small values of e, and values of M e 
not close to unity. 

7. Conclusions. 

An exact linearized solution for supersonic flow in a two-dimensional diverging channel of a gas 
relaxing in one mode, assuming a linear rate equation, has been obtained which contains as a special 
case the solution for flow round a sharp corner. 

The pressure coefficient for the relaxing gas, compared with the two limits of isentropic flow in the 
same channel, demonstrates the effects of damping introduced into the flow by the relaxation process. 

An approximate solution, assuming small values of the relaxation parameter, which involves much 
simpler algebraic expressions and which remains in good agreement with the exact for values of r up to 
0"5, is also obtained. 

The solution for other wall shapes is indicated. Similar solutions are found for the case of a two-dimen- 
sional jet which also demonstrate the damping effect. 
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Subscript 

LIST OF SYMBOLS 
2 2 Be/Bf  

Equilibrium and frozen sound speeds 

Defined in equation (3.2) 

Pressure coefficient 

Internal energy 

Halfwidth of channel 

Laplace operator; also pressure 

Perturbation velocity in x-direction 

Perturbation velocity in y-direction 

a - 1  

x' - y' 

Defined in Section 3 

Direction of axis of channel, x' normalized co-ordinate 

Normal to x, y' normalized co-ordinate 

Defined in Section 3 

1 for the perfect gas 

Modified Bessel functions of the first kind 

Relaxation length (proportional to ~U~o) 

Functions defined in Section 3 

Mach number; Ms, Me, freestream Mach numbers based on frozen and equilibrium 
soundspeeds 

Function defined in Appendix III, equation (3) 

Temperature 

Velocity in x-direction 

1+72 

72 
A small positive quantity : angle of the corner 

l + p  

Relaxation time 

Perturbation velocity potential 

Denotes a transformed quantity, except ~p which denotes cpB~ 
2e 

Denotes freestream conditions 
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APPENDIX I 

Isentropic Flow in a Two-Dimensional Channel. 

The pressure coefficient for the flow of a perfect gas in the two-dimensional channel is given by 

cpB _ L-1 { ePX c°sh Bpy } 
2e p sinh Bph ' 

where B = B e for equilibrium flow, B = Bor for frozen flow. 

The singularities of the integrand are a multipole at the origin, and simple poles at p = +-B--h' n = 1, 

, . . . . .  

The path of integration can be closed by a semicircle in the half plane in which Re p is negative, the 
contribution from this part tending to zero as the radius tends to infinity, provided (x,y) lies downstream 

i(n+½) and R ~ Go through integral values of n, so of the characteristics through (0, +__ h) where R - B ~  

that the contour does not pass through a pole. 

I 

R~. 

Then, by Cauchy's theorem, the integral = 2rcix(sum of residues at singularities enclosed by C). 
The residue at the origin is obtained by expanding the integrand as a Laurent series about p -- o and is 

x 

the coefficient of lip in this expansion. It isB-~. 

The residue at P -- Bh is 

in,~ x imr B y 
e Bh cosh 

Bh 

B/~ (sinh Bph) P = Bh 

in~  x 
Bh n ~  y 

e c o s  - -  h ( _  1)n in~x~h tory 
- -  e c o s -  

imr cosh inTz in~ h " 
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i n n  . 
Similarly the residue at p = - - -  1s - - - -  

Bh 

(-1)" - ~  
e cos nny  

inn h ' 

inn 
so that the sum of the residues at p = ___~ for all n is 

2 o~ ( _ 1 ) . .  n n x  nny  

.~=1 n h 
s i n  - ~  COS 

Therefore 

cpB x 2 ¢-n,  ~2. ( - 1 ) "  . n n x  nny  
- - Oh sin - ~ -  cos . 2~ =1 n h 

Hence, on the axis y = o, using the well-known result, 

• ( -  1)" nnx nx 
sin 

,=1 n Bh 2 B h '  

n x  
- n  < ~ < n, (Reference 18) 

cpB _ x I ~  ) 

2~; Bh -nh < x < Bh. 

The resultant of  the two terms is a step function. The perturbat ion pressure coefficient is zero up to 

4e the first Mach lines from the corners, and changes discontinuously by an amount  - - -  where the Mach  

lines B ' 

x = +__U(y+(2n+l)h)  

(the characteristics of the differential equation) cut the axis. 
Similarly the pressure coefficient on the wall y = h is given by 

cpB x ( Bh- x'~ 
2~ Bh ¢- \ - - f f h - ] o  < :, < 2Rh 

again using a known result 

~,, l s i n n n X  n ( B h - x )  

,=1 n Bh 2Bh ' 

n x  
o < ~ < 2n, from Reference 18. 

On  the wall, the first pressure drop at the corner is half the magnitude of the first pressure drop on the 

2~ axis, but  the subsequent steps are of  magni tude  4~/B, i.e. there is a pressure drop of  magni tude  ~ for 

each characteristic the flow passes through. 

The discontinuity in the pressure coefficient is the result ofl inearization, which effectively approximates  
to the expansion fan by one of  zero thickness parallel to the Mach  line. 
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For  a different wall shape, the contour remains the same but there will be additional poles introduced 
by the transform of the wall shape, e.g. for the walls y = +_ (h + e x 2) 

cpB f e px cosh Bpy dp 
2e = p2 sinh Bph 

L 

x 2 1 4Bh ~-- ( - 1 )  "+1 nr~x nrcy 
- Bh 3 B h + - ~ - , ~  1 n 2 cos-ffh-COS h " 

On the axis, y -- o, and the infinite series reduces to the well-known Fourier series for 

~Z 2 f Bah 2'~ nx  
k[- x 2 + - - f - |  , / - n  < ~ < n (Reference 18). 4B2h 2 

The two terms cancel out for x < Bh, and in general, when x = 2n Bh + x', - Bh ..~ x <~ Bh, 

cpB = 4n 2 Bh + 4nx'. 
2 ~ 

There is a continuous linear pressure drop down the axis between x = ( 2 n -  1)Bh and x = (2n + 1)Bh 
with discontinuities in slope at odd multiples of Bh. 
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APPENDIX II 

Morrison's method applied to the corner flow problem. 

Morrison (Reference 16) solved an equation analagous to (2.1) for the problem of wave propagation 
in rods of Voigt material and visco-elastic materials with three-parameter models. Morrison's method 
for solving equation (2.3) is as follows: if the Laplace transform off(x,y) is' written L {f(x,y)}, then (2.3) is 
written 

L f(x,y) 1 p+ 1 /P+" = e (II.1) + a  

where (x,y) now denote the normalised co-ordinates of Section 3. The following general results for 
Laplace transforms are required; 

and 

where 

If G(2) = e-~( ~-2-~z ) 

=L{o(x,w)} 

e-'h<~)=L{$(x,y)} 

(II.2) 

(II.3) 

then 

h(2)= ~-~-f12 2+fl, 

6 ( y , h ( , ~ ) )  = e - ' [ ~ ' - A ]  

= L ~b( ,y ) 9(Y ,Y) Y 

0 

(II.4) 

According to equation (II.1), 

and on applying the transformation 2 = p + ~, equation (5) becomes 

f(x,y) = e-~XL-l { e'~x~_a k/-~e2/~-fl -'(~-~' z~ -+P}  

y 

(ii.5) 

(II.6) 
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But Morrison showed that 

- w(;L-- ~ ) ~  - w  9,- w(~- 2fl)- w [h(~,)- h~) ] 
e = e  

so that equation (II.6) can be written 

f(x,y)=e-~'Xie-W(~'-2p)IeAX-WAG(w,h(A))dAdw 
y L 

= e-~" ; e-W('-2P) H(x-w) f dp(x-w,y')o(y', w)dy' dw 
y 0 

where H(x) is the unit Heaviside function. 

Morrison gives the following results, 

dp(x,y)=L-l{eAXe -yh(A) } 

[ .... H (x) 11 [Sx½(x + 2y) ½] 
= e-P" L otx)+gy x*-~2-~ 

where 6(x) is the Dirac delta function, 
and 

g(x,w)= L-l { eaxe-w(~-~) } 

(II.7) 

= 6 (x-- w) + w~H (x- w) V~ Ix [2x/28 w(x- w) 

where 2 8 = r. 

Thus from the general results (II.2), (I1.3) and (11.4), with (II.7) and (II.8), 

oo 

0 

(II.8) 

= 5 (x) e w(~- 2p) + fl w e -  ~ 11 [ - 8 ~  + 
+ 2w) 

oo 

+8 re-" Y',F 11 [2 ~rw~'- w)] dy' 
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and 

- 1  
L { e ~x e ~ = 6 (x - w) e ~' + ~ w H (x - w) e I1 [ B ~  W 2 ] 

' w  

J x,,/U-S- w 2 

+ [ 3 H ( x - w )  e -~' ; e_#r, ~-r-w(y' + w) 

o , 5  
11 (2 r ~ - ~  I1 ~[" / (x+Y' )2 - (Y '+W)2]  d ' 

.,/(x + y')~-~y'+ w) ~ Y 

Hence from (11.7), (II.1), and (2.3), Morrison's method gives 

- f i cpB: H (x - y) e -  #x_.l_ fie-'X w e-  w 
2e r ~,/ x2 - w2 

i (2 rv/~) I1 [/~/(x + y ) - (y + w) ]_ dy' +fl  / -~e_~Xle  -~' e _ a r , ~ w / - - w I  ,2 , z dw.  
r o x /~  a ~ / ( x + y , ) 2 _ ( y , + w )  2 
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APPENDIX 3 

Evaluation of L (t',, Yn). 

f et;~ 
Ll( tn ,  Yn) -'~ L - 1  

t 

Replace 2 = ( +  r/2, and for simplicity write t', = t, y, = y. 

• ,1".') 
~-1 V~+r 

Expand e rV ~ = ,,=o ~.~ for all varies ofy and (, so that (III.1) becomes 

L1 (t,y)= e a' m=o m.l ~ ] -  

(The order of summation and integration can be inverted, since the integral is shown to converge below). 
(This expansion procedure can only be used to evaluate (ILl); i t cannot conveniently be applied for the 
evaluation of 3.3) say, because of the extra ( ( -  1) term within the exponential). If # = ( -  1, then 

k 7., 7 " L l ( t , y )  e ca (III.2) 
m=o 

Let P,,(t) = L -1 eU' \#+1]  -p (III.3) 

{ {#+a~-~-~ A 1  } { (P+a'~-~2 a 1 } 
= L - '  e U t \ - ~ ]  -p +rL- '  eUtk/~+l] /*(#+11 

so P,,(t) satisfies the recurrence relation, 

t 

f Pro(t) Pro- z(t)+ r e-' e* Pro- 2 (r)dz- 
o 

(III.4) 

Po(t) and P1 (t) are given in Reference 17, 

t 

Po(t) = H(t) [e-"t Io(flt)+ fo e -~  Io(flt~) dP j 

• P l ( t )  = H ( t )  

where H(t) is the Heaviside unit step function, and from the recurrence relation (III.4), all the P,,(t) can 
be evaluated. 
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T h u s  

ym 
L x (t, y )  = e ~t Pro(t) 

ra = o -~* 
(III .5)  

Pz (t) to  P9 (t) a re  g iven  be low,  

t 

0 

P3(t)=H(t) [ a - r e - t ]  , 

t t 

P4(t)=H(t)[e-'tIo(flt)+aZf e-'UIo(fl#)dl~-rZe-'f e-~UIo(fll~)dl~] , 
0 0 

P5(t)= H(t) [e-t+a2(1--e-t)-r2te-t]  , 

y P6(t)=H(t) [e-~'Io(fit)+a3£e-~'lo(fll,)dl,-r2(3+r)e ' e-,8"Io(flF)d#- 
0 

t 

o o 

P7(t) = H(t) I e - t  +a2(1 -e - t ) - r2  t e - t + r ( 1 - a 2 ) t e - t - ½ r 3  t2 e - t + a 2 r ( l _ e - t ) ]  ' 

Ps(t)= H(t) Ie-~tIo(flt)+a4 f e-~#Io(fllOdi~-e-tr2(6+4r+r2) ie-#UIo(fll~)d # _ 
o o 

- r3(4 + r)e ' e- t~u Io(fl/0 d# dz - r 4 e - t  e -  gu Io(fl# ) dl~ dz dz' 
0 0 0 0 0 

P9(t) = H (t) I Pv(t)-r(a3-1) te-t + ½ r2 (1-a2-r)  t2 e - t -~  r4 ta e-t +aa r(l_e-t)l  " 
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APPENDIX IV 

Solution of the Exact Differential Equation in the Form (4.4). 

As shown in Section 3, the exact differential equation can be rewritten in the form, 

+~x)  -~-X-x - ~1 +-~x) ~y2 = 4 Ox 2 (IV.l) 

where (x,y) denote the normalized co-ordinates of Section 3. This form of the equation can be solved as 
follows; writing the Laplace transform ~(y,p) of q~ (x,y) as 

~o (y,p) = i e- px (o (x,y) dx, 
0 

equation (IV.l) transforms to 

[ (~_+p)p ] 2 c~2~ 
l + p  .J ~ Oy 2 - - A ( y ' p )  (IV.2) 

where 

0o 

r 2 t" -,x:020  
A(y,p) - 4(1 +p) 2 j e ~ x 2  ) dx. 

0 

The boundary condition on the wall for the corner flow problem has the transform 

(IV.3) 

B: ~ 
U~ Oy - o n y = 0  

P (IV.4) 

and since the disturbance must be bounded at y = m, 

~(~,p) = 0 (IV.5) 

The solution of (IV.2) is an integral equation for ~ and has the form 

r qy  . - - q y ~  1 '~ /P  - q y  - q y X  ~(y,p) =½(o(o,p)le +e J + ~ ( e  - e  )+ 

Y y 

e qy ~ , , e -~y f + ~ q q J  e-q" A(Y',play ---~-q eq" A(y',p)dy ' . 
0 0 

(IV.6) 

In order to satisfy the boundary condition (IV.5), 

~(o,p) - e/P 1 f e_~y. A(y',p) dy' qB:,/U~ q 
0 

(IV.7) 
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and hence 

~(y,p) - 
~/p 

q B f / [ /  
e -  qy_[ 

r 2 q2 cosh qy 
4(1 +P) 2 q - -  i e-qY' (b(y',p) dy' + 

y 

r z p2 e - q y  

4(1 +p)2 q 

y 

cosh q y' ~(y',p) dy' (IV.8) 

where 

(c~ + p)p 
q(p) - 

l + p  

Therefore 

~(x,y)  - Br/[ , ,  qP "~- ~'4 L- 1 
y 

epX p2 cosh q y qy, ) 
e-  ~)(y',p)dy' }, + (-V4 q 

(IV.9) 

y 
_t_~ L - 1  epX p 2 

( l + p ) 2 q  - -  cosh q y' ~ (y',p) dy' } , 

2u' 2 c~q5 
or  since cp - U~ - U~ 0x ' 

2e - / ' -  1 -~ ~- L- a e px cosh qy 
q (1 +p)2 q 

Y 

{ } e-qY' \ 2,~ ] dy' + 

+ ~ L- 1 eOX p2 cosh qy' dy' . 
(1 +p)2 q \ 2e ] 

0 

(IV.lO) 

N o w  the last two terms in (10) are in the nature of  correct ion terms and so a reasonable approximat ion 
/~rBj, 

to - - 2 ~  in them will be obtained if the first approximat ion  (correct to 0(fl)) is inserted in these terms, 

c p B f  e -  qy 

2e, q 
o (fiz) (IV. 11} 

so (IV.IO) becomes 

2~ --  L - 1  -t- L - 1  epx p2 -qY 
q (1 +p)2  q2 + Y  e - q y  ' (IV.12) 
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Replace p by ( -  1, and write t = x - y  to get 

cpBf e-t e-#yz-1 f et~.eY#/¢ t 
2e (~-  D-(~ ~-fi-)~- ' -+ 

f12 e-t e-#y 
(if- 1)(~_]_ fl)3 ( -  1 

( ~ + / ~ ) ~  • 

But L- 1 e t~ (eYP/2~- 1) d Io(2~-~) 
dt 

and 
fie- #t e t 
l+ f l  J-1--~' from Reference 17. 

Therefore 

L- 1 { e '¢ ~ 1--et 1--e -a' 1--azfl tz) 
(¢_l)(¢+fl)3$_~j = l _ a 3  l _ a 3  ( l+a t  1 - 2  

and 

L _ ~  1-et;  ~ 

so that 

t 

= d+fle-P'+ [d-*+fle-P('-o] Io( 4 ~ ) d z  + 
2e a 

0 

-~ 2a 3 e e-  ~ l + ~ r -  2 e-I~t+ 

t 

+ I Iet- ~--(1 + ~(t - z) -- ~c~2 f i ( t - z ) ) e -P( t - ° ]d Io (4x / /~ )dz}  

+ 

0¥.13) 

(IV.14) 

(IV.15) 

f12 e-t e-t~y 
2e Y 

t 

te- pt + dz (IV.16) 

After integration by parts and rearrangement, (16) can be written 

= - + L ( t , y ; / ~ ) +  /~ 
2e a 

O~2flt 2 f12 ~ +~t___~)+fl2Yt ] j(t,y;fl)+ 
2~ 2 

(IV.17) 
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where  

t 

0 

t 

t 

M(t,y;fl) = fit J(t ,y;f l)-f le-"'  e - i f  e' e p" J(z,y;fl) dz } 
0 

t 

} . 
0 

F o r  fl << 1, (IV.17) reduces  to  (4.2a) a n d  

cpB f _ 1 L (t,y ;fi) + fl- J (t,y ;fl) 
2~ ~ 

a n d  w h e n  y = 0, this r educes  to  

2e - ~ k + L ~  2 ~ a  ' 

which  cou ld  have  been  o b t a i n e d  d i rec t ly  f r o m  (IV.16), 
since 

L(x,o;fl) = 1, 

J (x,o ;fl) = e -  x e -  ~x, 

M (x,o ;fl) = 0 

N (x,o ;fl) = 0 

e q u a t i o n  (IV.18) gives 

c '~(°)Bs-  1 
2e 

a n d  

C~(OO)fl f  1 f12 3fl2 "5fl2 
2e - ct k 2 - ~  a = 1 - f l +  2 T k- 4fl4 + O(fl 5 ) 

e - X  e - g X  

(IV. 17a) 

(IV.18) 
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where the exact results is, [given by Po(oO)] 

c~(oo)B: = 1 

2g x/1 + 2fl 

3fl 2 5 3 105 4 -1-fl+-T-~fl +-~ fl +o(fl~), 

so that the approximate theory is correct to 0(fla). To apply this method to the channel flow, the co- 
ordinates (x,y) in the above analysis must be replaced by the normalized co-ordinates (x',y.) and (x',z.) 
of Section 3 and t replaced by t'., when the result (IV.16) is now b, and cn and 

cpB:_ ~ b,+ ~,, c. asbefore. 
2e n ~ o  n m o  

For a different wall shape, e.g. h = +_ (h + exZ), the boundary condition (IV.4) becomes 

B: gq~ 2e 
Uoo ay p2 

which will modify the first term on the right hand side of equation (IV.8) so that equation (IV. 12) becomes 

c,B: = 2 1_71 + f12 L- 1 - T -  + ye-qy j 
2e qp (1 + p)2q 

and (IV.13) becomes 

{ t { t cpBf = 2e_ t e_fly 1.71 et~ efly/~ et; eflr/g 
2e ((-- 1)2 ((+fl)  ( -1 +fl2e-te-flYL-1 ( ( -  1)2 ((+fl)3 ( -1 + 

+fl2e-te-#YYL-l  { et~eay/~ - 1) (( + fl)2 

and these inversions can still be performed with the aid of the convolution formula in a similar way as 
above. 
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A P P E N D I X  V 

One-Dimensional Analysis Using a Linear Rate Equation. 

The pressure coefficient on the axis can be obta ined from a one-dimensional  analysis as follows: 

First, for a perfect gas, the basic equat ions are, 

M o m e n t u m :  U ~!U+ 1- dp 
dx p d x  = 0 '  

d 
Cont inui ty :  dx (pUA) = O. 

Normal ize  the co-ordinates  to x' =x /K ,  A' - B f A ,  and linearize, 
K 

dA' du ' A dp' 0 
p ~ U oo B i -~;x, + p ~ A~ B f ~x, + U oo B I 0o dx' = 

du ' 1 dp' 
U~ Tx,+ p~ dx , - 0  

dp'_ dp' 1 dp' 
and eliminate ~/~ by writing dx~' - af~ dx"  on the assumpt ion  that  the flow is isentropic, to get 

A'~ B I ( M  ~ - l) du' dA I dx~;- U~ Bf  dx' = 07 

where 
g~ 

M f -  
af~ 

i.e. 
du' U ¢o d A ' 
_ _  - -  . 

dx' A'~ B} dx' 

2U ~ 
Take  A'.,, = 1, A' = 1 + 2 e B i x '  , and solving for cp - Uoo ' 

the frozen solution is 

cpBI -  2x'. 
2~ 

The equil ibrium solution is similarly obta ined from the equat ion 

du' Uoo dA' 
A'~ dx' BZe dx' 
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SO 

cp B 2 _ 2By x' 
.2e 

o r  

cpBy _ 2x'B} = 2 x' 

2e B~ a 

= 1.333 x' for a = 1.5. 

These are shown in Figure 2. 

For the relaxing gas; the basic equations are, 

du' 1 dp' _ O. (V.1) 
Momentum: U°° ~x- t  p~ dx 

d( 
Continuity : -~x p UA) = 0 

o r  

dA A du' A dP' 
Poo U ~ -~x + Poo ~ -~x + U~ ~-x = 0 .  (v.2) 

du' dh' 
Energy: U~o ~xx +-~-x = 0. (V.3) 

Equation of State: h = h (p,p,q) 

where q is the energy in the relaxing mode, so that 

dh' hp dp' dp' + hq~o dq' 
d~ = ~ ~x  + h°~ dx -~x " 

(V.4) 

dq' _ 77'- q (V.5) 
Rate Equation: U oo dx z~- 

where g:/' = 7:/' (p,p) = equilibrium energy in the relaxing mode, or 

dgt' dp' _ dp' 
dx  = c~p~ -~x + q w  T x  " 

(V.6) 

Substitute (V.5) into (V.4) and then (V.4) into (V.3) and eliminate pressure and density gradients using 
(2) and (1) to get 

2 = 0 ,  
~__ ho--j~ _ U ° ° - I  dx A~o d x ~ - ~ \  Zo / 
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o r  

where 

du' U~o dA+ hq~ (7:1'-q"~ 
B} dx A~ dx hp=p~ \ Zo ] = 0 (V.7) 

hp 
B } -  U~2 1, a l  2 - ~ by definition. 

(V.7) is differentiated with respect to x, and (V.4) and (V.6) used to el iminate gradients  of  q', q' and then 
(V.1), (V.2) and (V.3) used to el iminate gradients of  h', p', and p '  in favour of  velocity and area  gradients. 

Thus 

B~ dx 2 A~o dx {- ( ~ U~ z o h;~ +h,~ oglow - -  dx 

Uoo dA } 
A~ dx . = 0  

o r  

d2u U~ d2A) du' U~ dA 
K B} dx z A~ dx ~ +B2 dx A~ dx - 0 ( v . 8 )  

where 

K - h°~ U~° "co 

hp= + hq~ g/p~o 

and 

B2e_ Uo~2 2 h. +hq glp~ 
a~ 1, a¢~ = 1/p~--gtp= hq~ -hp.  

by definition. 

Trans form to normal ized co-ordinates  x'  = X/K, A' BfA = - K to get 

d 2 u' Uo-, dZA ' du' U~o dA' 
dx 12 B~ A'~ Jx '2 +ay2x'-B} A' dx' 

= 0  

where A' = A~o + 2  e B s x' H(x') 

and so A~o = 1. 
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The equation for u' is therefore 

The solution for u' is 

SO 

d2u ' du' Uoo 
0-[-~1. .  t , 2 ~ n f  = O. 

dx' 2 u.~ B} 

u' - 2eU°° [a x ' - l+e - "x '  B~ + _ ~ y a  ( 12eUo~ _e_ax, ) 

2e ~ ax'-l+e-aX" + (1-e-a~').  

This is also shown in Figure 2. 

43 



-CpBf 
2 ¢ 

Exoct  . . . . . .  o 
2 Be ~ i  ..... x 

Bf 2 " "  

I 
I 
I 
I 
I 
I 
I 

0 0.5  I.O 1"5 2 .0  

[ -  FROZ r~N 

I 
EQUIL IBR IUM I ,_  

X I = D I S T A N C E  FROM T H R O A T  

2 
Be = 15  

h i = Bf---Lh : O '  5 
K 

2,5 3,0 
b 

FiG. ]. Pressure coefficient on wall of divergent nozzle. 

C p B f  
2 ¢  

T 4  

E x a c t  . . . . . .  o ~  

8 J ~ ,  . . . . . .  I 

°:,~..io°°,_. 

o .s - L  

FIG. 2. 

or . ,E-  D IMENSI  C NA L --! 

X 

I f  

f 
I 
I 

[ FROZEN / 
I / 
i / '  

/ I  

Z "  

hi = - ~ b -  = O 5 

Frozen . . . . . . .  

Equ i l i b r ium . . . . . . . . .  

I.O 1.5 2 ' 0  2'5 

x l :  D I S T A N C E  F R O M  T H R O A T  - -  
K 

Pressure coefficient on axis of divergent nozzle. 

3-0 

44 



0"005 

0'0025 

0 

0 " 0 4  

0'02 

- C p B f  o 
2 ¢  

0"15 

O- 

0-05 

Q_ B¢ 2 
- B ' E ~ ' = I O I  

2 
Q= B ' ~ f  ~ : I ' I  

- B¢2 -1 "5  

/ 

FIG. 3. 

I '0  2 '0  
X I =  DISTANCE FROM THRO~.T 

K 

EXACT _ _  APPOXlMATE . . . . .  

Corner flow-pressure coefficient on wall. 

3.0 

45 



-CpBf 
2E 

,.o~ yo:_~r(h4'):o 

I.O 

O'g 

0-8 

lO- 

B e 2  =11 a = a-g~f 

0'7 

0'6 

I'O 2'0 
x l=  DISTANCE FROM THROAT 

3'O 

FIG. 4. Variat ion of  pressure coefficient with distance from wal l -equat ion (4.2a). 

46 



~ R 

r ~  

0 

© 

a-' 

n" n" 

W W 

,,*,/~' 

m • 

,< 

E x a c t  . . . . .  o F rozen  . . . .  

B e 2 v . .  
B "~ f  ,:& i x E q u i l i b r i u m - .  

-r I 

t :  
t: 
II 
I '  

I 
! * 

, :  
I I 
I 

I ,  
I '  I 

i ' I 

i ' I 
I , 

I.O 

I 
I 
I 

I 
I 

! 
I t 

I 

I 
I 
I 
I 

~ 1  I . . . .  

I 
, ! 

! 

I 
! 

I 

I 
! 

I 
! ! 

; ! 
! i ! 

I 
i 

I 
I 

I 
I ! 

n J ~ - - - - - -  ! 
2 . O  3 " 0  

I 
X = D I S T A N C E  FP, O M  E X I T  

K 

' I ! 

I 

a :  B ¢ 2  = I • 5 
B f  2 

h i .  B f h  : 0 " 5  
K 

I 
! 

I 

FIG. 5. Pressure coefficient on axis of jet. 



R. & M. No. 3504 

:'(~i ( ' r n w ,  cW~ 'ri~/ t I t)67 

Publis]lcd b~ 
Ih!r  MAJI:SI'~'S S'IA I IONI.R'~ ( )1 t ,1 (  I 

To bc r~tircql:lscd I'roln 
49 I l igh I Iolborn. l .ondon w.l ' . I  
423 Oxl'ord Str¢cl. I .ondon \~,.1 
].~A (':lMIc Street. [!t. j ir lh}l l '~!h 2 

10!) SI. Mary  StrccI, ( ' a rd i f f  CF]  ]JW 
Brazcnnosc Strc~t, Manchester 2 

50 Fairfax Street. Bristol I 
258/259 Broad Street. Birmingham I 

7 I I I.inenhall Street. Belfast BT2 SAY 
or through any bookseller 

R, & Mo No. 3504 

S.O. Code No. 23 ~51)4 


