
Z 

M I N I S T R Y  O F  A V I A T I O N  

A E R O N A U T I C A L  R E S E A R C H  C O U N C I L  

REPORTS A N D  M E M O R A N D A  

R. & M. No. 3491 

The Radiation Sound Field of a Rectangular Panel 
set in an Infinite Wall and Excited by a Turbulent 

Boundary Layer 

By D. E. Davies 

a C ; f  ,*,L ~,~*" . . . . . .  

L O N D O N :  H E R  MAJESTY'S S T A T I O N E R Y  OFFICE 

1967 

PRICE 14s. 6d. NET 



The Radiation Sound Field of a Rectangular Panel 
set in an Infinite Wall and Excited by a Turbulent 

Boundary Layer 
By D. E. Davies 

COMMUNICATED BY THE DEPUTY CONTROLLER AIRCRAFT (RESEARCH AND DEVELOPMENT) 
MINISTRY OF AVIA.TION 

Reports and Memoranda No. 3491" 

April, 1964 

Summary. 
A flexible panel, set in the an infinite wall, is subject to an excitation force distribution which can be 

described by a correlation function. The panel vibrates and radiates sou.nd. Expressions are derived for 
the intensity and pressure power.spectrum in the sound field at points which are far away from the panel 
in comparison with the superficial dimensions of the panel. 

If the excitation of the panel is due to the flow, over one of its faces, of a turbulent boundary layer, 
the thickness of which is small in comparison with the superficial dimensions of the panel, then an approxi- 
mate expression for the correlation function of the excitation force distribution can be used in the evalu- 
ation of the expressions obtained. This evaluation has been made to determine the intensity and pressure 
power spectrum at points on or near to the normal through the centre of the undisturbed panel and on the 
other side of the panel from the one containing the boundary-layer flow. In this way we can determine the 
way in which the intensity and pressure power spectrum at these points depends on the plate dimepsions 
and material properties, on the speed of the flow containing the boundary layer, on the thickness~'pf the 
boundary layer and on the density of and speed of sound in the fluid medium around the panel. ~' 
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1. Introduction. 

Turbulent boundary-layer pressure fluctuations excite vibration in an aeroplane fuselage skin and 
the skin in turn radiates sound into the inside of the fuselage. The higher the speed of the aircraft, the 
greater are the boundary-layer pressure fluctuations and consequently the higher is the intensity of the 
sound radiated from this source into the inside of the fuselage. 

Several writers have been concerned with the determination of the intensity of sound inside the fuselage. 
Owing to the complexity of the problem a great deal of idealisation has been resorted to. The fuselage 
skin is replaced by a flat surface and the boundary-layer pressure fluctuation is assumed to be independ- 
ent of the vibration of the surface. The vibration of the surface will be influenced by the back pressure 
resulting from the radiation of sound on both sides of the surface so that, strictly, vibration of the surface 
and radiation of sound are coupled phenomena. However, it is assumed that for a surface vibrating in 
air the back pressure can be taken into account by incorporating a damping term into the equation of 
vibration of the surface. 

Ribner I considers the surface to be a flat plate without any supports and predicts the sound intensity 
i 

by considering travelling ripples in the plate and assuming that the spatial pattern of correlation in the 
turbulent boundary layer is rigidly convected. Corcos and Liepmann 2 consider the same problem as 
Ribner 1 but their method is more general and allows for a more general description of the boundary- 
layer fluctuations. 

Kraichnan 3 considers the flat surface to be made up of an array of equal rectangular panels, each simply 
supported at its edges. The intensity of the radiation is obtained by multiplying the velocity of a point on 
the vibrating panel by the pressure at that point and integrating over the panel. Several approximations 
are made in the ensuing analysis in order to get results. 

The problem considered by gJyer 4 is that of the radiation of sound into a rectangular box of which 
a flexible rectangular panel forms one side and the other sides are pressure release surfaces. The flexible 
rectangular panel is excited by a turbulent boundary layer. The rectangular box is filled with water and in 
this case coupling of the plate vibration and sound radiation is considered. 

Experimental work has been carried out by Ludwig 5 when the flat surface consists of one rectangular 
flexible panel in a rigid surface. The sound pressure level in a reverberant chamber enclosing the panel 
was measured and this was related to the total sound power radiated by the panel. 

In this report the flat surface again consists of one rectangular flexible panel in a rigid surface. The nature 
of the pressure and the intensity of the sound radiated are investigated at large distances from the panel 
and on the other side from the one in which the turbulent boundary layer is present. The turbulent 
boundary layer is assumed to be flowing in the direction of one of the panel edges. Explicit expressions 
for the pressure power spectrum and the intensity are obtained for points On or near to the normal 
through the centre of the undisturbed panel. 

There is not a great deal of agreement between the results given in the papers mentioned above. In 
Refs. 1, 2 and 3 the intensity of sound radiation is equal to the power per unit area radiated. In Ref. 4 the 
total power radiated is measured. In the  present report the intensity near to the normal to the panel is 
obtained, and this is not simply related to the total power radiated. The results are therefore not directly 
comparable. Nevertheless we do find qualitative agreement between the results of Corcos and Liepmann 2 
and the present paper. 
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2. Radiation Field of a Vibratin9 Panel. 
A set of right-handed rectangular cartesian coordinates x, y, z are chosen with x and y-axis along 

two adjacent sides of the rectangular panel and z-axis normal to the plane of the panel when it is undis- 
turbed. The origin is taken as any convenient point, for example the bottom left-hand corner of the panel. 

Let the excess air pressure over the undisturbed pressure be p(x,y,z,t) at a point (x,y,z) at time t. Then 
the auto-correlation function 4)(x,y,z,~) of the pressure at the point (x,y,z) is defined by 

T 

O(x,y,z,z) = lim ~-~ p(x,y,z,t) p (x,y,z,t + ~) dt 
r ~  oe - T 

(1) 

and this is an even function of z. 

The power spectrum P(x,y,z,co) of the pressure at the point (x,y,z) is then defined by 

P(x,y,z,o)) = f cp(x,y,z,z) exp (ioJz) dz 
- o o  

(2) 

and since 4)(x,y,z#) is an even function of r this is a real even function of o9 which alternatively may be 
defined by 

P(x,y,z,e)) = 2j ~o(x,y,z,'c) cos (co~) dr. 

0 

(3) 

By Fourier inversion of (2) we get 

1 i ~)(x,y,z,'c) = ~ P(x,y,z,o.)) exp ( -  ico'c) do) 

- - 0 9  

co 1; 
= -~ P(x,y,z,co) cos coz do. 

0 

(4) 

The meafl square excess pressure at the point (x,y,z) is then 

O3 

= ~(x,y,z, °) = lIp(x,y,z,o))dco. (5) 
0 

Instrumentation is available for measuring the power spectrum of the pressure, so for that reason 
we shall investigate its nature in the present problem. 

We shall also be interested in the intensity of the sound radiated at large distances from the panel. 



If the fluid particle velocities at the point (x,y,z) at time t in the directions of x,y, and z are respectively 
u(x,y,z,t), v(x,y,z,t) and w(x,y,z,t), then the average flux of energy in the directions of x,y and z are given by 
Yx, b and ~, respectively, where 

T 

1 I 7~ = lim ~ p(x,y,z,t) u(x,y,z,t) dt 
T ~  oo - r 

T 

1 I 7y = lim ~ p(x,y,z,t) v(x,y,z,t) dt 
T ~  oo - r 

T 

' I  7z = lim ~ p(x,y,z,t) w(x,y,z,t)  dt 
T--+ oo - r 

(6) 

These fluxes of energy are the components of the intensity vector at the point x,y,z. The magnitude 
r ( x , y , z )  of the untensity veotor is therefore given by 

V (~,y,z) = , / ~  + ~ + ~ (7) 

If the displacement at time t of a point (xo,Yo) on the panel is given by the function Z(xo,Yo,t), then 
according to Rayleigh (Ref. 6 page 107) the velocity potential (p(x,y,z,t) at the point (x,y,z) at time t is 
given by the formula 

1 I f  a f ro '~dxodyo kx0,y0,t-;o) To 
panel 

(8) 

where 

r.o = ~ / ( x -  Xo): + ( y -  yo) 2 + z ~ (9) 

and ao is the speed of propagation of sound. 

The pressure p(x,y,z,t) is obtained from the linearised Beroulli equation and is therefore given by 

where P0 is the density of air. 

p(x,y,z,t) = - Po-~ (x,y,z,t) 

= 2-~ ~-~Z o,yo,t - r °  d x ° d y °  
r0 

panel 

(10) 



The pressure auto-correlation function, defined in equation (1), is then.. 

T 

= P~ - 1 I I I  I f  02 (x ao) x (o(x,y,z,~) ~ lim ~ dt ~ Z o,Yo,t- r° 
'1 : -+  O 0  - T panel panel 

x - -  Z 'o,y'z,t + ~ -  'dxo dyo dxo dyo 
~3t 2 \ ao/ 

where 

(11) 

Now 

r ;  = X/(X --X{)) 2 q - ( y - - y ; ) 2  ]_ Z2. 

T 
1 ;  02 Q r_o)02 (x r°J lim ~ ~ Z xo,Yo,t- ~ Z 'o,Y'o,t + ~ -  dt 

T--+ oo - r 

(12) 

T - t o  

1 I ~° 02 02 (x' ' t - ~  -r°-r'°'~ .=lim ~ -ff~Z(xo,Yo,t ) ~ Z  ~ o,Yo, + + ao ) d t  
r--+ oo -T--r_O.  

ao 

T 

= lim ~-~J ~ Z(xo,Yo,t)~ Z 'o,y'o,t + ~ + r ° - r  dt 
1---->00 - T a o ] 

, ,  ? )  = Z o,Yo,Xo,Yo, ~ + (13) 

where we define 

T 1 f 02 0 2 
)~(xo,yb,x'o,Y'o,z ) = lim ~ ~ Z(xo,Yo,t) ~ Z(x'o,y'o,t + z) dt. 

T--+ oo -7" 
(14) 

If therefore we perform first the integration with respect to t in (11) we obtain 

II SS " c/)(x'Y'Z'V) = 4-~ 2 Z ~ x°'y°'x°'y°''c + ao ) ro r'o 
panel panel 

(15) 

The particle velocity is given by the gradient of the velocity potential Its components are therefore 
obtained from (8) as 

1 I I  1 02 / ro'~ 1 0 (x r ° ) ( x - x ° ) d x o d y o  
u(x,y,z,t)= ~ aor--~o Ot ~ Z  ~x°'y°'t--%o)-+~o'~tZ °'Y°'t-~o ro 

panel 

(16) 



l f f l  1 02 (x %) 1 --0Z( x ? ~  c3t r--a-o)] (Y-Y°) 
= _ _  _ _  + r ~ o , Y o ,  t - -  v ( x , y , z , t )  ~ aoro Ot 2 Z o,Yo,t-- r° -- 

ro 
panel 

- - d x o  dyo (17) 

1 1 f l a ~ o  02 (x r~-o) 1 0 (x r~o~)l ~o w(x,y,z,t) = ~ ~ c3t-- 7 Z o,Yo,t-- + ~ ~ Z o,Yo,t-- dx o dy o 
ro 

panel 

(18) 

The intensity if obtained by substituting expressions (16), (17) and (18) for u(x,y,z,t), v(x,y,z,t) and 
w(x,y,z,t) and the expression (10) for p(x,y,z,t) into equation (6) and then using (7). 

If ~/x z + y2 + z 2 is much greater than the diagonal of the rectangular panel much simplification occurs 
since then ro changes only little over the area of the panel and certain terms in the integrands can be 
taken as effectively constant. The expression for the intensity may then be approximated by 

T 

ffIfo ( Y (x,y,z) = ~P° lao r[~ limT~oe ~ dt ~ Z o,Yo,t-~o x 
-- T panel panel 

T 

02 (x r' I f f f  f f  a ( Z r~o~) x fft~ Z 'o,Y'o,t-r'°~ dxodyodx'ody'o+l lim dt xo,Yo,t- \ ao] r T__. ~ ~ x 
- T  panel panel 

x ff[g Z 'o,Y'o,t- dxodyodx'ody'o 
\ ao/ 

4n zp° I +  f f  I f - [ ' x  x' ' r°-r'°'~dx _ . . . .  + Z~ o,Yo, o,Yo, ] o yoaxoayo 
panel panel 

1 f i r  f f  I / , ,  ro--r'o, +7 A t,Xo,yo,Xo,yo, dXodYodX; y; 
panel panel 

(19) 

where 

T 

A(xo,Yo,X'o,Y'o,Z) = lim 1 I 0 82 T--* oo2% ~ Z(x°'y°'t)-~ Z(x'o,Y'o,t + z) dt (20) 

and 

Very far from the panel 

~' ~__. N / X 2 - l - y 2 q - Z  2 

ao r2  Z 

panel panel 

(21) 

(22) 



will dominate over 

~xo,Yo,Xo,Yo, ~ )  dxody odx'o dy'o (23) 

panel panel 

and the second term in equation (19) may be neglected. In this case we shall say that we are in the far field: 

When x /x  2 + y2 + z  2 is much greater than the diagonal of the rectangular panel, and the second term in 
equation (19) may not be neglected, we shall say that we are in the intermediate field. In the far field the 
intensity is then given by 

4rc2 aor2 Z o,Yo,Xo,Yo, ao J 

panel panel 

On comparing equations (15) and (24) we get, in the far field, the relation 

(24) 

1 
Y - c~(x,y,z,O) 

poao 

_ _  
_ p2 (25) 

poao 

so that the intensity is closely related to the mean-square pressure. In the intermediate field no such 
simple expression holds. 

3. Vibrations of the Panel. 
The classical partial differential equation governing the vibration of the panel is 

~ 2 Z  4 
M ~ - + D V  Z =f(x,y,t). (26) 

In this equation M is the mass per unit area of the panel, f(x,y,t) is the exciting force per unit area and D 
is the rigidity coefficient defined by 

Eh 3 
0 - (27) 

12(1 - a  2) 

where h is the panel thickness, E is Young's modulus of the plate material and a is the Poisson ratio. 
The exciting force per unit areaf(x,y,t) arises from the pressure fluctuations in the boundary layer and 

also from the unsteady pressure distribution arising from the vibration of the panel in air. We shall assume 
that the pressure fluctuations in the boundary layer are not affected by the vibration of the panel. The 
contribution tof(x,y,t) of the unsteady pressure distribution arising from the vibration of the panel is a 
complicated integral expression in Z, and substitution of this into (26) would lead to a complicated 
integro-differential equation. To make the problem tractable we shall make the assumption that the 
contribution of this unsteady pressure can be taken into account by adding a virtual mass to M and 

bringing in a damping term b OZ -~- on the left-hand-side of equation (27). The f(x,y,t) on the right-hand- 

side will then arise entirely from the pressure fluctuations in the boundary layer. 
The values to be ascribed to the virtual mass and to the damping coefficient b are difficult to estimate. 

However the virtual mass can be expected to be small in comparison with M so that its effect is small and 
can be neglected. For  a rigidly oscillating infinite plate the acoustic damping coefficient b would have the 



value 2po a o. This value may need modification for application to a finite vibrating plate. There will also 
be h contribution to b from the structural damping and this contribution will depend on the plate thickness. 

We take therefore, as the governing equation of the panel vibrating in air : 

~2Z 3Z ¢ 
M ~ + b ~-f + D V Z = f(x,y,t) (28) 

wheref(x,y,t) is the exciting force arising entirely from the turbulent boundary-layer pressure fluctuations. 
The natural modes of oscillation of the panel satisfy the differential equation 

02Z V 4 M ~ + D Z = 0 (29) 

and also certain conditions at the edges ofthe panel. 

Let 

Z = e(x,y) exp (icot) (30) 

satisfy equation (29), and the conditions at the edges of the panel. 

Then 

where 

V 4 e ( x , y ) - 2  2 e(x,y) = 0 (31) 

,~ = X//~ ..co. (32) 

Equation (31) is satisfied for only a discrete set of values of 2 for the given edge conditions, and to each 
of these values of 2 there corresponds a function e(x,y) which we call a modal function. 

The discrete set of values 2 may be numbered and then the ruth member is denoted by 2,, and the 
corresponding modal function is denoted by em(x,y). The ruth natural circular frequency corn is obtained 
from (32) and is 

co,,, = V/-~. 2,,. (33) 

The modal functions em(x,y) are orthogonal for clamped or simply supported edge conditions, and 
we normalise them so that 

f l e m ( X , Y )  en(x,y)dxdy=cSm,n (34) 

panel 

where fro,, is Kronecker's delta. 
If, for example, the panel is simply supported at its edges the natural circular frequencies are given by 

•fr-• lem2 _ 2\  
(.Ore = ~ 2  [~ 1 . m 2 1  

\7+Y) (35) 

'8 



and the corresponding modal functions are 

s~(x,y) = = sln sin - (36) 

where c and d are the lengths of the sides of the panel parallel to the x and y axes respectively. 
The integers rn, and m2 are associated in a one-to-one correspondence with the integer m. 
If the panels are clamped at their edges then there is no analytic expression for the natural frequencies 

and the modal functions. The natural frequencies and modal functions may nevertheless be obtained to 
good accuracy by an approximate procedure such as the method of Raleigh-Ritz, provided the mode 
shape does not have too many peaks and troughs over the area of the panel. 

Following Powell 7 we shall write the solution of equation (28) as an infinite series in the modal functions : 

Z =ESm(X,y) ~m(t) 
m 

(37) 

where ~,n(t) are functions of time only and may be regarded as generalised coordinates. 
Substituting (37) into the differential equation (28) and making use of (31) and (33) leads to 

Eem(X,y)  {M ~m(t)+ b ~m(t)+co 2 M ~m(t) } = f(x,y,t) 
m 

(38) 

and then using the orthonormal property (34) we get 

~m(t)+fl ~,~(t)+CO~m(t) =fm(t) (39) 

where 

b 
fl = ~ (40 )  

and 

fm(t) = -~ f(x,y,t) em(X,y) dx dy. 
panel 

(41) 

The functionf(x,y,t) is a complicated function and there is no hope of determining it either experi- 
mentally or theoretically. Howeyer th e correlatipn function of the excitation 

c, 

T 

• l f r  f ' '  ¢(x,y,x',y',z) = hm - -  (x,y,t) f (x ,y ,t + z) dt 
oo 2T 

(42) 

is believed to be a well defined function which is well behaved, and which can be measured. We shall 
assume that the function ¢(x,y,x',y','c) is given as the description of the turbulent boundary layer excitation. 



The power spectrum Q(x,y,x',y',e)), sometimes called the cross power spectrum, of the excitation is 
defined by 

(2(x,y,x',y',co) = i O(x,y,x',y',z) exp(ico'c) dr 
--CO 

(43) 

and, alternatively, this function might be given as a description of the turbulent boundary-layer excitation. 
The displacement function Z(x,y,t) corresponding to the exciting functLonf(x,y,t) is also a complicated 

function, but the correlation functions (14) and (20) are well behaved. We can give expressions for Z and 
A in terms of 0 or Q. 
By use of equation (37) we get for the correlation functions Z and A the series 

z(x,y,x ,y ,~) dx,y)  8.(x ,y ) ~m,.('c) 
//1 n 

(44) 

where 

and 

Define 

and 

A ( x , y , x ' , y ' , z ) = ~ - ~ - ~ m ( X , y ) s n ( x ' , y ' ) # m , n ( z )  

m n 

O9 

1 f 02 O 2 
(m..(Z) = lim ~ -~7 ~m( t ) - ~  in (t + Z) dz 

T--, oo --CO 

cO 

i f  8 0 2 #,,,,,.('el = lim ~ ~ ~m(t) -~7 4. (t + z) dr. 
T--+ oo 

- - O 9  

0,,,,,.(o~) = f {,,,,,,(z) exp (iooz) dz 
--co 

v,,,,,,(co) = f #~,,,('c) exp(ico'c) dz 
- - C O  

panel panel 

(45) 

(46} 

(47) 

(48) 

(49) 

(50) 

.10 



It follows from equations (39), (41), (42) and (43), as is shown in Appendix I, that 

1 co '~ Rm,n(o) ) 
Om'"(CO) -- M 2 [ - (n 2 + ifle) + o) z] [ - co 2 - iflco + o~2.] 

(51) 

1 ie93 Rm,.(co) 
v~,.(~o) - M ~ [ -  ~o ~ + i ~ o  + ~o~] [ - o~ ~ - il3o~ + ~o~.] 

(52) 

The pressure auto-correlation function is obtained from (15) and (44) and is 

~ Z Z  D2 fff ff '?'m(XO'yO) '~n(Xto'YrO)~rn'nl 7)'Ar-rO-rtO~dxOdflOXdXtOdyO ( 5 3 )  
4)(x,y,z,z) ~ ro r'o ao / 

m n panel panel 

The power spectrum of the pressure in the far and intermediate fields is obtained by taking the Fournier 
integral of (o(x,y,z,z) according to equation (2) and is 

P ( x , Y , Z , C ° ) = ~ - ~ P ~  I f f  e~(x°'y°)e'(x'°'y'°)ro ro 

m n panel panel 

~ ' r ° - r ' ° )  ei°~dz - - d x o d y o d x ' o d y '  o x (m,. + ao 
- - o 0  

=~--n~--~J 4 ~  2z 0~'"(c°)p° f f f f em(x°'y°) e'(x'°'y'°) ro r'o 
m n panel panel 

- - e x p  ×dXodyoex;ay; 
L ao d 

4~2M2/ j I  if_ - co 2 + iflm + o92] [ - o92 _ iflco + (.o2] 
m n 

x - -  exp dx o dy o - -  exp dx'o dy'o (54) 
ro \ ao / r'o \ ao / 

panel panel 

The intensity of radiated sound at the point (x,y,z) in the intermediate field is obtained from (19), 
(44) and (45) and is 

~..(xo,yo) ~.(xo,yo) x 
L z mJ~n i adn~el'S~p panel 

\ ao / r z_.aZ._..a 
m n panel ~panel 

t t x e.(xo,Yo) #m,. dx o dy o dx'o dy . (55) 

In order to evaluate this expression the functions (,.,.(z) and #.,,.(z) must be obtained. The function 
R.,,.(w) can be determined from equation (50) and then 0m,.(co) and vm,.(co) are determined from equations 
(51) and (52). The functions (,.,.(z) and #m,.(Z) are then obtained by taking the inverse Fourier integrals 
of 0,.,.(co) and vm,.(co). Tlae process involves taking the Fourier integral of ~s to obtain Q at the beginning 
and then taking an inverse 'Fourier integral at the end. These processes can be effected analytically. 

11 



On taking the Fourier  inverse integral of 0m,.(o) and using (51) we get 

1 i Om .(CO) exp (-- ic0z) do  G,.(t) = ~ 
- o 0  

o9 

_ 1 f o 4 R m , . ( o ) e x p ( -  i oz )do  
2rcTV/2 [ - -  ( D  2 - t -  i 8 0  "-}- 0 2 ]  [ --  0 2  --  i8(D -[- 0 2 ]  " 

(56) 

We can show that  (see Appendix II) 

oo 

1 f o 4 exp ( -  oz) do  
[ -  o 2 + i8o  + o~3 [ -  co ~ - i8o + o .  ~] = & )  + &'"(~) 

- o 0  

where a(t) is Dirac's delta function and 

Sin,.(.) = 
co4._2fl2 2 1 4. • 2 co. +~8 - t8c~.(2o. - 8 2) 

• 2 2 2 2 t % [ m .  - c % -  8 - 2 i8~ . ]  
exp (--fl--icq)t - 

4- 2 2 co. - 28 o .  + ½84. + i8c~.(2c°, z - 8 2) 

[co. - c%-- fl + 2t/~.]  22i~. 2 2 2 " 
exp ( - - f l + i e ~  z 

z>O 
4- 2 2 1 4- • 2 o ~ -  28 Om +~/~ -- ~8C~d2Om-- 82) 

• 2 2 2 S,. , .(z) 2t~,.  I o t a -  con - fl - 2iflcg.-1 

o ~ - 2 8  o)m+~8 + ~ 8 ~ d 2 o , . - 8  ) 
• 2 2 210~ m [09 m -- O n -- fl 2 -t- 2 i f  Otto] exp -- ie t 

t < O  

with 

(57) 

(58) 

82 
~,~ = o 2 (59) 

4 

The right hand side of equation (56) may then be replaced by a convolution integral and we obtain 

oo 

1 f Fa(u) + s~ .(u)] rm.(~-- u) du 
- o o  

oo 

1 I M2 r~.(t)+ S~.(u) r=,.(t-u)~/u (60) 

12 



where 

co 

if F.,,,,('c) = ~ R,,,,,,(09) exp ( -  io9z) do9 
- o o  

=IfII~b(xo,Yo,X'o,y'o,z)e,,,(xo,Yo)e.(x'o,y'o)dxodyodx'ody'o. 
pane l  panel  

On taking the Fourier inverse integral of v,...(09) and using (52) we get 

oo 

if ,u,,,,,,('c) = ~ Vm,,,(O9 ) exp (-- io9z) do) " 
- o o  

_ 1 f i09 3 R,,,,,,(09)exp(- i~z)d09 
2~M ~ [-092+i/709+09,~] [ - o 9 ~ - i ~ 0 9 + o 9 , q  

- o o  

(61) 

(62) 

We can show that (see Appendix II) 

1 i - io9a exp ( -  i09z) do) _ 
[_092+iB09+09~] [_092_i/709+o9~] - T~.,(~) 

--¢O 

(63) 

where 

T,.,.(~) = 
0 9 2  2 2 1 4- • 2 2 -2/? co,, +~/? )-tfl~,,(2o9.-/? ) 

2% (cg,- ~ )  (09,,z - o9~ - f12 + 2ifl%) 

4 2 2 1 4- (09, - 2 ~  o9, +~/~ )+  i/~.(2o9,~-/~ 2) 

2% n ~ -  2 2 2 (09~ -- ogre --/? + 2i/?ct~) 
exp (-~+~c~.) z 

z>0.  

4 2 2 1 4 • 2 2 r....(~) = ( % - 2 / ?  09..+~/? )- , /?~.(2o9. .- /~ ) //? . "~ - - ~ - - - - - -  exp i -+~%,  I z +  

1_(o94 _ 2fl2 092 + ½f14) + ifle,.(2o9 2 _ fi2) 
- -  ~ -  - -  - -  exp 
20~m @m +t_fff12 ) (o92m__092 f12 + 2iflo:m) (fl--io~'n) 

z<0.  (64) 
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We notice from the definitions (57) and (63) that 

d 
d-7 Tm'"(z) = 6(z)+S,,,,(z) (65) 

and this can indeed be verified by using the expressions (58) and (64). 
The right hand side of equation (62) may now be replaced by a convolution integral so that we obtain 

oO 

1 f ~m,n("C) = ~ Ym,n(U ) Fm,n('C - u) d•. 
- - o O  

(66) 

The intensity of the sound at the point (x,y,z) can then be evaluated using (55), (60) and (66). 
If z > > x and z > > y then r o and r; are practically constant for all points on the panel, and 

t 
r o -  r o m_ O. 

This is true for points near the perpendicular through the centre of the undisturbed panel and then 
sound signals leaving any points on the panel simultaneously will arrive at the observation point simultane- 
ously. In this case the expression (55) for the intensity simplifies to 

,o  
(~,y#) = 47s 

I~z n m n 

(67) 

where 

Hm = _11 ~m(X,y) dx dy. 
panel 

(68) 

For a panel with simply supported edges the expression for H m corresponding to the modal functions 
given in equation (36) is 

H.,  = 2x /7~  [1 - ( -  I )  m'] [ i  - ( - i )  m~] 
mlm2 

0 1 = ( ~ ) .  (69) 

In this case also the expression for the power spectrum given in equation (54) simplifies to 

e(x,y,~,~o) - P~ 1 K-~N-- ,  ~m u .~o  '~ Rm,.(~o) 
47c e V 2 ~ / / "  j~_.~ [-- o2 z + ifi~-+~j~] ~ i f l m  + (o,2] (70) 

m n 

and the mean square pressure, obtained from (53) by putting z = 0, becomes 

= ¢ ( x # # , o )  = s-s,. s-s. ~, . , . (o).  (71) 

14 



4. Evaluation o f  the Expressions. 
In order to evaluate the integrals we must know either the correlation function O(x,y,x',y',z) defined 

in equation (42) or the power spectrum Q(x,y,x',y',co) defined in equation (43). 
The function O(x,y,x',y',z) is to be substituted into equation (61) and the integration carried out. It is 

not likely that this integral can be carried out analytically even if an analytical expression for O(x,y,x',y',z) 
is known. Numerical integration is, however, possible for any given value of z. Care must be exercised 
in using the numerical procedures when the modal numbers m and n are high for then the functions 
e,,(x,y) and e~(x,y) become highly oscillator3~ over the extent of the panel. This oscillatory behaviour of 
e~(x,y) and e,(x,y) is responsible for a rapid decrease in the values of F,,,,(z), at a given value of z, when 
m and n increase and leads to rapid convergence of the series involved. 

In a turbulent boundary layer whose thickness grows only little in a distance of order of a panel re- 
presentative length the correlation function O(x,y,x',y',z) may be taken to be a function of x - x ' ,  y - y '  
and z only, i.e. the pressure field may be taken to be homogeneous. The maximum value of ~(x,y,x',y',z) 
occurs when x = x', y = y' and z = 0. Also ~/(x,y,x',y',z) becomes small when [z[ becomes large. This in 
turn indicates that F,,.,(z) becomes small when [-el becomes large, and in fact Fm.,(z ) will become effectively 
zero outside a finite range of ~. The evaluation of the infinite integrals in equations (60) and (66) may then 
be accomplished numerically for the integrands become effectively zero outside a finite range of u. The 
sound intensity is then obtained from (55) by evaluating numerically the integrals occuring there. Also 
the mean-square pressure can be obtained from equation (71). 

To obtain the power spectrum P(x,y,z,co) from equation (54) or (70) we must evaluate Rm,,(co). An 
expression for R,,,,(co) is found by taking the Fourier inverse of equation (61). This is 

Rm,.(co) = f Fm,.(z) exp (icoz) dz 
- - c o  

(72) 

and this function can be evaluated numerically once F,,n(~ ) has been obtained at sufficient appropriate 
values of z. 

If the power spectrum Q(x,y,x',y',co) is given rather than the correlation function O(x,y,x',y',z) then 
Rm,,(co) may be obtained from (50) by numerical integration, so that the power spectrum P(x,y,z, co) is 
obtained immediately from equation (54) or (70). 

Equations (51) and (52) may be used to determine Om,,(co ) and v,,,,(co) and then (m,,(Z) and/~m,,,(z) are 
obtained on inversion of (48) and (49). The intensity of the sound is again obtained from (55). 

It may be noted that the evaluation of the power spectrum P(x,y,z,co) is easier starting with Q(xo,yo, 
x'o,y'o,co) given rather than with O(x,y,x',y',z) given. However, if O(x,y,x',y',z) decreases rapidly as z moves 
away from zero then Q(x,y,x',y',co) will decrease only slowly as co increases. In this case it is better to avoid 
using the power spectrum Q(x,y,x',y',co) for evaluating the sound intensity of the mean-square pressure as 
the numerical processes involved become very much more lengthy than when O(x,y,x',y',z) is used 
directly. If analytic approximations can be made this method of evaluation may become the easier. 

Experiments by Willmarth s show that the pressure correlation in a turbulent boundary layer corres- 
ponds to a downstream convection Of a spatial pattern of correlation. For two points, one downstream 
of the other, the correlation curve with respect to z shows a decrease in its maximum height and a spreading 
out as the distance between the two points increases. For  convection in the direction of the x-axis Dyer 4 
has given the correlation function, 

- [ -  O(xo,Yo,X,o,Y,o,Z) = f a  exp K ~/(~o - UoZ) 2 + tl 2 - . (73) 
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As a fit of the experimental data which incorporates the most important features of the convected pressure 
field. In equation (73) the symbols have the following meanings 

, } X o - - X  0 

tlo = Y'o - Y o  

(74) 

f z  is the mean-square excess pressure in the boundary layer 
u o is the mean convection speed along the direction of the + ve x-axis 
~:,0 are constants. 

The expression (73) can be expected to be only an approximation. The correlation curve for two points, 
one downstream of the other and distance 4o apart, is obtained by taking t/0 = 0 in expression (64). 
The curves obtained for different values of 4o do not represent the spreading out of the correlation curve 

with increasing ~o, and there is a cusp at v = 4o. Furthermore, curves of constant 0 on the 4, t/o plane 
Vo 

at a given ~ are circles with centre 40 = Uo z, t/o = 0, showing that (73) represents convection of an isotropic 
pattern of turbulence. Experiment shows that curves of constant 0 at given z are closed curves elongated 
along the direction of the flow so that in fact there is not an isotropic pattern of turbulence. Multiplying 
t/~ in expression (73) by a constant would change the constant ~ circles into ellipses, and this might be an 
improvement. However for the further work in this paper expression (73) will be used as an idealisation 
which incorporates the most important features of the convected field. Kraichnan 3 uses a field of con- 
vected turbulence which is not isotropic. 

From experimental measurement 8 it is known that over a wide range of Mach number 

V / ~ =  0"006 x ~ Po Ug (75) 

where U0 is the free stream velocity. Dyer 4 has made the following estimates for ~:, 0 and Uo based on 
experimental measurement : 

2 
/ £  , - ~  M 

6 

306 
0 -  

U0 

u o ,-~ 0.82 Uo 

(76) 

where 6 is the boundary-layer displacement thickness. 
t .  

In practice & is small compared with the dimensions of the panel so that - as small in comparison ~c 

with the fundamental period of the panel. 
~(xo,Yo,Xo,Yo~,~) Under certain circumstances approximations can be made in integrals containing ' 

given by expression (73). If the nearest distance from the point (x0 + UoZ, Yo) to an edge of the panel is very (1) 
large compared with -1 and if e,(X'o,Y'o) does not vary much over distances of O from the point 
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(x o + UoZ, Yo) then we can write approximately if the point (x o + UoZ, Yo) is on the panel 

f ~ e x p  [ - ~x/(~o -UoZ) 2 + qo 2] e,(X'o,Y'o) dx'o dy'o 
panel 

~-- ~" (x° + u°'r' Y°) ff [ exp [-- xx/(~o - uoz)2 + tl~] dx'o 
whole 
plane 

2u 
= -~ e n (Xo +Uo'C, yo) (77). 

whereas if the point (Xo + u0"c, yo) is not on the panel 

. + t / o ]  e~ (xo,Yo) dxo dyo ~- O. (78)  

panel 

This is equivalent to replacing exp [--  t%/(~ 0 - UoZ) 2 + t/2] by ~ 6(~0 - UoZ) 5(tlo) as far as these integrals 

are concerned. 
Then from (61) and (73) we get 

F=,,(z) = ~ exp em(xo,Yo) e~(Xo + UoZ,Yo) dxo dyo (79) 

panel 

where e,dx,y) is defined to be zero for points (x,y) outsidethe panel. The errors introduced near the edges 
by using the approximations (77) and (78) are small compared with the total value provided the panel 

dimensions are very large compared with 1 and the functions e,dx,y), e,(x,y) do not change much over 
/£ 

/ . \  

a distance of 0 (~.}. 

If z moves away from zero, then while Uo-C is still small in comparison with the panel dimensions, [z] 
0 

will have become a very large number i f  0 is very small compared with the panel fundamental period. 
This means that the integral 

• ff em(Xo,Yo) en(Xo +'u;z,yo) dxo dyo (80) 

panel 

very little in the interval of z for which exp (_L~[) has a sensible value. Hence in evaluat- has changed 

ing R=,,(o0 from equation (72) we can take the value of the integral (80) to be the value it has when z = 0. 
This gives approximately 

oO 

Rm,n(°,9) = ~ flem(Xo,y;)en(xo,Yo)dxodyo f exp (-I~lO ) 
panel - m 

exp (icor) d} 

- -  0 1 
= 4f 2 ,---~ 1+(.02'025m',n (81)- 

and this does not depend on the convection speed Uo. 
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The factor exp (i0)~) in equation (72) will not change much near r = 0 when (1) is small, but when (1) 
is large it will have an oscillatory behaviour near z = 0 and for this reason it must be retained. 

From equation (54) it then follows that the power spectrum P(x,y,z,co) of the pressure in the inter- 
mediate and far fields is given by 

P(x,y,z,co) - p2 f2  0 1 ~-a  CO'~ f f  gm(Xo,Yo) exp 
,~ M ~ ,~ (l+7o~o'iZ_.~(_co~+~)~+~0)~ , ~  

m panel 

xl I ~,(x~,Y~)ex p i0)r'o 
r'o • ao dx'o dy'o 

panel 

- icor°) dxo dyo x 

ao ] 

(82) 

or, near the perpendicular through the centre of the panel we have, using equation (70) 

m 

Z (1) H m p(x,y,z,co)_pZ ,f2 1 0 1 4 2 
~2 M 2 r 2 i¢2 (1 -I- (I) 2 025 ( - -  0) 2 --F 0)2) 2 + ]~2 (.02 (83) 

The infinite series in equation (83) is rapidly convergent in the case of simply supported edges for when 

1 2 By (69) Hm = 0 (  1 ) a n d  by (35) m is large the terms in the series behave like ~ H,,. (1),. = 0(rn~)+ 
(.O,. \mlm2/ 

+ 0(m~) so the terms tend to zero rapidly as m ~  oe. 

( 1 ) ' * / - / ~  . . c o ~  1 co~ 
The term(_0)2+co2)2+fl2co2 ofthe series has a maximum value o f ~  (1 -~ /72)  at c° - V/1 2092/~2 

and if/~ is very small this term will dominate all the other terms of the series. The power spectrum 
COm P(x,y,z,co) will therefore have maxima at, or very near to, the values co = when fl is very small. 

2(1)2 

Near these maxima just one term of the series in (83) will be a good representation for the whole series. 
We can evaluate ~,,.,(T) and/~",,(-c) using equations (56) and (62). These functions must then be sub- 

stituted into equation (55) to get the sound intensity. The result still involves quadruple integrals which 
then have to be evaluated numerically. A great deal of simplification occurs if the observation point is 
near to the perpendicular through the centre of the panel and then the expression (67) can be used for 
the intensity. 

With the approximation procedure which we are using for dealing with the turbulent boundary- 
layer pressure correlation we get, from substituting the expression (81) for R,,.,(co) into (56) and (62), 
the relations 

~,~,.(~) = 0 m # n 

# " , , , ( ' c )  = 0 m # n. 

Also, since the integrand in equation (62) is an odd function of (1) when z = 0, we have 

m, ," (o )  = o. 
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Finally, from (56) and (81) we have 

f ~m,m(O ) __ 2 f2  0 o'*dco 
M 2 ~2 [-1+o0202] [(mz_co2)2+flz~o2] • 

--cO 

The integral appearing in equation (87) is evaluated in AppendixII. The result for (,.,,.(0) is 

$,.,,.(0) = 2 2 ~ [_(1+ 02 co~)2 _ /72 02] [1+02(2co2_/32)+04a#] )  

The final expression for the intensity, obtained from equation (67), is then 

y(x,y,z)_ po f 2 1  l ~-aHZ { 1 0 (oo~-~)+02o~ 4 "~ 
2n 2 M 2 K 2 a o r 2 ~  (1+02(.02)2--fl202 [-~ 1 +02(--~2mZf12---~O,)~, J 

m 

(87) 

(88) 

(89) 

In the series 

~H 1 
[(1 + 02 co~) 2 -/~z 02] 

m 

the terms behave like for large m. For simply supported edges 
(D m 

H~, 1 
- 0(m mD. O(m  + 

so that the series is eventually rapidly convergent. For small values of 0 summation over more terms will 
be required for a given accuracy than for large values of 0. 

In the series 

H~ [-1 +02(2c0~-/32)+0"co~] 
m 

1 
the terms behave like H~ for large m. For simply supported edges H~ = O(m~ m 2) so that the series is 

convergent but not very rapidly. 
Under the same conditions the correlation coefficient given in equation (53) may be evaluated. A case 

of interest is when z = 0 and then it is found that the mean-square pressure p2 at the point (x,y,z) on or 
near the perpendicular is given by 

p2 = (a(x,y,z,O) = poao Y(x,y,z) (90) 
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which is the same as the relation (25) obtained for the far field. Near the perpendicular through the centre 
of the panel the expressions in the intermediate field are in fact the same as in the far field when we use the 
approximate treatment of the boundary-layer pressure correlation for then /~m.,(0) vanishes for all 
m and n. 

5. Discussion. 
Equations have been given in Section 3 which enable the power spectrum of the pressure and the value 

of the sound intensity to be determined in the radiation field of a single panel embedded in an infinite 
plane wall and subject to a turbulent boundary-layer excitation. 

The procedures for obtaining these quantities from the equations are described briefly at the beginning 
of Section 4 for the case when either the correlation function ~k(x,y,x',y',z) or the power spectrum Q(x,y, 
x',y',0)) of the excitation is given as a general function, or maybe only as a set of numerical values. These 
procedures could be applied directly with the correlation function given in equation (73). 

Simplifications are possible in using the correlation function (73) in certain circumstances and these 
lead to equations (82) for the power spectrum and to the equation (89) for the sound intensity in the far 

field. The value of 1- must be very small in comparison with the dimensions of the panel and the value ~c 

of 0 must be very small in comparison with the fundamental period of the panel for the simplifications 
to be valid. Also convergence of the series in these equations must be sufficiently rapid so that terms of the 
series which contribute significantly to its sum correspond only to values of m for which the modal 

functions em(x,y ) do not change very much over a distance of 0(l-). It is not likely that this will occur in 
/£ 

practical cases so the full analysis using expression (73), or, if possible, a more representative function for 
the correlation would need to be carried out. 

In this simplified analysis the convection velocity u0 of the spatial pattern of the excitation correlation 
does not appear in the results. In a more accurate analysis there would be dependence on this velocity, 
but in view of the result of the simplified analysis the dependence may be expected to be small. In the more 
accurate analysis the actual form of the modal functions ~,,(x,y) will have to be known, and in the first 
instance the modal functions, given in equation (36), corresponding to simple support edge conditions 
could be used. If the number of terms required in the double series (67) and (70) are not very large, then 
an attempt could be made using the modal functions corresponding to other edge conditions. 

The decay with time separation ~ in the correlation function has been brought in by means of a factor 

exp (-[-~[)in equation (73). This has led to a factor 1 +0)20z'20 introduced first in equation (81)and 

appearing in the results given in equation (82) and also influencing the result given in equation (89). 

(1 If the decay with time had been brought in by means of a factor + exp then the factor 

20 40 
1 + 0)z 0~ would be replaced by (1 + 0) 20Z) z" This would not make much difference to the power spectrum 

P(x,y,z,0)) at low values of 0), if the estimate for 0 were halved, but it does make an appreciable difference 
at high values of 0), and consequently makes a substantial difference to the intensity calculated, for the 
contributions to Y from P(x,y,z,0)) at the higher values of 0) are important. This is also evident from the 
fact that the infinite integrals for ~m.,,(0) are more powerfully convergent than formerly. It would appear 
.therefore that the actual shape of the correlation function near ~ = 0 is important. 

A somewhat more elaborate analysis than the simple one considered could have been carried out on the 
1 

assumption that - was large enough for equation (79) to be valid, but 0 not small enough for equation 

(81) to be valid. If the e,,(x,y) are given by equation (36) then it is possible to proceed from Fm.,(z) to 
the final results without any further approximations, but the expressions involved ale rather long and 
complicated. 

F 
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No results have been worked out from the final equations (82), (83) or (89). It may be observed from 

f20  equation (83) that the magnitude of the power spectrum is proportional to~2 P0 M2 rc 2 at small values of 

fM Po Uo and according co at fixed values o -~- and of/L According to equation (75),f 2 is proportional to z 4 

0 33 
to equations (76), ~ is proportional to U00" Hence the magnitude of the power spectrum at small values 

1 p4 3 2 ug. of co is proportional to ~ 

There is no obvious factor of proportionality in the expression (89) for the intensity, but if fl is very 
small we may write approximately 

/-1 
- -  0 2 ~ "?m 

y(x,y,z)~_ Po f 2 1 1 1/~_~H (i_2 ~w~_ 2m) 
2~2 M2 x2 a°r2 +0 2 1], 

where 

- 0 
(0.006) z 1 Po 2 U56# 

(91) 
- 240rc2 fi h 2 

0 2 ~-,l~ 

ff ( 0 V / ~ ) = ~ H  2 ( 1 + 0 2 D 2 ~ )  (92) 

The result (91) is of the form of the main result given by Corcos and Liepmann / for the sound intensity 
in the radiation field from an infinite flexible sheet subject to turbulent boundary layer excitation. The 

form ofthe function 9 (0~/K~) in  Ref. 2 is, however, different from that given in equation (92). Inthe 

U~ 6 02D 
form (91) it would appear that Y(x,y,z) is proportional to - ~ .  However, for ~ small we have 

(93) 

where k @ ~  1 ~ 0(1) for 0 V ~  small° m better way of writing equation (91)~ in our case~ is therefore 

5 2 1 ( ~ )  3 E.U333k@V~ 072~ Y(x,y,z) ~- ~ (0-006) ~ (1 - ~r 2) a (94) 

21 



which shows that Y(x,y,z) is proportional to ~ U0 s 83 for small values of 0 for a given plate material. 

b 
In general fl -- ~ will depend on the plate thickness. If the acoustic damping dominates over the 

structural damping then b is virtually independent of the plate thickness so fl c~ 1. The intensity would 

then increase linearly with h. However as h increases the structural damping increases and fl may be 
expected to tend asymptotically to a constant value. The intensity is then independent of plate thickness 

for small values of 0 v / D .  

The results obtained by Ribner 1 and Kraichnan 3 are different from our present results. The procedures 
used and the form taken for the correlation function of the excitation are however different from ours. 

The experimental results obtained by Ludwig 5, for a single flexible rectangular panel set in a wall 

and excited by turbulent boundary-layer flow show a proportionality factor of Uh°~° in the total power 

radiated. This cannot be compared directly with the present results for the total power is obtained by 
integrating the intensity over a hemisphere of large radius with the wall as diametral plane, and the 
intensity will vary with position on the surface of this hemisphere. 

To determine more accurately how the power spectrum and intensity of sound radiation depend on the 
boundary-layer displacement thickness 8, free stream velocity U0, plate thickness h and convection 
velocity uo, calculations should be carried out using the procedure described at the beginning of Section 4 
and using an accurate correlation function, perhaps that given in equation (73). In this case the term of / , ,  

0 (~g) will not disappear in the expression for the intensity in the intermediate field near to the perpen- 

dicular through the centre of the panel for in this case Rm,,(~o ) is not an even function of co giving 
/~m.,(0) + 0, so that the second summation in equation (67) does not vanish. The expression for the mean- 
square pressure will, as before, not have this term present. Graphs could then be presented to show the 
variation with 8, U o, h and v o. 

The mean-square response and the mean-square stresses at points on the panel can also be obtained 
by the methods used in this paper in a fairly straight-forward manner. The mean-square response is of 
course just the mean square of Z(x,y,t) but the mean-square stresses will involve mean products of 
~2 Z 02Z 03Z ~3 Z ~3 Z (~3 Z 

- -  taken two at a time. The mean-square response can be considered OX 2'  t~y 2 '  ~X a'  OxEt~y ' ~xay 2' Oy a 
by the simplified procedure described in Section 4 but this procedure will lead to divergent series in the 
cases of the mean-square stresses and so a more accurate procedure must be used. 

The power spectrum and intensity of sound radiation from several panels vibrating in a plane may also 
be considered. If there is no correlation between the pressures arising from the vibration of different panels 
then the power spectrum and intensity are obtained as the arithmetic sum of the separate power spectra 
and intensities. Otherwise the correlations of the pressure arising from pairs of vibrating panels must be 
taken into account. Ideally the number of vibrating panels could be infinite but the numerical procedure 
then becomes forbiddingly lengthy. 

6. Conclusions. 
A theory of determining the power spectrum of the pressure and the intensity of radiated sound from 

a vibrating panel set in an infinite wall and excited by a turbulent boundary-layer flow has been given. 
83u~ 

In a simplified analysis it has been shown that the intensity is proportional to - - - ~ ,  where 8 is the 

boundary-layer displacement thickness, U0 is the free stream velocity and fl is a coefficient dependent 
on the damping and mass per unit area of the plate. 
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LIST OF SYMBOLS 

Speed of sound 

Damping coefficient in equation (28) 

Length of panel in x-direction 

Length of panel in y-direction 

Rigidity coefficient 

Young's modulus 

Panel exciting force per unit area 

Mean square of panel exciting force per unit area 

Defined in equation (41) 

Panel thickness 

Defined in equation (68) 

Numerical values of modes 

Integers associated with m 

Mass per unit area of the panel 

Excess air pressure over the undisturbed pressure at the point x,y,z at time t 

Mean square value of the excess pressure 

Power spectrum of the excess pressure 

Power spectrum of the excitation functionf(x,y,t) 

Defined in equation (21) 

Defined in equation (9) 

Defined in equation (12) 

Defined in equation (50) 

Defined in equation (57) 

Time 

Time 

Defined in equation (63) 

Fluid particle velocities 

Free stream velocity 

Convection velocity of the pressure spatial correlation pattern 

Rectangular cartesian coordinates 

Displacement at time t of a point x,y on the panel 

Defined in equation (59) 
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LIST OF S Y M B O L S - - c o n t i n u e d  

Yx,Ty,Yz 

rrn,n(~) 
6 

A(x,y,x',y',z) 

~rn,.(~) 
17o 

o",.(co) 

0 

2 

2,. 

~m,.('~) 
Vrn,.(co) 

4o 

~m(t) 

P 

Po 
"c 

~(x,y,z,~) 

(x,y,z,t) 

Z(x,y,x',y',z) 

~(x,y,x',y',z) 

co 

corn 

Defined in equations (6) 

Defined in equation (61) 

Boundary-layer displacement thickness 

Defined in equation (20) 

Defined in equation (46) 

Defined in equation (74) 

Defined in equation (48) 

Constant appearing in equation (73) 

Constant appearing in equation (73) 

Defined in equation (32) 

Defined in equation (33) 

Defined in equation (66) 

Defined in equation (49) 

Defined in equation (74) 

Generalised coordinate for the mode rn 

Density of the plate material 

Density of air 

Time difference 

Sound intensity defined in equation (7) 

Autocorrelation function for the pressure, defined in equation (1) 

Velocity potential given by equation (8) 

Defined in equation (14) 

Correlation function for the excitation, defined in equation (42) 

Circular frequency 

Natural frequency of.the panel in mode m 
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APPENDIX I 

Formal Derivation of Dependent Power Spectra 

We consider the excitation function f(x,y,t) and expand it in a Fourier series in t in the interval 
- T < t < T  i.e. let 

O9 

f r (x ,y , t )=yaAr(x ,y ,k )ex  p (--i~kTt) (95) 

where 

T 

f(x,y,t) exp dr. (96) 

Then 

fr(x,y,t) = f(x,y,t) - r < t < T (97) 

andfT(x,y,t) has period 2T in t. 
We shall replace f(x,y,t) by f r(x,y,t) when t is outside the interval - T  < t < T. Later we shall consider 

the limiting process T ~  co. We have 

T 

lim ~6f(x 'y ' t ) f (x"y" t  + z)dt ,/l(x,y,x',y',z) 
T--+ oo ~ ~ - T J 

T 

= l i m  [2@ffr(x,y,t)fr(x' ,y' , t+'c)dt+lo(*)l 
r - -*  oa  

- - T  

22 lim [ . Ar(x,y,k) Ar(x',y',l exp 

r--+oo Uk=_m l=-m -T 

( - ~ )  exp 

Ar(x',y',l) exp 

T--+ °91 = -oo  

(98) 

and passing formally to the limit T = oe we get 

oo 

O(x,y ,x ' ,y ' ,~ ,=l f l im {2TAT(x,y,--m~T) AT(x',y',m~T)} 
_ ~ r - +  o o  

exp (-- icoz) do) } . (99) 
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On inverting equation (43) of the main text we get 

cO 

@(x,y,x',y',z)=~f Q(x,y,x',yl,o~)exp(_ioxc)&o 
- - o 0  

(lOO) 

so on comparing (99) and (100) we get the result 

liTm_+oo { 2 T A T  @,y,--c°?) AT x ' ,y ' ,~-)  } 

Instead of equation (39) of the main text we now consider 

"'T "T 2 ~.,(t) + fl ~(t) + c% M ~r(t) = f m(t)r 

where 

fT(t) = ~ fT(x,y,t) am(X,y) dx dy. 
panel 

= Q(x,y,x',y',oo). (101) 

(102) 

(103) 

It may be noted that f r ( t )  coincides withf,,(t) for - T < t < T. If expression (95) is substituted forfr(x,y,t) 
in (103) we get 

fT(t) = E T ( k )  exp 

k =  - c o  

(lO4) 

where 

BT(k) = -~ Ar(x,y,k) sm(x,y) dx dy. 

panel 

(lO5) 

The functionf~(t) is of period 2T and so the function {r(t) satisfying equation (102) is of period 2T. 
Let the Fourier series of {r~(t) be 

~(t) = 

co 

exp I 
k = - oo igkt 

(1o6) 

where 

T 

Cr(k) = 2-~.f  {~r(t)exp (i?t--) dt" 
- T  

(107) 
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Substituting the expansions (104) and (106) for fr(t) and ~r(t) into the differential equat ion (102) and 

compar ing coefficients of exp ( -  ~ )  we get 

[ -  (~-~) 2-i~ (~kT) +Co2 ] CT(k) = Br(k) (108) 

f rom which we can express Crm(k) in terms of Br(k) by 

BT"(k) (109) 

In the range - T < t < T we may write 

~m(t ) = ~mT(t) if- tiT(t) (110) 

where t/~r(t) is a complementary  function of the differential equat ion (39) obtained by replacing the right 
hand side of (39) by zero. This complementary  function will take account  of that  fact that  ~m(t) and ~ ( t )  
are not  equal when t = - T and neither are their first derivatives. 

When  the damping coefficient fl is positive non-zero and small the complementary  function will be a 
decaying oscillatory function with ampli tude of oscillation decreasing exponential ly as t increases from 
t = - T This then leads to the equations 

oo 

1 ~ 3 2 3 2 
T T ~,.,.(z) = lim ~-~ .~-~ ~m(t) -~ ~n (t q- Z) dt 

T---~ oo -oo 

(111) 

and 

oo 

ttm,.(z) = lim ~-~ & T r dt 
T--+ oo -~o 

instead of (46) and (47). 
Using the expansion (106) in (111) we get 

t ) ~m,.(z) = lim C~(k) Cr.(1) ~ exp - - -  exp T + dt 
T o o o  k=-~ot=-oo - r  

(112) 

= lim C~(-t) Cy(;) ~ 7 )  exp - 
Y--, oo 1=-~  

oo 

= lira 
T ~ o o  = -  

B (0 exp - - -  

2 3 

(113) 
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and-passing formally to the limit T = oo we get 

G, . (~)  = - -  

°2_ 
1 1" 094 R,,z,.(oo ) exp ( -  RoT) dco 

J [ -  ~o ~ + ifl~o + o,2..3 [ -  0, 2 - i floo + o9~ 3 2nM 2 
- - o 0  

where 

R=,.(og) = limT_.+oo {2TM2Br(-T--~m=)Br(T~m~)} " 

Then, using the formula (105) for Brm(k) we get from (115) 

(114) 

(115) 

R,..(og) = lim 
r ~ o o  

2 T ; f A ( x , Y , - T ~ )  em(X,y) dxdyffA(x' ,y ' ,T~)en(~,y ')dx'dy'  

panel panel 

lim f f f I2TA(x ,y , -T-~)A(x , ,y ,T~)sm(x ,y)s~(x , ,y , )dxdydx ,  dy, 
T+ o e  paddl panel 

=f~ffQ(x,y,x' ,Y' ,Co) em(x,y)en(x',y')dxdydx'dy' 
panel panel, 

corresponding with the definition (50). 

On inverting equation (48) we get 

(116) 

o0 

if (m..('C) = ~ 0m,.(og) exp (--iog"c)do) 
--cO 

(117) 

and on comparing (114) and (117) we get 

__1 o94 R,~.dog) 
0m.(og) 

M 2 [_ o92 + iflo9 + o9~] [ -  o92- iflo9 + o9~]" 

Similarly using the expansion (106) in (112) we get 

(118) 

p,.,.(z) = lim Cr(k ) Cr(k ) ___i 2 i t inl z) 
r-+oo \ r ]  2 r j e X p  - - -  exp - - dt 

k = - o o  l = - m  - -T  ' 

= lim 2 
T-*oe t=_oo 

- i  Brm(l)Br.(-l) ~ )  exp 

[ [ 
m 

1 ~ - io9 a R,.,.(og) exp ( -  iogz) do9 
2riM z J [ -  o02 + i flo9 + oo~] [ - o92 - iflm + o92] (119) 
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But on inversion of (49) we get 

1 i #m'"(Z) = ~n v,.,.(0)) exp ( -  ie)'c) de). 
--O0 

(120) 

Hence 

1 io) 3 R,.,.(O)) 

~=*(o)) - M ~ [ - 0 ) ~ + i / ~ o ) + 0 ) 2 ]  [ = e ) : - i / ~ 0 ) + e ) ~ ] "  
(121) 

APPENDIX II 

Evaluation of Integrals 

(i) It is required to evaluate 

GO 

1 (' e)'~ exp ( -  i0)z) do) 
I,.,.(o)) = ~ J [ _ 0)2 + ifle) + o)z] [_  0)2 _ iflo) + 0023 

- - o o  

(122) 

We can write the integral as 

oo 

I " , . ( e ) ) = l f  [ l q  
- c o  

2 2 2 2 q  
(0)m - o ) . ) -  0),. 0). exp ( -  ie)z) dw (9 (0)re_l_ e)n __fl2)q_iflo ) 2 2 2 

J ( e ) 2 -  e)~ + i/~0)) (e) .~-  e ) ~ -  i/~0)) 

= 6(" 0 + Sm..(z) (123) 

where 6(z) is Dirac's delta function and S.,,.('c) is given by 

i I c°")--e)"o)2] exp(-io)z)do). 
1 o)2(e)2 + o)2 _ fla) + ifle) (0) 2 - 2 2 

&'"(*)  = ~ (o )2-  °°2 + i3o)) ( e ) 2 -  o)2 _ i~o)) 
- o o  

(124) 

The integral for S",.(z) will be evaluated by means of complex contour integration and an application 
of Cauchy's theorem of residues. 

Consider the function 

2 2 2 e) (o)~ + co. _ p2) + i3e) (o)2-o).)-e)~e).2 ~ 2 
Fm,.(e)) = 2 2 • 2 _ (.02 ( o ) " -  e) + r~o)) (o). - i30)) 

exp ( -  ie)z) 

2 2 2 2 • 2 2 2 2 e) ( e ) , . + e ) . - f l ) + ~ f l e )  (e)" - -  o). ) - -  e)m 0). 

(o) - e)O (e) - co2 ) ( e ) -  0)3) (e) - o)4) 
exp ( -  io)z) (125) 
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where o01, 0)2, a)3, 0)4 are the zeros of the denominator given by 

0)1 = +a, .  c02 = V - a m  

• i/? 
0)3 = -i--fll +C~. o 3 4 -  2 an 

and 

(126) 

t82 (127) 
a m ~ - - - -~ -  

Fro,.(0)) has simple poles at the zeroes co,, 0)2, 0)3 and o) 4 of the denominator. Let the residues at these 
poles be R,, R 2, R a, and R4 respectively. Then 

e 1 

0 )2  2 2 2 (0)m+0).--/? ) + i/70)~ (0)2 __ 0)2~__ 0)2 0)Z 
. . . . . .  exp ( -  icol~ ) 

¢ o l  - 0 ) 9  (0)1 - 0 ) s )  - 0)4)  

4 2 2 1 eo,~ - 2f l  (.o,. + ~ /?* + i/? a,,, (20)~ -/?2) 

20~m [O)2 __ 0)2 __/?2 + 2i/? O~m] 
exp ( ~ - i a , , )  • (128) 

4 2 2 1 0)'n -- 2/? C'Om q-2 /?4-- ifl o:m (20)2 -- /?2) ( ~ ) 

R 2 =  _ 2% [0)2_ 0)2 _ f12_ 2i/? c~,.] exp +ia., z (129) 

1 
0)  4 - -  2 f l 2  m2~ + i  /?4-i f l  °~n (20)2 _/?z) / 

R3 = 2C~n 2 2 /?Z exp ~--2--io~n) ~ (130) [0).--- 0).,-- -- 2i/? c~n] 

1 
4 2 + ~ f14 + ifl a, (20) 2 - /?z) (.O n - -  2/? 2 0). 

/ t~ \ 

2__f12+2ifl%] exp I - - 2 + i % ) ' c  R4 = _ 2o~n [0)2 _ 0)m (131) 

The contour chosen for the evaluation of Sm,.(~) is the real axis and an infinite semicircle with centre 
origin and real axis as diameter. When ~>0  the integral over the semicircle in the lower half-plane 
vanishes so 

Sm,n(~ ) = - - i (Ra+R4)  v>0.  (132) 

When • < 0 the integral over the semicircle in the upper half-plane vanishes so 

= i ( R I + R 2 )  r < 0 .  (133) 

The equations (132) and (133) lead to the equations (58) when the expressions (128) to (131) are used for 
the residues R1 to R4. 

31 



(ii) It is required to evaluate 

oD 

1 f - ie) 3 exp ( -  ioaz) do) 
T,.(.('c) = - ~  [ _ e)2 + iflo3 + e) 2] [ - e)2 _ iflo3 + 032] . 

-oo 

We write the integral as 

i [ -  2 2 2 2 • 2 2 2 2 1 [ i co (o3, .+e) . - /? )+l /?e) (e)m-o3. ) -e) , .a~ . l  

- c o  

exp (-- io3z) de) 

(134) 

_-lim 1 f ; __ 
e-~O 2re + 

- c o  

O3 (OOm.~_o3n__fl)_~lflo3(o3m__ 2 2 2 ]  _i_i 2 2 2 2 • 2 O,)n)__e)mo3n 

e ) (e )~-  co ~ + i~o3) ( e ) ~ -  o3~-  i~e)) 
exp (±  io3z) do) 

where 

and 

= H ( z )  + V.,,.(z) 

--E oo 

1 f f i H(z) = lim ~ + -- exp ('--- io3z) de) 
e--*0 

(135) 

(136) 

1 ~* 0 ) 2  2 2 2 • 2 2 2 2 • (o3~+e).-/~)+~/~e)(o3..--e)m)--o3~o3. 
V,.,.(z) = lim ~ - l o3(c02 _ o32 + iflo3) (e)2 _ 002 _ iflo3) 

e--+O -oo 

exp ( -  ie)z)  de).  (137) 

Evaluation of (136) is straightforward and gives 

f -½ z > 0  
H ( z )  = (138) 

½ z < 0  

The integral for V~c.(z) will be evaluated by means of complex integration and application of Cauchy's 
theorem of residues. 

Consider the function 

2 2 2 2 o3 (o3,,, + o3 _ [d ) + iflo3 (o3 2 --  o3.2 ) _ co,.2 o3,,2 
G,.(o3)" = - i 

o3(o3~., + e)~. + i~o~) (o32 _ o3~ _ i~o3) 
exp ( -  ie)z)  

= - i c°z (03~ +..°32 - flz)+ ifle)_ (co~ - co. 2) - co~ o3. 2 ex- '-ie)-c) 
e)(o3- o31) ( e ) -  o32) ( e ) -  c03) (co- o3~) P 

(139) 

where cot, o3z, o33, o)4 are given by equations (119). 
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Gin,,(0)) has simple poles at the origin and at 0)1, 0)2, (03 and co 4. Let the residues at these poles be 
R0, R1, R2, R3 and R2 respectively. Then 

R o = - i (140) 

1 
(0)~ - 2/~ = 0)~ + 2/~ ") + i / ~  ( 2 0 ) ~ - / ~ )  

R I _  2 i ( ~  m) exp (fl-- icon) 7: ' (141) 

(o94 _ 2fi2 0)2 + 1 fie) _ ifi%, (2 o)2 - fi2) 

R2 = - exp + ic~,, z (142) 
2 am --O~ (0)m--0)n--fl2--2iflam) 

4 2 2 1 4- i (c%-2f i  co~+~fl )-i f lc~(20)2-fl  2) . 

- 2 (_~_' ) 2 z 2 exp -- - i %  z ~  (143) R3 
a. +% (0) .-0)m-f l-2i f lc~.)  

2 2 1 4 
i (0)~-2/~ co.+5/~ )+/ /~ . (20) .~- /~)  • < )  R 4 = ~  ( _ ~ _ )  exp ~+i%, "r (144) 

(0). --0)m--/~ + 2~/?~,,) an ~_ ~ 2 2 2 • 

The contour chosen for the evaluation of Vm(n(r) is the real axis, intended by a semicircle of radius 
and centre origin, and an infinite semicircle'with centre origin and real axis as diameter. When z > 0 the 
integral over the infinite semicircle in the lower half-plane vanishes, so we integrate over a contour in the 
lower half-plane and then on making e--+0 We get 

gmln(V)'=--i R a + R 4 - 1 R o  z>0.  (145) 

When z <0  the integral over the infinite semicircle in the upper half-plane vanishes, so we integrate over 
a contour in the upper half-plane and then on making e ~ 0  we get 

i R i + R 2 + I R o  Vm,,,(~)= ( ) z>0.  (146) 

H e n c e  

i(Rz+R,~)z> 0 
T,,,n(z) = (147) 

i(R 1+R2) v<0.  

The equations (147) lead to the equations (64) when the expressions (141) to (144) are used for the residues 
R1 to R 4. 
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(iii) It is required to evaluate 

oo 

1 f 1 co '~ 
/m = ~ i+c0202 (_o92+o9~)2+p~02 

-oo 

&o. (148) 

Consider the function 

1 (D 4 

F r o ( o ) )  - -  1+co~0 ~ (-co~ +(.2)+ fl~co ~ 
(149) 

The denomina tor  of this function has six simple zeroes, (o 1, co z, (o 3, co4, 0)5 and ~6 where 

i 
COt = - - ~  

i 
O 9 2 = 0  

(D 3 = ~-+0~ m 

i/~ 
094 = ~ - -  0( m 

0 5 = - - ~ + C ~  m 

e)6 - 2 c~m 

(15o) 

and "m is given by equat ion (127). 
In this case the integral over the infinite semicircle in either the upper or lower half-plane vanishes. 

If we take a contour  in the upper  half plane we find that the value of the integral is 

I m = i [R2+R3+R4] (151) 

where R2,  t{ 3 and R 4 a r e  the residues of F,n(og) at the poles o92, o93 and 0) 4 respectively. 

N o w  

R2 --  
i 1 

20 [(1 " t -020)2 )2 - - f l202]  (152) 

3 

R3 = 2 (153) 
4i[Jcx,,~[l+O2(iff+ct,,) l 
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Hence 

e ¢  -~- 
{i /3 ,~2 • 4ifla::i[!+O2~,-f-cg" ;. - . ] 

1 1 
i" = 2-~ [ ( 1 + o 2 c o ~ ) ~ - ~ o ~ ]  ~ 

1 2 2 2 4 (co"-/3)+8 co,. 
2fl z 2 2 4 4 • [-1+8. ( 2 0 ) , . - / 3 ) + 0  (or,] 

(154) 

055) 
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