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S u m m a r y  . . . .  

According to the linearized theory of supersonic flow, both the local slope of the mean surface of a wing 
producing a specified distribution of lift and the pressure on a wing due to a specified distribution of volume 
are given as singular double integrals. The numerical evaluation of these is described for planforms with 
curved subsonic leading edges and supersonic trailing edges for the cases in which the lift distribution 
tends to zero like the square root of the distance from the leading edge and the volume distribution has a 
finite slope there. Examples are given illustrating the use of these methods in the design of slender wings. 
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1. Introduction. 
1.1. The Aerodynamic Background. 

In order to make clear why the work here presented was undertaken and how the particular problems 
treated arise, it is necessary to outline the background of thinking about aerodynamic design into which 
they fit. 

A delta-like, all-wing configuration with curved subsonic* leading edges and supersonic* trailing edges 
has been proposed 1'2,a for a transport aircraft to operate economically at a Mach number near 2. On 
such a configuration, a single type of flow can be maintained throughout the range of conditions en- 
countered in flight, with the reduction in aerodynamic complexity that ensues. Such a flow separates from 
all edges of the wing, from the trailing edge in the familiar fashion and from each leading edge to form a 
single vortex lying inboard of the edge. 

To produce a flow of this type the edges must be aerodynamically sharp, so that separation is fixed at 
them, and rapid variations of sweep along the leading edge must be avoided, so that the vorticity shed from 
the leading edge can all join a single vortex growing more or less uniformly along its length. To avoid the 
possibility that, at some incidence, vorticity might be shed towards the upper surface of the wing from 
some part of the leading edge and towards the lower surface from another part, there must be an incidence 
at which the leading edge is an attachment line. This, sometimes called the ideal incidence, will be called 
the attachment incidence in this report and the corresponding lift coefficient will be called the attachment 
lift coefficient. If boundary-layer separation forward of the trailing edge is avoided at the attachment 
incidence, it is likely that the primary separations from the leading edges will dominate any secondary 
separations elsewhere on the wing at other incidences. Strictly, only an unwarped wing can have attach- 
ment lines along its leading edges through a range of subsonic and supersonic Mach numbers, and only 
at supersonic speeds can unfavourable pressure fields be avoided. However, suppose this design condition 
in which the flow is attached along the leading edges and separation is avoided forward of the trailing 
edge is achieved at the cruise Mach number at an incidence not exceeding the cruising incidence. Then, 
since the range of incidences required at lower speeds is likely to be above this (and well above it in the 
critical approach condition), it is reasonable to suppose that the separation from the whole of the leading 
edge will always be directed towards the same surface of the wing and that it will dominate any other 
separation which occurs. In order to avoid separation of the three-dimensional boundary layer at the 
design condition it is known 4,s that it is sufficient to produce a pressure field ori the wing in which the 
pressure fails both in the mainstream direction and inwards from the leading edge to the centreline; 
just how steep an adverse gradient in either direction a turbulent boundary layer will withstand can only 
be determined experimentally at present. 

*An edge is called subsonic if the component of the free-stream velocity normal to it is everywhere less 
than the free-stream speed of sound and supersonic if the component everywhere exceeds the sound speed. 



The type of flow which has just been described is obtained on unwarped wings of a variety of delta- 
like planforms and smooth distributions of volume. Moreover, if such a wing has a span of the order of 
one-half of its length, the lift it produces is usually adequate for conventional landing at currently accepted 
speeds and feasible attitudes 2. Unwarped wings, however, are not ideal for aircraft of the type under 
consideration. The lift-dependant drag of suitably warped wings is lower than that of unwarped wings 6'7'8 
both at supersonic and subsonic speeds, even though the lift vector on the unwarped wings is inclined 
forward of the normal to the wing plane. Linearized theory, too, predicts a reduction in lift-dependent 
drag from the application of warp to delta wings 9. In addition, if the centre of gravity of an unwarped 
delta-like wing is fixed to provide natural longitudinal stability at the approach condition, the lift at a 
Mach number near 2 will act some 7 to 8 per cent of the length further aft 2, giving rise to a problem of 
trim 1°. A form of warp which results in a smooth redistribution of lift towards the front of the wing at 
cruise is the easiest way to solve this problem. The design problem now becomes one of the application 
of warp to secure trim and low drag without compromising the unified flow and high lift at a given 
attitude obtainable on the unwarped wing. 

Here the properties which have been demanded for the wing at the design point all combine to make 
the problem tractable. The planform is pointed and the leading edges are sharp and subsonic, so the bow 
shock is attached and weak. Experiments on wings with unswept trailing edges reveal no significant 
upstream influence of the trailing-edge shock system, which can therefore be regarded simply as the 
first stage of the process by which free-stream conditions are regained behind the wing. Viscous effects 
are confined to these shocks and to the boundary layer, which remains attached forward of the trailing 
edge at the design point. The disturbance velocities produced by the wing are small, owing to the low wing 
loading, the vanishing of the local load along the leading edges and the choice of a volume distribution 
to give a low wave-drag and sharp leading edges. The wing is almost planar and its planform has a smooth 
leading edge. The cruise Mach number is at once well above the transonic range and well below the 
hypersonic range, so that no obstacle to the linearization of the governing equations arises. These circum- 
stances combine to make the situation ideal for the application of the linearized theoryof supersonic flow 
past thin wings; moreover, the measure of success achieved by two approximations to it, slender thin- 
wing theory 6'8 and not-so-slender thin-wing theory 7, gives confidence in its use. 

Within this theory, the volume and lifting properties of the wing are separable. The pressure at a point 
due to a given distribution of volume over the planform can be evaluated directly, and the local streamwise 
slope of the mean surface can also be found directly from the distribution of lift over the planform; 
'directly' in the sense that their evaluation depends on the calculation of integrals, rather than the solution 
of integral equations. If a volume distribution has been chosen (on grounds of lay-out, structure and wave- 
drag, say), the pressure distribution it produces can be found. This pressure distribution gives a useful 
guide as to whether the inviscid flow, on which the calculation of both wave-drag and pressure is based, 
is a sensible approximation to a real flow. In particular, if the pressure field over the wing is favourable 
to boundary-layer development and the predicted suction at the trailing.edge is not too high, the type 
of flow with an attached boundary layer forward of the trailing edge and no upstream movement of the 
trailing-edge shock system can be expected to occur. A lift distribution can then be chosen so that the 
combined pressure field is, as far as possible, favourable ; so that the leading edges are attachment lines; 
and so that an appropriate pitching moment for trim and an appropriate lift are obtained. This lift 
distribution leads to the wing warp. If the lift chosen were that at which the aircraft was to cruise, the 
distribution used in the design would be that corresponding to the cruise condition and it would be 
chosen to keep the lift-dependent drag low, using the expression for the drag in terms of the lift distribution 
as given by Lomax 11. Although estimates of lift-dependent drag based on linearized theory are notori- 
ously unreliable, they might well be of more use in this case in which the leading edges are attachment lines. 

Measurements ~2 made on wings designed by slender thin-wing theory have shown that the large 
amount of leading-edge droop associated with an attachment lift coefficient as high as the cruise lift 
coefficient (CL ~- 0.1) has reduced the available lift coefficient at the approach to an unacceptable extent, 
whereas smaller amounts of droop have had very much less effect 6. Other measurements 6,7,8 on the same 
and similar wings have shown that lower values of the lift-dependent drag factor, CD/C ~, are found at lift 



coefficients above the attachment lift coefficient, presumably as a result of the action of the suction under 
the leading-edge vortex on the forward-facing drooped surface. Although the full linearized theory pro- 
duces less droop than the slender thin-wing theory for the same lift distribution if M > 1 (see Fig. 6 of Ref. 
13, for example), these observations make it likely that the attachment lift coefficient would be chosen 
below the cruising lift coefficient. Because the flow is separated, there is then no theoretical relation 
between the drag at cruise and the lift distribution chosen for the design. However, considerations derived 
from the drag at cruise can still be applied to the choice of lift distribution, as will be seen in the example 
discussed in Section 5.2 below. 

From the foregoing it is clear that, once the volume distribution of the wing has been fixed and the pres- 
sure field due to volume found, nearly all the properties required of the wing can readily be specified in 
terms of the lift distribution over it at its attachment incidence. The linearized theory of supersonic flow 
past thin wings, which, as indicated, is expected to be sufficiently reliable, provides expressions both for 
the pressure due to a given volume distribution and for the surface slope required to induce a given lift 
distribution. The work here reported on was undertaken to obtain from these expressions sufficiently 
flexible digital computer programmes to enable design processes, along the lines set out above, to be car- 
ried through. An account 1~ of the major part of the numerical analysis has previously received a limited 
circulation. 

1.2. The Nature of the Present Contribution. 
The starting point is a review, from the point of view of numerical calculation, of the familiar expressions 

for the pressure due to a distribution of volume and for the surface slope needed to induce a given distribu- 
tion of lift. Although these expressions take the form of double integrals, they are based on extensions of 
the conventional integral which involve operations of both conventional integration and differentiation. 
In numerical computation the operation of differentiation can be a source of error, and so transformed 
versions of the familiar expressions are preferred in which the differentiation is applied directly to the 
known function, i.e. to the volume distribution or the lift distribution in the two cases concerned. If this 
is specified analytically, the differentiation can be carried out in closed form; if it is specified numeric- 
ally, an approximation to the derivative, of an accuracy consistent with the data, can be obtained as a 
preliminary step. The calculation then involves summation processes only. The singularities are handled 
by the familiar techniques of a change of sdale and the removal of the principal part, so that the evaluation 
is reduced to a double summation over a net of Gaussian points. 

The leading edges the planform y -- + s(x), where x is measured downstream from the wing apex 
and y to starboard, are defined by expressing s(x) as a polynomial in x. The trailing edges, being supersonic, 
do not appear explicitly in the calculation. All significant variations of planform in which the leading edge 
is smooth are covered by this formulation. The volume distribution of the wing is assumed to have a 
finite surface slope which varies continuously over the planform, except perhaps along the centre line, 
as is consistent with the limitation to sharp edges and smooth shapes. The load is assumed to vanish 
along the leading edges, in accordance with the assumption of attachment lines there, and to tend to zero 
like the square root of the distance from the edge. This is the familiar behaviour of closed form solutions 
for wings that have zero load along subsonic edges (see. for instance, Refs. 15 to 18). The disturbance 
velocity potential corresponding to the lift distribution then behaves like (1 - q'2)2/3 near the leading edges, 
where t/--  y/s(x). The further *ariation of the potential can then conveniently be represented by a double 
polynomial in x and t/. It is suggested that this representation is superior to others in that lift distributions 
that combine low drag and attached flow arise simply and naturally from it. 

The accuracy of the numerical analysis is investigated by a comparison of values computed by the 
programmes developed and some closed form results. Satisfactory agreement is obtained throughout 
except for very small values of flA--(fl 2 = M 2 - 1 ,  M is the free-stream Mach number, A is the aspect 
ratio) and for points very near a sonic leading edge. These defects are explicable and, in any case, not 
relevant to the purposes for which the work was undertaken. 

The adequacy of the linearized theory for the calculation of the pressure distribution on an unwarped 
wing at zero lift is shown by a comparison between values calculated by the present method and measured 
values. The design of a particular warped wing is described in some detail to illustrate the principles set 



out above; the calculated mean surface is shown; and preliminary experimental results are quoted to 
indicate the success of the approach. Finally, an illustration is given of how the method of design can be 
adapted to deal with a configuration comprising a wing with a short, round fore-body. 

2. Discussion of Formulae. 
Within the linearized theory of supersonic flow past thin wings, the properties of a wing are separablb 

into those of a wing which has the same distribution of volume, with top-and-bottom symmetry, at zero 
incidence, and of a wing which has the same mean surface (and so the same lift distribution) and no 
volume. Suppose the wing lies close to the plane z = 0 containing the free-stream direction ox and suppose 
that oy is measured to starboard with oz completing the right-handed rectangular system. Let the free- 
stream have speed U and Mach number M, with f12 = M 2 _ 1. 

If the volume distribution of the wing corresponds to a streamwise surface slope ___ 2(x,y) on the upper 
and lower surfaces of the wing respectively, the pressure coefficient Cp due to this volume distribution is 
given (see p.155 of Ref. 19, for instance) by 

2 f ; (x-xl)2(x~,y~)dx ~ 
Cp(x,y) = ~ dy 1 [(x_xl)2 fi2(y_yl)2]3/2 (1) 

o r  

13 n J ,j [(x-xl)2-f12(y-yl)21312" (2) 

Here, and subsequently in this section, the region of integration i s that part of the planform lying in the 
Mach fore-cone of the point (x,y), i.e. the intersection of the regions x1>>,0, ]Yll ~s(xO and xl ~<x, 
fl[Y-Yl] ~< x - x l ,  as shown in Fig. 1. The notation ~ J(x)dx denotes the 'finite part' of the integral. It is 
defined by J 

i (x  (_o)° A(x,y)ay f A(x,y)ay (3) 

provided the expression on the right exists. From (1) and (3) follows the equivalent form 

2f--~I I 2(xl'yl)dxidyl 
C,(x,y) = ~ [ ( x -  x~) ~- fl~(y- yogi  *" (4) 

If the distribution of lift over the wing corresponds to a local load coefficient l(x,y) (equal to the differ- 
ence in pressure coefficient between the lower and upper surfaces) and a difference A~b(x,y) in velocity 
potential between lower and upper wing surfaces, the corresponding local incidence a(x,y) (equal to minus 
the streamwise slope of the mean surface) is given (see pp.156-7 of Ref. 19, for instance) by 

r 

o r  

1~ f (x-xOt(x~,yddx~ 
~(x,y) = -- dyi (y_yl)  2 [(x_xl)Z fl2(y_yl)2]~ 

X f  ff (x-xl) l(Xl,yl)dy 1 
a(x,y) = l(x,y)- dxi (y_yl)  2 [(x_xi)2_fl2(y_yl)2] ~ 

(5) 

(6) 



2 

~(x,y) - 
2n U 

I f a¢(x.yO dxl - -  dya [(x_xl)Z_fi=(y_yO2]3/z 

Or 

~l,x , fi2 f ; a(o(xl,yOdyl ~(x,y) = -~ t , Y ) - - ~ ~  dxl i-ix x )2 R2 t  . . . .  ~2-]312" tt - ~ - v  ~ y - y v J  

Here ; f ix)  dx denotes the generalized principal value of the integral defined by the relation 

b b 

n ! !  F(x,y)dy (O'~"fF(x,y)dy 
( y - x )  ~ " ~ i -  \3x] J y - x ,  ' 

(7) 

(8) 

Mx = ~(u+v), My = fl(v-u), 

equation (7) becomes 

M ~ ACduldVl (11) 
- 8 ~  (u- u~) 3/2 (v- v0 3/2' 

a symmetrical expression also quoted by Heaslet and Lomax.When the definition (3)is applied to equation 
(11), the result 

M 32 ~ ACdu~dvl 
= 2n U Ou ~ J J  ( u - u l )  ~ (v -v l )  ~ 

(12) 

is obtained at once. This form has been used by Hancock 2°. 
Provided the known function I or A¢ is simple, a first integration in one or other of the equivalent 

formulae (5) to (8), (11), (12) can be carried out in terms of elementary functions ; this is the case discussed 
by Roper 21. In the present case the functions I and A¢ have branch points at the leading edges and the 
influence functions in the above equations all have branch points on the Mach lines; the result of a single 
integration therefore requires elliptic integrals, in general incomplete and of the third kind, for its expres- 
sion. It is thought preferable, then, to perform both integrations numerically. The evaluation of (1) and 
(2) could begin with a first integration in terms of elementary functions if 2 were specified simply, either 
over the whole wing or in the intervals of an interpolation scheme. However the technique evolved to deal 
with the lifting case proved so straightforward and accurate that it was adapted to treat the somewhat 
easier case of the symmetrical wing. 

All the formulae quoted so far involve, either explicitly or by virtue of the definitions (3) and (9), the 
differentiation of functions which have to be calculated numerically. This is bound to be either slow or 
inaccurate relative to the integration processes and it also complicates the numerical analysis by the 
introduction of a further finite difference approximation with~a truncation error independent of those in 

where a < x < b, F(x,y) has its first n derivatives with respect to x and y continuous at y = x, and the 
right-hand side is a Cauchy principal value. 

The extra terms which arise in (2), (6) and (8) as compared with (1), (5) and (7) are due to the change in 
the order of integration. Equation (7) is obtainable from equation.(5) by means of an integration by parts, 
when it is remembered that 

2 3 
l (x ,y)  - v Ox A¢(x,y).  (10) 

If the characteristic coordinates u and v are introduced, where 

(9) 



the integration processes. If the order of the calculation can be inverted so that the differentiation opera- 
tions are carried out directly on the data these difficulties disappear completely if the data is specified 
analytically. Even if the data is numerical the difficulties are removed from the main calculation and arise 
in the initial stage of preparing the derivatives of the data. Each ease can then be given individual treatment 
and the significance to be expected of the results can be assessed. An example is given in Section 5.1 in 
which the accuracy was greater than had been expected. 

If the leading edges are sharp and the volume distribution has smooth streamwise sections, as in the 
case considered here, it follows that the streamwise surface slope, 2, is finite at the leading edge and its 
derivative is well-defined and integrable in the Riemann sense. Manipulation of equation (4) then produces 
an equivalent result for the pressure coefficient due to the volume distribution : 

I"2 
2C ~(r(yl),yi)dy 1 2 I~ ~(/1,Yl) G(x,y) = 

I ' I  

dxl dy 1 

[ ( x - x , )  
(13) 

where x~ = r(y0 is the equation of the leading edges (i.e. y - s(r(y)) ify >/0 and y - -s(r(y)) if y ~< 0) and 
Yl(x,y) and Yz(x,y) are the intersections of the forward-going Mach lines from (x,y) with the port and star- 
board leading edges respectively (see Fig. 1). An expression of the same form as (13) has been given by 
Evvard (equation (42) of Ref. 22). The integration operations in equation (13) are conventional. For the 
subsequent numerical analysis it has been assumed that O2/~xi is bounded, though the formula holds so 
long as it is integrable; there is then at worst just a pair of square root singularities at the end points of the 
range of integration and these are easily removed by the transformation introduced in the next Section. 

If the lift distribution vanishes at the leading edges of the planform like the square root of the distance 
from the edge, both 3A(o/Ou and OA(o/Ov vanish in the same way. Manipulation of equation (12) then leads 
to the equivalent result for the local incidence of the mean surface: 

M ~ 02A~b  duldvi 
= -2rt----U J J  3ul Or1 .(u-ul) + (v-v l )  i (14) 

or, in the original coordinates : 

l fffo2a__ e_fl2o2a_ +  ax, e,1 
e(x ,y)-  21rU \ Oy~ 3x z ] [(x--xl)2--fl2(y-yi)2]i" (15) 

In equations (14) and (15) the integrations are conventional. The integrand has always a pair of square 
root singularities at the ends of the integration interval, whether these are points of the leading edges or 
points of the Mach lines. At the four corners of the curvilinear quadrilateral formed by the leading edges 
and the Mach lines these singularities coalesce and simple poles occur. These singularities are dealt with 
in the following Section by the classical methods. In the application to the design of the mean surface of a 
wing it is no effective restriction to require that A~b be expressed analytically and the differentiations 
required by equations (14) or (15) can then be carried out in closed form. 

On the other hand, since it is desirable to keep the expression for A~b simple, the form of the expression 
chosen for it is important. In particular, it is desirable that distributions of lift which vanish along the 
leading edge and correspond to low lift-dependent drag should be simply expressible in the form chosen. 
To express the behaviour at the leading edges, given by y = _+ s(x), in a natural form the coordinate 
'1 = y/s(x) must be introduced. The upper-surface disturbance velocity potential q~ = -½A~b then varies 
like (1 -t/2) 3/2 near the leading edges, at which tt 2 = 1. It is then more convenient to express the remaining 
variation of ~b in terms of t/and x, rather than y and x, since ~/is related to the planform shape. A poly- 
nomial in ~ff, whose coefficients arepolynomials in x, is chosen, 



~)(x,y) 
U 

N 

= (1 _~/2)3/ n(x) t/2n, 

n=O 

(16) 

M 

an(x) = ~-~bn,m x m, 
m = l  

(17) 

so that ~b is symmetrical about t / =  0 and differentiable at t / =  0. The leading edges are defined by a further 
polynomial 

./, 

s(x) = j # .  (18) 

j = l  

The constant terms are omitted from the sums in (17) and (18) to give a pointed planform and a finite 
local lift at the apex. 

The simple case with an(x) = bn.1 x now gives distributions ofq~ across the semi-span which are the same 
shape at all lengthwise stations. For  a delta wing, this means the same distribution of lift and surface 
slope across the local semi-span at all lengthwise stations, i.e. conical camber. The application of conical 
camber is well known 23 to be a useful method of drag reduction for delta wing s with subsonic leading 
edges. The inclusion of higher powers of x in an(x) enables the lengthwise distribution of cross-loading, 

L(x) = ( A Cp dy, 
i I  
- - S  

which determines the centre of pressure and which has a dominant effect on the lift-dependent wave 
drag when the leading edge is well subsonic, to be varied independently of the distribution of q5 over the 
cross-sections. From (16), the liftL (x) on that part of the planform forward of the station x is given by 

f, (x) = - p U A dp dy = 4p U s(x) (x,y) dtl 

- - s  0 

N 

= 3r~ p U 2 s ( x ) ~  .1" 3 .5  . . . .  ( 2n -  1) an(x), 
2n+l(n+2)! 

r t=0  

(19) 

provided the trailing edge is unswept. Then 

1 dL 
L (x) - 

q dx" 

If the conical behaviour near the wing apex expressed by (16) is excluded, for instance by expressing 
the local incidence as a double polynomial in x and y, the search for wings of low lift-dependent drag may 
lead to unnecessarily complicated shapes. Fig, 2, due to Germain and Fenain 24, shows the variation 



in pressure coefficient, referred to overall lift coefficient, along the centreline of a delta wing with sonic 
leading edges. The absolute drag minimum for this case was determined by Germain zS, and the corres- 
ponding pressure distribution is shown, labelled 'optimum', The other pressure distributions are for wings 
which are optima within limited families, the size of the families increasing with the parameter N. The 
conical solutions, with finite pressure on the centreline at the apex and lengthwise loading varying like 
x near the apex, are not included in the families, so that the convergence as N-*ov is non-uniform and 
the unfavourable pressure gradients steepen as N increases. 

This same example provides further support for the present approach of seeking a lifting surface of low 
drag by semi-empirical means, rather than by an entirely mathematical optimization process. The lift- 
dependent drag associated with the N -- 5 restricted optimum is only 4 per cent abovethe  absolute 
minimum (see Fig. 46 of Ref. 26). Similarly, the conical solutions of Smith and Mangler 23 gave a drag 
only 5 per cent above the absolute minimum for the case of sonic leading edges. These figures are small 
compared with the discrepancies commonly observed between measured and calculated lift-dependent 
drags. Therefore a lift distribution which may differ substantially from a theoretically determined optimum, 
but which is attainable in a real flow, may welt lead to a wing of lower measured lift-dependent drag than 
a lift distribution which is theoretically an optimum. This conclusion is reinforced if the theoretical 
optimum is obtained within a class which may be inappropriately restricted. 

The next two sections of this paper deal with the details and the accuracy of the procedures for evalu- 
ating the expressions in equations (13) and (15). Examples of the application of these procedures are 
given in Section 5. 

3. Numerical Analysis. 
The right-hand side of the equation for the pressure due to the volume distribution of the wing, equation 

(13), consists of two.terms. The single integral is clearly more straightforward to evaluate than the double 
integral and this in turn is simpler than the double integral in equation (15) because ~2/Ox has been 
assumed to be bounded. It is the evaluation of the right-hand side of equation (15), for the local incidence 
associated with a given lift distribution that will be considered in detail; the reader interested in treating 
the symmetrical wing only. can omit the unnecessary refinements*. 

Note first that the partial derivatives with respect to X 1 and y 1 in equation (15) are for y ~ and x ~ constant, 
respectively, but that q~ is given by equation (16) in terms of x 1 and t/. The relevant relations are 

I )  

where the derivatives with respect to xt are for Yl constant on the left and for t /constant on the right. 
The derivatives of q are immediate : 

Yl ~r/ 1 
tl - s(xO' Oyl s(xO 

J 

c~x~ s ' Ox~ = rl \ s2 • 

With these substitutions it is clear that 

*But see the last paragraph of the Section. 



1 { O2AO f12 O2A~ ~ 2P(xI,r/) (20) 
~;~--y~ - 0---~-~ j = (1_q2)----- 7 ,  

where P(x 1,rl) is a polynomial in t 12. The coefficients of this polynomial are rational functions of xl,  which 
are bounded except for a simple pole at x 1 -- 0. This pole is cancelled by the factor s(x,) introduced into 
the numerator  of the integrand of (15) by the change of variable dyl = s(xi) dtT. The denominator of the 
integrand of (15) can be written 

2 

- ~  -y~ ~s(xi) ('7-,h) ( ~ z - . / * ,  X--X 1 

where 

and 

rh = ~i(xx) - x - x ~ - , 6 y  
fls( x O 

02 = ~2(xl) - x - x i + ~ y  
fls(xO 

(2i) 

This term remains non-zero as x 1--+0 for fixed x and y, so no singularity is introduced at the apex. The lines 
17 = Ih(x,) and r# = 172(x1) are the Mach lines through (x,y), as shown in Fig. 1. When (20) and (21) are 
substituted into (15) it becomes 

1 I f  P(xi,rl) drl dxi 
~z(x,y) = ~ ( l+ t / )~ ( l_ t l ) i ( t / _ th )~  (t72_t#) }. (22) 

The integrand has been put into this form with a view to carrying out the integration with respect to 
Yl or ~ first ; this choice of the order of integration reduces the number of times the leading edge equation 
Yl = s(x,) has to be solved for xl  in the course of the calculation. The second integration, that with 
respect to xl, extends from x 1 = 0 to Xl = x and in this range the end-points of the interval of the first 
integration change their form. Suppose the pivotal point (x,y) is in the starboard half-wing (y > 0), as in 
Fig. 1. Let the left-hand forward-going characteristic through (x,y) meet the port  leading edge where 
xi = xl,  Yl = -s(~l) ,  t / =  r/l(~) = - 1. Then for 0~<xl ~ l ,  the ~/-integration is over the range ( -  1, 1). 
Call this Region I of the wing. Let the right-hand forward-going characteristic through (x,y) meet the 
starboard edge where x~ = ~2, Y~ = s(Y@, t / =  t12(~2) = 1. Then for 21~<x14~2 the ~7-integration is 
over the range Oh, 1) and this is called Region II. The remaining range, ~2 ~<x~ 4 x  is called Region III, 
with the ~#-integration over the interval (th, tl2). 

Each integration with respect to t# in equation (22) is between two square-root singularities of the inte- 
grand and two further square-root singularities occur outside the range of integration, unless Xl = ~t or 
x2. For  these two special values of x~, the integrand has a pole, since th(:71) = - 1  and ~72(x2) = 1. The 
first step is to remove the principal parts at these poles. Since, when y = 0, Region II disappears and 
~i = x2, both poles must be dealt with in all three Regions. Consider Region I first. In equation (22) P(xl,rl) 
is replaced by 

P(xi,t/) = P(xi,rl)-P(.~l,- 1) 1----~i ;12--/11 

and the corresponding additional terms 

~ 1 + ~ 1  ~/- ~/1 (23) 
P(x2'l) 1+*/2 ~/2-~/1 
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Xl 1 

dXl _ t/1) ! N/(1 .j_ ~t/it/_ t/1) P ( x l , -  1) ! x / (  1 _ th) (t/2 _ 
(24) 

) f  dX 1 ! dt/ 
P(X2'I o x/(a +t/e)(/12 --t/l)_ %/(1 --:~it/2 --t/) (25) 

are added. The terms subtracted from P(Xl,t/) are not the simplest that could have been chosen; they 
have the advantage that the//-integrals in (24) and (25) are expressible in elementary functions. The 
integrand is treated in a similar fashion in Regions II and III, as displayed in Appendix A. 

The treatment of the six terms like (24) and (25) which arise from the three Regions can be exempli- 
fied by that of (24). The/./-integration is elementary: 

1 

x/(1 +-~ i t / -  th) ,~--- l - t / 1  
(26) 

Now, by equation (21) 

-- 1--t/i = 
x-xl-fly-fls(xO (X1 - -  X1) Q(X1) 

flS(X1) flS(Xl) 

where Q(xl) is a polynomial in xl, since s(xl) is a polynomial and t/i(2i). = - 1. Thus (24) becomes 

Y21 

P ( x l , -  1) j log  fls(xl)(x/2 +x/1  - t/l) 2 dx 1 

o Q(xl) .,,/(1 = t/l) (t/z- t/i) 

- P ( x l , -  1) f l og  (.21 - x )  
0 

dxl 

%/(1 --;'/1) (t/2- t/l) " 
(27) 

The integrand of the first term is finite throughout the range, and its indeterminacy at xl = 0 is irrelevant, 
since the integration formula to be used does not require values of the integrand at end-points of the range. 
The integrand of the~econd term in (27) has a logarithmic singularity at x = xl which is readily removed : 

I log (.2i_x) dXl = I l o g ( . ~ l _ x 0  { ~ /  1 , 1 } 
x/(1 - q 0  (t/z-- t/l) ( 1 - q l )  (q2--t/1) ,,/2(t/2(21) + 1) dx~ 

0 0 

xl  (log x l  - 1) 

-} x/2(t/2(x1) -t- 1)" (28) 

The integrand on the right of equation (28) is finite throughout the range. Thus expression (24) has been 
reduced to a sum of elementary functions and of single integrals of finite functions. Expression (25) and 
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the four similar expressions from Regions II and III are dealt with similarly. Appendix A shows the result. 

The remaining term is the double integral which arises when P is written for P in equation (22), viz. 

II  P(xl,tl) dq dx 1 
(1 + . ) ~  (1 - ~)~ ( .  - ~ 1)~ (n2 - ~)-~ 

(29) 

where P(Xl,q) is defined by equation (23). The integrand now has a square-root singularity at each end 
of the range of integration with respect to r/for every value of X l except xl  -- ~ and x2. For these values 
it vanishes at one end of the range. These singularities can be removed to a fixed distance beyond the 
range of integration by a simple transformation of t/. Again consider Region I, where the singularities 
are at tt = _+ 1. Let 

1 
= ~ 4(3 - ~2), _ 1 ~< ~ ~< 1. (30) 

Within this f-interval the transformation is one-to-one and the intervals ( -  1, 1) correspond (see Fig. 3). 
It is found that 

dr/ 3d~ 
x / l _ r / z  - ~ ,  

(31) 

so that expression (29) becomes, in Region I, 

I f  P(xi'tl(~))3d~dxI 
(2 -- ~)~ ( 2 ~  ~ 2 - t/(~)) ~-" 

0 - 1  

(32) 

The integrand is now non-singular throughout and the branch points (which cannot be eliminated by 
an algebraic transformation) are removed from the range. Similar transformations are given in Appendix 
A for Regions II and III. The transformation 

t / = s i n - n - ,  - 1 ~ < ~ 1  
Z 

would serve as well as (30), which was preferred for speed of computation. 
The double integral on the right of equation (22) has now been expressed as the sum of three double 

integrals, a number of single integrals and some elementary functions; all the integrands are bounded on 
the respective regions of integration. Gaussian integration is now employed to evaluate the local incidence. 
In each region the 10-point formula is applied in both directions, i.e. the ten Gaussian points are distributed 
in the ranges (0, ~1), (~1, ~2) and (~2, x) and at each of these 30 values of xl the ten Gaussian points are dis- 
tributed in the range ( -  1, 1) to form the values of ~. These values of ~ are used to form q, using equation 
(30) or the corresponding expressions in Appendix A. The integrand of (32) follows using (16), (17), (18), 
(20) and (23). Approximations to expression (32) and the two similar ones for Regions II and III follow by 
summation. The integrands of the single integrals are then evaluated and a final summation in the 
x-direction performed. The complete expression and the necessary transformations are written out in 
full in Appendix A. 

The calculation described has been programmed for the Ferranti 'Mercury' electronic computer, using 
Autocode. It is not thought worthwhile to reproduce a flow diagram of the programme, since the calcu- 
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lation, though complicated, is entirely straightforward. All the quantities required can be determined in 
order from the equations given and the only additional information a flow diagram could supply would be 
the division of the programme into chapters*. 

With 100 coefficients bn;m in ttie expressions (16) and (17) for q~, the programme takes between four and 
five minutes to calculate the local incidence at a point. With only a few coefficients, the time is reduced to 
between 2 and 2½ minutes. Obviously a large proportion of the time is being spent on the evaluation of 
the derivatives of q~, the function P(xl,rl) being evaluated at 300 points of the planform. In order to define 
the mean surface of the wing, the local incidence is needed at about 100 points, so that in the course of 
such a calculation P(xl,rl) would be found at about 3 x 104 points. Time would be saved therefore (neglect- 
ing access time) if values of P(xl , t l )  were stored in a table of 104 entries with subsequent interpolation. 
Fortunately it is unnecessary to balance access time against computing time because a table of about 
10 z entries turns out to provide adequate accuracy and such a table can be accommodated in the high 
speed-store of Mercury. 

The scheme used is to compute the values of x l  P(xl,rl) for ~s = -0-1(0.1)1 and x~ = - 0 " i  (0-1)1"* 
on first entering the programme and then, when a value of P(xl , t l )  is subsequently called for, to interpolate 
for it using a second-order backward-difference formula in two variables, x 1 P(xl , t l  ) is chosen as the 
argument of the table since it remains finite everywhere and t/2 is chosen as an independent variable, in 
preference to t/since with equal intervals it covers the spanwise variation better. If the relation of the point 
(x, t72) to the neighbouring tabular points is as illustrated in Fig. 4, the appropriate formula is 

4h4f  = 4h ¢ x l  P(xl , t l)  
J 

= (se(h-  (5) (h - e)fo - 6e(h + 3) ( h -  e)f2 

- (se(h - ~5) (h + e)f6 + (se(h + (5) (h + e ) f  s - 2a(h - 2) (h 2 - (52)A 

- 23 (h -  (5) (h 2 - e2)f3 + 2(5(h + (5) (h  2 - 82) f5  q- 2e(h + 5) (h  2 - (52) f  7 

+ 4(h 2 _ (52) (h 2 _ e2)f¢. (33) 

Using this alternative programme to calculate the local incidence reduces the time taken for each point 
after the first to about 40 seconds. The loss in accuracy is small and, in the present context, entirely accept- 
able. This can be seen from the following Section, where comparisons are given of results using the two 
programmes (with and without tabular interpolation) with results derived independently. 

Before proceeding to these comparisons, it is convenient to mention here how the ordinates of the mean 
surface have been obtained from the values of the local incidence. The local incidence is calculated for 
x = 0(0.1)1 and t / =  0(0.1)1 by the programme described above. (In fact, the programme fails for x = 0, 
~/--" 0 and ~/= 1 due to the complete collapse of one or more of the Regions I, II, III, so values of x and 
t/slightly different from these are used.) A formula like equation (33) is then used to obtai~a values of c~ 
at intermediate points. For  this, an additional row and column are required in the table, obtained by putting 

in accordance with the symmetry of the wing, and 

*A 'chapter' is the block of instructions occupying the high speed store at any one time. The programme 
contained six of them. This is only relevant to Mercury: readers wishing to perform these calculations 
on Mercury or compatible computers should write to the first author. 

**To avoid the need to programme the limiting form of x~ P(xl , t l)  for x~ = 0 separately, a small 
number is used in place of 0. 
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an arbitrary choice affecting a small region of the wing only. The ordinate, z(x,y), of the mean surface is 
determined by the relation 

~Z 
_ ° 

ax c~(x,y) , 

together with an initial value z(xc(y),y) = fly), normally chosen to give straight hinge-lines for control 
surfaces. The interval x < x l  < 1 on the line Yl = Y is divided into 5 equal intervals and in each of these 
10 Gaussian integration points are taken. The approximate value of z then follows by summation, with 
the appropriate weights, of the corresponding values of c¢ obtained by tabular interpolation. A constant 
number of points rather than a constant integration interval was chosen partly for simplicity and partly 
to obtain sufficient accuracy in the important wing-tip region without disproportionate effort elsewhere. 
The large number of integration points relative to the small number of tabular points appears inconsistent. 
However, the final shape arrived at must be smooth to a high order of accuracy, whereas it need only 
correspond to the exact shape as predicted by linear theory to an order closer than the predictions of the 
theory are likely to correspond to a real flow. For instance, on a model five feet long, the ordinates must 
be smooth to within 0.001 inch, but the predictions of linear theory are unlikely to be significant to more 
than 0.1 inch, so if the ordinates agree with.linear theory to within 0.01 inch the possible sources of error 
are adequately distinguished. 

At the opening of this section the problem of calculating the surface pressure due to the wing volume 
distribution was dismissed as relatively easier than the calculation of local incidence. However, two 
additional complications do arise. The more important concerns the specification of the volume distri- 
bution. Since this must be chosen to provide the required stowage space, with enough thickness to provide 
strength and rigidity in a light structure, all at the least possible cost in drag, it is unlikely that it can be 
specified in terms which the programmer has chosen in advance. Two cases arise ; in the first, an analytic 
representation is possible but exceedingly complicated; in the second it cannot be attempted. The 
procedure in the second case is described in Section 5.1. In the first case, typified by the wing reported on 
by Courtney and Ormerod 27, whose shape is given by Clark 28, the difficulty lies in the formation and 
calculation of the second derivatives of a very complicated function. Here it has been found helpful to 
programme the usual formulae for the derivatives of the functions which arise, as explained in Appendix B. 
In both the first and second cases the calculation of ,l(x,y) = Oz/Ox and 02lax for use in equation (13) 
must be by means of a sub-programme which can be replaced as a whole. The second, and minor, compli- 
cation is that, in order to deal with the familiar case of the wing with diamond cross-sections, provision 
must be made for the presence of a ridgeline along the centreline of the wing. This means that the regions 
of integration shown in Fig. 1 must be subdivided along the centreline, so that the numerical integration 
formula is appropriate to the behaviour of the integrand within each region. The two cases illustrated 
in Fig. 5 then arise, depending on the point of the planform at which the pressure is required. Since there 
are now either 6 or .7 regions instead of 3, considerations of high-speed store capacity and computing 
time make it advisable to choose fewer integration points in each region. It appears from the results that 
an array of 7 x 7 Gaussian points in each region is adequate, so the programme allows for 7 or fewer points, 
the latter being useful for checking the accuracy. 

4. Accuracy of Methods. 
The adequacy of the numerical analysis of the previous Section can only conveniently be assessed by 

making comparisons between calculations by the programmes described and independently calculated 
results of linearized theory for the relatively simple cases that.can be treated in closed form. Perhaps inevit- 
ably, such comparisons can never be completely convincing, in as mu~ch as they are made for simpler cases 
than those for which the calculation procedure is intended. In the end, some of the confidence generated 
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in the techniques arises from the self-consistency of the results and a little, in a completely illogical 
fashion, from their empirical success described in Section 5. 

4.1. Accuracy of the Calculated Pressure Distribution. 
To test the adequacy of the numerical analysis and the accuracy with which it has been programmed 

in the case of the calculation of the pressure due to a distribution of volume, consider a delta wing with 
the so-called Lord V area distribution and diamond cross-sections. Pressure distributions at two spanwise 
stations were calculated for this wing by Eminton 29, who performed one intergration analytically and 
one numerically, and confirmed by Firmin 3°, who obtained a result in closed form. For  a wing of length c, 
semi-span s r and centreline thickness to chord ratio 0"1123, at a Mach number such that flsr/c = 3 -~, 
the pressure at the points whose coordinates relative to the apex are quoted is 

y/sr x/c Cp (present method) Cp (Eminton) 

0.05 0.1 0.1504 0.1504 
0.2 0"0396 0.0396 
0"3 - 0.0205 - 0-0209 
0-5 - 0.0711 - 0.0710 
0.7 - 0.0761 - 0.0764 
0.9 - 0'0694 - 0.0694 

0"575 0-6 ' 0.0075 0.0069 
0"7 - 0"0601 - 0'0603 
0.9 - 0-0827 - 0.0827 

The agreement demonstrated, even close to the leading edge, is entirely adequate for the purposes for 
which the calculation method was developed. The maximum error of 0-0006 is less than 1 per cent of the 
peak suction on the wing, whereas differences between linear theory and experiment commonly exceed 
10 per cent. On the thicker wings, such as those studied by Cooke 31, this may be ascribed to second 
order effects of the inviscid flow; on thinner wings the pressures induced by boundary layer growth form 
a larger proportion of the total pressure. 

4.2. Accuracy of the Calculated Warp Distribution. 
For  the calculation of the warp of the mean surface required to induce a specified distribution of lift, 

three test cases are presented. The errors are to be judged against the standard of a deviation of 1 per cent 
of the maximum slope of the mean surface, proposed to keep the errors in approximating to the 'exact' 

l inear theory an order of magnitude smaller than the discrepancies arising from use of the linear theory. 
In each case two versions of the present calculation are given: one using the full method involving the 
direct evaluation of P(xl,tl) [-equation (20)] at each integration point and the other using the time-saving 
version in which values of P are obtained by interpolation. 

(a) The simplest test case is that of a delta wing with the simplest conical camber that provides the 
appropriate behaviour of the load near the leading edges. F rom Ref. 23 it can be found that if 

l = 4(i +2t/2) (1 --t/2) ~ 

so that 

q~ x(1 _q2)a/2 
U 

then 
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w 1 { ~2K2K'(~K)-(2-~2K2)E'(~K)+2(1-~2KZtl2) 3/2 } (34) 

where y -- s(x) - Kx is the starboard leading edge and E' and K' are the complete elliptic integrals of 
complementary modulus. With K = 1, e is a function of fi and t /only and the following values are found: 

fl ~ e~ullversion) e(with interpolation) ~ [equation(34)] 

1 0.50 1.299 1.299 1.299 
1 0'80 0"431 0.431 0.432 
1 0.95 0"078 0-078 0.061 
1 0.99 -0 .028 -0-028 0.006 
0"5 0"95 -0"869 -0 .869  -0 .869 
0.5 0.99 -1 .068 -1 .068 -1 .073 
0.1 0.50 0.762 0.762 0.763 
0.01 0-50 0.616 0.616 0-750 

From these values it can be seen that the required accuracy is not obtained very near the leading edge 
of a sonic-edged delta wing, nor  for very small values of/~K. In both cases this is explicable in terms of 
the extreme shapes which Regions I, II and III adopt (see Fig. 1). The programme is not intended for 
these cases : at the other calculated points the agreement is well within 1 per cent of the maximum incid- 
ence. The agreement of the two versions of the programme is n o t  surprising, since for this very simple 
case the interpolation formula is exact. 

(b) Another fairly simple, but non-conical, case is given by Roper 16. For  a delta wing with K = 0.6 
and fl = 1, the local incidence 

= 3"57908 y2 x 3 _ 10"89721 y4x (35) 

correspondsto  a loca l l oad  distribution 

l=x5(0.207177+2.42346 q2-0.631764 q4)(1-~2)½ 

and so to a distribution of potential 

~b=x6(0.O0863237+0.157941 ~2)(1--~2)3/2. 
U 

For  this case the comparable values of ~ are : 

x y ~ullversion) e(withinterpolatio~ ~ ~quat~n(35)) 

0.34 0.2 -0.0003010 -0.0003034 -0.0003012 
0.40 0-2 0.002187 0.002285 0-002188 
0.60 0.2 0.02046 0.02078 0.02046 
1-00 0.2 0.12570 0-1263 0-12573 

The full version of the programme is extremely accurate, even close to the leading edge. The loss of accuracy 
in using interpolation is still within the limit of 1 per cent of the maximum value of ct on the wing. 

(c) Wings with curved subsonic leading edges are not amenable to exact treatment by linear theorY. 
However, the not-so-slender theory of Adams and Sears a2 has been applied to them by Squire 33, and this 
provides an approximation to linear theory with which the present approximation can be compared. 
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Unfortunately, as was seen above, the present treatment involves an increasing error as fl--*0, while 
it is only in this limit that the not-so-slender theory is exact. The so-called 'gothic' planform 

s(x) = 0.25 x ( 2 -  x) 0 ~< x ~ 1 

is suitable simple. Then to the potential distribution 

rb 
" = 0.25 x ( 2 - x )  (1 __/~2)3]2 
U 

corresponds the expression 

#2 1~ ) ~x ---- 1-5-- 3q2 q-2-~-~ (9-F 8t/4q -- 12 log (36) 

for the local incidence at the trailing edge x = 1, according to not-so-slender wing theory. This yields 
the comparison, for fl = 0.2 and x = 1 : 

y c~ (full version) c~ (with interpolation) c~ (equation (36)) 

0.05 1.368 1.364 1.373 
0"10 1.008 1-005 1.013 
0.15 0"409 0-407 0.413 
0.20 - 0.430' - 0.432 - 0.426 
0-24 - 1.272 - 1.273 - 1.27J 

For  this value of fl the two approximations to linear theory agree to within the desired accuracy and 
the use of interpolation does not upset this conclusion. The agreement of the two approximations may, 
of course, be coincidental, but it tends to increase confidence in the present programme. 

F rom these three examples it is concluded that the full method agrees well enough with the exact 
linear theory in the sort of case for which it was intended and that the loss of accuracy resulting from the 
use of interpolation is acceptable. 

5. Application of Methods. 

5.1. Calculation of the Pressure Distribution Over an Unwarped l~ng at Zero Lift. 
For  the example to be discussed here, the ordinates z(x,y) of the upper surface of the unwarped wing 

were specified numerically at the points of a rectangular lattice covering the planform. The sub-programmes 
to calculate the values of 02/Ox = 02Z/OX 2 at points of the planform and values of 2' = Oz/Ox along the 
leading edge were therefore constructed to use linear interpolation in tables of these quantities to be 
provided as data for the computer. The proper way to obtain these data from the ordinates supplied is 
to use a combination of formal and intuitive methods to give a set of values of 02/Ox which can be re- 
integrated to give the original ordinates to within manufacturing tolerances and are at the same time as 
smooth as possible. This is a formidable task, so two preliminary methods were tried. For  the first, the 
requirement that the original ordinates could be recovered was dropped and a rather arbitr/trily smoothed 
set of values of 02/Ox was used for the calculation. For  the second, the requirement of smoothness was 
dropped and the second differences of the ordinate values, extrapolated to the planform edges, w_er e 
used. These are shown in Table 1, with the Values of 2 along the leading edge, required for the first integral 
of equation (13), in Table 2. It is clear that the values of 02/Ox are not smooth and many apparentiy 
unsystematic variations appear. However, the pressure distribution calculated from the 'smooth'  values 
of 02/Sx showed irregularities very similar to those in the distribution calculated from values of a2/Ox 
obtained by differencing; but the levels of pressure reached were somewhat different. Accordingly, the 
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calculations based on the unsmoothed differences were preferred, as being more likely to give the pressure 
levels correctly, whatever the significance of the irregular variations. 

The planform of the wing is shown in Fig. 6, with the lattice of points at which a2/8x was specified on 
the left-hand side. On the right-hand side are shown the stations at which Taylor 8 measured pressures on 
a model of the wing. Some cross-sections of the wing are drawn in Fig. 7 and arranged to give a fore- 
shortened view of the model. The measured and calculated pressures at a Mach number of 2.2 and a 
Reynolds number of 15 million (based on centreline chord) are shown in Fig. 8. 

The agreement is, in fact, rather better, in terms of the peak suction on the wing, than that reported by 
Cooke 31 on a delta wing with diamond cross-sections and Lord V area distribution, for which the linear 
theory has been obtained in closed form 3°. The explanation for this is probably that Taylor's wing is 
som~ewhat thinner: centreline thickness to chord ratio of 0.055 as against 0.112 and (volume)/(plan area) 3/2 
of 0.0415 as against 0.0519. In any case the agreement gives confidence in the use of the method, even 
when the data seem unpromising. 

5.2. The Design of an Efficient Trimmed Lifting Surface. 
The considerations governin~g the choice of a lift distribution for a slender wing at its attachment 

incidence have been set out in general terms in the introduction. Their application to a particular case 
will now be described in more detail  

The planform of the wing for which a warp distribution is required is shown in Fig. 9. The wing is 
intended to cruise at M = 2.2 at CL = 0.1 without control surface deflections and with a centre of gravity 
position giving neutrallongitudinal static stability under the approach conditions ofM ~ 0.2, CL ~ 0"5. On 
the basis of the arguments of the introduction, the leading edges are to be attachment lines at CL = 0"05 
at M = 2-2. In the absence of tests on this particular planform, the aerodynamic centre under the approach 
conditions was taken from a correlation with centre-of-area position originating with Messrs. Handley- 
Page Ltd. and given in Ref. 2. The centre of area is at 68.7 per cent of the length from the apex; the cor- 
responding aerodynamic-centre position is at 64.7 per cent of the length from the apex; and the centre of 
gravity is supposed to be at the same point. Since the lift distribution is being specified at a lift coefficient 
different from the cruise, the aerodynamic centre under cruising conditions is also needed. Again in the 
absence of tests, an empirical estimate given in Ref. 2 was employed. It appears that the aerodynamic 

centre of a slender wing under approach conditions is some 7 to 8 per cent of its length forward of the 
aerodynamic centre at M ~ 2, CL -"- 0.1. With the higher value, this means that the centre of pressure at 
CL = 0"05, M = 2"2 must be 16 per cent of the length ahead of the aerodynamic centre, i.e. 8 per cent 
ahead of the centre of gravity or 55.7 per cent of the length from- the apex. This is the requirement for 
trim. 

T h e  requirement for efficiency, i.e. for a low drag due to lift at cruise, is harder to formulate, since the 
effect on drag of the flow separation from the leading edge is only qualitatively understood. The division 
of the drag into wave drag and vortex drag on the basis of the transport of momentum across a distant 
control surface can still be made, but these can no longer be connected with the lift distribution over the 
wing, as is possible when the flow is attached. However, in the choice of the lift distribution for low drag 
it was assumed that the drag could be divided into two parts, one of which again depends on the spanwise 
distribution of chord loading and is independent of Mach number and another which depends mainly 
on the lengthwise distribution of cross-loading (see Section 2) at the cruising condition. 

Calculations of vortex drag in attached flow show that low values can be obtained with spanwise 
distributions of chord loading which arise, according to slender thin-wing theory, from wings with a flat 
central part and leading-edge regions drooped outboard of a 'shoulder-line' (WeberlS). As the point 
where the shoulder-line meets the trailing edge approaches the wing tip, the vortex drag tends to the 
theoretical minimum and the pressure gradients on the wing increase. A compromise that seems obtain- 
able in a real flow is reached with a 'shoulder-line' 75 per cent of the semi-span from the centreline, when 
the vortex drag is less than 10 per cent above the minimum. The corresponding chord loading is shown in 
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Fig. 10a. Experiment shows that wings of this form have drag factors* which decrease as the lift coefficient 
increases above that for attached flow, at all Mach numbers for which the flow separates from the leading 
edge. Hence a chord-loading distribution of this kind was specified for the wing to be designed in the 
Rope of achieving a low value of the first component of the lift-dependent drag. The one chosen is also 
shown in Fig. 10a. 

The remainder of the lift-dependent drag has been assumed to depend mainly on the lengthwise 
distribution of cross-loading, just as the lift-dependent wave drag does, to the first order in/~A, in attached 
flow. At the cruising condition the cross-loading distribution must give the centre of pressure at the centre 
of gravity. From calculations made for attached flow, it is thought that for low drag the peak value of the 
cross-load!ng should be as low as possible and the cross-loading at the trailing edge should be substantial. 
Moreover, a smooth distribution is desirable if the design load is to be achieved in a real flow. Fig. 10b 
shows the lengthwise distribution of cross-loading that emerged from these considerations. From this 
must be subtracted the lengthwise distribution of cross-loading corresponding to incidence, which in 
general could be obtained from measurements of pressures on a model or from a calculation by linear 
theory, but which was in this case estimated from a combination of measurements and theory for different 
planforms. This leaves the lengthwise load distribution at the attachment incidence as shown in Fig. 10b, 
with its centre of pressure at the required station, 56.7 per cent of the length from the apex. 

The distribution of chord-loading shown in Fig. 10a is equally the distribution of (o/U along the trailing 
edge. If a similar distribution were chosen at all lengthwise stations, the distribution of local lift across the 
local semi-span would be peaky at all lengthwise stations and all cross-sections of the mean surface 
part of the unwarped wing are superimposed on such a mean surface the resulting wing shapeappears 
would be drooped fairly sharply near the leading edge. When the thick cross-sections of the tbrward 
unlikely to encourage an orderly development of separated flow originating from a single separation 
line along the leading edge. Accordingly, the distribution of (a/U across the local semi-span is modified 
gradually towards the apex of the wing, so that pressure gradients are reduced and the typical cross- 
section of the mean surface near the apex is gently drooped over the whole semi-span. 

The mean surface arising from all these considerations and calculated by the programmes described 
above is illustrated in Fig. 11, in which cross-sections and chordwise sections have been combined to 
provide a three-dimensional view of the mean surface at its attachment incidence. The arbitrary function 
of y which enters the calculation of the mean surface has been chosen to make the trailing edge straight. 
The cross-sections show the characteristic droop of the leading edges required to produce attached flow 
at a positive lift coefficient, with the droop concentrated close to the leading edges towards the rear 
and spread over the whole cross-section at the front, as described above. These cross-sections are arranged 
lengthwise so that the centreline incidence is much larger at the front than the rear, giving the required 
shift of the centre of pressure forward from the aerodynamic centre. In the more familiar terminology 
developed for high-aspect-ratio wings, the mean surface can be described as having negative camber on 
the centreline, changing through inflected shapes to positive camber near the tip, with marked wash-out 
from root to tip. 

The local load coefficient I(x,y) = ACp corresponding to the attachment condition is shown in Fig. 12. 
The apparently arbitrary lengthwise stations at which this is drawn are those at which pressure measure- 
ments were to have been made on a wind-tunnel model. The decrease in level of l(x,y) from front to rear 
is associated with the nose-up pitching moment. The negative values of l(x,y) over the central part of the 
span towards the rear are a consequence of the attempt to keep the drag low by carrying load on the 
tips without carrying much total cross-load on the rear of the wing. In the cruising condition the incidence 
loading corresponding to CL = 0"05 would be superimposed on that shown in Fig. 12. 

A volume distribution with a low wave drag intended to meet the main requirements of stowage, 
balance and structure on a transport aircraft of this planform was developed in parallel by J. Weber and 

*If the lift and drag coefficients of the wing are CL and C D, and CDo is the zero-lift drag of the wing with 
the same volume distribution and top-and-bottom symmetry, we use the drag factor K = rcA(CD- CDo)/C~. 
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tested, both as a symmetrical wing and in combination with the mean surface just described, by 
A. O. Ormerod. Some preliminary results were quoted in Ref. 2 and are repeated here to indicate the 
measure of success achieved by the design method. At the design Mach number of 2.2, the attachment 
lift coefficient of 0-05 was produced at an incidence within one-tenth of a degree of the calculated attach- 
ment incidence. At CL = 0"05 the centre of pressure was 57.3 per cent of the length from the apex, i.e. 
less than 1 per cent of the length behind the intended position. At C z = 0.1, the intended cruising lift 
coefficient, the measured lift-dependent drag factor K = r~A(C D- CDo)/C 2 was 1"93, which is marginally 
less than the value of 2.00 measured on the unwarped wing.* (Here CDo is the zero-lift drag of the unwarped 
wing.) These results indicate a substantial measure of success for the design procedure and calculation. 

Although not relevant to the theme of the present report, the failure of the wing to trim at its design 
point should perhaps be mentioned. The low-speed aerodynamic centre of the unwarped wing was found 
to be some 1 per cent further forward than had been assumed and that of the warped wing was about 
1 per cent further forward still. Consequently, with a centre of gravity providing neutral stability at the 
approach, the trimmed C L at M = 2.2 was only 0.08 instead of 0.10. There is every reason to think that, 
with the experimental results available, a completely successful re-design would be possible. 

5.3. The Design of a Lifting Surface in the Presence of a Short, Round Fore-Body 

For various reasons there is a case T M  for replacing the nose of the wing by a short, round fore-body, 
with the sharp-edged wing emerging from the body side some 30 per cent of the overall length back from 
the apex. Further aft the body will disappear into the wing thickness, so that the rear part of the configura- 
tion can be the same as that of the wings described earlier. 

A simple way to reduce the interference of the fore-body on the lifting properties of the wing is to arrange 
the fore-bo_dy t 9 point into the incident stream at the attachment incidence. There is then no body upwash 
field to interfere with the calculation of the warp distribution to produce the desired loading- For the 
warp distribution to be compatible with this body direction, the incidence of the wing must vanish at 
the apex. This is readily achieved by setting the coefficients b~,l, 0 ~< n ~< N, in equation (17) equal to zero. 
The body can then be carried forward from the gross wing apex into the wind direction and backward 
from it along the centreline of the gross wing. The lift carried on the body forward of the wing root will 
then be close to that postulated for the gross wing forward of the same station and, since this lift is small, 
t}~e correspondence will be close enough for the properties of the configuration to be treated by the previous 
methods. Moreover, the upwash generated by the poruon of the body between the gross wing apex and the 
leading edge root will also be close to that generated by the portion of the gross wing ahead of the root 
and will again be small. 

A mean surface was designed for a gross wing along the same lines as indicated in the previous Section, 
with the additional restriction bn, 1 = 0, and combined with a suitable thickness distribution derived by 
J. Weber. The plan-form is shown in Fig. 13. 

The model resulting was tested by C. R. Taylor and preliminary results were quoted in Ref. 2. The attach- 
ment lift coefficient of 0.05 was again reached about one-tenth of a degree from the calculated attachment 
incidence. At CL = 0"05 the measured centre of pressure was rather over 1 per cent of the length of the 
gross wing behind its intended position. The required forward movement was slightly under-estimated 
so that the trimmed lift coefficient was again about 0.08. The measured lift-dependent drag factor, K, 
was 1-95 for the warped configuration, as against 2.05 for the symmetrical one, at CL = 0"10, M = 2"2. 

From this we may conclude that warp can be designed by the methods described as successfully for 
configurations with short fore-bodies as for wings alone, provided the bodies can be shaped to fit the 
flow field of the wing. 

*There is already a favourable effect of tt-tickness on lift-dependent drag in the case of the unwarped 
wing. On a very thin flat wing with sharp edges the resultant of the pressure forces on the wing is normal 
to the wing plane, so that the lift-dependent drag, CD- CDo, is CtCL. The measured value of 7rActCr./C 2 on 
the unwarped wing was 2.41 under the above conditions. 
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LIST OF SYMBOLS 
Polynomial in x [equation (16)] 

Aspect ratio 

Coefficient of a. [equation (17)] 

Length of wing 

Coefficient of s(x) [equation (18)] 

Lift coefficient 

Pressure coefficient 

Complete elliptic integral of complementary modulus 

Tabular values [Fig. 4 and equation (33)] 

Tabular interval [Fig. 4 and equation (33)] 

Cotangent of leading-edge sweep of delta wing 

Lift-dependent drag factor 

Complete elliptic integral of complementary modulus 

ACp local load coefficient 

Cross-loading 

Lift acting forward of station x 

Mach number 

See equation (20) 

See equation (23) 

½p U 2 kinetic pressure 

See equation (26) and Appendix A 

Function inverse to s(x) 

Local semi-span of wing 

s(1), overall semi-span of wing 

Free stream speed 

Characteristic coordinates in wing plane 

Right-handed rectangular coordinates, origin at apex, Ox downstream, Oy to starboard 

Current values of x,y 

Local incidence of mean surface of wing 

I M ~ - l l  ~ 

See Fig. 4 

Difference operator across wing plane 

y/s(x) or yds(xO 

Streamwise surface slope of upper surface of volume distribution 

See equation (30) 

Density 

Disturbance velocity potential 
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APPENDIX A 

Complete Expression for Local Incidence as Programmed. 

With P(xl,~/) as defined by equation (20), equation (22) becomes: 

~l~_~ff I ' / l + q  q-t/1 
t/2--t/1 t/2-t/I dt/ dxl + 

=~ =(x,y) = J J  {(1 -t/2) (t/-t/,) (~2-t/)}' 
1 

f ,  ip(xl,q)_p(~i,_i)~/i-t/  ,2-)I p(~2,i)~/l+t/ t/-t/1 
. 2 t/2+1 1+t/2 t/2-t/l&ldxi+ 

+ {(1 --/,]2) (/i __ t/1) (1"12 -- t/))½ 
-~l r/1 

n~.p(x!,t/)_p(~l,_l);1-~l q2-~/ p(22,1);1+~/ q-~/1 
i l  2 ~/2+1 2 1-qldt/dxi+ 

+ {(1 _ .2) (7]  - /71)(~2 -~)}½ 

f~ /  1 log (42 +1~--~-~)2 fl S(Xl) dXl- 
+P(xi ' -  1) (1-t/0(~/2-~h) Ql(Xl) 

-P( l'Li) I 
0 

1 1 
x/(1-ql) (t/2-~?l) ~/2(t/2(21)+1) 

log (Xl - Xl) dxl - 

-P (x l , -  1) xl (log xl - 1) 
1) + 

1 , (~ /2+~2 + 1)2 fl s(xi) - log dxl - 
+P(x2'l) N~(l+t /2) ( t /2- -q l )  " Q2(xi) 

1 1 

0 

log (x2 - x 1 )  dxl - 

_ p(22,1)x2 (log x2-- 1)- (x2 --xi) (log (x2 --xl)-- 1) 
~/2(1-ql (22)) 

X2 

+ P(xl,- 1) f- 1 _  log (~/2 + l~//]-~--ql) 2 fl S(Xl) dxi-  
J ~/2(t/2 + 1) Qi(xi) 
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~2 

1 
-P(~I'- 1) f { 2v/~z+ 1) 

xt 

1 } 
%/2(r/2(X1) "b 1) log (X 1 -- XI) dx :  -- 

-- P(:~l,- 1) (x2 --xi) (log (x2 - -x i ) -  1)+ 
~/2(,7~(~) + 1) 

~2 

f 1 +P(x2'I) x/(l+r/2)(rlz_th) 
Xt 

log (~1 - t  h + ~ ) 2 / 3  s(xQ dxl - 
Q2(xO 

X2 

1 
--P(N2'I) f {X/(1./_t/2~(t/2__t/1)X/2(1--t/l(22))} 

~t 
log (x2--xi) d x : -  

- P(~z,1) (X2 - -  X1) (log (x2 - x l ) -  1) + 
~2(I - ~/:(22)) 

X 

f 1 log(%/~2+1+X/~2--t]l)2fls(x1) +p(~.-  1) ~ 1 )  Q1 (xO dx~- 
~2 
X 

-P (N1 , -1 ) f  { ~  1 .} 
1) x/2(r/Z(Xl) + 1 xz 

log (x 1 - xl) dxl - 

- P(2~,-- 1) (x -  xl) (log (x -  x i ) -  1) - (x2 - xi) (log (x2 - x l ) -  1) + 
X/2(~/2(xl)-k 1) 

X 

f i  + P(~z,1) x/2(1_ ~/1) 
. YC2 

- - l o g  (x/1 - q i  + ~ 2 - q i )  2 fl s ( x O  d x  1 _ 

(22 (xO 

2¢ 

-- P(~2,1) l 
x2 

1 1 
log (xl - x2) dXl - 

-P(~z,1) (x-xa) (log ( x - x 2 ) -  1) 

,/2(1 - th(~2)) 
(37) 

In these expressions Qi(xi) and Q2(xi) are defined by: 

Q~(xl) = fl s(x3 (1 + ~ )  = fl s(xO + x ~ - x  + fl y 
x~ -- xi xl -- xl 

Qz(x:) = 
/~ s(x~) (~z- 1) - ~ s ( x O - x l + x + ~ . v  

X2-- X1 X2- X1 

(38) 
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To evaluate the three double integrals q is expressed in terms of ~ by: 

1 
n = ~ ( 3 - ~  2) O~<x~<x~ 

I / = ~  l + q t + ( 1 - r h ) ~  ~(3-~2) ~l~<xl~<x2 

1 { t/2 + t/1 + (t/2-- rh) 1 ~(3-- ~2) } :x2<~xl<~x. ~=~ t (39) 

APPENDIX B 

Programming the Calculation of the Derivatives of  Complicated Expressions. 

As explained in Section 3, it may well happen that the function expressing the ordinate, z, of the unwarped 
wing in terms of its location (x,y) on the planform is very complicated. In particular, z is likely to depend 
on a number of intermediate functions of x. Since 02z/Ox z occurs in the integrand of equation (13), this 
presents a difficulty in the evaluation of the pressure distribution due to volume. 

This difficulty is two-fold. First, both the derivation and the programming of the extended explicit 
formulation of 02z/t3x z are liable to error and not easy to check. Second, the length of the programme 
needed to evaluate such a complicated expression may exceed the capacity of the high-speed store, 
thus requiring the transfer of fresh instructions from the backing store in the course of the calculation of 
02z/Ox2. Since about 300 values of 02z/Ox z are required to find the pressure at a point, this would increase 
the computation time significantly. As an example of what can be involved, this formula, taken from 
Ref. 28, may be instanced: 

+fl )=-( l+f lz~z)  ~ } s c~(1 _q2)+ 1 - ~  (1 2 -~ 
z(x,y) = ~ (1 + f12 ~2)~ (1 + f12)~_ 1 

(40) 

where the intermediate functions are given by 

f ~ = +(1+fl2)~-1 1 -  ~ f (1+fl2)~ l°g (fl +(1+//2)~)- 1 } /3 

g = 0 .5x+x2-O.5x  S 

s = 12x2(1 -- x) 

c~ = 0-75-0"65x 

fl = 12.5x(1 + x  z) 

~1 = 4y/g 
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and the notation is unrelated to that used elsewhere in this report. 
The evaluation of the derivatives of such expressions is much simplified by programming the formulae 

for the derivatives of a quotient and a square root, for instance, as routines which can be used as often 
as desired, and by arranging for the function and its first two derivatives to be stored in consecutive 
locations. Suppose, as a simple example, that the function 

(A(x))~ 
8(x)+ (C(x)/O(x) )~ (41) 

and its first two derivatives are required. Then two sub-routines are first constructed. R -  1, given values 
of u(x), u'(x), u"(x) in locations i, i+  1, i+  2 and v(x), v'(x), v"(x) in locations L J + 1, j + 2, places u/v, (u/v)', 
(u/v)" in locations k, k+  1, k+2,  using the elementary formula for the derivative of a quotient. R - 2 ,  
given values of u(x), u'(x), u"(x) in locations i, i+  1, i+  2, places u~(x), (u~:(x)) ', (u~(x))" in locations k, k + 1~ 
k + 2. Then, assuming the values of 

A, A', A" are in locations 0, 1, 2 

B,B ' ,B"  ,, 3,4,5 

C,C' ,C" ,, 6,7,8 

D,D',D" ,, 9,10,11, 

the procedure is as follows. 

Set i = 6,j  = 9, k = 12 and enter R -  1, giving C/D, (C/D)', (C/D)" in locations 12, 13, 14. 
Set i = 12, k = 15 and enter R - 2 ,  giving (C/D) ~, [(C/D)~]', [(C/D)~]" in locations 15, 16, 17. 
Form the denominator of (41) and its first two derivatives in locations 18, 19, 20. 
Set i = 0, k = 21 and enter R - 2 ,  giving A ~, (A~) ', (A~) '' in locations 21, 22, 23. 
Set i = 21, j = 18, k = 24 and enter R -  1, giving the required quantities in locations 24, 25, 26. 
Although in such a simple example the gain in space in the computer is not significant, the programming 

is already much simplified and the algebraic manipulation is eliminated. In the example of equation (40) 
above, the use of these same two subroutines makes the computation practicable and saves much space 
in the computer. 
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o.o16 

o.o3  
0.050 

0.066 

o.o8  
0-100 

o-115 
o.13  
0.150 

0.166 

o.18 , 
0.200 

TABLE 1 

~lues ~ -02~xZon UpperSurface ~ n 9  ~Section5.1 

0 0.1 0.2 0-3 0-4 0.5 0.6 0.7 0.8 0.9 1.0 

0.225 0.810 0.540 0"150 

1.605 0.885 0.315 

0.375 0.420 

0"000 0"060 

0"015 0"030 

0"105 0"195 

-0"030 0"180 

0"135 

0-225 0"225 0"075 0'135 0"000 

0"345 0-270 0"120 0"015 0'000 

0"150 0"285 0"270 0-120 0"000 

0"300 0"315 0"420 0-285 0"000 

0"345 0"000 0"180 0"345 0"165 

0"210 0"315 0.240 0"375 0-180 

-0"135 0"360 0"315 0"405 0'270 

0-165 0-390 0"375 0'225 

0-675 0-375 0-300 

0"450 0-465 0-300 

0"600 0"330 

1'065 0"360 

0"405 

TABLE 2 

Values of Oz/Ox on Leading Edge of Upper Surface of l~ng of Section 5.1 

x 0 0-1 0.2 0"3 

Oz/Ox 0-250  0.200 0.096 0.060 

0.4 0.5 

0.052 0.050 

0.6 0.7 0.8 0.9 1-0 

0.050 0-050 0.050 0-050 0.050 
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