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Part 1.--Initial Aerodynamic Forces Following a Sudden Change of  
Incidence * 

Summary .  
The forces and moments on wings of finite aspect ratio undergoing a sudden change of incidence are 

considered at the start of the unsteady motion. Linearized theory is used and the flow is assumed to be 
incompressible. The method adopted is only a slight extension of that suggested by R. T. Jones. Applica- 
tions are made to rectangular and delta wings, but the method is suitable for many planforms. Spanwise 
and chordwise load distributions are given, and the position of the centre of lift is determined exactly 
in the case of a square wing. A comparison of the initial and final aerodynamic forces is made. 
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1. Introduction. 
The determination of the aerodynamic forces on a two-dimensional wing undergoing a sudden change 

of incidence has been considered by several writers. Von K~rm~n and Sears 1, S6hngen 2 , Sears 3, Leehey 4 
have made positive contributions to the original theory of Wagner s, so that accurate assessments of the 

forces can be made. 
However, for wings of finite span, the linearized theory for incompressible flow has been formulated 

but numerical applications are few. An approximate method was given by R. T. J0nes 6, who calculated 
the growth of lift on elliptic wings of high aspect ratio. More recently, Vogel 7 has used an extension of 
lifting-line theory to calculate .the spanwise distribution of lift as a function of time t. His method has so 
far been developed for wings with straight quarter-chord lines, but it appears to be somewhat inaccurate 
for small time. W. P. Jones 8 and Drischler 9 have used oscillatory lift coefficients to obtain the growth 
of lift function from the reciprocal relations of Garrick 1°. The method given by W. P. Jones is valid only 
for certain wings of high aspect ratio. That given by Drischler, who also calculates some spanwise 
distributions of lift, is unsuitable for a finite interval of time following the sudden change of incidence. 

In Part I of this report, attention is concentrated on the forces and moments at the start of the unsteady 
motion. It is necessary to distinguish between those acting at t = 0 Which are of an impulsive natur e, 
and those acting at t = 0+ which are finite (see Sections 3, 7 and 8). The former will be qualified by 
'impulsive' and the latter by 'initial' throughout the text. The method adopted io study the initial forces 
and moments is but a slight extension of that given by R. T. Jones. It has been applied to rectangular and 
delta wings for a fairly wide range of aspect ratio. The total initial lift on rectangular and delta wings 
has been calculated approximately by Lehrian 11 and Duquenne 12, the latter using directly the method 
suggested by R. T. Jones. Their results are compared with those of the present method in Sections 9 and 10. 

The main objectives of Part I have been twofold. Firstly, to give initial spanwise and chordwise distri- 
butions of lift, since there appears to be no information on these quantities in the literature. Secondly, 
to investigate effects of aspect ratio and planform on the total initial lift. In Part II, it is shown how the 
calculated results of Part I may be applied to yield comparatively accurate assessments of the unsteady 
forces on finite wings in sudden plunging motion or entering a sharp-edged gust. 

2. Analogy with Steady Flow. 
Consider the translational motion of a flat wing moving with uniform velocity U in an incompressible, 

inviscid fluid and suppose that the angle of incidence is given as a function of time by 

c~(t) = el(t), (1) 

where the unit step-function 

t(t) = o ( t<o)  "k (2) 
l(t)- = 1 (t>~O) J "  



Thus, at t = 0, the incidence is suddenly changed from zero to a constant ~. It is assumed that ~ is small 
and that the equations oflinearized theory hold. Then, in the notation of Fig. la, the perturbation velocity 
potential 4)(x,y,z,t) satisfies Laplace's equation 

~24) 2 2 a ¢  a4) 
&2 ~ 7 + ~ - ~  = o, (3) 

together with the following conditions : 

(a) for points (x,y,o) inside S, 

- -  U .  1 ( 0 ;  (4) 
Oz 

(b) for points (x,y,o) inside W, 

~ +  cr~ = 0; (5) 

(c) for points (x,y,o) inside R, 

(d) if t<O, 

4) = O; (6) 

4) = O; (7) 

(e) the pressure difference across the wing is* 

f~4) _ o4)) 
Ap = p_--p + = 2PL~t + U~x _z=o+ ; (8) 

(f) the Kutta-Joukowsky condition of finite fluid velocity at the trailing-edge. 

Here, S and W are the projections of the wing and wake onto the plane z = o, and R is the remaining 
part of this plane. It is assumed that  vorticity is shed continually from the trailing edge with effect from 
t = 0 in such a way that the Kutta-Joukowsky condition is satisfied for t/> 0. 

The continuity of the downwash at the trailing edge h~is been considered by Leehey* for two-dimen- 
sional wings in arbitrary unsteady motion. He showed that continuity is a direct consequence of the 
Kutta-Joukowsky condition. R T. Jones 6 applied this continuity property to determine, approximately, 
the initial forces on elliptic wings 0fhigh aspect ratio. In the present paper, we shall also make use of this 
property in order to analyse the initial forces and moments on wings of arbitrary planform and aspect 

ratio. 
If the instantaneous downwash distribution over the wing and wake were known, the corresponding 

distribution of 4) could be determined using Green's formula, 

l lim ff4)(X,Y,o,t~)~Z(1)dXdY,, 4)(x,y,z,t) = 2~ Z-~ o 
S + W  

(9) 

*The boundary value problem may be regarded as one for the half-space z > o or z < o. From here 
onwards we consider the problem for z > o. 

, 



where r 2 = ( x -  X)a+ ( y -  y)Z+ ( z -  Z) 2, (X, Y,o) is any point inside S + W and W is of length Ut. At each 
instant, the distribution of q5 would be identical to that for steady flow without circulation over a wing of 
area S + W and of given local incidence. Unfortunately, the downwash in the wake is not generally known 
in advance. An exception occurs just after the change of incidence when, by continuity, the downwash 
in the infinitesimal wake is Uc~. Thus, at the initial instant, the distribution of q~ over S + W in the unsteady 
problem may be identified with that over a flat wing S + W in a steady flow without circulation. This 
analogy with steady flow holds since the velocity potentials in both problems satisfy equations (3) and (6) 
together with the boundary condition 

04 
- -  U ~ ,  (10) & 

for points (x,y,o) inside S + W. 

3. Exact Applications of Analogy. 
On the basis of the previous section we now derive general formulae for the initial aerodynamic forces 

and moments on wings, following a sudden change of incidence. Some particular results are then obtained. 

3.1. Initial Forces and Morhents. 
The total lift is given by 

S S + W  

S + W  

(11) 

since q5 = 0 at the edges of S+ W.Similarly, the pitching moment about o y  (Fig.  la) is 

M(t)= -2pflx(a2+UC~ffa'~dxdy=\ ot ox /  - 2 p f f  x ( ~ t + U ~ x ) d x d y  
S S + W  

=-2p II  a dy+2puffca ay. 
S + W  S + W  

(12) 

We now consider an instantaneous translation, of the axes at time t to new origin o' where oo' = ½Ut and 

x' = x-½Ut,  y' = y, z' = z. (13) 

Thus, o' is the mid-root chord point of the wing S+ W (Fig. lb). The initial values of L(t) and M(t) at 
t = 0 + can then be written 

S + W  

(14) 
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[ II ] Ill ] M ~ = - - 2 p  x'Odx'dy' + p U  Odx'dy ,=o+ 
' t = O +  • 

S + W  S + W  

(15) 

The integrals here are to be found from the solution for steady flow without circulation past the wing 
S + IV. The operator A/At denotes that the derivatives are taken with origin of co-ordinates o' at the 
instantaneous mid-root chord position. Introduction of this form of differentiation is not strictly necessary 
in equation (14), but equation (15) is convenient for certain wings in Section 3.2 and for subsequent 
numerical applications. 

There are corresponding formulae for the initial spanwise distribution of lift and pitching moment 
about oy; 

x ~  + ~ U t  

li(y ) = 2p Odx' , 
• t = O +  

x o  - x~Ut 

(16) 

x l  + ½Ut x t  + ½Ut 

= x'cbdx' + p U  dx' , 
t = O +  L d -J  t = O +  

x o  - -~ Ut  x o  - -~Ut 

(17) 

where x = xo(y), x = xt(y) are the equations of the leading and trailing edges. The initial chordwise 
distribution of lift is considered later in Section 8. 

3.2. Particular Results. 
We now give five simple results based on Section 3.1. 
(i) In steady flow without circulation past a flat plate at small incidence e, we may replace the free 

stream U by a stream U parallel to the plate and a stream Ue perpendicular to it. The quantity 

N= 2pVf~(odxay= -2pVffx~xdXdy (18) 

is  the couple acting on the plate and tending to increase e. Clearly N is independent of the orientation of 
S with respect to the flow direction. Thus, for rectangular plates symmetrically placed with respect to 
the uniform flow and at incidence e, 

CN(A) = Cn(A') (AA'= 1), (19) 

where 
N 

CN -- ½pU2Sc, . .  

Similarly, for elliptic plates, 

CN'A 4C  A,  [AA  20, 



(ii) Consider the forces which act on a wing in forward and reverse flight after a sudden change of 
incidence from zero to e. According to Heaslet and Spreiter 13, the total lift forces at corresponding times 
are equal. That this is true for the initial lifts can be seen as follows. At corresponding times, the shapes 
and areas of S + W are identical in forward and reverse flight. Just after the change of incidence the flow 
can be regarded as that past a flat plate S + W and so the above invariant property of N can be used. It then 
follows immediately from equation (14) that the initial lift is the same in forward and reverse flight. 

(iii) By combining the simple, basic ideas of (i) and (ii) and applying them to equation (16) it is seen 
that the initial spanwise distributions of lift are identical in forward and reverse flight. In general, this 
property will not remain true in the subsequent motion. 

(iv) The initial pitching moment and its spanwise distribution for wings symmetrical with respect 
to oy simplify to 

and 

t =  0"+ 
S+W 

(21) 

x l + x~ Ot 

xo-X~ Ot 

since S +  W is symmetrical with respect to o'y' and so q~ is an even function of x'. Thus, for elliptic wings 
on which 

x2 y2)  
(a(x,y,o)==-~-- a2 sZ l , 

wefind 

( 3 ~ )  2 2 1/1--y2/s2"~ 

where E is the ratio of semi-perimeter to span. 

(v) For  two-dimensional wings, where the distribution of q5 over the chord is Ua(a 2 - x2 )  ~, 

n = npU2o~a 2. 

Application of equations (16) and (22) now gives for the initial lift and pitching moment 
¢ 

l~ = U k At / t=o+= ~pU~ a 2) = ~pU2c~a 

m~ = ½n = ½~p U2~a ~, 

whence the initial position of the centre of lift is at the quarter-chord point. These results are in agreement 
with those derived in Refs. 1, 2 and 5. 



4. Approximate Equations for Steady Flow without Circulation. 
In order to be able to apply the formulae of Section 3.1 to the initial forces and moments on wings of 

arbitrary planform and aspect ratio, it is necessary to derive the solution for steady flow without circula- 
tion. The exact integral equation for this latter problem is first considered. 

The perturbation velocity potential dp(x,y,z) for steady flow without circulation past a flat wing S is 
given by Green's formula as 

l ~ o f f d P  a)~Z(!) c~(x,y,z) = 2= (X,Y,o dXdY. 
s 

On differentiation with respect to z and letting z~o, it can be shown that the following two equivalent 
forms of integral equation hold for (x,y,o) inside S; 

1 0 IfO~ [(x-X)Z+(y -Y)2]~dXdY,, (23) 
u~ - 2~ gxJJ-~ i x - x )  ( y -  Y) 

s 

1 ~ ffaqb [(x-X)2+(y- Y)2]~dyd. 
Uc~ - 2= ~JJO-X (x_ X) (y_ ~j= - - - -* ,  (24) 

where the integrals are to be interpreted as Cauchy principal values. 
Unfortunately, the inversion formulae for these equations are not known for general planforms. 

Approximate equations, suitable for wings of high and of low aspect ratio, will be derived in Sections 
4.1 and 4.2. Although more elaborate approximate methods are available we follow the lines of Lawrence 14 
and reduce the double integral equations (23) and (24) to two single ones. It will be seen that there is a 
precise duality between the high-aspect-ratio and low-aspect-ratio approximations. This duality is not 
so alSparent in Ref. 14 where steady flow with circulation is considered. 

4.1. Wings of High Aspect Ratio. 
We first multiply equation (23) by 2[xl(y) - x ]  * I-x-Xo(y)] ~ and integrate over the local chord to obtain 

s xL(Y) xl(y) 

¼=U~cZ(y)= _1 fdY- f Oq~dX f [(x-X)2+(Y--Y)2]~ ~(x°+x')-x 
= j j o r  j (x -Xl (y -  r) [ (x , -x ) (x -xo lS  x' 

- s .  xo(Y) xo(y) 

(25) 

where c(y) = x,(y)-xo(y ). For wings of high aspect ratio [ ( x - X )  2 + ( y -  y)2]~ is approximately [y -  Y] 
over most of the platform. If this approximation is made, the integration with aspect to X gives -=IY- YI/ 
(y-- Y) and then equation (25) simplifies to 

X! 

q ~pUZ~cZ(y) = 2p q~dX = n(y). 
XO 

(26) 

This is equivalent to the assumption that two-dimensional theory holds at each section y = constant 
[-cf. Section 3.2, (v)]. We shall refer to this point in Section 10. If the approximation [¼c2(y)+ ( y -  y)2]~ 
is made for [-(x-X) 2 + ( y -  y)2]~, equation (25) can be written in the form 



s 

¼~pU2ccc2(y) = ½n(y) +¼1 [¼c2(Y) + (y -  y)2-]} dn Y -  Y ~-ydY.. (27) 

--S 

The analysis involved is too lengthy to be given here but the derivation is similar to Lawrence's deriva- 
tion of equation (39) in Ref. 14. For rectangular wings, it can be shown that equation (27) holds exactly 
as aspect ratio tends to zero. 

4.2. Winos of Low Aspect Ratio. 
This time we start from equation (24) which we multiply by 2[¼b2(x) - y2]~x and integrate over the local 

span. The procedure is then analogous to that of Section 4.1 and similar to that given by Lawrence ~4 
for the flow with circulation past wings of low aspect ratio. On using the approximation Ix-XI  for 
[(x - X) 2 + ( y -  y)2],, we obtain 

-~b 

-b~pU2o~b2(x) = 2pU dY = h(x), say, 

-.~b 

analogous to equation (26). Similarly, on making the approximation [-(x- X )  2 +¼bZ(x)] ~ for [ ( x - X ) 2 +  
2 ± ( y -  Y) ] ~, we find that 

f" [ (x -  X) 2 + ¼b2(x)] ~ d h d x  
~pU2ab2(x) = ½h(x)+¼ J -a x s X  dX ' (28) 

which is analogous to equation (27). For rectangular wings, it can be shown that equation (28) holds 
exactly as aspect ratio tends to infinity. 

Equations (27) and (28) are identical in form. They are not, however, valid for every type of planform. 
For example, equation (28) cannot be used for swallow-tailed wings. On the other hand, use of this 
equation, unlike the corresponding equation in Lawrence's theory, is not restricted to wings with unswept 
trailing edges. 

5. Method of Solution for Winos of High Aspect Ratio. 
Equation (27) is an integro-differential equation for n(y) which must satisfy 

n(y).=n(-y) and n (_s )=O.  

Let n(y) = n*(O) and c(y) = c*(O), where y = scos0, and write 

J 

- 2 2 ~ n  sin(2r- 1)0 
n*(0) =  azj2r_, , 

r = t  

(29) 

where the coefficients B2r_ t are non-dimensional. It follows that 

N = i n(y)dy = ~l~2pU20~a2sB1.  

- - s  



On substituting the series (29) into equation (27) we obtain 

J 

P ~ I a = Z B 2 r - I {  2sin(2r-1)O2r- 1 I2r- 1} I 

r = l  

where 

[[(c*(O)/2s) ~ + (cos O -  cos 0)~] ~ 
I2r_ 1 = j ~ cos(2r-  1)O.dO. 

0 

(30) 

This integral is written as 

c*(O) fcos(2r - 1)0 _~ [" [(c*(O)/2s) 2. + (cos 0 - cos 0)2] ~ -  
I2r-1 = 2S ,JcosO--cosOCW+J cosO--cosO c*(O)/2Sc°s(2r-1)O'dO 

0 0 

The first integral can be integrated as a Cauchy principal value and the second can be written as a regular 
integral. Hence, 

I2r- i -- - -  
- zcc*(O) sin(2r - 2)0 

2s sin0 

4 
j (cos 0 - cos 0)cos(2r - 1)O.dO 

[(c*(O)/2s) 2 + (cos 0 -  cos 0)2] ~ + c*(O)/2s" 

The integral here can be evaluated numerically to any desired degree of accuracy. In the computations 
for equation (30), j was taken as 4 and the equation was satisfied at the 7 spanwise control points 
0 = ~/8, 2z~/8 . . . .  7rc/8. Before solving the matrix equation for Bzr-1, the accuracy is refined by intro- 
ducing correction factors 

sin 0r (2r--1)rc, 
~r - --0r ' where 0r - ~- tr . . . .  1,2, j), 

into those terms arising from dn*/dO. This procedure is in accordance with Chapter 4 of Ref. 15. Values 
of the coefficients B2r_ 1 are given in Table 1 for rectangular and cropped delta wings. 

6, Method of Solution for Wings of Low Aspect Ratio. 
Equation (28) is an integro-differential equation for h(x) which must satisfy 

h(+__a) = O. 

Let h(x) = h*(O) and b(x) = b*(O), where x = acosO, and write 

h*(0) = z~pU2~s2~-~jDrsin; ~ , 

r = l  

(32) 



where the coefficients Dr are non-dimensional. It follows that 

a 

.rV = I h(x)dx = ~2pUZo~as2D1. 
- - a  

On substituting the trigonometrical quantities into equation (28) we find 

k 

Ib*!~b)]i = Z D  ¢2sinr~b r~b*(~k,sinr0. 
- -  1 r + g  i--2g 

r = l  

f  coso- os  cos,.  
- j  [ (b*(~k )/2-d~ - + - ( ~  ~ b*(O )/2a ) 

(32) 

For rectangular wings, h(x) is an even function of x, so that D, = 0 if r is even. Further, comparison 
of equation (30) with c*(O) =- 2a and of equat, ion (32) with b*(~k) = 2s shows that they are equivalent if 
a and s are interchanged. Regarded as functions of aspect ratio, 

Bzr-I(A) = Dzr-I(A') (AA' = 1), (33) 

if the number and positions of the respective control points are the same. This simplification has been 
adopted and the results for Bzr- I(A) used to give those for Dzr- I(A'). Thus, computations to find h*(~) 
for rectangular wings of low aspect ratio were effectively made with 7 chordwise control points, ~ = n/8, 
2rc/8 . . . .  7n/8. 

Rather more care has been taken with the calculations' for delta wings by the low-aspect-ratio method. 
For such wings, h(x) is not an even function o fx  and equation (32) is satisfied at ( k -  1) chordwise control 
points 0 = n/k, 2rc/k . . . .  ( k -  1)n/k, together with the apex condition 

k 

~ ( -1) r+ lDr- -  0. 
r = l  

Values of Dr are given in Tables 2 and 3 for delta wings of taper ratios 2 = 0 and 1/7, with k = 6. 

7. Impulsive Load Distribution. 
The forces at t = 0 are of an impulsive nature due to the infinite acceleration of the wing and the assumed 

incompressibility of the fluid. The impulsive load distribution, 

(Ap)t= o = 2p~--~ t = 2pc~(x,y,o~ot[l(t)], 

is found from the veiocity potential ~)(x,y,o) for steady flow without circulation. For all wings symmetrical 
with respect to ox and oy the centre of lift is at the origin o for t = 0, whilst the impulsive loading vanishes 
at the edges of every wing. 

10 



The impulsive lift coefficient is 

crC2v 
( C D , =  o = ~ 6 ( t ) ,  U - -  

where the coefficient CN is defined in Section 3.2(i) and where 6(0 is the Dirac delta function 

6 ( 0 = o o  ( t = 0  
o9 

• f6(t)dt = 1 
- - O 9  

(34) 

The spanwise distribution of impulsive loading is given by 

x~.(y) 

x!( n(y),,, 
(Ap)t= odx = -~-O( t ), 

y) 

and the chordwise distribution by 

kb(x) 

~fb( h(x)~,, _ ~o(AP)'=°dY=---U -O(t)" 

Thus, for wings of high aspect ratio the spanwise distributions are obtainable from the results computed 
for equation (29); for wings of low aspect ratio the chordwise distributions are obtainable from the 
results computed for equation (31). 

8. Initial Load Distribution. 
In this section we give formulae for the initial forces and moments on delta wings of arbitrary taper 

ratio 2. These formulae may be applied immediately to rectangular wings with 2 = 1. In Section 8.3 
some special results are given for delta wings in reverse flight. 

8.1. Spanwise and Chordwise Loadings. 
In order to calculate the initial loading it is necessary to find solutions for steady flow without circulation 

past the planforms S and S + W. Since the semi-apex angle e is the same for both, the chord of the wing 
S (Fig. 1) is expressed as 

c * ( O )  = 2 a  - (scote)(cos 0 I, (35) 

so that the planform S+ W satisfies equation (35) if a is replaced by 

a 

a+½U6t = a+6a = a - - 6 a ,  (36) 
(7 

where o- = s/a. The coefficients B2,_ 1 and Dr may be regarded either as functions of A and 2 or as functions 
of a and e. 

11 



On using equation (36) with formulae of Sections 3.1 and 5, we obtain results for delta wings of high 
aspect ratio. Thus, combined use of equations (16), (29) and (36) gives 

J 
nae~ ---a ,,, ,sin(2r- 1)0 

2 r - 1  ' 
r = l  

(37) 

whence 

CL i _ re2( 2B t - rrB'l)0¢. (38) 
4(1 + 4) 

Dashes denote partial differentiation with respect to a (5 constant). Equations (37) and (38) may be used 
to give the initial position of the spanwise centre of lift; thus, 

where 

J 

J 2 r  - 1(2B2~ - 1 -- aB~_ 1) 
~ i  = r = l  

2B 1 -- o'B'I 

~/2 

(2r-1)dzr_ 1 = 2 1 sin(2r_ 1)Osin20.dO. 

0 

We note that the theoretical limit of B1 as A ~  oo is 

limB1 - 4 ( 1 + 2 + 2 2 )  12-6rrc°ts+rrZc°t2e (39) 
A -~ oo 3re 3re ' 

and that use of this in equation (38) gives 

lim CLi = 7~0~, 

A--* oo 

in agreement with Wagner's-result for two-dimensional wings. 
Similarly, on using equation (36) with formulae of Sections 3.1 and 6, results are obtained for delta 

wings of low aspect ratio. The initial chordwise loading distribution is 

~b(x) 

gi(x) = , f  Ap~dy. 

-~b(x) 

It is shown in the Appendix that the coefficient 

g,(x) - r u r s ~  
C°~(x) - ½pU2b(x) - b(x) 

k k 

_ _  

Z . 5  " r _!' 
r=l r=l 

(40) 
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where D', = aD,/aa. The total lift coefficient is the n given by 

CLi - -  n2a(D1 -- aD'l), a, (41) 
4(1 + 2) 

whilst the distance of the centre of lift from the apex is given as a fraction of root chord by 

Xi = ½ CM~ = 2D2-a(4Dl + D2) (42) 
CLI 8(DI--aD'I) 

Use of the theoretical limits 

lim D~ = 3_~ 1 + 2),) = 4(3 - o-cote) (43) 
A ~ 0  37z 

and 

lim D2 8 20- cot e(8 - 3a cot e) (44) 
A--*0 = 3~(~ 1 - 2) (1 + 32) = 3~ 

in equations (41) and (42) gives 

l imCu = ½eA~ 
A--*0 

lim X¢ = ~1 - 2) 
A-*0 

in agreement with Garrick's 16 slender-wing theory for unsteady motion. 

8.2. Special Results for Rectangular Wings. 
Formulae (37) to (44) apply also to rectangular wings for which 2 = 1, a = A, e = ~ and Dr = 0 if 

r is even. The coefficients B2r- 1 and D2r- ~ are then functions of A only. For rectangular wings of high 
aspect ratio we have the additional formulae from use of equations (21) and (22), 

n_~--~ sin(2r-  1)0 
cm,(y) = q - L j , 2 r - , 1  , 

r = l  

(45) 

so that 

~r2B1 (46) 
CMi = - - ~ - ~  

• B 1 - A B '  ~ 
Xi = 2(2B. I _ A B ;  ) ' 

(47) 

on using equation (38). The initial position of the local chordwise centre of pressure Xcp can be calculated 
from equations (37) and (45): 

There is an exact solution for the initial position of the centre of lift for the square wing. Equation (47) 
becomes 

, 13 



Xi(A) - B1 -  AHx _ CN-- AC'N 
2(2B~ -- AS ~ ) 2(2CN -- AC~¢ ) 

since 
7~ 2 

CN = -~-B1 from Section 5. But, also, 

CN(A) = AC~(1/A) 

by equation (19). Hence, 

2CN'(1) = CN(1), (48) 

and therefore 

1 
X/(1) = g. (49) 

8.3. Special Results for Delta Wings. 
In Part II of this report we need to consider the flow past delta wings of low aspect ratio in reverse 

flight. Since the form of the function h(x) is independent of flow direction, the chordwise loading distribu- 
tion for a delta wing ir/reverse flight is 

gi(x = - -  an½O }- ' ,D, ( -1) '+ lcosrO+o - D',(-1) '+lsi  (50) 
R b ( x )  r , _J'  r = l  r = l  

the lift coefficient is still given by equation (41) whilst the position of the centre of lift is 

] -2Dz-a(4Di-D'z )  
X i  R = 8(D1 - a D ] )  

(51) 

An important simplification can be introduced for complete delta wings (2 = ' 0 ) o f  low aspect ratio. 
We substitute b*(~k) = 2a(1 + cos ~9) tan ~ in equation (32) and differentiate the resulting equation partially 
with respect to a to give the analytical result , 

aD', = - 2 D .  

in place of simultaneous equations. We then find from equations (31), (40) and (52) that 

(52) 

2agi(x) = (a -  x)h'(x)+ 2h(x), (53) 

thus expressing the unsteady chordwise loading directly in terms of the solution for steady flow Without 
circulation. The additional simple relationship for complete delta wings, 

R - 3 '  (54) 

is derived from equations (42), (51) and (52). This result, together with those of equations (52) and (53), is 
subject to the approximation of the low-aspect-ratio method, but can be shown to be exact when A = 0 
and A = m. 
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9. Numerical Results. 
For the high-aspect-ratio method the Coefficients B2r_ i were computed at each value a and also at 

a_+ 0.01o', so that the derivatives B~r-1 could be evaluated numerically. In the case of a delta wing, e was 
kept constant for the three computations. Numerical results have been obtained for rectangular wings and 
for delta wings of taper ratio 1/7. Table 1 gives values of B2r_ 1 and o-Bit_ 1 as found by the high-aspect- 
ratio method of Section 5 with j = 4. 

Calculations by the low-aspect-ratio method of Section 6 were made for complete and cropped delta 
wings ()~ = 0 and 1/7). For  2 =  0 the derivatives D'r were found directly from the computed values of 
Dr by equation (52). For 2 = 1/7 D'r were obtained by differentiating equation (32) partially withrespect 
to a. Tables 2 and 3 give values of D r and aD'r for delta wings as found by the low-aspect-ratio method 
of Section 6 with k = 6. Values of D2r_ 1 and aDir- 1 for rectangular wings (a = A) can be found from 
equation (33) and Table 1. Numerical results for initial lift coefficients and the chordwise and spanwise 

• centres of lift are given in Table 4. 

9.1. Accuracy of Results. 
As implied in Section I, supreme accuracy has not been the objective of this paper. However, certain 

checks on the accuracy of the respective numerical methods have been made. 
Two different checks were carried out on the high-aspect-ratio method. Firstly, the number of control 

points across the semi-span was increased fromj = 4 to j  = 8 for rectangular wings of aspect ratio 6 and 1. 
The differences in the leading coefficient B1 were about 1 per cent at A = 6 and 0.1 per cent at A = 1, and 
similar differences were found in the initial lift coefficient. A similar check for the delta wing of aspect 
ratio 3 produced a difference of about 3 per cent in Bi, but the difference in theinitial lift coefficient was 
only 1 per cent. The second check was performed by increasing the number of computations for a given 
wing to five in some cases (at a ,~___ 0.01a, a +0"02a). However, use of the extra two computations showed 
insignificant changes in the derivatives Bit-1- 

The effect of varying k in the low-aspect-ratio method is illustrated for delta wings in Table 5. It is 
seen that the values of initial lift and centre of lift are monotonic for the complete delta of aspect ratio 
A = 1 with a difference of about 2½ per cent between the k = 6 and k = 20 solutions. These features hold, 
in fact, for all the complete deltas for which values have been computed. For )~ = 1/7, the values fluctuate 
for k~< 20, but are possibly monotonic for k ~>20. This behaviour reflects that of the derivatives D~ and Di, 
since D1 and D2 remain monotonic in k for the cropped delta wings. The initial chordwise distributions 
of loading for the cropped delta wing A = 0.7 with k = 10 are compared inTable 6 with corresponding 
quantities for k = 20, 40 and 60. In this respect the fluctuating behaviour of the solution shows no 
diminution with increasing k. For general planforms the differentiation ofD r must be carried out numeric- 
ally. Therefore, some calculations were made in this way for cropped delta wings, but the results for both 
lift and chordwise loading distribution differed only very slightly from those found by differentiating 
equation (32) with respect to a. 

For rectangular wings of high aspect ratio the impulsive lift coefficient is 

(CL)t=0 = ~zBi(A) ~ - 3 ( t )  , 

where the quantity in curly brackets is the two-dimensional result. Values of ~rBi(A) as calculated by the 
present method for A = 4 and 6 agree to three decimal places with some results of W. P. Jones 17. 

The coefficients B1 and D1 are both related to N (Sections 5 and 6) and should satisfy 

B 1 = aD 1. (55) 

For rectangular wings it follows from equation (33) that 

BI(A) = ABi(1/A). (56) 
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The results in Table 1 give a good approximation to equation (56) when A = 2 and 4. For cropped delta 
wings, Tables 1 and 3 show that equation (55) is well approximated when A = 3 but not when A = 2. 
This discrepancy can probably be attributed to the fact that, for non-rectangular wings, equations (27) 
and (28) remain approximate when A ~ 0  and when A ~ o c  respectively. 

9.2. Initial Forces and Moments. 
Values of the initial lift coefficient CL~ for rectangular and delta wings from Table 4 are plotted against 

aspect ratio in Fig. 2. It is seen that all the values are less than 2~A, the value given by Garrick's slender- 
wing theory; this is inconsistent with Lehrian's ~1 result for the delta w!,ng of taper ratio 2 = 1/7 with 
A -- 1.2. For higher aspect ratios, the calculated initial lift coefficients of delta wings appear to be unreliable 
(see end of last section). 

Fig. 3 shows curves of initial chordwise load distributions for rectangular wings, plotted against 
= ½+x/cr. It is seen that the loading is slightly negative on a small strip near the trailing edge for 

A = 0"5 ~. Initial chordwise load distributions for complete delta wings are shown in Fig. 4. The curves 
necessarily pass through the origin because the apex condition of Section 6 has been satisfied. In Fig. 5 
the convergenceof the initial chordwise loading on the complete delta A = 1 is shown and can be regarded 
as quite satisfactory. 

It is of interest to compare the values of Cr~, as calculated for a given wing by the methods for high 
and low aspect ratios. For  rectangular wings it is clear from the approximations in equations (27) and 
(28) that the dividing line should be A -- 1; this is illustrated in the remarks preceding equation (33). 
It can be seen from Table 4 that the results from both methods agree well between A -- 0-5 and A = 4. 
The results predicted by both methods for the initial chordwise centre of lift X~ for the square wing are 
in excellent agreement with equation (49), but such agreement is perhaps a little fortuitous. For delta 
wings, the low-aspect-ratio method is thought to be satisfactory for A ~  < 2. 

10. Comparisons between Initial and Final Values. 
We now compare the calculated initial values with the final, steady-state values attained at time t = ~ .  

Of course, several methods exist for steady flow but we have chosen the lifting-surface theory of 
Multhopp ~s, since it is known to be reasonably accurate and is valid for a wide range of planform. It 
might be argued that, for high aspect ratios, we should compare with Weissinger's t9 theory since the 
method of Section 5 and Ref. 19 both use the approximation of equation (27). There is, however, the vital 
difference that, unlike that  of Weissinger, the present method does not fix the local centre of pressure along 
the quarter-chord line. Again, it might be argued that, for low aspect ratios we should compare with 
Lawrence's 14 theory, since the method of Section 6 and Ref. 14 both use the approximation of equation (28). 
However, comparison of Goodman's  2° calculations by Lawrence's method (k = 6) and those in Table 7 
by Multhopp's theory show satisfactory agreement. 

Values of the final lift coefficient CLI from Table 7 are used to plot the ratio of initial lift to final lift 
against aspect ratio in Fig. 6. Good agreement is reached with the results ofW. P. Jones s for the rectangular 
wings A = 4 and A = 6, and with the analogue calculations of Duquenne 12 for the rectangular wings 
A -- 1 and A = 3. There are, however, significant discrepancies with Duquenne's results for A~< 0.5 and 
with Lehrian's 1~ results for 2 ~<A~< 4. For  very low-aspect-ratios the sign of CLf-- CL~ depends critically 
on the particular value chosen for CLf. For moderate aspect ratios it seems likely that Lehrian's results 
are somewhat inaccurate. The present results show that the ratio CL~/CLI is usually greater for delta than 
for rectangular wings, at a fixed aspect ratio. The values given by Lehrian are much higher than those 
given here, especially for the cropped delta of aspect ratio A = 1.2. For complete delta wings, the 
present values of CLi suggest that the ratio CL~/CLj- does not exceed unity as aspect ratio tends to zero. 

Initial and final spanwise loadings for the rectangular wing A -- 4 are shown in Fig. 7, and the limiting 
distributions from two-dimensional strip theory and slender-wing theory indicate the extremes of aspect 

~The same is true in the case A = 0"25. 
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ratio. Drischler 9 has already shown that the spanwise distribution is, for all practical purposes, independ- 
ent of time for rectangular wings when Ut/cr > 1. The present results extend this feature to very small time; 
furthermore, the small difference between initial and final loadings for A = 4 in Fig. 7 becomes insignific- 
ant at A = 1. For general aspect ratio there is a weak discontinuity at t = 0 from the impulsive to the 
initial load distribution; there is then a gradual movement from the initial to the final distribution. This 
type of behaviour has also been shown by Vogel 7, although his results appear to be somewhat inaccurate 
when Ut/cr is small,The initial chordwise loading by the method of Section 6 and the final chordwise 
loading from Ref. 20~or the rectangular wing A = 4 are shown in Fig. 8. The differences are very small and 
become insignifican~ as A decreases to 1. However, for general aspect ratio there is a strong discontinuity 
from the impulsiv~ to the initial load distribution. Although the chordwise centre of lift .~ changes 
rapidly as aspect ratio decreases, Fig. 9 shows that the difference between the initial and final values, 
Xi-X:, remains small. In Fig. 10 the differences between the spanwise centres of lift,f/i and f/:, are com- 
parable with the 17ariations due to change of aspect ratio, but they remain small. The initial and final 
distributions of local centre of pressure are shown in Fig. 11 for two rectangular wings; the differences 
are fairly small for A = 4 and negligibly so for A = 1. 

Initial and final spanwise loadings for the cropped delta wing A = 3 are given in Fig. 12, together with 
the limiting loadings from two-dimensional strip theory and slender-wing theory. At t = 0, there is a 
strong discontinuity in the spanwise loading distribution. The author knows of no results for intermediate 
time but it seems likely that the same features will apply as for rectangular wings, namely that the distri- 
bution will change gradually from its initial position to its final position. The present results for the lower 
aspect ratio A = 2 confirm that the initial and final loadings converge as A decreases. Initial and final 
chordwise loading distributions for the cropped delta wing A = 3 are shown in Fig. 13, the latter being 
obtained from a special integration of the wing loading calculated by Multhopp's lifting-surface theory. 
The difference here is not insignificant, but whether or not this is due to the inaccuracies in the present 
method requires further investigation. There is again a strong discontinuity in chordwise loading at t = 0. 
The initial chordwise centres of lift X~i for complete and cropped delta wings and the spanwise centre Of 
lift f/; for cropped delta wings are given in Table 4; X~ and ~ :  are compared against aspect ratio in Fig.' 
14. 

One feature of the present results obtained by the high-aspect-ratlo method is that the initial values 
of all aerodynamic quantities are closer to the values predicted by two-dimensional strip theory than 
are the final values.This may be seen fromTables 4 and 7 and from each of the Figs. 6 to 13. This conclusion 
might have been anticipated in Section 4.1, since the result of replacing [ (x-X)2+ ( y -  y)2]~ by lY- YI 
led to the strip-theory equation (26) and would have shown no effects of finite span on the initial forces 
and moments. However, the result of making the identical approximation in the corresponding theory 
for steady flow with circulation leads to Prandtl's lifting-line equation and consequent prediction of finite- 
span effects. 
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LIST OF SYMBOLS 

Half root chord 
Aspect ratio (= 4s2/S) 
Mean span (= S/2a) 
Local span 
Fourier coefficients in equation (29) 
0B2r- 1/0a (e constant) 
Mean chord (= S/2s) 
Root chord 
Local chord 
Lift coefficient (= L/½pU2S) 
Pitching moment coefficient (= M/½pU2Scr) 
N/½p U2Scr 
g(x)/½pV2b(x) 
l(y)/½pU2c(y) 
m(y)/½pU2c2(y) 
Fourier coefficients in equation (31) 
OD,/Oa (e constant) 
Lift per unit chord 
Defmed in Section 4.2 
Lift per unit span 
Lift force on wing 
Pitching moment per unit span (about x = o) 
Pitching moment (about x = o) 
Pitching moment N per unit span 
Pitching moment relating to flow without circulation 
Pressure 
Maximum semi-span of wing 
Projection uf planform onto z = o 
Time 
Velocity of free stream 
Projection of wake onto z = o 
Ordinate of leading edge 
Ordinate of trailing edge 
Right-handed co-ordinate system fixed in wing (Fig. la) 
½-cm/c, 
Centre of lift in equation (42) 
Incidence 
Dirac delta function 
Semi-apex angle of delta wing 
Non-dimensional spanwise co-ordinate (= y/s) 
Spanwise centre of lift for a half-wing 
Taper ratio (Fig. la) 
Non-dimensional chordwise co-ordinate (½ + x/cr) 
Density 
s/a 
Perturbation velocity potential 
Subscript denoting final value 
Subscript denoting initial value 
Unit step-function in equation (2) 
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APPENDIX 

Calculation o f  the Initial ChOrdwise Loading 

The spaliwise integral of loading at a section x = constar~t is 

\ ~t o x / , =  o + 
- ~:b(x) 

The method for wings of low aspect ratio gives 

T g,(x) = 2p ( dy+h'(x),  
\ ot Jr=o+ 

- ~b(x) 

(A1) 

where, by equation (31), 

and 

k 

2 ~ sinr~ 
h(x) = n p U  ~zs~.ID , r ' 

r = l  

h'(x) = , , 
- -  1 d h *  

a sin ~ d~b 

- ~ p U 2 o ~ s 2  ~ - ~  
- /.rcosr . 

(A2) 

(A3) 
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There are two contributions to gi(x) from the integral in equation (A1). One is 

- n p  U2~s2~'3,~,sin r~ 
~a ~ . ~ u i  r " (A4) 

The other arises from the terms sinr ~ in equation (A2) and is found by using the operator A/At (Section 3), 
bearing in mind that the operation takes place at a fixed point x on the wing root chord. However, it is 
first convenient to write 

~-~D sin_r~ _ ~-"~rsinr~ k +~_~ ~ s i n ~ _ ~ c o s ~  
/__..j~ r 

r o d d  r e v e n  

where the Dr are linear combirmtions of the Dr. Recalling that x = acos~k and applying the operator to 
sin r ~ and sin r- 1 ~k cos ~b, we obtain 

A rU sinr¢cos¢ 
A~tt s i n ' s ) -  2a 1 - c o s ~  ' 

U sin r- 1 ~b(rcos2~k_ 1) 
-(t sinr-l~kc°s~k) = 2aa 1-cosf f  

Thus, the total contribution from the terms sinr~ in E D f  inr~ is 
r 

U s i n @  f ~ - - - ~ -  • ~ 1 
2aa 1 - c o s ~ _ . ~  Drrsln-  ~ . c o s ~ +  ~Drs in r -2~b( [ r -1 ] - r s in2~k)}  

r o d d  r e v e n  

which equals 

Hence, from (A3), (A4) and (A5), 

U sin~ r 
2a 1----~osff ZD'c°s ~k. 

g,(x) 
C g i ( x )  - ½pU2b(x) 

(AS) 

on combining (A3) and (A5). 
In the case of two-dimensional wings, the distribution of q~ over the chord for flow without circulation 

is Uct[a2-x2] ~, so that 
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= 2pUZc~ ½ a+x ~ 2xZ] 0 

Fa-xq = pUZC~La+x j , 

which is one-half of the steady-state value. This is in agreement with S~hngen's 2 result. 

(a) 

TABLE 1 

B2r- 1 and aB~_ 1 for Rectangular and Delta Wings 

Values of B2.- 1 

Planform A B 1 B 3 B 5 B 7 

Rectangle 
(2 = 1) 

6 
4 
3 
2 
1 

0-5 
0"25 

1"140 
1"095 
1 "049 
0"957 
0"733 
0"480 
0'277 

0"495 
0"391 
0-310 
0-203 
0"078 
0"025 
0-007 

0"050 
0"034 
0"026 
0"019 
0"010 
0"004 
0"001 

-0 ' 033  
-0"017 
-0"008 
- 0 " 0 0 1  

0"002 
0"001 
0"000 

Delta 3 0.428 -0-433 0.253 -0-118 
(2 = 1/7) 2 0-382 - 0"336 0"165 - 0-073 

(b) Values of crB~r_ 1 

Planform A o-B~ crB~ aB~ o'B~ 

Rectangle 
(2 = 1) 

Delta 
(2 = 1/7) 

6 
4 
3 
2 
1 
0.5 
0.25 

3 
2 

0.085 
0"139 
0.187 
0.265 
0.366 
0.344 
0"237 

-0"313 
- 0"243 

0'076 
0"092 
0'094 
0"080 
0'040 
0'044 
0'013 

--0'237 
- 0 ' 2 1 5  

0"009 
0"006 
0"004 
0"003 
0"002 
0"007 
0"002 

0"099 
0"069 

--0"006 
--0'005 
- -  0"004 
-- 0"002 

0"000 
0"001 
0"000 

- 0"033 
-0 ' 019  
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TABLE 2 

Dr and oD', for Complete Delta Winos (2 = 0) 

( a )  V a l u e s  o f  D r  

A D1 D2 D3 D4  D5 D6 

0.5 
1 
2 
4 

0"366 
0.318 
0.254 
0.182 

0.663 
0-520 
0"356 
0.209 

0"424 
0"236 
0'089 
0'015 

0.204 
0.062 
0-005 
0.003 

0-110 
0.030 
0.013 
0"005 

0.033 
0.001 

4 . 0 0 5  
4 . 0 1 0  

(b) Values of ~rD" 

A 

0.5 
1 

2 
4 

o-D~ 

- 2.924 
- 1.272 
-0 .508 
-0 .182  

aD~ 

- 5.302 
- 2.081 
-0"711 
- 0.209 

~D~ 

- 3-392 
- 0.945 
-0 .177 
-0-015 

- 1.634 
- 0'249 
- 0.009 
- 0.003 

aD~ 

-0.881 
-0 .119 
-0 .026 
- 0.005 

- 0.262 
- 0.005 

0-010 
0-010 

TABLE 3 

D r and aD'rfor Cropped Delta Wings (2 = 1/7) 

(a) Values of D r 

A D1 D2 Da D4 D5 D6 

0.5 
0.7 
1.2 
2 
3 

0.458 
0.427 
0.3~7 
0.299 
0.243 

0-774 
0"687 
0-529 
0"378 
0-273 

0-377 
0"275 
0-132 
0-042 
0-004 

0.075 
0"016 

-0 .030 
-0 .028 
±0.014 

0.004 
-0 .019 
-0 .019 
-0"009 
-0"009 

-0 .010  
- 0.021 
-0 .019 
-0 .019 
- 0.020 

(b) Values of aD'r 

A aD~ ~D~ aD~ aD~ aD~ aD~ 

0"5 
0"7 
1"2 
2 
3 

-0-736 
- 0"708 
-0-632 
- 0.529 
-0"437 

-0 .941 
-0 .892 
- 0.744 
-0 .559 
-0 .413 

0.291 
0.252 
0.224 
0.205 
0.178 

1.101 
0.907 
0.617 
0.382 
0-242 

0.990 
0-782 
0.483 
0-288 
0.197 

0"385 
0'310 
0"203 
0"141 
0'109 
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TABLE 4 

lnitial Values* of Lift and Centres of Lift 

Planform 

Rectangle 
(4 = 1) 

Delta 
(4 = o) 

Delta 
(4 = 1/7) 

A 

6 
4 
3 
2 
1 
0-5 
0-25 

4 
2 
1 
0'5 

3 
2 
1"2 
0"7 
0"5 

1 
--CLi 
O~ 

High A Low A 

2"708 
2.532 (2.536) 
2-357 
2.035 (2-032) 
1"358 1-357 

(0'759) 0.754 
(0'390) 0"381 

(2"696) 
1'880 
1"177 
0"676 

2-525 2"496 
(2.174) 2.034 

1.481 
0-992 
0-751 

High A 

0.240 
0.233 
0.226 
0.210 
0.167 

(0.110) 
(0.063) 

Low A 

(0.231) 

(0.209) 
0.167 
0.108 
O.O56 

0.525 
0.567 

0.606 
0-636 

0.492 
0-513 
0.539 
0.561 
0.571 

rh 

High A 

0.453 
0.445 
0-439 
0.433 
0-427 
0-425 
0.425 

0.413 
0.422 

*Calculated values from the methods of Sections 5 and 6 are denoted by 'High A' 
and 'Low A' respectively. In plotting the results, those in brackets have been discarded 
as being the less accurate. 

TABLE 5 

Convergence of the Low-Aspect-Ratio Method for Delta Wings 

, A = l ,  2 = 0  A = 0.7,2 = 1/7 A =  3 , 2 =  1/7 
k 

1 
--CLi X i 
Ot 

6 
7 

10 
20 
40 
60 

1 
-Cu Xi 

1"177 0'606 
1"170 0"602 
1-159 0"596 
1"150 0"591 

1 
-Cu Xi 

0'981 0"561 
1"026 0"573 
0"968 0"554 
0"992 0"561 
0"975 0"554 
0"969 0"552 

2"519 
2-576 
2-471 
2"496 

0'497 
0'503 
0"490 
0'492 
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TABLE 6 

Initial Chordwise Loading on a Delta Wing (A = 0"7, 2 = 1/7)for 
Various Numbers of Control Points 

' bCgi 
Values of ~ for 

k =  10 k = 2 0  k = 4 0  k = 6 0  

0.024 
0.095 
0.206 
0"345 
0-500 
0.655 
0.794 
0'905 
0.976 

0.055 
0.292 
0.659 
1.080 
1-476 
1"653 
1.613 
0.326 
0.236 

0-072 
0.341 

~ 0.688 
1.082 
1.443 
1.631 
1.465 
0-450 
0-180 

- 0"045 
0-217 
0-615 
1.040 
1.423 
1.617 
1.468 
0.579 
0.213 

- 0.070 
0.379 
0.708 
1-102 
1-467 
1.640 
1.435 
0'484 
0.185 

TABLE 7 

Final Values by Lifting Surface Theory (Ref 18) 

Planform 

Rectangle 
( 2 =  1) 

Delta 
(2 = 1/7) 

A 

6 *  

4 
3* 
2 
1 
0.5 
0-25 

3 
2 
1"2 
0'7 
0"5 

1 ~CLz 

4"21 
3~601 
3"16 
2"478 
1"461 
0"774 
0"392 

3.099 
2.394' 
1.626 
1.024 
0"754 

m 

Xs 

0"236 
0-228 
0"221 
0"208 
0"167 
0"112 
0'069 

0"527 
0"539 
0"555 
0"569 
0'574 

0"444 
0"436 
0"432 
0"428 
0"426 
0'425 
0"424 

0"422 
0-424 
0"425 
0'425 
0"424 

*Results for these wings have been estimated. 
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Part IIo Transient Lift and Moment Functions for Rectangular and 
Delta Wings 

S u m m a r y .  

Transient lift and moment functions are considered for the cases of 

(i) a sudden plunging motion, 

(ii) entry into a sharp-edged gust. 

Linearized theory is used and incompressibility of the fluid is assumed. 
For sudden plunging motion, the functions are calculated from the lift and pitching moment coefficients 

associated with wings in oscillatory plunging motion. Results are presented for rectangular and complete 
delta wings of aspect ratios 1, 2 and 4. 

Growth of lift functions due to gust entry are also calculated for these wings from knowledge of the 
corresponding functions due to sudden plunging motion. The method of analysis involves an application 
of a reverse flow theorem and an approximate relationship for the transient chordwise load distribution 
due to sudden plunging motion. It is uncertain whether the growth of pitching moment due to gust entry 
could be obtained accurately enough by a similar method. An alternative method is used to confirm the 
accuracy of the growth of lift function due to gust entry for a square wing. Calculations of this function 
by a simpler method for rectangular wings of high aspect ratio show reasonable agreement with those for 
aspect ratio 4 ;in addition, the exact solution for delta wings is derived for the limiting case of infinite aspect 
ratio. 
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1. Introduction. 
The lift functions due to sudden plunging motion and to entry into a sharp-edged gust are of fundamental 

importance for the calculation of lift forces due to more general transient motions. For two-dimensional 
wings, the original derivation of these respective functions is universally attributed to Wagner 1 and 
Ktissner 2. 

Several writers have given approximate solutions for the growth of lift function, kl(s ), for finite wings 
in sudden plunging motion. However, there appears to be very little information in the literature as regards 
the corresponding moment function, rex(s). In the present report both functions are calculated for rect- 
angularandcomplete delta wings of aspect ratios 1, 2 and 4. The functions are expressed in terms of the 
lift and moment coefficients associated with oscillatory plunging motion by means of the reciprocal 
relations given by Garrick 3. Values of the oscillatory coefficients for finite frequencies are taken from the 
theoretical work of Lawrence and Gerber 4, whilst the values corresponding to infinite frequency are 
deduced from Part 1 of this report. 

Assuming a knowledge of kl(s), we suggest a simple method for calculating the growth of lift function, 
k2(s), for finite wings on entry into a stationary, sharp-edged gust. As a consequence, the lift force may be 
calculated on finite wings entering sharp-edged gusts which travel in the streamwise direction. Such calcu- 
lations have been made for two-dimensional wings by Drischler and Diederich 5, 

On the basis of these methods, formulae for k2(s) can be derived for wings of high aspect ratio and of 
not too extreme planform. Such formulae are given here for rectangular and delta wings; the result for 
a rectangular wing entering a stationary gust is identical with that of W. P. Jones 6. 

Mention should be made of the neglect of compressibility in the present work. The subsonic, com- 
pressible solution for sudden plunging motion is non-uniform at t = 0 in the limit as Mach number 
tends to zero. However, the practical problem is concerned, not with sudden plunging motion, but with 
latter motions can be evaluated from k~(s) by the principle of superposition and are not expected to 
depend critically on Mach number below the transonic range. For sharp-edged gusts the function k2(s ) 
is independent uf Mach number for slender wings. 

2. l/I4ngs in Sudden Plunging Motion. 
We consider the motion of a thin, flat wing moving with constant velocity U and at zero incidence 

for time t < 0. At t = 0 the wing starts to plunge with uniform velocity Ue. The non-dimensional distance 
travelled is defined as 

s = 2 Ut, 

where c is the streamwise extent of the planform. Under the assumption of linearized theory, the growth 
of lift function for this sudden plunging motion can be calculated from either the real or the imaginary 
part of the complex lift coefficient for oscillatory plunging motion (see, for example, Garricka). 

Thus, for s > O, 

LI(s ) 2c~ I ~° F(v) s_in_vsd v 
C L ( s )  - ½ - p - f r s  - J o  v ' 

or CL(S)=c~[ l+! I :G(v)c°svsdv  ] , 

where the oscillatory lift coefficient is the real part of 

(1) 

(2) 

iv[F(v) + iG(v)]e i'~ 
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for a reduced frequency of oscillation 

( D e  
y - -  

2U" 

Unfortunately, the analytical forms of F(v) and G(v) are not known. In the remainder of this section 
we shall only make use of equation (1), since it is more convenient for numerical work than equation (2). 

2.1. Approximate Method of Solution. 
We first write 

n 

arl) 2 
F(v) = F(O) +~ab~-fi-vZ , 

r = l  

(3) 

where the constants a, and br would be found from known numerical values of F(v). On substituting 
equation (3) into equation (1) we obtain 

n 

r = X  

(4) 

It is found that Cz(s) can be represented with sufficient accuracy by taking n = 1 for wings of aspect ratio 
A = 1, 2 and 4 (see also Ref. 6). The constant a~ is then given by 

al = F ( ~ )  - F(0), (5) 

and bl chosen to give the best approximation to F(v). The effect of this procedure is illustrated in Fig. 1. 
Then 

Cz(s ) F(O) - F(OO)e_ Ib~ls 
kds) = Cz(oO~ ) - 1 F(0) " (6) 

The pitching moment due to sudden plunging motion can be calculated in the same way. For  s >0,  

co(s/-  M l ( s )  M(.in  dv 
½ p U 2 S c -  n d o  v 

(7) 

E !f  ,vsvq or C,.(s) = ~ 1 + - , (8) 
0 

where the oscillatory pitching moment coefficient is the real part of 

iv[M(v) + iN(v)]e i~s. 

On writing 

n 

M(v) = 2 

r = l  

(9) 
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and substituting into equation (7), we find 

n 

r = l  

(lO) 

In particular, with n = 1, 

m l ( s ) -  C,,(s) _ 1 M(O)-M(°°)e-lqdt (11) 
C,,(oo) M(O) 

It can be shown from equations (1) and (7) that in the limits as s~oo  and s ~ 0 +  

CL(O0 ) = aF(O) ,  Cm(oo) = ~M(O), 

CL(O+) = aF(oo), Cm(O+) = aM(oo). and 

The result in equation (13) has been shown, for example, by Mazelsky 7. 

(12) 

(13) 

2.2. Results for Rectangular and Delta Wings. 
Growth of lift and moment functions, k l(s) and ml(s), have been calculated by the method of Section 2.1 

for rectangular and complete delta wings of aspect ratios 1, 2 and 4. The numerical information concerning 
F(v) and M(v) was obtained as follows: 

(a) In accordance with equation (12) the steady-state values corresponding to v -- 0 were taken from 
Ref. 8. 

(b) Values for finite, non-zero v were taken from Ref. 4. 

(c) In accordance with equation (13) values for v = ov were taken from the low-aspect-ratio method 
given in Part I. 

All three methods are based on the same approximation so that, in this respect, the calculations for the 
functions F(v) and M(v) are consistent. The functions corresponding to equations (6) and (11) are given 
in Table 1. Curves Ofkl(S) are shown ill Fig. 2 for rectangular wings of aspect ratios A = 0, 1, 2, 4 and oo*. 
Corresponding curves for delta wings are shown in Fig. 3 with some incomplete results of Drischler 9 for 
comparison. The position of the centre of lift referred to the leading edge or apex, 

"2(s) = ½ - - -  

X(s) = 

Cm(S) 
CL(s) 

cm(s) 
CL(s) 

(rectangular wings) } ,  

(delta wings) 

(i4) 

is shown in Figs. 4 and 5 for A = 1, 2, 4 and o% while for A = 0, X(s) = X(oo). Of particular note is the 
insignificant variation in X with s for all the rectangular wings. 

*The curve corresponding to A = oo has been taken from equation (53) of Ref. 6. 
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3. Wings Entering Sharp-Edged Gusts. 
By using the principle of superposition and following Drischler and Diederich 5, we can write the lift 

function for wings entering stationary, sharp-edged gusts as 

f min(s'2) ~ ~--S )1 L z ( S  ) = - -  Ll(s- -a ,s  f da. (15) 
*J O [_ f s f = a  

In this equation, Ll(s, sf) is the lift function for a rigid, hinged plate suddenly starting from rest with 
uniform forward velocity U and with local incidence 

c(x) = 0 for o<<.x<.N½css ~ .  (16) 

a(x) a for c>~ x>½cs¢ 

It should be noted that L~ must be defined so as to include the effects of apparent mass. 
One way of using equation (15) would be to find Ll(s, s I) from knowledge of the lift due to harmonically 

plunging flaps, by an analysissimilar to that in Section 2. Although possible in principle, this method would 
be rather tedious and would demand knowledge of the oscillatory lift coefficients for a wide range of both 
v and flap-chord ratio. Fortunately, we can adopt another approach and find Ll(s, ss) by using a reverse 
flow theorem for indicial motion giveh by Heaslet and Spreiter ~°. In fact, on applying equation (45) of 
Ref. 10, 

I i (1 - ~ss) - h(:~)d,2, (17) c (s.ss) = 
~c d0 

where 2 denotes the streamwise co-ordinate for the flat wing in reverse flight and 6(s) is the Dirac delta 

6(s) = 0 for s 4:0 t 

6 ( s ) = o o f o r s = O  . (18) 

f co 6(s)ds = 1 
- c o  

function defined by 

The quantity g 10?,s) is the spanwise integral of loading following the sudden plunging motion of the flat 
wing in reverse flight. The function h'(~) = dh/d2 represents the same integral for the flat wing in steady, 
reverse flight in the absence of circulation. Little is known about the function g~ for finite wings, but h(2) 
can be determined and has been calculated in Part I for rectangular and delta wings of many aspect ratios. 

3.1. Method of Solution for Rectangular Wings. 
For rectangular wings X and 2 are interchangeable and we shall assume that 

gl(~,S) = gl(X,S) -- kl(s)gl(x, oo), (19) 

for the particular aspect ratios 1, 2 and 4. This amounts to neglecting effects of any variation in chordwise 
load distribution, cgl(x,s)/Ll(s), for s > 0. The available evidence strongly suggests that introduction of 
equation (19) should not lead to any serious error: 

(a) During the sudden plunging motion (s > 0), the variation in position of centre of lift is insignificant 
(Fig. 4). 
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(b) 

(c) 

AS discussed in Part I, the differences in the initial (s = 0+)  and final (s = oz) chordwise load 
distributions are insignificant (Fig. 6). 

The differences in initial and final spanwise load distributions are significant at A = 1, 2 and small 
at A = 4 (Part I); moreover, the spanwise distribution moves gradually from its initial to its final 
distribution (Refs. 9 and 11). 

In addition, we point out that equation (19) holds exactly for A = 0 and A = oz. 

Combined use of equations (15) to (19) gives 

s 

k2(s)Lz(oz) = L2(s ) = ½c I k ~ ( s -  a)g~(c-½ca, oz)da + h(c-  ½cs), ' 
0 

(20) 

when s <~ 2. For s > 2, the upper limit of the integral is placed by 2 and the' second term vanishes. The 
approximation of equation (19) has been used only in the integral. 

The steady-state chordwise loading, 91 (x, oz) has been calculated by Goodman 8 whilst h(x) can be found 
from Part I. In fact, 

5 

gl(x, oo) = 2pU2a 0tan½0+ rsinr , 
r = l  

(21) 

4 

1 2 2~ --~ h(x) = -~np U eb "2..aDar- t sin(2r2r_-ll)0 

r = l  

4 

= lxpU2o~b2Z-D zr_ lsin2r-l ~l 
r=l 

(22) 

where 2x = c(1 + cos 0). We write the definite series of equation (21) in terms of sinr0 (r odd) and cos 
sin r- 1~ (r even). With these substitutions equation (20) may be written as: 

CL(OZ)k2(s)-'=2AaI~kl(S-~ ) 
3 

0 A 2 r -  1 -'[- (1 - -  o ')A2r 3 [a(2 - a)] - ~  
r = l  

&r + 

4 
1 ~ Z  2r-- 1 

+~nA D 2r- l [ s (2-  s)] 2 

r = l  

, (0~<s~<2),  (23) 

where 4 0 = Ao and 4 6 ---~ 0. For s>  2, the upper limit of the integral is replaced by 2 and the second term 
vanishes. The lift coefficient for steady flow is given by 

CL(OZ) = 2nA(Ao + A 1)o~. (24) 
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The constants At, -4r are given in Table 2 whilst the quantities D2,-~ can be found in Part  I. Values of 
k2(s) as calculated from equation (23) are given in Table 3(a) for rectangular wings A = 1, 2 and 4. Corres- 
ponding curves are shown in Fig. 7 together with a curve for A = oe plotted from Table 1 of Ref. 6. 

3.2. Alternative Solution for Rectangular Wings. 

It is pointed out that there is a very slight discrepancy in equation (23) leading to a singularity at s = 2. 
Although kz(s) in equation (23) is continuous at s = 2, its derivatives are not. In fact, when 0~< s <~2, k;(s) 
contains two terms in (2-s)-1/2.  These terms cancel identically at s = 2 when A = o% but this is only 
approximately true in the method given in Section 3.1. However, the resulting discrepancy is very small 
and cannot be detected in Fig. 7. 

It follows from the exact form of equation (20) that the derivative/22(s) is continuous at s = 2 provided 

g~(o,O + ) -  h'(o) = 0; 

this in fact holds as can easily be deduced from equation (A1) Of Part I. Thus, we adopt an alternative 
approach to avoid the spurious discontinuity at s -- 2. For, instead of equation (19), we may write 

kl ( s )  , _ . 
g l (x , s )  - k~#6+)gltx,u+~. (25) 

In Part I, the initial chordwise loading is given for rectangular wings as 

4 4 

g1(x,O+) = -~npU2Aeb[tan½oSDz,_icos(2r-"'-l)~+A~___J 12"-I'~-7' sin(2r- l)#Jl2rrZ_l - J 
r = l  r = l  

(26) 

where D~r- 1 = dD2,- 1/dA. When this expression is substituted into equation (20), we obtain 

C L ( ~ ) k 2 ( s )  = -  ~A~ k~(O+) 

4 4 

it an ½~/ZD 2r, 1 cos (2r , `  - . ~ - - 7  sin(2r- 1)~ - -  1 ) ~ + A / , ~ _ ~  2 ~ - - i  ]~o~,=~_J ~+ 

4- 

1 - [ ~ - - a  s in(2r-  1)~b'-] 

r = l  

(27) 

where 0 ~  s 42.  It naturally follows from equation (27) that k~(s) is now continuous at s = 2, the contri- 
bution from the two terms in ( 2 - s )  -~ vanishing at s -- 2. 

Use of the method of Section 3.1 for the rectangular wings A = 1, 2 and 4 shows that 

1 ! 
lim (2-s)~k2(s) 
s--*2 

is greatest when A -- 1. Hence, for this aspect ratio, k2(s) was also calculated by the alternative method as 
given in equation (27). The difference in the two calculations of k2(s) was less than 0.0002 near s = 2 and 
nowhere exceeded 0-0014. 
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3.3. Solution for Delta Wings. 
The methods of calculation described for rectangular wings in Sections 3.1 and 2.2 are both applicable 

to delta wings. However, whilst the method of calculating gi(2,oo) described in Ref. 8 is not valid for 
delta wings in reverse flight, there is no restriction in the method of Part I for 91(2,0+). Thus, for the 
complete delta wings considered here, we use the alternative method of Section 3.2. The supporting 
evidence is as follows : 

(a) During the sudden plunging motion, the variation in position of centre of lift is insignificant for 
a complete delta wing (A = 2) in reverse flight; in fact 0"0990 ~<X'(s)~0"0999 for all s. 

(b) The differences in the initial (s = 0 +)  and final (s = oo) chordwise load distributions are insignifi- 
cant for a cropped delta wingt (A = 1.8) of taper ratio 1/7. 

In addition, equation (25) for delta wings in reverse flight holds exactly when A = 0 and A = oo. 
Values of k2(s) are given in Table 3(b) for aspect ratios A = 1, 2 and 4 together with values for A = 0 

from slender-wing theory. The corresponding curves are reproduced in Fig. 8. 

3.4. Limitations on Applicability of Method. 
No mention has so far been made of the pitching moment function, m2(s), due to gust entry. There 

exists a relationship, identical in form to equation (15), connecting the corresponding pitching moment 
M2(s) and that due to the indicial motion from rest of the rigid, hinged plate of equation (16). The pitching 
moment of the hinged plate about an arbitrary axis x = c~ can be related, by means of the reverse flow 
theorems of Ref. 10, to the streamwise integral of lift due to indicial motion of acambered wing with 
downwash distribution proportional to c (1 -  4 ) -2 .  For  simplicity we should, if possible, choose ~ so 
that the chordwise load distribution is unchanged throughout the indicial motion s > 0. In the case of 
two-dimensional wings the procedure is clear. According to Lomax 12, the only downwash distribution 
depending linearly on 2 and producing a lift distribution which never varies for s>  0 is found by taking 

= ¼; this implies that the total indicial lift on the cambered wing is identically zero. By making use of 
the lift distribution in the case ~ = ¼, it can be shown without difficulty that 

[M2(s)]¼_ehor d ~ O, 

as first predicted by Kiissner a. In the case of finite rectangular wings we might suppose that the correspond- 
ing procedure would be to consider a pitching axis x = cX(A,s) ~ cX(A) as given in Fig. 4. Unfortunately, 
it is not known whether the chordwise load distribution for a d0wnwash proportional to c[1 - .Y(A)] - )2 
is unchanged throughout the indicial motion s > 0; even the distribution at s = 0 + is not, at present, 
known. Hence, we cannot justify a general approximation similar to equation (19), and so no calculations 
of m2(s) have been attempted. Nevertheless, for fairly slender wings, such an approximation might well 
be made with success, since the limiting chordwise distribution on the cambered wing (A ~0)  is unchanged 
throughout the indicial motion s > 0: then evaluation of the expression corresponding to equation (20) 
should give a distinct improvement on slender-wing theory. 

4. Gust Entry for Wings of High Aspect Ratio. 
We shall again use equations (15) to (18) together with the assumption of equation (19), 

gi(2,s) = ki(s)gl(2,oo). 

For wings of high aspect ratio and of not too extreme planform g~(2,~) and h(~) may be found by two- 
dimensional strip theory for the wing in reverse flight. Thus, 

1-The final, steady-state loading gl(~,oo) was not available for the complete delta wing (A = 2) in reverse 
flight. 
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[ C L ( ~ ) l  I ½b(.~) [ 2~ (y )_~1 -~ -  91(2,oo) = 2pUZa [_ 2~zct I j-~b(.~) ~2.-Y%(y)_] dy, (28) 

where 2 = xo(y), x = )?I(Y) are the equations of the leading and trailing edges for the wing in reverse 
flight, and b(2) is the local span. Similarly, 

h(Yc) - 2pUzaCN I ½b~) [xl(y)--X] - ' [X-Xo(y)]" - ~dy, (29) 
[CN]A_~oo a-~b(~) 

where CN is the pitching moment coefficient for the wing in steady flow without circulation (Part I). 
The method suggested above would apply, for example, to elliptic, rectangular and cropped delta 

wings, but not to wings of high sweep. If we now use the above formulae for 91(2,oo) and h07) in equation 
(20), the following results are obtained: 

(a) for rectangular wings of high aspect ratio, 

k2(s ) = da+~L(m)[s(2- -s )  ] , (0~<s~<2) 

1 ~ F 1 2  o- 

= - £ ' o  k ' ( s -a )  ' L 1  &r, (s>2) 

(30) 

Another derivation of these equations has been given by W. P. Jones 6. 

(b) for complete delta wings of high aspect ratio, 

k2(s) = ~ kl(S-cr)a ~ - a  da+~L(~S[S(2- -s )]2  , (O~<s~2). 

• ( 3 1 )  [ol 
= ~ okl(s-a)a ~ _ ~  da,(s>2) j 

It is seen from equations (30) and (31) that kz(s) behaves near s = 0 like s 1/2 i~nd s 3/2 for rectangular and 
delta wings respectively. A comparison is made in Fig. 9 between curves for the rectangular wing A = 4 
plotted from W. P. Jones' calculations based on equation (30) and from °the more accurate method of 
Section 3. The agreement is satisfactory. A curve from equation (31) for A = oo is included in Fig. 8. The 
asymptotic forms of k2(s) for large s are identical when A--+oo, and it is seen from Figs. 7 and 8 that 
the differences are very small for s ~< 2; larger differences are found for the rectangular and delta wings of 
aspect ratio 4. 
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Pitching moment coefficient for steady flow without circulation 

Coefficients in equation (22) 

Defined below equation (2) 

Chordwise loading function for sudden plunging motion 

Streamwise lift integral for steady reverse flow without circulation (Part I) 

Ratio of transient lift to final lift during sudden plunging motion 

Ratio of transient lift to final lift during gust entry 

Total lift on wing in sudden plunging motion 

Total lift on wing due to gust entry, 

Ratio of transient pitching moment to finM pitching moment during sudden plunging 
motion 
Defined below equation (8) 

Nose-up pitching moment in sudden plunging motion (about axis through mid-chord of 
rectangular wing or apex of delta wing) 

Non-dimensional distance travelled, 2Uric 

Value of 2x/c at hinge position in equation (16) 

Area of planform 

Time, measured from sudden plunge or from entry into a gust 

Flight velocity 

Streamwise distance from the leading edge 

Streamwise distance in reverse flow, (c -x)  

Centre of lift in equation (14) 

Incidence 

Dirac delta function in equation (18) 

Reduced frequency of oscillation, o9c/2U 

Density 
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TABLE-1 .  

(a) Functions for Rectangular Wings in Sudden P!unging Motion 

A 

1 
2 
4 

kl(s) 

1_0.069e-O.75os 
1 - 0 . 1 7 7 e  -° '564s 
1_0 .299e-q .4oss  

A ml(s) 

1 - 0-068e -° '73°s  
1-0.176e -°'56zs 
1 - 0-298e- o.4o4s 

(b) Functions for complete Delta Wings in Sudden Plunging Motion 

A k~(s) 

1 - 0 . 0 7 1 e  - l ' s 6 9 s  
1 - 0 . 1 2 9 e  -° 'gaTs 
1 - 0 . 2 0 3 e  -° '9°3s  

A 

1 
2 
4 

ml(s) 

1 - 0"066e- 1-917s 

1 - 0"125e- 1.3z9s 
1-0.186e -°'9°3s 

T A B L E  2 

(a) Values of Ar 

Values of At and At for Rectangular 14/ings 

"A Ao A1 Az A3 A4 

0'3458 
0'2418 
0'1593 

-0"1136  
-0"0454  
-0"0154  

0"0369 
0'0131 
0'0044 

-0"0111 
- 0 - 0 0 3 6  
-0 -0011  

0"0036 
0'0012 
0'0005 

A 5 

- 0-0007 
- 0-0003 
- 0-0000 

m 

(b) Values of At 

A 
Ao 

0.3458 
0-2418 
0.1593 

A1 

-0"3008  
-0"1154  
- 0 ' 0 3 7 4  

A2 

0.1764 
0.0620 
0.0216 

A3 

0.1168 
0.0408 
0.0088 

A4 

- 0 . 0 5 7 6  
- 0 - 0 1 9 2  
- 0 . 0 0 8 0  

A5 

- 0 . 0 2 2 4  
- 0 . 0 0 9 6  
- 0 . 0 0 0 0  
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TABLE 3 

(a) Lift Function for Rectangular Wings Entering a Gust 

Values of k2(s) for s = 
A 

0.25 0.5 1-0 2.0 3-0 5.0 10.0 

0 
1 
2 
4 

O(3 

1-000 
0-552 
0.423 
0.333 
0.223 

1.000 
0.706 
0.562 
0.452 
0.306 

1-000 
0.850 
0.717 
0.596 
0.417 

1.000 
0.944 
0.856 
0-748 
0-551 

1.000 
0.973 
0"918 
0.832 
0.635 

1-000 
0-994 
0.973 
0.925 
0.739 

1.000 
1.000 
0.998 
0'990 
0.856 

(b) Lift Function for Complete Delta ggngs Entering a Gust 

Values of k2(s) for s = 
A 

0.25 0.5 1.0 1.5 2.0 3.0 5.0 10.0 

0 0"016 
1 0"014 
2 0"020 
4 0'035 

0"036 

0"063 
0'073 
0'094 
0"126 
0'098 

0-250 
0-306 
0"345 
0"372 
0"252 

0'563 
0"644 
0"652 
0"631 
0"412 

1"000 
0.946 
0-894 
0.823 
0-534 

1-000 
0.989 
0.960 
0.898 
0.624 

1.000 
0.999 
0.994 
0.966 
0.740 

1"000 
1.000 
1-000 
0-998 
0-859 
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