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Summa~. 
The object of this report is to discuss the improvement of reliability of systems when redundancy is 

introduced in the form of so-called 'multiplexing' so that a given task is performed not by one suitably chosen 
set of components (referred to as a 'lane') but by a number of separate lanes operating independently in parallel. 

Under the assumption that the failure of individual lanes can be described by a Poissonian Process it is 
' shown that the Renewal Process representing the failure mechanism of a system composed of m lanes exhibits, 
for comparatively small time intervals, a dramatic improvement of reliability (from a small probability p for 
one lane to a much smaller probability p~ for the system) whilst for the large time intervals the improvement 
is less than proportional to m. Thus the multiplexing appears to achieve its maximum advantage only when, 
after a comparatively short period of operation, all the lanes are inspected and brought to their initial state 
by repair or replacement; without these precautions multiplexing is still useful but the law of diminishing 
returns operates then: by increasing the number of lanes, less and less is added to the asymptotic reliability 
of the system. 

The discussion of tl~e general case of m lanes is followed by a more detailed analysis of duplex and triplex 
systems and, in the closing section, a modified method of multiplexing (the 'majority vote') is described. 
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1. I n t r o d u c t i o n .  

One of the methods of improving the reliability of systems is the introduction of redundancy 
into their design. If a set of suitably chosen components (often referred to as a lane) is designed 
to perform a given task, then it is possible to have the same task performed by a number m of 
separate lanes operating independently in parallel; this is described as multiplexing. 

The failure of the system Will then occur only when all the lanes have failed; if the probability 
p of any one lane failure in a given time interval is comparatively small, the probability of the whole 
system failing in this time interval will be approximately pro, where m is the degree of multiplexing, 

provided that the events of failure of individual lanes can be regarded as independent. 
If the failure probability of an individual lane is of the order, say, of 10 -8 the above procedure 

leads to dramatic improvement of reliability: the failure probability of a duplex system becomes 

1,000 and of a triplex system 1,000,000 times smaller and this is achieved merely by doubling (or 
trebling) the weight (and the costs) of the system and by the inconvenience of a double (or triple) 
effort in its maintenance and inspection. However, it must be borne in mind that this relation holds 
only on the assumption that the system operates for a short time (for which the probability of a 
lane failure is small) and that, after a period of operation it is subjected to examination and, if 

necessary, repair so that all the lanes are in their initial state. It is clear that if the system is allowed 
to operate for a longer time without these preventive measures, then its reliability will deteriorate 
since any uncorrected failure in the lanes will decrease the redundancy. Thus the problem arises 
as to for what periods of operation the above argument can be applied and it is also interesting to 
know what happens to the system if it is allowed to run for longer periods without the individual 
lanes being inspected and corrected (as in the case of missiles or artificial satellites). 

In order to obtain some information about the behaviour of the system we shall investigate the 
underlying Renewal Process. Suppose that we start with a new system at time zero. Due to the 
accumulated lane failures the system ceases to operate at a time 71, and it is replaced by a new 
system which again fails after a time r~. Thus the second failure occurs at the time 82 = ~'1 + ~'2, 
the third at the time S 8 = 71 + z~ + z8 etc. The random variables $ I ,  S ~ ,  . . . , S ~ ,  . . . (the times 
up to the rth renewal) define the instants at which forced replacements are required. Apart from 
these unavoidable replacements it may be advisable to introduce some scheduled replacements, i.e. 
inspections followed by replacement or repair of failed lanes in order to meet some safety require- 
ments or in order to minimize the 'losses' connected with system failures (clearly any test which 



shows that no lane has failed is to be treated as equivalent to a replacement). To discuss all these 

problems it is necessary to know the distribution of the random variables S r and to find some 
properties of the distribution of N,  (the numbers of renewals) in the time interval (0, T). Of particular 
interest is the expectation of N,  : this is a function H(~-) of , ,  the so-called Renewal Function. In 

some cases var (N,) is needed as well as the Renewal Density, the derivative h(~-) of H(~-). In the 

discussion of the opt imum replacement policies the age distribution of systems at time 7 will be 
required. 

Before proceeding any further it should be stressed that, whenever in future ' t ime'  is referred 

to, this does not mean clock-time, but a variable T which enables us to describe the state of the 

system and whichl according to particular applications may be the distance travelled, number  of 

revolutions, number  of prescribed cycles of operation, the clock-time itself or an appropriate 

transformation of the clock-time into a variable ~-, the ideal ' t ime'.  For instance, the assumption 

that the failure rate is constant, i.e. that the expected number of failures in the ' t ime'  unit  does 

not change, should not be understood as a statement that the same number of failures should be 

expected in the first as in the second clock-hour of the flight. Experience teaches us that such an 

assumption would be inconsistent with the observed facts (cf. Ref. 4 Table 1); it means only that 

there exists a transformation (assumed to be known) of the clock-time into a variable T for which 
the statement is true. 

We shall assume that the system has m parallel lanes, that the failure events in the lanes are 

independent and that the age-specific {failure rate p(r) of the lanes (the Hazard) is constant and 

equal to A, where A has the dimension of the reciprocal of time. In other words for each lane the 

age-specific failure rate p(,) = ),, the survivor flmction ~-( , )  = e -x~, the failure probability density 

is given by f(t) = Ae - ~  a n d t h e  failure probability distribution function F(T) = 1 -  e -a*. The 
expected life (often described as the mean time between failures, M T B F )  of a lane is equal to 

0 = 1/A. Hence in the case of a single-lane system the underlying Renewal Process is assumed to 
be Poissonian with the parameter A, the expected number  of failures H(~-) = AT, the variance 

V(,) = A, and the probability of exactly n failures in this time interval (0, ,)  is given b y  

P~(t) = e-~(A,)~/n I (n = 0, 1, 2 . . . .  ). The renewal density h(,)  is constant and equal to A. (See 
Figs. 1-5, single lane system). 

Ill the case of a multiplex system the Renewal Process exhibits a feature  of ageing which is 

caused not by the deterioration of its components with age (since the age-specific failure rate of the 

lanes is assumed cons tan t )but  is solely due to redundancy diminishing with time. The  process is 

no longer Poissonian although, for small , ,  it can be regarded as locally Poissonian in a sense. The 

description of such processes can be obtained in a straightforward way by the application of standard 

techniques of the Renewal Theory;  for the convenience of the reader the notations of D. R. Cox's 
book on Renewal Theory (Ref. 1) will be generally adhered to. 

In the next section some limited resuks will be given for the general case of m lanes and this 

will be followed by a more detailed s tudy of duplex (m = 2) and triplex (m = 3) systems. In the 

closing sections a slightly different method of multiplexing ( ' the majority vote') will be described 
and investigated. 

2. General Multiplex Systems. 

Before discussing mukiplex systems let us assume that the time is measured in the units of 0, 

the M T B F  of a lane. In other words we introduce a new variable t = A, = ~-/0. This does not affect 
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the generality, but  simplifies the formulae; to revert to the time r measured in original units it is 
enough to substitute again AT for t, bearing in mind that the change of scale affects the derivatives. 

A system of m lanes fails in the time interval (0, t) if all the m lanes fail so that: 

~ ( t )  = 1 - ( 1 - e - t )  m, 

f ( t )  = m(1 - e-t)m-le - t ,  (1) 

F(t)  = ( 1 - e - t )  ~ ,  

p(t) = me-t(1 - e-t) m-1 [1 - (1 - e-t)m] -1 . 

I t  is easily shown that p(t) increases from 0 to 1 when t increases from zero to infinity. 
The  moments  of the above distribution are well known (see e.g. Ref. 2), but  for their rapid 

calculation notice that the Laplace Transform f*(s)  off( t )  is equal to 

f*(s)  = m (1 -e-*)~-le-te-~fdt 
0 

which, on the substitution u = e -~, becomes 

f . (~)  = m ( l - . ) ~ - ~ . " d .  = me(m,  1+,) = r ( m + X ) r O + , ) / r ( m + l + ~ )  (2) 
0 

The  characteristic function of f ( t )  is equal to 

~(w) = r (m  + 1 )P0  - iw ) / r (m  + 1 - iw), (3) 

and the 'second characteristic function'  is given by 

log ~(w) = log P ( m +  1) + log P(1 - i w )  - log r i m +  1 - i w ) .  ( 4 )  

Hence the eumulants of the f ( t ) -  distribution are equal to 

~F(m+l )  - W(1) = Z - 
~=l l , '  

K 2 = W ' ( 1 ) - ~ ' t m ~ - , J " p '  - "  = Z 
~=i p 

t% = W " ( m +  1) - ~F"(1) = 2 ~ 
V = I  

. o , • • • 

o , o ° ° • 

( n - l )  I 
~.  = ( - 1 ) - p v ( - - ~ ) ( 1 ) - ' v ( " - i ) ( m + l ) ]  = X (5)  

where W is the Euler Ps i - -Funct ion,  the logarithmic derivative of the Gamma Function (cf. Ref. 3, 

p. 15 and p. 44). 
• Denoting the first three sums in the above formulae by Am,  Bin, C,~ respectively, we obtain 

(cf. Ref. 1, p. 47) the following asymptotic expression for the expected number  H(t)  of renewals 

in the interval ( 0, t) for large t: 

t A,~ 2 - B,,~ (6) 
• H ( t )  = -An 2 A ~  ~ . 

The variance V(t) of the number  of renewals in (0, t) is, for large t, asymptotically equal to: 

V(t) = B . , t  1 5B.~ ~ 4 C ~  
A,~ - ~  + ] 2  + 4 A ~  3Am 3 (7) 



Thus, for large t, the ratio of the variance to the mean is approximately equal to B i n / A m  2 which is 
less than 1 and approaches zero as m tends to infinity: multiplexing produces eventually an 'under- 
dispersion' which becomes more and more marked with increasing degree of multiplexing. 

It has been suggested that, with the progress of miniaturization (and micro-miniaturization) it 
might be useful to design systems with a great number of independent lanes dispensing completely 
with their maintenance and inspection. This approach may be essential in the case of systems which 
(like missiles and artificial satellites) are put into operation but which, due to their specific nature, 
cannot be subjected to maintenance and inspection. The asymptotic formula for H ( t )  shows that 
in a single-lane system H ( t )  = t, whilst in an m-lane system it is equal to H ( t )  = t / A  m so that 

the expected number of failures decreases with multiplexing in the ratio 1~Am.  From the values 
displayed below: 

m 1 2 3 4 5 6 . . .  

1 / A ~  1.0000 0.6667 0.5455 0 .4800 0.4380 0 . 4 0 8 1 . . .  

it is clear that the multiplexing procedure can yield useful results only for the initial value of 
m = 2, 3, 4 and that any increased multiplexing will add less and less to the system reliability; for 
large m the improvement from m to m + 1 is approximately in the ratio 

log (m+ 1) 
log m 

The situation is completely different for small values of t. To investigate the behaviour of the 
Renewal Process in the vicinity of zero, it is sufficient to assess the behaviour of the corresponding 
Laplace Transforms when s tends to infinity. 

In our case [cf. Ref. 1, p. 46, formula (4)] 

f * ( s )  r ( m  + 1)r(1 + s) 
H*(s)  = s [1 - fO(s)] - s [ r ( m +  1 +s)  - 1`(m+ 1)1`(1 +s)]"  (8) 

When s tends to infinity H * ( s )  is asymptotically equal (for m t> 2) to: 

= m [  m ( m + l ) !  [ 1 ~ 
H * ( s )  s.~+ 1 2s~+ ~ + o  \ ]  

so that, for t in the vicinity of zero, 

m 
H ( t )  = t "~ - -~ t '~+1 + o (tin+l).  (9) 

Similarly V( t )  = ¢( t )  - H ( t )  - [H(t)]  2, where (cf. Ref. 1, pp. 55-56) 

,b*(s) - 2/*(s) _ 2 r ( m  + 1)I'(1 + s ) r (m + 1 + s) 
s [1 - f*(s)] 2 s [ r (m + 1 + s) - 1`(m + 1)r(1 + s ) p '  

and this, for s tending to infinity, is asymptotically equal (for m 1> 2) to 

(1o) 
¢*(s)  = s m + l  sm+~ " + o s ~ -  ' 

so that 
~b(t) = 2t  m - m t  "*+1 + o (t re+l) 

( lO) 



~ ( t )  = 

and its Laplace Transform 

~ * ( s )  = 

For large s: 
1 m! 

~ * ( s )  = 
S S m + l  

so that, for t in the vicinity of zero, 

and, for t in the vicinity of zero, 

m 
V ( t )  = t "~ - ~ t m+l + o(tm+l). (11) 

The  ratio of the variance to the mean is asymptotically equal to unity so that, for small values of t, 
our Renewal Process exhibits a Poissonian character. 

The  probability that no system failure occurs in (0, t) is equal to 

1 - (1 -- e-t)  m , 

is equal to 

. . . .  1[1 fe(s)] = 111 P ( m + l ) P ( l + s ) l .  
s s P(m + 1 + s) 

re (m+ 1) ! ( 1 )  
+ 2s~.+2 + o 

m 
Po( t )  = 1 - *'~ + -~ t ~+* + o ( t '~+l) .  (12) 

The  probability of exactly n system failures n > 1 in the time interval (0, t) is equal to (cf. Ref. 1, 
pp. 36-37): 

P n ( t )  = K~,( t )  - K = + : ( t ) ,  

where K,~( t )  is the probability that the nth renewal takes place in the interval (0, t). The  Laplace 
Transform of P ~ ( t )  is equal to: 

1 [f . (s)]~ 1 [f . (s)]~+,  ' (13) 
S $ 

e ~ + ( = )  = 

and, in. our case, 

Pn*~(s) = 

For s tending to infinity 

P=*(s)  - - -  

so that for t in the vicinity 

P ~ ( t )  - 

1 FP(m+ 1)F(1 +s)7~ r(m+ 1 +s) -- I~(m+ 1)F(1 +s) 

(m!) n ( m l ) n n m ( m + l )  ( 1 ) 
stun+ 1 2stun+2 + o ~ , 

of zero, 

( m  [)nt m*~ ( m  [ ) n n m ( m  + 1) t  mn+l 

(ran) ! 2(mn+ 1) I 
+ o (tm~+l). (14) 

Notice that although our Renewal Process exhibits, for small t, the Poissonian property of the 
ratio of variance to the mean being approximately equal to 1, the corresponding probabilities 
P , , ( t )  decrease (with increasing n) much quicker than for a Poissonian distribution with parameter t ra. 

From (14) we have (for m ~> 2): 

m 
P t ( t )  = t m - ~ I m+l  + 0 (tra+l), (15) 

t 2 r ' (m  l) ~ t2m+l(m l)2m(m + 1) o (t2m+l). (16) 
P ~ ( t )  - (2m) ! (2m + 1) l + 

6 



Let us now assume that t is equal to a small fraction of the mean life 0 of a singular lane (i.e. that 

t is of the order, say of 10-8). 
t~m 

Since P2(t) is less than ~ -  it can be neglected; one call also, a fortiori, neglect P,~(t) for n > 2. 

With a small relative error of the order of 2 t we can assume that Po(t) = 1 - t m, Pl ( t )  = t m, and 

that there is a zero probability of more renewals in the time interval (0, t). For large m, t m is very 

small so that multiplexing introduces a very great improvement of reliability provided that the time 

of operation is comparatively short, i.e. that  it does not exceed a small fraction of the mean life 

(MTBF)  of an individual lane. I f  this fraction is of the order say of 10 -~ and if, after each period 

of operation, the lanes are restored to their initial state, multiplexing becomes an extremely effective 

method of increasing reliability. 
Before discussing the reliability requirements let us revert to the time measured in ordinary units. 

We obtain from (9) the following approximate formula for the expected number of failures in the 

time interval (0, , )  if ~- is a small number:  

m (.rm+l) (17) = _ + o 

while its derivative is equal to: 

m ( m +  1) A(A~.)m + o (~.m) (18) 
2 

h(-r) = mA(A~-) m-1 

Similarly, from (12), 

and 

m 
~ ( ~ )  = 1 - ( ; tr)  ~ + ~ ( h z )  ~ + ~  + o (t  re+l) (19) 

(II). 
In other words: 

(III). 

g( , / - )  < (xT. 

The age-specific failure rate should be less than ~: 

7 

The  expected number  of failures in the interval (0, ~) divided by ~- should be less than c~. 

(22) 

( z 3 )  

m ( m  + 1) 
f(T) = m?,(?,T) m-1 ~ A(Az) '~ + o (z" 0 . (20) 

The  requirements on the reliability of the system are usually given in the following form: 'The  

failure rate in one hour of operation should not surpass a number  c~ where c~ is a small number  

having dimensions of reciprocal of time. These simple requirements can be interpreted in two ways 

according to whether they are viewed from the economic or from the safety aspect. In each case 

we obtain different answers when we interpret the 'failure rate' either as the instantaneous or the 

average failure rate. Thus  the reliability requirements can be interpreted in one of the following 

four ways: 
(I). The expected number  of failures in any hour of operation should be less than a (and in any 

fraction AT of an hour should be less than aAz) which means that the condition: 

< (21) 
should be satisfied. 



o r  

(IV). The average age-specific failure rate in the interval (0, ~) should be less than ~: 

f ~ p ( u ) d u  < ~.~ 
o 

- log [~'(T)]  < ~ .  (24)  

Notice that for a single-lane system all these interpretations lead to the same result: the requirements 
are satisfied for all the values of ~- if and only if A < ~, i.e. if the MTBF of the lane is greater than 
a fixed number 1/~. Thus the possibility of complying with the requirements is, in this case, strictly 
dependent on the existing state-of-the-art, on whether we can design a lane having the required 
MTBF. 

The situation is completely different in the case of multiplex system (m > 1). Even with high 

values of A (i.e. with unreliable lanes) we earl satisfy the above requirements in one of the two 
ways: (a) if m is fixed we can satisfy the above conditions provided the time of operation % is 

appropriately short and provided that after such a period all the lanes are inspected and those out 
of order are restored to their initial state, (b) if the required time of operation 7~ is specified we 
can satisfy the conditions by increasing the n u m b e r m  of lanes. 

In subsequent sections when discussing duplex and triplex systems we shall revert to the accurate 
solution of problems (a) and (b) under the above four interpretations of official requirements. 
Using the approximate expressions (17)-(20), and taking into account that, for small ~-, p(~) is 
approximately equal to (20) and - log [o~'(~)] to (17), we easily find the following: 

(a). If m is given we can find the highest admissible operating time ~ for a given failure rate ~. 
In order to satisfy the 'instantaneous' requirements as interpreted in (I) and (III) we have to take 

~ = ~  ~ = 0  

and in the case of 'average' requirements we have to take 

r~ = X ~7-1 = 0 (~0) •-f  (26) 

the latter value being higher, as it should be. 

(b) If the required time of operation % is fixed (and if it is a small fraction of the MTBF of the 
lanes) then we can satisfy the requirements by appropriately high multiplexing. To satisfy (II) and 
(IV) it is sufficient to choose 

log (~r) 
m > log (Ar~ (27) 

and to satisfy (I) and (II) the smaUest m satisfying the inequality 

m(~;9 ~-1 < ~/A 

is to be found. (Notice that since rA is small the left-hand side of the inequality tends to 0 with 
increasing m). 

In this section the behaviour of the Renewal Process of a multiple system was discussed for very 
large and for very small values of t. Clearly, between the short periods for which redundancy pays 
great dividends and the long periods for which it is less advantageous, there exist time lengths 



for which multiplexing can still be very useful. Thus  it would  be interesting to investigate for 
some specific values of m, the exact behaviour of the underlying Renewal Process for the whole 
range of positive values of t. This  will be done in the subsequent  sections for duplex and triplex 

systems. 

3. D u p l e x  S y s t e m s .  

Putting m = 2 in formulae (1) we find: 

~ ( t )  = 2e -~ - e - z t ,  

f ( t )  = 2e -~ - 2 e  - 2 t  , 

1 
p ( t )  = 1 

2d - 1 '  

and from formulae (5): 
3 5 

As = ~,  B2 = ~,  
9 

C~ = ~. 

(2s) 

In view of (6) and (7) we have asymptotically, for large t: 

2t 2 
H ( t )  = ~- - ~ + o (1), (29) 

lOt 2 
V( t )  = ~ + g [  + o (1). (30) 

The  exact values for any t are easily obtained. The  Laplace Transform off ( t )  being equal to 

formula (8) yields 

which shows that 

2 2 2 
f * ( s )  = l + s  2 + s  k~ yt~ ) " + s ' " ~ + s  ' '  (31) 

2 2 2 2 

H * ( s )  = s~(s---- + 3--) = 3s 2 9s + 9(3 + s~)' 

2t 2 2 
H ( t )  = -~ - -~ + ~ e -3t . (32) 

The  shape of the H(t)-curve showing the way in which it approaches the line (29) is displayed in 
Fig. 1, and its derivative is given in Fig. 2, whilst Fig. 3 shows the p(t)-curve. Expanding H ( t )  into 
Taylor Series we  see that 

H ( t )  = 

which agrees with formula 
From (10) 

¢, (s )  = 

and 

¢(t) = 

3t~ o(t~) t2 - t~ + 7, + 

(9). 

4(s+l)(s+2) l r 2 4  20 4 8 4 
: s S ( s + 3 )  3 - 2 7 [ . ~ -  + s ~ s ( s + 3 )  2 + 

1 1 1 2 #  + 20t - 4 - 8re -81 + 4e-~]. 

o 



Subtracting from this expression the sum H(t) - [H(t)] ~ we get 

V(t)  = ~lOt + 812 _ 2716 te_~ t + 2 e_at - 4 e_6t ' (33) 

which again agrees with (30). For  large values of t the ratio of the variance to the mean tends to 5/9. 

Expanding V(t) into Taylor  Series we see that 

V(t) = t ~ - t  3 + 0 ( # )  

which agrees with (11). For  small values of t the ratio of the variance to the mean is approximately 

equal to unity. The  shape of the V(t) curve showing the way in which it approaches the line (30) 

is displayed in Fig. 4. 

To  evaluate the probabilities P~(t) notice that, in view of (13), 

s ( l + s ) ( 2 + s )  1 ( l + s ) ( 2 + s )  - (l+s)n+l(2+s) n+l" 

Since the poles s I = - 1 and se = - 2 lie to the left of the imaginary axis 

1 fio~ eaP,~*(s) ds 

and, by the standard argument,  

Pn(t) = Sum of residues of p,e($), eS, at S 1 and s. 2 . 

Expanding P~*(s)e a into the Laurent  Series in the vicinity of s 1 = - 1, we find: 

tr (n + ) Pn*(s)e~t= 2he -t -- ~ ( - 1 )  k +s) k+r-~ 2(1 s)k+~-~-~]. 
r=0 r I k=0 k [(1 + + 

T h e  coefficient of (1 +s)  -1 is equal to 

_ _  n t r ~.~ 2ne-t ~ l  ff (--1)n-l-r (2n -- r - -1 )  + 2n+le-t ~ ~7~(- - ] )n- r (2n  r 
r = O  ~" I n r = O  7". ] 

and, d e f i n i n g ( I n ) = 0 w h e n e v e r  l < n ,  w e h a v e  

,r E Residue of P,,e.e~t (at s~ = - 1) -- ( - 2 ) h e  -t ~ ( - 1 ) ~ r !  2 - . 
~'=0 n 

Similarly, expanding Pn*(s)e ~t in the vicinity of s 2 = - 2 we find: 

p,ff(s)e,t = 2~e-2t(_ 1)-,+1 xj~ 7i  2~ k [(2+s)k+r-~ + (2+s)1C+~-~-1] 
r = 0  ~" • k=O 

and: 

Residue of P~e(s)ea (at s 2 = - 2) = - ( -  2)~e -~t 52 + • 
r = 0  n 

t tence  

-: 1)1- 

10 



Consequently, for a few initial values of n, 

P o ( t )  2 e  - t  _ e-St 

Pl(t) = - e - t ( 6 -  4t) + e-2~(6 + 2t), 

P2(t) = e-t(36 - 20t + 4t ~) - e-2~(36 + 16t + 2t~), 

( ( 4 )  
P3(t) = - e  -t 2 4 0 - 1 2 8 t + 2 8 ¢  2 - ~ t  3 + e  -2~ 2 4 0 + l 1 2 t + 2 0 t  ~ + ~ t  ~ , 

P4(t) = e  -t 1 6 8 0 - 8 8 0 t + 2 0 0 t  ~ - 2 4 t  3 + ~ t  - 

- e  -~t 1 6 8 0 + 8 0 0 t + 1 6 0 f + 1 6 t  3 + ~ t  4 , 

( ) Ps(t) = - 3 2 e  -~ 3 7 8 - 1 9 6 t +  t ~ - 6 t  8 + ~  + 

+ 3 2 e  -2t 3 7 8 + 1 8 2 t +  t 2 + ~ ' t  2 +  t 4 + ~ - ~ t  5 . 

I t  is easy to verify, by expanding the probabilities P,( t)  into the Taylor Series, that formula (16) 
is approximately valid. The  graphs of P,( t ) - funct ions  for n = 0, 1, 2, 3 are shown in Fig. 6; when 

interpreting the results it should be borne in mind that the abscissae t correspond to the 'real' t ime 
~-/0 and that in most applications where 0 is of the order of 103 or 10 ~ and the period of operation 

(the period between the overhauls) is equal to a few hours, it is the initial part of the graph (between 

0 and 0 .01) .which  is of interest. Notice that, whilst for the single-lane system the maxima are 
situated at t ,  = n, for the duplex system the maxima occur at t , ' ,  where t o' = O, t 1' = 1. 77603, 
t~' = 3.27663, t a' = 4.77496. Thus,  in compariso n with the Poissonian distribution (cf. Fig. 5) 
that P~(t)-curves are shifted to the right so that the maxima occur respectively 1.776, 1. 683, 1.592 
times later than. for a Poissonian Distribution; this agrees, to some extent, with the fact that a given 
expected number  of failures in a duplex system occurs approximately 3/2 times later. 

There  is no difficulty in Obtaining other functions of Renewal Theory  if they are required. The  
probability density function of the nth renewal time can be easily found by inverting its Laplace 

Transform 

k~*(,) = [f*(s)] ~ = (1 +s )~(Z+s)  ~ '  

and is equal to: 
tr 

= ( - 2 ) -  X ,o / 1  
r = 0  

By integrating (36) from t to infinity we find 1 - K.( t ) ,  the probabili ty that the nth renewal time 
occurs not earlier than t, and subtracting two neighbouring values of these functions we can verify 
formula (35). This  can be also done by expanding in terms of ~ the probability Generating Function 
of the probabilities P,~(t), which is equal to 
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Reverting to the t ime measured  in ordinary units we have from (32) the following formula for 

the expected number  of failures in the t ime interval (0, r): 

2 2 
H(~) = ~ ;~  - ~ + e~ 8x~, 

whilst its derivative, the renewal density, is given by: 

2 2 Ae_aar h ( r )  = ~ a - ~ . 

We also iliad f rom the formulae (28) 

p ( , )  = ~, 
2e a r -  1 

and 
- log -37(r) = - log (2e -a~ - e-2a~). 

The  above formulae allow us to find, for different values of ~, the accurate values of the highest 

admissible operation t ime % discussed above in section 2. These values are given in Table  1. 

T A B L E  1 

Highest admissible operation times 

0~ 

O. 00001 
O. 00002 
O. 00005 
O. 0001 
O. 0002 
O. 0005 
O. 001 
O. 002 
O. 005 
0.01 
0.02 
0.05 
0.1 

I 
,-,do 

0-000005 
0.000010 
0.000025 
0.000050 

• 0.000100 
0.000250 
0.000500 
0-001002 
0.002509 
0-005038 
0.010153 
0-025987 
0-054173 

II 
%/0 

0.000010 
0.000020 
0.000050 
0.000100 
0.000200 
0.000500 
0.001001 
0.002004 
0.005025 
0.010101 
0-020410 
0-052668 
0-111448 

III 
%/0 

0.000005 
0.000010 
0.000025 
0.000050 
0.000100 
0.000250 
0.000500 
0-001002 
0.002509 
0.005038 
0-010152 
0.025975 
0.054061 

IV 
%/0 

0.000010 
0.000020 
0.000050 
0.000100 
0.000200 
0.000500 
0.001001 
0.002004 
0.005024 
0.010099 
0.020406 
0.052617 
0.111006 

I t  may be seen from the above table that, for small values of a (of the order of 0" 1), the values 

of % are practically equal in cases I and I I I  and that they are about twice as high when the 'average' 

approach is adopted (cases I I  and IV); this agrees with formulae (25), (26). Th e  most stringent 

are the requirements as interpreted in case I I I  and when we are concerned with the safety aspects 

we should read % from the colunm I I I  of the table. Thus  for example,  if the mean life of the lanes 

is 0 = 10,000 aSours and if the stipulated maximum failure rate is equal to ~ = 10 -6 per hour, 

then Oa = 0.01 and % = 0.005038 0 = 50 .4  hours; with the less demanding requirement  of 

a = 10 -~, we find Oa = 0.1 and % = 0"054061 0 = 540.6 hours. 

The  Renewal Process provides information on the probabilities of the occurrence of system 

failures and on the expected frequency of repairs and replacements which have to be undertaken 
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if the system is to perform the required task. Apart from these unavoidable 'replacements (sometimes 
called 'service' replacements) it may be necessary to submit the system at regular times to inspection 
(and if necessary subsequent repair or  part replacement) in order to satisfy the safety requirements 
discussed above. There is, however, another aspect of the problem. We can look upon a suitable 
replacement policy from the economic point of view and try to find the replacement times for which 
an appropriately defined loss function will attain a minimum. Let C be the total loss connected 

with the system failing during its operation, d the cost of dismantling the system (including the losses 
incurred by the system being inoperative during this time) and let a be the cost of the repair (or 

the replacement) of one faulty lane. In the interval (0, t) the expected number of service replacements 

is H ( T )  so that the total cost of these replacements is H ( T ) ( C +  d+  2@ Assuming that the system 

is inspected at time t the cost is ( d + a )  if only one lane is found to be working and d if, on the 
inspection, both lanes are found to be in working condition. Denoting these two events by (El) 

and (E~) respectively we have to evaluate the probabilities of these events. To assess them we have 

to find first the distribution of the age u( t )  of the system at time t. This distribution is given 

(cf. Ref. 1, pp. 61-62) by: 

Probability [Ut = t] = ~ '( t ) ,  

Probability density of [Us = x] = h ( t - x )  J ( x )  if 0 ~< x < t. 

The conditional probability of a system of age x having one lane in order is 2e-X(1-e-X)/~(x) and 

the conditional probability of a system of age x having both lanes in order is e-2X/Y(x) .  Thus the 

probability of event (El) is 

f (1 - e-~t), 2 
2e-t(l - e -t) + 2e-~(1 - e-~)h(t  - x )dx  = -~ 

0 

and the probability of event (E~) is 

f t  (1 + 2e -u) 
1 

e-2t+ e - ~ h ( t - x ) d x  = ~ 
o 

Notice that these probabilities add to unity (as it should be) and that for large t they are in the 

proportion of 2:1. 
The total cost per unit time connected with service replacements scheduled at time t is equal to: 

and, if we define 

we can write 

2 2 7 
A 

1 
Lt = ~- [H(t) (C + d + a) + Prob (El). (d + a) + Prob (E2). d], 

2 2 2 
B =  

Lt = -32 ( C + d + a) - 71 (A - Be -3') . 

The derivative of this expression is 

dLt  1 
dt - t 2 [A - Be-~t(1 + 3t)]. 

In most applications the value C will be much larger than both a and d, so that A and B will be 
positive numbers. For t --> 0 the derivative is negative since A - B  = - d is negative and for t ~ oo the 
derivative is positive since the expression in the brackets tends to A. The expression in brackets 
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increases from - d to A, so that dLddt has a unique zero at' t  = tmi ~ and, for this value tmi ~ the 
loss function L t is a minimum. We regard tmi ~ as the opt imum replacement time. The  minimum 
loss is then 

2 
Lmi n = ~ ( C + d + 2a) - 3 Be -st mitt. 

I t  may be shown that the greater is C in comparison with a and d the smaller is the value of tmi . ; 
with increasing costs of system failure we have to introduce more frequent replacements. I f  C is 

so large that a/C and d/C can be neglected in comparison with %~(a/C), %~(d/C) we obtain 
approximately: 

t~i ~ = %~(d/C) L~i .  = 2%/(Cd). 

An example. I f  the losses connected with the system failing dur ing  its operation are 10,000 times 

greater than the costs of dismantling d and if the costs a are of the same order as the costs d, then 

the optimum replacement policy is to inspect the system after every tint n = 1/100, i.e. after 0/100 

hours and if the lane mean life M T B F  = 0 = !,000 hours this means a replacement after every 

10 hours of operation. The probability of finding a faulty lane will be approximately 0.02, whilst 

the probability that both are right is 0.98. The minimum expected loss per unit of time will be 

Lmi n = 200 d (if time is measured in units of 0) and is equal to 0 .2d  per one hour of operation. 

4. Triplex Systems. 

Putting m = 3 in formulae (1) we find 

o~(t) = 1 - (1 -e - t )  s = 3e -t - 3e -2t + e -st, 

f ( t )  = 3 e  - t  - 6e  -2~ + 3e -st, 

3 - 6e  - t  + 3e  -2t 

p ( t )  = 3 - 3 e - t +  e - s t  " ( 3 8 )  

and from (5) 
11 49 

A 3 = ~- ,  B3 = ~ ,  

From (6) and (7) we get, for large t, 

6 36 
H(t) = ~ t -  ] ~  + o(1). 

294 540 
V(t) = ] ~  t + 1-T64i + o(1). 

251 
Cs - 216" 

The  exact expressions are easily obtained. The Laplace Transform o f f ( t )  being equal to: 

3 6 3 6 
f*(s) = 1 +~s 2 +~s + 3 + s ( 1 + s ) ( 2 + s ) ( 3 + s ) '  

we find: 

and this yields: 

6 6 36 36s + 150 
H*(s) = s2(s~+6s+11) - 11s~ 121~ + 121 [(s+3) e + 2] 

(39) 

(40) 

(41) 

H(t) 6t 36 36e -st 21%/2 e_St 
= 11 121 + -T2q-- cos (t%/2) + sin (t%/2), (42) 

which agrees with (39). The H(t)-curve is shown in Fig. 1 whilst Fig. 3 gives the graph of the 

p(t)-curve. 
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From (10) 

¢,.(~) = 

o r  

12(s ~ + 6s 2 + 1 ls + 6) 

sa(s ~ + 6s + 11) ~ 

72 588 2520 
~b*(s) - 121s ~ + 1331~2 14641s 

Consequently, 
36t 2 588t 2520 

~b(t) = 121 + 133~ 14641 

1800s + 6048 2520s + 8652 

+ 1331(#+ 65+ 11) + 14641(#+ 6s+ 11) ~" 

+ e -at F 2520 cos ( t~2)  
L14641 

450~/2 ] 
cos (tV'2) 1331 sin (tV'2) , 

345x/2 ] 
14641 sin (t~/2) + 

which, on subtraction of the sum H(t)  + [H(t)] 2 from the above, gives 

294t 540 F 756 1374~/2 1 
V(t) = 133--1 + ~ + e-u [ . 1 ~  cos ( t~2)  14641 sin (t5/2_ - 

I ~@31 702 V2 sin ( t V2) l - 
- te -8~ cos (t~/2) + 

- e -6t cos (t~/2) + ~ sin (t~/2) . (43) 

This agrees with (40) and for large values of t the ratio of the variance to the mean is equal to 

49/121. The V(t)-curve is shown in Fig. 4. 

Expanding H(t)  and V(t) into the Taylor Series at t = 0 we find: 

H ( t )  = t3 _ ~ t4 + o(t~), 

3 t4 o(t~), V(t) = t ~ - -~ + 

which is a special case of (9) and (11). 

To evaluate the probabilities P,~(t) notice that, in view of (13), 

s ( 1 + s ) ( 2 + s ) ( 3 + s )  ( 1 + s ) ( 2 + s ) ( 3 + s )  ( l+s)~+l(2+s)n+l(3+s)n+l" 
(44) 

Since the poles s 1 = - 1 ,  s ~ =  - 2 ,  s a = - 3  of P~*(s)e a are all situated to the left of the 
imaginary axis, we have 

1 f i fo  eaP~*(s) ds P~(t) = ~ -l® 

and, again by the standard argument, 

P~(t) = Sum of the residues of eaP,~(s) at q ,  s~, s 3 . 
Expanding eStp~*(s) in the vicinity of s 1 = - 1 into the Laurent Series we find 

"0°° t~ °~E (-  1)k( ) 6"e-t fy2 52. n + k 1 .~ (1 + s),+k-1 
eaP'~*(s) = = ~.. =o k ~-4~ z=oY~ ( - 1 ) '  2t [6(1+s)- '~-*+ 

+ 4(I + + (I ( .  + I] 
1 \ / 
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and the coefficient of (1 +s)  -1 is equal to: 

tr 2~ - l f ~Z 2 ~ 6 
( -  6)~e-t 2 +1 ~ -  k=o k n - 

1) 
+ 4  

n n 

Similarly we obtain as the residue at s~ = - 2: 

,=07! ( - 1 ) ~ 0  ( -17 k n 

and as the residue at Sa = - 3: 

÷ 2)1 
Consequently,  for a few initial values of n: 

Po(t) = 3 e - t _  3e-~t + e -3~, 

Pl( t )  = ( - 2 1  +9t)e  -t + (12+ 18t)e -2t + ( 9+3 t ) e  -at, 

e-t 
P2(t) = (495 - 207t + 27t 2) -~  - (360 + 72t + 54#)e -2t + (225 + 81t + 9#) e-at 

2 '  

e-I  
Pa(t) = ( - 6453 + 2 7 0 0 t -  432t 2 + 27t 3) ~- + (1728 + 2808t + 216t ~ + 108ta)e -2~ + 

e-at  
+ (2997 + 1134t + 162# + 9t 3) ~ - - .  (45) 

T h e  graphs of P~(t) functions, f o r  n = 0, 1, 2, 3 are shown in Fig. 7. Th e  maxima for a triplex 

system are situated for the abscissae 

t o ' = 0,  t 1' = 2- 2818, t~' -- 4 .11499,  t a' = 5 .94586,  

i,e. 2.2818, 2.0575, 1.98195 time later than for a Poissonian distribution (of. Fig. 5); this can be 

compared with the fact that a given expected number  of failures in a triplex system occurs 11/6 

times (1. 833 . . . times) later. 

Other  functions of the Renewal Theory  can be also found. Th e  probabili ty density function of 

the nth renewal can be obtained by inverting its Laplace Transform 

6 ~ 
k.(s) = (1+s)-(2+s)-(3 +s)-;  

it is equal to 

k " ( t ) = 6 ~ = o  y~ ~. 5=o n - 1  n - 1  [. ~ + 

+ ( -  1)~+k+le-2~ + ~ - ~  e -3t 

and can be used in verifying formulae (45). 
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Reverting again to the time measured in ordinary units we have from (42) 

H(t) 6~tz 36 36e -3a* 21~/2 e_3X" sin (zA~2) 
= 11 121 + ~ cos (rA~/2) + 

and its derivative is equal to 

6A 6A 
- -  - -  - -  e - 3 A t  COS h(t) = 11 11 

~-)tV'2 ) 9~/2A e -3a~ sin (~-)t~/2) 
11 

The  graph of the h(t)-function, for A = 1 is given in Fig. 2. 
I f  we accept the requirements as interpreted on p. 7 under (III)  we have to find a time interval 

(0, To) such that for all ~ of this interval p(T) < a. These values are given below in Table 2 under  
the appropriate column. If  we accept the reliability requirements interpreted on p. 7 under (I) we 
have to find a time interval (0, *o) such that for all ~ of this interval h(T) < a. However, in the 

case of a triplex system the renewal density is not any longer an increasing function. From its 

derivative: 
h'(r) = 3;~2~/2 e -3x~ sin (TA%/2) 

it is clear that it increases from h(O) = 0 to an absolute maximum 

h ( A ~ )  = lf6~ (l+e-3"/~/~) = 0"5468066 . . . A, then decreases to 

h (  2 ~ 2  ) = ~6A ( 1 - e a ~ / , / 2 ) = 0 . 5 4 5 4 5 4  . . .  A, etc. oscillating 

around the value 61/11 with rapidly decreasing amplitude. These oscillations are, however, so small 

that their existence can be neglected; they could not be displayed in Fig. 2. 

6 t  
The h(r)-line crosses the straight line y = ~ for the first time at %, where 

1 0 
To = A~---2 arctan - - %/2" arctan ( -  0.4714045) = 1.9099530 

and between ~ = 0 and this value z 0 the function h(z) is increasing and its converse can be found. 
The  values of ~'o satisfying the requirements I are given in Table 2 under the appropriate column. 
Col. I I  gives the highest admissible operation times for the requirements H(~) < a~-, discussed 

previously under II.  
As in the case of the duplex system, it may be seen from the table overleaf that for small values 

of a0 the values of T o are practically equal in cases I and III ,  being about ~/3 = i .732 . . . higher 
when the 'average' approach is adopted (case II); this agrees with formulae (25), (26). The  most 
stringent are the requirements as interpreted in case I I I  and when we are concerned with safety 

aspects we should again read zo from the column I I I  of the table. 
An example. Let us assume, as in the example discussed for the duplex system, that the mean life 

of the lanes is 10,000 hours and that the stipulated maximum failure rate is a -- 10 .6 per hour. 

Then  ~0 = 0.01 and from the table To = 0" 061373 0 = 613.7 hours. Thus  passing from the duplex 

to the triplex system we can safely operate our system without  inspection and repair for a period 
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T A B L E  2 

Highest admissible operation times 

s0 

0.00001 
0- 00002 
0.00005 
0.0001 
0.0002 
0- 0005 
0.001 
0.002 
0.005 
0.01 
0.02 
0.05 
0.1 

I 
%/0 

0.001829 
0.002589 
0.004099 
0.005807 
0.008233 
0.013080 
0.018600 
0.026513 
0.042598 
0-061379 
0.089238 
0.149796 
0.228897 

II 
%/0 

0.003188 
0.004500 
0-007116 
0.010087 
0.014290 
0.022745 
0.032398 
0-046295 
0.074762 
0.108385 
0.159074 
0.273012 
0.431128 

III 
%/0 

O. O01829 
O. 002589 
O. 004099 
O. 005807 
O. 008232 
0.013080 
O. 018600 
O. 026513 
O. 042597 
0.061373 
O. 089211 
O. 149590 
O. 227824 

about 12 times longer. Alternatively we can use less reliable (and perhaps cheaper) lanes: if 

0 = 2,000 hours, 0a = 0.002 and % = 0.026513 0 = 53.0  hours. This  means that with com- 

ponents five times less reliable we can achieve by triplexing the same safety and operate for slightly 
longer time. 

As in the case of duplex systems, we can evaluate the opt imum replacement time. Th e  expected 

number  of failures in the interval (0, t) is H(t) so that the total cost of service replacements is 

H(t) (C+ d+ 3a). I f  the operating system is dismantled at the t ime t, then the cost of bringing k 

to the initial state is ( d+  2a), ( d+  a) or d according to whether  one, two or all three lanes are found 

in working condition. As before by denoting these three events by El ,  E2, Ez respectively we have 

to evaluate their  probability. By the same argument as that used in the discussion of the duplex 
system we have 

Prob (Et) = 3e-t(1 - e-t) 2 + 3e-~(1 - e-~)~h(t- x)dx 
0 

6 6 

11 11 
e -3t cos ( t C 2 )  - ~ 1 2  e -u  sin (t~/2) 

~ t Vrob (E~) = 3e-2t(1 - e -t) + 3e-2~(1 - e-~)h(t- x)dx 
0 

3 3 

11 11 
12a/2 e -St sin (t%/2) e -3t cos (t%/2) + - - -~--  

f 
t 

Prob (E3) = e -u  + e-ath(t - x)dx = 
0 

2 9 u ~ 1 2  = 11 + ]-1 e- cos ( ta/2)  - e -3t sin ( t~/2).  
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Again the sum of these three probabilities is equal to unity, as it should be, and, for large t, the 
probabilities of finding 1, 2 or 3 lanes in working condition are in proportion 6:3:2. I f  

1 
d = 1-21 ( - 3 6 C + 8 5 d + 5 7 a ) ,  

1 ( 3 6 C + 3 6 d - 5 7 a ) ,  B=ig f 

1 ( 2 1 C + 2 1 d - 3 a )  D = ~  

then the loss function is equal to 

[A + Be  - u  D ~ / 2  e -at 
1 

L t = ( C + d + 3 a )  + -[ cos (t~/2) + sin (t5/2)] 

and its derivative is given by 

dL  t 1 
dt - # [ ( 2 D -  3B) te  -3t cos t%/2 - ( B  + 3D)te-U%/2 sin (t%/2) - 

- A - Be  -3t cos (t~/2) - D~/2  e -3t sin t~/2].  

The expression in the brackets is equal to - A - B = - d for t = 0 and tends to - A when t 

tends to infinity; if C is large in comparison with a and d this value - A is positive. Thus  the 

derivative attains zero at least once, and the lowest value tmi . for which this happens determines 

the minimum of L t . As before, for large C (in comparison with a and d) we have approximately: 

tmi ~ ~ ~ / ( d / 2 C )  and Lmi . ~ 3 ~ / ( C d 2 / 4 ) .  

An example. If, as in the previous example discussed at the end of Section 3, C = 10,000 d, then 
the opt imum replacement policy is to inspect the system after every tmi n = 1/20,000)113 = 0" 03684, 

i.e. after 0. 03684 0 hours and if 0 = 1,000 hours, this means a replacement after every 36.84 hours 

in operation. The  probability of finding a faulty lane is now greater and equal approximately 0.11. 

The minimum expected loss per unit of time will be Lmi n = 40.716 d which corresponds to 

0.0407 d per one hour of operation. Thus,  in comparison with a duplex system; the time between 
replacements is 3½ times longer and the loss per one hour of operation is about 5 times smaller. 

5. 'Major i t y  Vote '  Systems.  

The models described above in sections 2-4 apply to cases in which the failure to operate in a 
lane eliminates it automatically. In many applications, however, it is necessary to consider not only 
those failures which make the lane inoperative, but also failures consisting in faulty functioning of 

a lane. The system must then be designed in such a way that the faulty lane should be eliminated 
if its functioning disturbs the proper functioning of the remaining lanes; by a 'majority vote' the 
offending lane is recognised as such and is eliminated by an appropriate device. In a model discussed 

here we shall assume, for simplicity's sake, that  the monitoring device which compares the per- 
formance of different lanes never fails and that the time needed for the elimination of a faulty lane 

is infinitely small. I t  is clear that as long as at least two lanes are working properly the system will 

operate properly; if, however, one of the remaining two lanes become faulty then it is impossible 

to decide which of them should be eliminated arid it is the ( m -  1)st failure in the set of m lanes 
which becomes critical. 
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A system fails in the time interval (0, t) if all the m lanes fail or if a set of ( m -  1) lanes fai lswith 

only one lane working properly, so that (for m > 2) 

Y( t )  = 1 - (1 -e - t )  "* -- m(1--e-t)"*-~e -t 

f ( t )  = m ( m -  1)e-2t(1 -- e-t) m-= 

F(t )  = (1 - e-') m + m(1 - e-t)"*-~e -t 

m ( m  - 1)e-2'(1 - e-') m-2 
p(t) = 1 - ( 1 -  e-') " ~ -  m(1-e- ' )m-*e - ' '  (46) 

It  is easily shown that, for m > 2, p(t) increases from 0 to 2 when t increases from 0 to infinity 

and that, for m = 2, it is constant and equal to 2. 

The Laplace Transform fe(s) o f f ( t )  is equal to: 

f ~  j-1 P ( m +  1)P(2+s) r e ( m +  1)e-2t(1--e-l)'~-~e-Stdt = r e ( m -  1)u(1-u)"*-2u*du = P ( m +  1 +s) ' (47) 
0 0 

and the characteristic function o f f ( t )  is given by 

4(w) = P(m + 1)r(2- iw) /F(m + 1 - iw) ,  (48) 

so that the 'second characteristic function'  has the form: 

log 4(w) = log F(rn+ 1) + log F ( 2 - / w )  - log r ( m +  1 - i w ) .  (49) 

Hence the cumulants off( t ) -dis t r ibut ion are equal to: 

" . 1  
K1 = - [ ~ ( 2 ) - ~ ( m + 2 ) ]  = E -  

v = 2  V 

1 
K., = W ' ( 2 ) - ' F ' ( m + l )  = Y~ 

v=2 

Ka = - [tF"(2) - W ' ( m +  1)] = 2 E ;)a 
• " v = 2  

= ( - - + I)] = ( . -  2) ! X 7 (50)  
v = 2  

Denoting the first three sums in the above formulae by Am', B . / ,  C.,,/respectively we obtain the 
following asymptotic expressions for the expected number  of renewals in the interval (0, t) and for 

their variance: 

H(t)  - t Am'2 - Bm" o(1) " (51) 
Am' 2A,~ '2 + ' 

V(t)  - Bm' t  1 5Bin '2 4C m' 
A m  '2 + ~ + 4 A , / ~  3 A , j  3 + o(1). (52) 

Since for m = 2 the hazard p(t) = const = 2, the underlying Renewal Process is Poissonian 
with 2' = 2. Thus,  for m = 2, H(t )  = V(t)  = 2t precisely. For the m-lane system (m > 2) the 

expected number  of renewals is asymptotically equal to t / A  m ' so that the expected number of 
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failures, in a long time interval, decreases with 

the values given below: 

multiplexing in the proportion A ( / A ~ ' .  From 

m 2 3 4 5 6 

A~ '  0.500000 0.833333 1,083333 1.283333 1.450000 

A 2 ' / A  m' 1.000000 0.600000 0.461538 0.389610 0.344828 

it is clear that for large t the multiplexing procedure gives useful results for the initial values 

m = 3, 4, 5, . . . . .  only and that the more advanced multiplexing improves the asymptotic system 

reliability less and less. 
For small values of t the situation is again completely different. The  Laplace Transform f * ( s )  of 

f ( t )  is equal to (47) and the Laplace Transform of the Renewal Function H ( t )  is given by 

H * ( s )  = 

For large values of s: 

m !  m ! ( m = l ) ( m + 2 )  
H * ( s )  = s m 2s~+ l 

so that, for small values of t, 

H ( t )  = m t  ~ - 1  - ( m  - 1) (m + 2) 
2 

fe(s) P(m + 1)r(2 + s) 
s [ l - f* ( s ) ]  

+ O  

(53) 

t m + o( tm) .  (54) 

By a similar argument it is easily shown that, for small t, 

V(t)  = m t  m-1 - ( m - 1 ) ( m + 2 )  t m + o(tm ) 
2 

(55) 

so that, for small t, the ratio of the variance to the mean is near to unity. 

In a similar way it may be shown that, for small t, 

and for n 1> 1 

so that 

( m -  1) (m + 2) t m + o(tm ) (56) Po(t)  = 1 - rnt ~ - 1  + 2 

(m l) n n ( m  -- 1) (m + 2) (m l) n 
Pn( t )  = tm~-n  _ 

( m n - - n )  [ 2 ( m n - - n  + 1)! 

p l ( t  ) = m t m -  1 ( m -  1) (m + 2) 2 t m +  o ( tm) '  

tm - +l + (57) 

(m!) 2 t2m_ ~ ( m - 1 ) ( m + 2 ) ( m l ) 2 t a m _ l  
Pe( t )  = ( 2 m -  2) ! - ( 2 m -  1) + °(t2~-a) 

Here again, the probability of two, three or more renewals in the time interval (0, t) can be neglected. 
If  t = ~ ,  i.e. if the time of operation is a small fraction a of the lane M T B F ,  we can assume that 

Po(t)  = 1 - m a  m-1 Pl(t) = mc~m-1 
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As before, we can obtain exact formulae for various values of m. Thus,  if m = 3, we have: 

5 ( t )  = 3e -~ - 2e -~t, 

f ( t )  = 6e - 2 t -  6e -3~, 

2 
p(t)  = 2 

3e t - 2" 

The Laplace Transform o f f ( t )  is equal to: 

6 
f* ( s )  = s ~ + 5s + 6 

and that of H(t)  is given by: 
6 6 6 6 

H*(s)  - s2(s+5 ) - 5s 2 25s + 2 5 ( s + 5 )  
and 

6t 6 6 6 6 
H(t)  = 5 25 + ~ e-St" h(t) 5 _ _ _ _  , = _ _ _ ~  e - 5 1 .  

By an argument similar to that used in previous sections we can find: 

78 6 6 144 36 
V(t)  = ~-~  t + ~ + -6~ e-St - --625 te-St - ---625 e-l°t" 

It  can be easily verified that, for small t, formulae (54) and (55) are satisfied since, expanding 

H(t )  and V(t)  in the Taylor Series, we have: 

H(t)  = 3t 2 - 5# + o(t a) and V(t)  = 3t ~ -  5t a + o(ta). 

To evaluate the probabilities P~(t) notice that: 

6~(s + 5) 
P~*(s) = (s + 2)~+1(s + 3) n+l" 

As before by finding the residues at the poles s 1 = - 1, s 2 = 2, we obtain: 

P~(t) = ( - 6)~e -zt Z ( - 1)"~. v 3 - - 
~'=0 n 

- ( - 6 )  ~e-u X ~ 2 + . 
2'=0 n 

For a few initial values of n: 

Po(t) = 3e-2t -  2e-U, 

Pl( t )  = - 6e-2t(5- 3t) + 6e-at(5 + 2t), 

P~(t) = 36e-2' ( 1 5 -  8t + ~ ) - 3 6 e - a t ( 1 5 + V t + # ) ,  

( ~ ~ )  ( 9 #  ~ )  
Pa(t) = - 2 1 6 e  -2t 5 0 - 2 6 t +  t ~ -  +216e  -St 5 0 + 2 4 t + ~  + . 

Reverting to the time r measured in ordinary units we have 

6 6 6 6 6 
H ( r )  = g Ar - ~-~ + ~ e -aar and h(r)  = g A -  g ae-Sar . 

I f  we want  to find an interval (0, %) in which h(r)  < ~ it is sufficient to find a value % such that 
h(%) = ~; in view of the monotonic increase of h(,) this condition will be satisfied for all r < %.  
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Clearly 

% = - g l o g  1 - - -  . 

Example. If 0 = 10 000 hours and if the maximum failure rate is fixed as ~ = 10 -6, then 0c~ = 10 .8 
10 000 

and % 5 log (1-5.10-8/6) = 16.7 hours; with less exacting requirement c~ = 10-5, we 

find the admissible operation time % = 174 hours. 

There is no difficulty in constructing a table of admissible operation times similar to Table 1 and 2. 

Following the argument of previous sections it would be also easy to establish formulae for the 
optimum replacement times. 

F o r m  = 4: 

Hence 

f ( t )  = 12e-2t(1- e-t) 2 = 12e - 2 t -  24e -at + 12e -4t 

12 24 12 24 
f* ( s ) .  - + - 

s + 2  s + 3  s + 4  ( s + 2 ) ( s + 3 ) ( s + 4 )  

24 12 54 54s + 330 
H*(s )  - sVs2+9--+Z6"ts) - 13s 2 169~ + 169(s2+ 9s+26)" 

12 54 54 e_gt/2 (t~223) 174 e_gt!2 s i n ( ~ )  ' 
H ( t )  = ~-~ t - ] ~  + ] ~  cos + 169~/2~ 

h(t)  = 12 12 e_gt12 cos 
13 13 13~/23 

For small values of t the expansion into the Taylor Series yields 

H ( t )  = 4t" + oft") h(t)  = 12t 2 + oft 2) 

which agrees with formula (54). 

Again, there should be no difficulty in finding, by the same arguments as those used in preceding 
sections, the formulae for the probabilities P~(t) ,  for the admissible operation time and for the optimum 
replacement policy. 

Other, more complicated systems in which r lanes out of m must operate properly to make the 
system operative can be investigated by the same method. These 'r out of m'-systems have similar 
properties: their failure probabilities have characteristic functions which are Beta functions, i.e. 

the ratios of two Gamma functions, their 'second characteristic function' is the difference of 

logarithms of Gamma functions and the cumulants are simple finite sums of reciprocals of powers 
of consecutive integers. The Laplace Transforms required in these investigations are all rational 

functions of s with no poles on the positive side of the imaginary axis: this makes the application of 

Tauberian theorems simple and the behaviour of these functions for small and large values of t can 

be easily assessed from the behaviour of corresponding Laplace Transfoims for s tending to infinity 

and to zero respectively. The exact formulae can also be easily obtained although the appropriate 
calculations could be in some cases cumbersome. 
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