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Summary. 

The T-tail under investigation consists of a flat horizontal tailplane mounted on top of a flat vertical fin. 

The chords of the two surfaces at their junction are of the same length and are coincident. The T-tail is 
assumed to be isolated and to be oscillating harmonically in a subsonic flow whose main stream is parallel to 

the mean positions of the surfaces of the T-tail. The linearised equations of potential flow are assumed to be 

valid. 
A pair of integral equations relating the normal air velocities on the surfaces of the tailplane and fin with 

the loading distributions on these surfaces is derived. This pair of simultaneous equations is solved approxi- 
mately by collocation and the loading functions so determined are used to calculate generalised airforces on 

the T-tail at any frequency of oscillation. When the T-tail is attached to an aircraft there is some aerodynamic 

interaction between the aircraft fuselage and the T-tail. It has not been possible to estimate this interaction in 

general. If the T-tail is attached to an infinite wall with the tailplane parallel to the wall then it is possible to 

obtain the interaction by the method of images with the infinite wall acting as a reflector. This approaches 

conditions in a wind tunnel, so a treatment of this case has been given. This case may also be a guide to the 

more general case of interaction between a fuselage and a T-tail. 

The  procedures have been programmed for the Ferranti Mercury Computer. 
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1. Introduction. 

The use of T-tail configurations on present day aircraft has initiated the problem of investigating 
their flutter characteristics. This necessitates the accurate determination of oscillatory airforces 

acting on the T-tail. There is at present a scarcity of both theoretical and experimental information 
on these forces, and this paper provides an addition to the theoretical information. 

The horse-shoe vortex method of plane wings has been extended to T-tails in a steady subsonic 
flow by a number Of writers 1,2,a. The process is to replace the surfaces of the T-tail by sets of 
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horse-shoe vortices in the plane of each surface of the T-tail so that the centre of each bound vortex 

is at a quarter-chord point and the trailing vortices extend downstream to infinity in the direction 

of the main-stream flow. The boundary condition that the airflow is tangential to a surface is applied 

at the three-quarter-chord points at the mid-span lines of the horse-shoe vortices. A set of simul- 

taneous equations is then obtained for the strengths of the horse-shoe vortices. These equations are 

solved and then the airforces on the T-tail are obtained in a straightforward manner using the 

strengths so obtained. 
If a plane wing oscillates in flexible modes or at relatively high frequency parameter the horse- 

shoe vortex method is not entirely satisfactory. A more complicated horse-shoe vortex method with 

several horse-shoe vortices at intervals along a chord, or a Multhopp lifting-surface-type method 
such as that of Acum 4 or Richardson 5 provides better results. It might be expected therefore that a 

more elaborate method would yield results of wider applicability in the case of the T-tail configura- 
tion. This paper extends the method presented by Davies G to the oscillating T-tail configuration. 

When the T-tail is assumed to be isolated, and the linearised equations of potential flow apply, a 
pair of integral equations can be derived relating the normal air velocities on the surfaces of the 

tailplane and fin with the loading distributions on these surfaces. This pair of integral equations is 

solved approximately by collocation at a number of points on the surfaces of the T-tail, and the 

loading functions so determined are used to calculate the generalised airforces on the T-tail at any 

frequency of oscillation. 
When the T-tail is attached to an aircraft fuselage there is some aerodynamic interaction between 

the aircraft fuselage and the T-tail. It has not been possible to estimate this interaction in general. 

If the T-tail is attached to an infinite wall with the tailplane parallel to the wall then it is possible 

to obtain the interaction by the method of images with the infinite wall acting as a reflector. This 

approaches conditions in a wind tunnel, so a treatment of this case is given. This case may also 

serve as a guide for obtaining the interaction in the more general case of T-tail and fuselage. 
A completely different method of solving the problem is to consider the two-dimensional flow 

in the Trefftz plane behind the T-tail. For steady flow this has been done by Weber and Hawk 9 fora  

T-tail and fuselage. Many approximations are inherent in the method and an extension to consider 

oscillatory flow would le~/d to complications. The method of collocation adopted here does indeed 

rely on approximations but it would appear to the present writer that the approximations made are 

more plausible than in the case of the Trefftz plane method. 

2. The Integral Equation Relating the Loadings on the Tailplane and Fin with the Normal Air 

Velocities on these Surfaces when the T-Tail is Isolated. 

A diagram of the T-tail configuration under consideration is given in Fig. 1. The fin ABCD is 
attached to the tailplane EFCGHD along CD. The tailplane and fin are assumed to be very thin 
and nearly plane and the whole T-tail is in a subsonic airstream with the inclination of these surfaces 
to the main-stream direction being very small. The tailplane and fin oscillate with small amplitude 

about a mean position in either rigid or flexible modes. Accordingly linearised theory is applicable 

and the T-tail may be replaced by intersecting flat plates the mean positions of which are parallel 

to the main-stream direction. It is assumed that the tailplane has no dihedral so that in the mean 

position EFCGHD may be taken to be a flat plate. The tailplane is taken to be symmetric about the 

line CD, as usually occurs in practice. 
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A system of right-handed Cartesian coordinates (x, y, z) is introduced, which is stationarY with 
respect to the mean position of the oscillating surfaces. The origin is taken as some point on the 
mean position of the line CD. The positive direction of x is that of the main stream and is therefore 
along DC. The positive axis of z is in the mean plane of the fin along the span of the fin and the 
axis of y is mutually at right angles to complete a right-handed orthogonal system. 

Let the normal displacement at time t in the positive direction of z of a point (x, y, 0) on the 

undisturbed tailplane be Z(x, y, t) and the normal displacement at time t in the positive direction 

of y of a point (x, 0, z) on the undisturbed fin be Y(x,  z, t). Then in a harmonic oscillation of the 
T-tail we can write 

Z(x,  y, t) = If~(x, y)d  °' (1) 

z ,  t) = l L ( x ,  (2) 

where l is a typical dimension of the T-tail, and as is usual with using complex functions for 
harmonic analysis only the real or the imaginary parts represent the pertinent physical quantity. 

The boundary conditions that the airflow is tangential to the tailplane and fin surfaces lead to 
the following linearised equations 

wl(x, y) = ( V  3x + ico) lfl(x, y ) (3) 

where V is the main-stream velocity, wl(x , y )d  °'t is the component of the air velocity in the 
z-direction at the surface of the tailplane and wz(x, z )d  °'t is the component of the air velocity in the 
y-direction at the surface of the fin. The functions wl(x , y) and w~(x, z) will be called the normal- 
velocity functions. 

Corresponding to the normal'velocity functions given by equations (3) and (4) there is at the 
point (x, y, 0) on the tailplane surface a pressure force per unit area, or loading ll(x , y )d  ''l in the 
positive direction of z, and at the point (x, 0, z) on the fin surface there is a pressure force per unit 
area, or loading lz(x, z)d ''t in the positive direction of y. 

Reduced normal-velocity functions are introduced by the equations 

1 
(S) 

1 z) (6 )  z) = 

and reduced loading functions are introduced by the equations 

1 
Al(x, y) = po.~ ll(X, y) (7) 

1 
z2(x, z) = - -  12(x, z) (s) 

p0 V~ 

where Pn is the density of the air in the undisturbed main stream. 
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Then  the following pair of integral equations (see Appendix) 

' /f  %(~' Y) = 4G ;~(Xo, yo)G(~-  ~o, y -yo)&Jyo + 
tMIp lane  

+ ~-g a&o,  % ) K & - x o ,  y, zo)dxodzo 
/in 

%(x, z) = 74rr " Zl(Xo, yo)K2(x- Xo, z, yo)dxodyo + 
tMlp lano  

+ 71rr g~(x0, zo)Kl(x- xo, z -  zo)dxodz o 
Iin 

are satisfied. The  kernel functions K 1 and K 2 are given by 

(9) 

(l()) 

(_x+MR1)/(I_Mg (U2 +y~)al~ + 

+-R,(x~+9) exp - V  i - Z M  ~ ] 
(11) 

Kz(x,  y , z )  = e-~x'~ [ f  ~° 
(--x+3IR)/(1--dlI 2) 

e_~O,~l v 3yz d'tt + 
(u 2 +y2 + z2)51~ 

+ yzexp { - i t °  [--a:+ MR~ [ 11/l(34x+R~ M~(1 - M~)x 
+ 

R'a(x~ + y2 + zO.) 
+ 

where 

+ 
2M(Mx + R) 

R(x 2 + y~ + z~) ~ 
iw M2(Mx+R) t~ 

+ V ; R ~ ( ~ G T = ) j _ j  

R, = V{~  ~ + ( 1 -  M~)y=) 

(12) 

(13) 

R = v ' { .  ~ + ( 1 - M = )  ( y = + ~ ) )  (14) 

and M is the Mach number  of the main stream. 
If now the modified functions 

%(x, y) %(x, y)e ~°'*lF 

~2(X, Z) = %(X, z)e {o'xlV 
( i s )  

~(~. ~) = ;~..(~. ~)e,.~,~ 
(16) 

& ( * ,  y) = G ( * ,  y)e-,x,,  

R2(x , y, z) = K.,.(x, y, z)e ~°'xtF 
(17) 



are introduced into the integral equations (9) amd (10), they become 

1 f f  ~(Xo,Yo)Rl(x_xo,y_yo)dxodyo+ al (X,  y )  = 

t ~ i l p l a n e  

1 f f .~2(Xo,Zo)I~2(X_Xo,Y, Zo)dxodzo (18) 
fin 

1 f f ~l(Xo,Yo)~2(X_Xo,Z, yo)dxodyo + a~(x, z) - 4~" 
t ~ i l p l ano  

1 f f ~2(Xo Zo)I(l(x-Xo,Z-zo)dxodzo. (19) 
+ T ~  

fin 

Into the integral equations (18) and (19) introduce the new variables 

1 
- Ix - x~ , (y ) ]  (20) q(y) 

1 
= ~ y  (21) 

1 
s¢o -- [x o -- XL(1)(yo) ] (22) 

q(Yo) 
1 

To = ~Yo (23) 

1 
e =, ~2(~ [x - xL(2'(Z)] (24) 

1 
= - z ( 2 5 )  

S 2 

1 
% = c~(z(,~ [x° - XL(~)(%)] (26) 

1 
= - z o ( 2 7 )  

~0 S2 

where s 1 is the semi-span of the tailplane, q(y) is the local chord length and Xz(1)(y) the x-coordinate 
of the leading edge of the tailplane at the spanwise position y, and s 2 is the span of the fin, Q(z) is 
the local chord length and XL(2)(z) the x-coordinate of the leading edge of the fin at the spanwise 

position z as shown in Fig. 1. 
The pair of integral equations 

S 1 

(18) and (19) then become 

f ÷ l  f l  
q(yo)d~o 7h(~o , %)I(~(x - xo, y -yo)d ~o + 

- -1  0 

c~(Zo)d ~o X~(Co, ~o)R2(x- Xo , y, zo)d% 
+ ~ o  o 

sl f+l f l  q(yo)d% ~1(~o, %)R2(x- Xo, z, yo)d~o + 
~ ( c ,  ~) = ~ -~  o 

s~ flc~(Zo)d¢ ° f l  x~(%, ~o)Rl(x- Xo, z -  zo)d% 
+ ~  o o 

(28) 

(29) 
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where 
~1(~, ~) = a,(x, y) / 

J ~s(~, ~) = as(x, ~) 
(30) 

'~1(~0, ~0) = ~I(Xo, YO) / 

J ,~(eo, ~o) = ~s(*o, %). 
(31) 

It is convenient to split the kernel functions K1 and Ks into 

&(x, y) = &(*~(., y) + &<s~(., y) (32) 

(33) 

where 

fmo Rl(~)(x ' y)  = e_~,o,~I v du 
(_x+MR{(I_MS) (uS + yS)am 

-- fr (i2l -A) [H_I 2i K1 

f 
o du + e -i(°ulV 
(_x+MR{(I_~,~s) (u s + y2)am 

(34) 

M(Mx + R1) i~o _x +_ MRI]  
K~(m( x , y ) -  Rl(xS+y2) exp { -  ~ - ( 7 1 _  MS ]} (35) 

f 
o~ 

/~2(1)(X, y, Z) = e-iwut V 
( - x  + ~ I  R) / (1-M s) 

3yz 
(u 2 + yS + zS)SI2 

du 

21r yz 2 _ 
-(yS+zS)S { ~  C(Ys+ZS)} [ H-s {V C(Y"~+zS)} 2Ks {V C(Ys+ZS)} + 

f 
o 3yz 

+ e<°'ul v (36) (_x+Mi~)/(l_~ts) (u 2 +yS + zS)Sm du 

and 

F M(Mx+ R) 3 
R(S)(x, y ,  z) = y z  LR(x  s + yS + zS)a 

M2(1 - MS)x 2M(Mx + R) + + + 
Ra(x s + y2 + z2) R(xS + yS + zS)S 

+VRS(x s+ys+zs)_lexp - g  I - M  ~ ]J" 
(37) 

In the above 11 and 12 are modified Bessel functions of the first kind, K 1 and K s are modified 
Bessel functions of the second kind and H 1 and H ~  are Struve functions in the usual notation 
(see for example Ref. 7). 



If the kernel functions are split up according, to equations (32) and (33) and an integration by 
parts carried out on the integrals involving the first components/£1(1)(x, y) and I(~(1;(x, y, z) in the 
integral equations (28) and (29) then there result the pair of integral equations 

sl f ~ f t  q(yo)d,o G(~o, ,o)&(~'(~- ~o, Y-Yo) + 

• @ Cl(.Y0)Xl(l)(~:0, ,O)]~£1(It)(X - X0, J-Yo)}d~o .@ 

q .f+l ,v o) 1 -~" ~ ----1 cl(yo)A1 ( ' ~°)KI(1)(N-- X:/'(1)(yo)' y --J°)dT]° -~- 

c,(%)d ~o {X~(%, ~o)G(~)(x- Xo, y, %) + 
+ ~  o o 

+ c~(%)~02)(%, ~o)~2~('~'(~-Xo, y, %)}d% + 

S,~ fl " ce(Zo)X,~(')(1, ~o)l(em(x-x2,(°"'(%), y, %)d~o (38) 
+ ~4G o 

Sl f ~ f l  q(yo)d,o {Xd~o, ,o)Re(~)(x- Xo, ~, yo) + 

+ q(yoG(~)(~'o, ~o)G~)(x - Xo, ~, yo)}d~:o + 

S1 f-~-I q(yo)51(x)(1, rh,)R2(t)(x- x2,(t)(yo), z, yo)d~To + 
+ :G -1 

S.2 f l  fl c,..(%)d g,, {.~(¢o, go)R?'~(X-.o, ~ -  :~o) + 
+ ~ o o 

"" t "  c,,(,%)5~")(1, "R ~)(.~ ") go) " 1 ,~ - x &  (%), ~ -  
-1- 4 ~  ~ o 

(39) 

where 

~ ( ' ( G ,  ~o) = [~° X~(u, ~o)du (40) 
dO 

- f e0 ~(~)(6o, ~o) = X~(~, ~o)d. (41) 
0 

IQa)(x' Y) = R~ (x ~ + 9 )  ~ exp - ~- ~ 2 ~ g  -] (42) 

3yz (Mx+R)  ~' { ico ( 2 f _ - I - M R l ]  
l ~ f ' ) ( x , y , z ) -  R (x ~ + y z + z ~ ) ' t c x p . -  }7 \ 1 - M  e ]J  (43) 

xT(O(y ) is the x-coordinate of the trailing edge of the tailplane at spai~wise position y and x~,(~)(z) is 
the x-coordinate of the trailing edge of the fin at the spanwise position z. 

The pair of integral equations (38) and (39) are better than the pair (18) and (19) for numerical 
evaluation since the parts of the kernels involying an infinite integral now occur only in a simple 
integral. 

3. Approximations to the Loading Functions and Location of Loading and Velocity Points. 
The pair of integral equations (38) and (39) may be solved numerically for values of the loading 

functions Al(~0, %) and ;~(e0, ~0) at only a finite number of points on the tailplane and fin surfaces. 
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Accordingly a set of points, the loading points, at which the values of the loading are to be deter- 
mined are chosen at the outset and the values of the loadings at these points are regarded as unknowns. 
The loading functions are then represented approximately in terms of the values at the loading 
points by use of interpolation functions which have the same behaviours as the loading functions 

near the edges of the tailplane and fin. 
The normal-velocity distributions on the tailplane and fin, respectively obtained from the 

integral relations (38) and (39), by using the approximations just described for the loading functions, 

cannot be made to coincide exactly with the given normal-velocity distributions all over these surfaces. 

Coincidence at a number of points, the velocity points, equal in number to the number of loading 

points can be obtained. In this way a set of simultaneous equations for the values of the respective 

loading functions at the loading points in terms of the values of the normal velocities at the velocity 

points is set up. 
The accuracy with which the loading distributions are determined depends on the number of 

velocity points chosen and also on the choice of their positions over the tailplane and fin. 

Since the harmonic velocity potential of the flow satisfies an elliptic partial differential equation 
in subsonic flow the loading functions can be expected to be smooth over the tailplane and fin, 
away from any discontinuities which occur in the normal-velocity functions, such as occur at 
control-surface edges, and also away from any discontinuities in slope of the edges of the surfaces. 

For a T-tail without control surfaces the loading is smooth except in the immediate vicinity of 

any points of discontinuity of slope of the tailplane or fin edges, so  Xl(~0 , 7]0 ) and 71.,(e0, ~0) may be 
approximated quite well by a few terms of an expansion in terms of elementary orthogonal functions 
over the whole of the surfaces except in the immediate vicinity of those points of discontinuity of 
edge slope. The values of total forces on the T-tail obtained by using these approximations should 

be little different from the actual values. 
In the following theory the positions of the leading and trailing edges of the tailplane and fin are 

specified at only a relatively few stations along the  spans and it is assumed that sufficiently good 
approximations to the leading and trailing edges are obtained by taking the equations of these 
edges to be polynomials which give the correct values at the specified stations. This leads to small 
errors in the neighbourhood of discontinuity of slope in the leading and trailing edges but the 

overall effect on the total forces is expected to be small. 

For the present let us confine attention to 52(%, ~0). The loading function 5~(%, ~0) has a singular 

behaviour like 1/~/e 0 near the leading edge of the fin and tends to zero like X/(1-%) near the 

trailing edge. These are the behaviours near the leading and trailing edges of a two-dimensional 

wing, which must be followed near the leading and trailing edges of the finite fin of the T-tail. 

The selection of velocity points along a chord of the fin will be made on the basis of two- 

dimensional steady-flow theory. For a particular finite oscillating T-tail there may be better selections 
but the problem of their choice remains. The selection made on the basis of two-dimensional theory 

should be better than an arbitrary selection. 
An approximation to the loading function ~(e0, ~0) along the chord at ~7 = %, and which has 

the correct behaviour at the leading and trailing edges is given by 

l ~-~ a~.(~0)e0,.} / ( 1 -  e_o ] (44) ~o) = 

If 52~(eo, ~o), for a particular value of ~o, represents the loading on a two-dimensional wing lying 



between e 0 = 0 and e 0 = 1 in steady subsonic flow, then the corresponding normal velocity at any 
point e in (0, 1) may be calculated. If  this calculated normal velocity is equated to the prescribed 
normal velocity at each of n points e in (0, 1), then there results a system of n simultaneous linear 
equations which may be solved for the values G(~0). The  values of the G(~o) so obtained will depend 
on which points have been selected as the n upwash points ~ in (0, 1). 

The  values of the ar(~o) for which A~'(e0, ~o) of equation (44) is the best approximation to 
7~2(e0, ~0) are deemed to be those for which 

f l  ~ /  ( eo )de  o (45) 
0 G ( % ,  - 2 1 G¢o 

is a minimum for a given value of ~0. This  best set of values of the a,.(~o) cannot be determined 
exactly since the function X2(c0, ~0) is not known explicitly. However,  it is possible to select the 

n velocity points c in (0, 1) so that the values of the G.(~0) calculated in terms of the two-dimensional 
steady-state normal velocities at these velocity points are, in general, as good approximations to the 

best set of values of the ar(~0) as it is possible to get with only n points. The  procedure for doing 
this involves rewriting equation (44) in terms of orthogonal polynomials. 

If  the set of polynomials l,.(Co) of degree r is defined as an orthogonal set over (0, 1) with respect 

to @{(1 - e0)/e0} as weight function, i.e. 

f l  / ( 1  - Col de ° = 3,,s (46) 
o % / 

where 3~, s is Kronecker 's  delta, and the series (44) is written 

/ (  ~ -  c° t (47) 

then the integral (45) is a minimum when 

b,(~o ) = 7re(Co, ~o)Z,.(eo)d%, 0 ~< r < n - 1. (48) 
0 

The b~(~o) are the coefficients of the first n terms in the infinite expansion of 52(Co, ~o) in terms 

of the/~.(Co): 

{ ~G } / i I - c - ° i  (49) ~2(eo, 
c0 / 

Corresponding to the loading distribution 

/ 1  - e o (50) l~,( eo) a¢ CO 

on the two-dimensional wing in steady subsonic flow let there be a normal-velocity distribution 
%(@ The function ~ ( e )  turns out to be a polynomial of degree n in ~. 

Then, corresponding to the loading distribution A~(c0, ~0) of equation (49) there is a two- 

dimensional normal-velocity distribution u(e, ~0) given by the formula 

co 

u(e, ~0) = N b,.(~o)%.(c)" .(51) 

If  equation (51) is written down for n separate points c in (0, 1) a set of equations is obtained 
which may be solved for the b,(~o), 0 <. r <~ n - 1, in terms of the values of the two-dimensional 
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normal velocity u(e, ~o) at these points and of the br(~o), r >>. n. Approximate values of the br(~o), 
0 ~< r ~< n - 1 are those obtained by neglecting all the b~.(~0), r /> n. If, however, the n separate 

points e in (0, 1) are chosen to be the n roots 

~1: ~ k = 1 ,2  . . . .  , n  

of the polynomial equation 

= 0 

(52) 

(53) 

then the values of the br(~0), 0 ~< r ~< n - 1 do not depend on the value of bn(~0). The  approximations 
to the b,(~0), 0 ~< r ~< n - 1, will then, in general, be better than those obtainable using the values 

of u(e, ~0) at any other selection of n points e in (0, 1). The  corresponding values of the a~(~0) are 
then the values which are to be taken as the approximations to the best set of values of the a~(~0). 
It follows that the points (52) are, in general, the best ones to take for the chordwise positions of 
the velocity points on a two-dimensional wing in steady flow. As mentioned earlier, these points 
will be taken as the velocity points in the case of the finite fin of the T-tail. The  points are numbered 
in order from the leading edge. 

The  functions ~n(e) and /~ (1 -e )  are proportional to each other (see Ref. 6, Section 3). The  

n velocity points are therefore givefl by 

~:(~)= 1 - ~ i  q) k = 1, 2 , . . . , n  (54) 
where 

i = n -  k + 1 (55) 
and 

~q) i =  1, 2 , . . . , n  (56) 

are the roots, numbered in order of increasing size, of the polynomial equation 

= o .  ( 5 7 )  

As is shown in Ref. 6, Appendix III ,  the points ~i (0 are given by 

[2 -1 ) 
~i q) = ½ - ½ c o s  \ 2 n + l ~ r  i =  1, 2 , . . . n  (58) 

and they are all in the interval (0, 1). 
The  approximate values of ~(eo,  ~o) at n points along a chord may be determined from the 

approximate formula (44). Reciprocally the approximate formula for ~2(e0, ~0) may be determined 
in terms of the approximate values at these n points by the use of interpolation functions having the 
correct behaviours at the leading and trailing edges. It is very convenient from the point of view of 
mathematical formulation and numerical computation if these n points are taken to be the n points 
~i (0 defined above in equation (58). These n points will be called the chordwise loading points. 

Corresponding to each point ~:i q), an interpolation function hi(~*)(eo) is formed which is unity at 
the point ~(0 and zero at the other ( n -  1) loading points, and which is the product  of ~/((1 - %)/%} 
with a polynomial of degree ( n -  1) in %: 
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T h e  approximation to the loading along a chord of the fin may then be given as the sum 
9/, 

Xg(e0, g0) = Y, X2(~i ('), g0)hi("')(e0) (60) 

where the asterisk has now been dropped from the ~ ,  for it is no longer required if one bears in 
mind that the quantities denoted by ~2 are henceforth approximations to the actual quantities. 
Formula (60) is exactly equivalent to formula (44). 

Similarly the approximation to the loading on the tailplane may be given as the sum 

Xl(~:0, ~7o) = Z ~1(~:i (°, ~0)hi(~)(~0) • (61) 
i = 1  

The loading distributions have the behaviour of ~ / ( 1 -  g0) near the tip of the fin, of -~/(1 - T0) 

near the port tip of the tailplane and of ~/(1 + T0) near the starboard tip of the tailplane. These are 

the behaviours near the edges of a very slender rectangular wing. Near the junction line DC of the 

tailplane and fin the spanwise behaviours of the loading are regular except that there may be a 

finite discontinuity of the tailplane loading function across this junction line. The  functions 

;~2(~i (l), go) and ~1(~:,~ (~), %) must take these behaviours into account. 
A suitable approximation to the fin spanwise function ~=(~i(I), go) is given by the product of 

~ / ( 1 - g 0 )  with a polynomial of degree ( m - 1 )  in go. Following the procedure of the chordwise 
variable %, we define a set of polynomials/*,.(go) of degree r which are orthogonal over (0, 1) with 
~/(1 - go) as weight function, i.e. 

f l/~,.(go)/%(go)V/( 1 - ~0) d go = 3,.,~. (62) 
0 

To choose the spanwise locations of the velocity points it is observed that the kernel Kl(x , z) in 
equation (19) behaves like 1/z" near z = 0. The  spanwise distribution of normal velocity w,,(g) 
corresponding to the loading distribution/z,,(~0)v/(l - g0) and upon which the choice of spanwise 
velocity points depends is then taken to be 

f 
l 

w,,(g) = ~,/(1 - g0)d ~0- (63) 

The  spanwise locations of the velocity are then chosen to be the m real roots 

Vg. (w) r = 1, 2 , . . . , m  (64) 
of the equation 

w,,,(g) = 0 (65) 

for reasons similar to the ones for which the chordwise velocity points were chosen. The  spanwise 
points are numbered  in order starting from the function line DC and proceeding towards the tip. 

Polynomials which satisfy equation (62) are Jacobi polynomials given by 

t~,.(go) = G,. , 1, g0 = E (-1)*,~=7 (r!~ (2r+2p-1)!. . ~°z' . (66) 
2,=0 \ p ! l  ( r - p )  l ( r + p ) l ( 2 r + l ) !  

It is again very convenient from the point of view of mathematical formulation if the spanwise 
loading points are taken to be the m roots 

%. j = 1, 2 , . . . , m  (67) 

of the m' th  degree polynomial 

= o .  (68)  
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Corresponding to each point ~7i an interpolation function &x,O(~o) is formed which is unity at the 

point ~Tj and zero at the other ( m -  1) spanwise points, and which is the product  of ~/(1 - ~o) with a 

polynomial of degree ( m -  1) in ~o: 

gj("~)(~o) = /~,~(~o) ~/(1 - ~o). (69) 
d 

([o - %') [~o/z,,~([o)l ~o=,q ~/(1 - %) 

The approximation to ,~2(~:i q), ~o) is then given by 

L ( ~  (~), ~0) = g ~(~('),  ~ ~" ("')~ ~ (70) " l j l , b j  k'z0] 
5=1 

so that from-equation (60) we get 
?t ?1?, 

X~(eo, ¢0)= E E ~2(~i (l~, ~ l a ) k i ( " ) ( e o ) g f f ' ~ ( ¢ o )  • (71) 
i = 1  j = l  

To allow for a discontinuity in ~1(~i (1), %), this function is treated separately for % > 0 and 
% < 0 in a manner similar to the above with ~0, for the discontinuities at the ends of the intervals 

of % correspond with those at the ends of the intervals of ~0. 
The  approximation to Xl(~o , %) is then given by 

N Xl(~i (0, "~ ~k {~)E~ ~. (.,)/~ ~ for > 0 . ' l j )  i k b O l N j  \ ' /01  7~0 

~tl(~O ' 7~0) i = l  j ( 7 2 )  

~ ( ~ ( ~ ) ,  - ~ 7 j ) k ~ ( < ( ¢ o ) g f ' ) (  - %) for % < 0 
i = l  j = l  

It  turns out that the positions of the velocity points (64) are very close to the loading points (67), 
and this is true in particular near the tip of the fin. This introduces complications into the numerical 
evaluation of some integrals, used later. Since the above process of choosing the spanwise positions 

of the velocity points can give at most only an indication of the best positions, the points 

~,. r = 1, 2 , . . . ,  m (73) 

will be taken to be the velocity points instead of the points (64). The choice of this set has the 

advantage that the complications in the said numerical evaluation of integrals do not appear and 

also a certain amount of symmetry is introduced. 
To end this section formulae for the loading and velocity points on the T-tail are given. It is 

assumed that the same number  of spanwise and chordwise stations are taken on the fin and each 

half of the tailplane. 
The  totality of loading points is therefore: 

x2, i, j (z) 

~2 , j  

on the fin; 

Xl,  f ,  5 (t) 

Y l ,  5 + 

on the port half-tailplane; 

xl ,  i, jq) 

= c~(z~, j )~?)  + xL(2)(z~, j) 

= S2~Tj 

= cl(yl ,  j+)~(z) + xL(1)(yl, j+) 

= Sl~Tj 

= cl(yl, j-)~(z) + xL(1)(y~, j-) 

Y l ,  j -  = - -  slrJj 

= 1 , 2  . . . .  , n  ( 7 4 )  

= 1 , 2 , . . . , m  

i =  1 , 2 , . . . , u  
(75) 

j = 1 , 2 , . . . , m  

i =  1 , 2 , . . . , n  
(76) 

j = 1 , 2 , . . . , m  

on the starboard tailplane. 
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The totality of velocity points is: 

x~, ~,~(~) = c~.(z~,r)~(~) + ~(~(z~,r) 

"~'2, r = S l T ] r  

on the fin; 

k = 1, 2 , . . . , n  (77) 
r = 1 , 2 , . . . , m  

xa, k,r (w) = Q(yl ,  r + ) ~  (w) + XL(1)(yLr+ ) ) k = 1, 2 , . . . ,  n 

yl,~. -~ = s~% I r = 1, 2, . . . , m 

on the port half-tailplane; 

xl, ~,,.(~) = q(y~ ,r - )~(w)  + XL(1)(yl,,,- ) ] k = 1, 2 , . . . ,  n 

Yl,~.- = - s ~ .  J r 1, 2, , m 

on the starboard half-tailplane. 

(78) 

(79) 

4. The Integration Procedure. 

Substituting the approximations (60) and (61) for X2(eo, ~o) and ~1(~o, %) into the forms (38) 
and (39) of the integral equations, we obtain 

,~ f + l  X1(¢?), 7o) Ii(-)(~, 70, ~)d~o + 
~1(~, 7) : ~E -1 ( ~ - V o ?  

,, f l  81s2~ ° + E  ~=~ o (~%~+~%~)~ X~(~:?), ~o)J¢,~)(~, ~o, ~:)d~o (80) 

~ f + l  sls2~7o~ o q )  ----~1 /~1(~'i , '/o)m~(~)(~o ~, e)dvo + ~(e ,  ~) = ~= -1 (h~7o ~ + s ~ ) ~  

+ Y, N~(n)(~, ~o, e)d~o (81) 
i=  ~ o ( ~ -  ~o) ~ 

w h e r e  

" El: I~(-)(v, 7o, ~) = ~¢~: q(yo) ( 7 -  Vo)~ {h?~)(~o)Zt~(~)(~- ~o, y-yo)  + 

+ q(yo)h~(~,.)(~o)Z,i-~(~)(~-Xo, y-yo)}d~o + h~ (1' ~)(1)Ztl(~)(~-~(1)(Yo), Y-Yo) 1 (82) 

J.,(~)(~, ~o, ~) = ~ ~(~o) ~o  

+ cz(z°)h~(t" ~)(e°)Rz(a)(x-x°' Y' z°)}de° + hi(~' ~)(1)/£~(a)(x- x~e)(z°)' Y' %)1 (83) 

1 (S?~o~ + ~ ) ~  [f~o {h?~)(~:o)~ (~(~_ ~o, ~, yo) + M?~)(~o, ~, ,) = ~ q(Yo) ~oi 

+ q(yo)hi(~,%)(~o)R~(~)(x - xo, z,  yo)}d~o + hi(1,n)(1)K2(1)(x-,~T(1)(70), y--y0) 1 (84) 

NiO0(~, ~o, e) = ~-~ c~(Zo) (~ - ~o) ~ {hi('~)(eo)I£1(e)(x - Xo, z - Zo) + 

+ ce(zo)hi(a,"~)(eo)I£a(~)(x-Xo, z - Z o ) } d e  o + hi (1, ~)(1)/£:t(1)(x-XT(~)(Zo), z - - % ) ]  (85) 

and 

h,(l'*°(~ :) = f~o h,(n)(u)du. (86) 
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The  function/~(n)(~, To, ~) may be developed into a series of the form 

00 co 

Ii(~)(~q, ~1o, ~) = 2 Es, i(~')(~¢, ~7) ( ~ -  ~]o)S + ( ~ ,  - %)~ log 1~7 - %1 ~ Fsi<n)( f ,~7)(~-%) s ,  (87) 
s = O  ~ s = O  

in the ne ighbourhood of % = ~7, and the function Ni(n)(~, C0, e) may be developed into a series of 
the form 

co  co 

Ni(~)(¢, ~o, e) = • Gs, i(~)(e, t) ( t -  ¢o) ~ + ( t -  ~o) z log It - ¢o1 E Hs,~('°(e, t) ( t -  ¢o) ~ (88) 
s = 0  s = 0  

in the neighbourhood of ~0 = ~. 
The  principal value integrals in equation (81) could be evaluated approximately by using the 

interpolation formula 
m 

i~(~i(°, to)Ni('°(~, to, e) = Z X2(~i °), @Ni(~)(~, ~?j, e)gj(m)(to) (89) 
j=l  

and integrating each te rm obtained by put t ing this series into (81). T h e  accuracy of the value 
obtained would  however be adversely affected by the presence of the logarithmic terms in the 
expansion (88), and in particular by the lowest-order logarithmic term, especially if the value of m 
is small. The  accuracy can be improved if the lowest-order logarithmic te rm is removed from 
Ni(~)(~, Co, e) and dealt wi th  separately while the remainder  is dealt with by using the interpolation 
procedure.  The  procedure is similar to that  of Mangler and Spencer s. 

Write the identity 

X2(¢i (~, ~o)Ni(~)(~, Co, e) = X2(~i (0, ~) V(1 - to) Ho, i(~)(e, ~) ( t -  ~o) ~ log 1~ - ~ol + 
V(1 - ~) 

[X~(¢i(o, ~o)N#)(5 io, e) - + 

V(  1 - ~o) 
- %~(f~(~), ~) ~ - _  ~ Ho,,(n)(e, t ) ( ~ - ~ o )  ~ log l~ - ~o1J" (90) 

The  lowest order logarithmic singularity is missing in the expression in square brackets so the 
interpolation process is to be applied to that  expression. We then obtain approximately 

X~.(~(~, ~o)Ni('~)(~, to, e) = [~.(~i (~, ~) ~/(1 - ~o) Ho i(~O(e, ~) (~_  ~o)~ log 1~ - to] + 
V/(1 - ~) ' 

+ Z X~(~& ~)N?~(5 ~ ,  e) - 
j = l  

- X~(~& ~) V(~ - v~) Ho,~(~)(~, ¢) (¢_ ~)~ log [¢-  ~ l l  g]m)(~o) (91) 
V(1 - ¢) 

and 

t°) N#) (5  Co ~)d¢ - t )go,  i(~)(~, ~) log I ¢ -  t0[~/(~-¢0)dto- 

'~ (~ gS")( to) d to~ - Z (~-%-)~ log I~ - %'1~/(1-~/~) j o (~Z_~o~ + 
j = l  2 

(') e) g/'~)( ~o) + 2 [t~(si , ~?~)Ni(~)(~, rl~, i~7~o)  ~ d~ o . (92) 
5 = ~  o 
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The function H0,?')(e, ~) can be worked out, as in Ref. 6, Appendix IV. It is 

1 s2 { oJ2 } 
I-I°'?°(e' ~) - 4rr ~(z). - ( 1 -  a2)h?")'(e) + 2 iwg cz(z)h?'(e) + ~ c~(z)h, (1, "")(e) (93) 

Also 

f t  2 2 1 + 4 / ( 1 - g )  4 4 
log ]g - gol~/( 1 -  go)dgo = ~ log  Igl + g (1- ~).~,~ ~og 1 -  1i(1 ~) - 3 I1 - gl - ~- (94) 

0 

The lowest-order logarithmic term is removed from/.?')(r/, r/o, e) and the remainder dealt with 
by interpolation procedures in order to evaluate the principal-value integral in equation (80). 

For % > 0 write the identity 

~l(& ('j, %)I[~)(°q, r/o, b2) = v re {l) X./( 1 -r/o) ,>, . .  , ,D fo,?')(~£, r / ) ( , ; - r /o )  ~ log I t / -  r/o[ + 
~/ (1  - r/) 

+ [Sd~,,: (',, r/o)S,:("~(> r/,,, ~) - 

~/(1 -r/o) 1 _ ;~,(&° (z), r/) ~ 7 - 1 2  ~ Fo, e(")(s e, r/) 07 - r/o)Z log I t / -  r/ol • (9s)" 
For % < 0 write the identity 

;~(~.P', %)I.,'.{<(r/, r/o ~:) = Xl(~:.,('), r/) ~ / ( 1 + % )  F° ,:(")(~, r/) (~7-%) ~ log I t / -  ~7()i -t- ' ~ / (~  + r/) ' 

-i- IX~(&('), r/,,)s.?")(r/, r/o, ~:) - 

g ( ~  + r/o) " 1 - ~ ( ~ -  " (~), r/) .vf( 1 + r/) F0,.?'~)(~ :, ~7 ) ( r / -  r/o) ~ log  [~7 - r/o[ ~ . ( 9 6 )  

The lowest-order logarithmic singularity is missing in the expressions in square brackets in 
equations (95) and (96), so the interpolation process is to be applied to these expressions. On doing 
this and integrating, we get 

f - I - 1  Xl(~i{l), ~70) 
- , .  (.02.~D, .- s.!">(,, ,<,, ,~)d-,,, 

7<d&% r/o) Lo,( > Vo ~)dr/o + I?,)(> no ~)dr/o 
o ( v -  ~o) ~ ' - ,  (v  - ~,,)2 , 

~,(¢.,, V)Fo.,#)(~, r/) ~ / ( i2~)  log I t / -  r/ol~/(1-r/o)dr/o- 

- Z I t / -  r/,Iv'(1-r/;) do (r/- r/o)- 
j = t  

+ ~/(1 + v v ~ )  o log I t /+  % [ ~ / ( 1 - ' o ) d % -  

,,, (1 g / , , , , ( ~ , , ) } 1  - Z (o  + r/;)" log  I~ + ~ l v J (  1 +T) 3o (r/+Oo) . . . . .  2 dr/o + 
j -- t 

,,,, f l  &.(,,~)(rjo ) dr/o + 
+ ~ ~1(~? ), vD[.!'")(r/, r/;, ~) ~ 2 ~ T ~  j = l  o 

'" f*  &("~)(r/o) -I- Z ~ d ~ , . % -  r/;)I,:(")(r/, - r/;, ~) & o .  j =, o (~/+ %)0 

16 
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T h e  function F0,i(~)(~, 7) is quite analogous to Ho, i(~)(e, ~) of equation (93) and is given by 

1 s 1 - (1 -M2)hi(n)'(~) + 2 F cl(y)hi(n)(~) + ~ c12(y)hi(l' n)(~) . (98) 
Fo,,(~)(¢, 7) - 4~ el(y) 

The  other integrals in equations (80) and (81) have no singularities in the range of integration, 
though the integrands can be of rapid variation near the origin. This  is taken account of by the 
factors (sls~7~o)/(sle72+s22~o2) ~ and (slS~7o~)/(sl%?oe+S2e~% These  integrals are then evaluated by 
using the interpolation formulae 

~b 

X~(~i (1), ~o)Ji(~)(7, ~o, ~) = Y_, Aa(~i (1), 7j)Ji(~)(7, 75, ~)g?m(~o) (99) 
j = l  

( { ~1(~i ('), %.)M~(~)(%.,~, e)gj.('~')(7o) 70 > 0 

- ° ( o  e) l j : l  Al(~i , %)Mi(~)(7o, ~, = 

[j'=~l ~1(~i(/)' - -  %')M?°( - ~/j' ~' e)gj(m)( - ~o) 7o < 0 (100) 

and integrating term by term. 
The  equations (80) and (81) may then be replaced by the approximate equations 

= ~ 1 ( ~ ,  n)Fo,~(~)(~, ~) V ( i - - ~ )  ~ ( ¢ ,  7) X - ~ (~) 1 log 17 - 7ol ~/(1 - n0)dT0 - 
i=1  

m f l  g j0n)(70)  d T o l  
- E (7-%' )Ul°g  ]'q - % '1~/ (1-% ') , ] o ~  + 

] j = l  

+ V(1  + 7) 

m flgSm)(7o) }] 
- E @+%')21og I7 + %.],~/(1+%.) dTo + 

~=1 o (7 + 7o) ~ 

~ ~ (~  gj(m)(70) 
+ Z Z ~1(~ (~), ~;)I~(~)(7, 7j ,  ~) j d7o + 

i=t ~'=~ o (7 - 7o) ~ 

~ ~ [-1 g?~)(7o) 
+ ff.] ~]  Xl(~i(~), - -  7j)Ii(n)(7, -- 7j' ~) J dTo + 

i=~ ~'=1 o (7 + 70) 2 

~ ~ f~  s~s~7~o (m),~, d 
+ ]~ Z ~'~(~:i(~, %')J~(")(7, %', ~) J ( s l Z ~ o ~ ) ~  gj ~, o) ~o (101) 

i=1  j = l  0 

~ m fl 
=1 ~=~ o (~1~7o ~ + s~ ~ ) ~  g?~)(7o)dno - 

n m f l  slS~7o~ -.(m), ' a T o +  - X Z Xl(~ (°, - OM~(~)( - ~J, ~, ~) 
i=~ ~ =1 o (s~7o z + s~ ~ ~)~ g~ /7o) 

+ Y~ X~(~i(~' ~)H°'~(~)(e' ~) [ ~ / ( 1 -  ~) log 1 ~ -  ~ 0 1 V ( 1 - ~ c ) d ~ o -  
i = 1  

- :C ( ~ - O ~  log I~ - n ~ l ~ / ( ~ - n ~  ) j 0  (Tz_~0)~ 
i = 1  

+ X { - " ( "  ~) ( l e /~ ) (~0)  d~o. (102) 
~=~ ~.=~ J o  ( ~ -  ~'o) ~ 
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If  equat ion  (101) is wr i t ten  d o w n  for the 2 m n  velocity points  on the tailplane and equat ion  (102) 
is wr i t ten  d o w n  for the m n  velocity points on the fin, there results a set of 3 m u  s imul taneous linear 
equat ions for the 3 m n  u n k n o w n s  X~(~i(0 , %.), X~(~(~,-Tj)  and 5z(~¢ a), %.) for i = 1, 2 , . . . ,  n; 

j = 1, 2, . . . , m; in terms of the k n o w n  values of ~(~ ,  ~1) or ~z(e, 7) at the  velocity points. These  
equat ions are 

NI(~/C(W)' 9It) = i=lX Xl(~/(t), 7,,)Ffl, i(n)(~,, .(w), 7r) -~/(1Z-%) log 17 , . -  % [ V ( 1 - % ) d ~ / o  - 

'"  _e,?'(,_o) + 
- Z (7, .-7~')  ~ log [7. , . -  % . ] a / ( 1 - @  J o  ( 7 , . -  %) ~ j= l  

1 {i2 + ,V(1 +7,0 ~og 17,, + 7o1 ~ / ( 1 -  7o)&o - 

- 2 (7,.+7;)~1og I,)~+ ~;1~/ (1+7; )  aTo + 
)'=~ o @, .+  ~o) z 

n m' ; 1  
° (o ~: (w)) g~(m)(7o) dr~o + 

i=~ ~=~ o (7 , . -  7o) ~ 

+ Z E ~(~.f),-7~.)U~)(~,.,-~j, G (~')) j g?'°(~°) d~o + 
~=~ ~=~ o (7 , .+  7o) ~ 

+ 

k = l ,  

n m /,1 SlS27r ~0 
E E '~z(se.[ °, rb')Ii(")(%, 75, ~:l(w)) j g (,~)tr ~zr  ; = l j = ~  o (sl~7,.2+s~2~o~)2 ~ ~o~o~o.  

2~ • • . ~ 1 ~  

r = 1 , 2 , . . . , m  

E {fl ~1(~,~ (~), - ' % )  = Z Xi((f l ) ,  - ~  ~F ( , , re  ~.,,) _ ~ / ( 1 C 7 , . )  o ,,,., o,: ,~,~ , 7,) 1 log 1 7 , -  ~ o l V ~ ( 1 - ~ o ) & o -  
i = l .  

-- 2 ( ' r - - T j ) 2 l o g  ] ~ 7 , ' - - ' j i V ( 1 - - T y )  gY(m)(7°) dTo + 
j= l  o ( 7 , -  7o) ~ 

log [7,. + ~ol q ( 1  - 7o)d~o - 
+ ~/(1 + 7r) o 

+ 

X G.+~) . )  ~ log 17,. + 7 ; [ ~ / ( l + , ~ j )  aTo + 
j= l  0 (7r + 70) 2 

,* ,~ ( 1  &.(,,)(%) 
Z Z Xl(~i (0, 7j)Ii(~)(- 7r, 7 j ,  s¢1~ (w)) d7o + 

i=l J:~ J o  ( 7 , +  7o) 2 

~ m f l  + E E ~(~(~>, - ~j)l~(,~)( - ~,., - ~j ,  G(~)) gfl'~)(%) d% - 
i=~ j=l  o (7 , . -  "qo) ~ 

n m ~ 1  s l s~Tr~  ° 
~ ~2(~ (l>, rS)J~(n)(-7r, ~j ,  ~k (w)) j gSm)(~o)d ~o. 

i=1 3'=1 0 (S127 2 +S22~02) 2 

k = 1 , 2 , . . . , n  

r = 1, 2 , . . . , m  

(103) 

(104) 
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~(~k (~), ~r) = Z Z ~1(~:/~, ~j)M/~)(~j, ~,., &(~)) slS~o~,. 
i=1 j=l  o (s l~o ~ + s22~2) gs(")(~7°)dn° - 

~ m f l  ~ _  )2 gj(,~)(.qo)d~ ° - Z ~ ( ~ ( o ,  _ ~ j ) M / ~ ) ( - , j ,  ~ ,  &(~)) + 
i = 1  j = l  0 (Sl 2 ' 

" I 1 {£ log IT,. - 7o1 ~/(1 - Vo)dVo - + X ~2(~i (g), ~7,')Ho, i(~)(~l) ~), T.) %/ (1 - -~)  o 
i = 1  

- 2; ( ~ , . - ~ ) ~ l o g  l w , . -  ~ J l ~ / ( l - n ~ )  - -  d~o + 
j = l  0 (7] r - -  ~0) 2 

+ E Z ~(~/~), ~.)N,?'>(~, ~ ,  ~k{ ~) d~o. 
i=1 ~=1 o ( T -  ~o) ~ 

k = 1 , 2 , . . . , n  

r = 1, 2 , . . . ,  m (105) 

The simultaneous linear equations (103), (104) and (105) can be put in matrix form and this is 

done in the next  section. 

5. M a t r i x  Formulat ion of  the Equations. 

The set of simultaneous equations (103), (104) and (105) may be writ ten as the matrix equation 

A~I ++ &~++ & l  + -  

where the elements of the submatrices are defined below. 

[~1 +] is a column matrix of mn elements with the element 

k - -  1 , 2 , . . . , n ,  
al(~:l (~), ,%) (107) 

r = 1 , 2 , . . . , m ,  
in the n(r = 1) + k ' th row. 

[a~+] is a column matrix of mn elements with the element 

k = 1 , 2 , . . . , n ,  
a~(~:,~(~), 7]r) (108) 

r = 1 , 2 , . . . , m ,  
in the n ( r -  1) + k ' th row. 

[~1-] is a column matrix of mn elements with the element 

k = 1 , 2 , . . . , n ,  
al(~;(*o), - ~,.) (109) 

r = 1 , 2 , . . . , m ,  
in the n ( r -  1) + k ' th row. 

[XI+ ] is a column haatrix of m n  elements with the element 

i =  1 , 2 , . . . , n ,  
,~1(~:i(/), ~ j )  (110) 

j =  1 , 2 , . . . , m ,  
in the n ( j -  1) + i ' th  row. 
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[~z+] is a column matrix of mn elements with the element 

~(~P, 73 

in the n ( j -  1) + / ' t h  row. 

i =  1 , 2 , . . . , n ,  

j =  1 , 2 , . . . , m ,  

[Xl-] is a column matrix of mn elements with the element 

Xl(~i (1)' - -  7 j )  

in the n ( j -  1) -F i ' th row. 

i =  1 , 2 , . . . , n ,  

j =  1 , 2 , . . . , m ,  

(111) 

(112) 

[All ++] is a square matrix of order mn x mn with the element 

z~<-)(~,., 7s, 6~ (~)) g/'~)(7o) dTo + 
o ( 7 , -  ~o) ~ 

E {;i + 3y, rFo,¢(~)(~,~ (w>, "q,.) - /(1- 7,. ) log IT, .-  7o[V(1-7o)dTo - 

.Z fl gj(~)(70) ] 
- J=~I:: (~,.-7j) ~ log 17,.- ~jl ~/(1-7~.) Jo ~ Z~o)~ dToj + 

- -q,,) l og  17,, + 7 o l v ' ( 1  - 7o)d70 - 

fl g;m>(7o) }] - 2 (7,.+7s)~log [7,+ 7~.1~(1+7j) d7o 
J=l o (7,.+ 7o) 2 

i =  1 , 2 , . . . , n ,  k = 1 , 2 , . . . , n ,  

j = 1 , 2 , . . . , m ,  r = 1, 2 , . . . , m ,  

in the n ( r -  1) + k ' th  row and n ( j -  1) + i ' th  column, where 3j, r is Kronecker's delta. 

[AI2++ ] is a square matrix of order mn x mn with the element 

fl JP)(7,., 7j,  ~:k <~)) hs~'o,.~o 
o (s iZe ,  .~ + s2 2 ~o2) ~ g S ~ ) (  ~ ° ) d  ~0 

i =  1 , 2 , . . . , n ,  k = 1 , 2 , . . . , n ,  

j = 1 , 2 , . . . , m ,  r = 1 , 2 , . . . , m ,  

in the n ( r -  1) + k ' th  row and n ( j -  1) + i ' th  column. 

(113) 

(114) 

[An+- ] is a square matrix of order mn x mn with the element 

/ i (~ ) (7 ,  • , - 7~', ~ Y ' ) )  gS '* ) (~° )  d7o 
o (7, .  + 70)  2 

i =  1 , 2 , . . . , n ,  k = 1 , 2 , . . . , n ,  

j =  1 ,2  . . . .  , m ,  r = 1 , 2 , . . . , m ,  

in the n ( r -  1) + k ' th  row and n ( j -  1) + i ' th column. 
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[A21++ ] is a square matrix of order m n  x m n  with the element 

? Mp)(nj ,  n,., ¢,0<w)) *l*~non,. 
o (sl~no ~ + s~%,.~)= g / m ) ( n ° ) & °  

i =  1 , 2 , . . . , n ,  k = 1 , 2 , . . . , n ,  

j =  1, 2 , . . . , m ,  m = 1 , 2 , . . . , m ,  (116) 

in the n ( r -  1) + k'th row and n ( j -  1) + i'th column. 

[A22++ ] is a square matrix of order mn x m n  with the element 

f 
l gj(m)(~0) 

Ni(~)( 'q, ,  ~j, ~1~ (w)) d~ o + 
o ( n , -  ~o) ~ 

{?o + 8J'"H°'i(~)(~'7~(~)' "q') ~ / ( 1 - - - q , )  log  Iw~ - wol~/(1-wo)dwo - 

- ~] 0 / , . -@~log  I~/, - ~b.]~/(1-@ (~b_~o)2d(o 
j = l  o 

i =  1 , 2 , . . . , n ,  k = 1 , 2 , . . . , n ,  

j =  1 , 2 , . . . , m ,  m - -  1 , 2 , . . . , m ,  (117) 

in the n ( r -  1) + k'th row and n ( j -  1) + i'th column. 

Since the tailplane is symmetric the other submatrices are given by the relations 

[A2~+-] = - [A2t++] (118) 

[-All -+] = [Al1+- ] (119) 

[AI~-+] = - [Ale++] (120) 

[A~I--] = [An++]. (121) 

The arrangement of elements in the above matrices corresponds with counting the points along 
a chord starting with the point nearest the leading edge on the spanwise section nearest the line of 
junction CD and proceeding outwards towards the tip along each spanwise section in turn for the 
port half-tailplane, fin, and starboard haff-tailplane respectively. 

Let the elements in the column matrices in equation (106) be written as the sum of symmetric 
and antisymmetric components 

where 

ii!!] = i: 1 + I '''a' = 1 +[ L~I~J - ~ J  LX~-J LX~J - ,~l~J 

[ ~ ]  = ½D, + + ~ - ]  [#~q = ½[~i+ + 5~-] 

D l q  = ~[~1 + - ~1 - ]  [Xp]  = ½[Xl + - a l - ]  
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Then from (106) in virtue of the relations (118) to (121), we have 

1-:1 's] = Inl:l++ A12 -I-+ All +-- 
A21++ A2~ ++ Ael+- 

L~lSJ LA11 -+ A12 -+ All-- 
I:11 [ ,+, 
LXI~] - ~ la j  

-All ++ 

A2~ ++ 

All-+ 

which may be replaced by 

E, I = 711+++Al1+ 1 2 [25~s] ' 

~2+J 

-Al1++ - All+- 
2 

A21 ++ 

Alz++ 

A2~, ++ 

A12 -+ 

*"+-] P'I 
A21+- 

L& ~'J 

A1 1 1 • 
A~++/L &+J 

(124) 

(125) 

Z~(x, y, t) 

Y,,(~, ~, t) 

be the normal displacements 
p ' th mode, p = 1 , 2 , . . . , k .  
l~(V)(x, z)d '°t on the fin. Then 

6. Modes of Oscillation and Associated Generalised Forces. 
A number k of independent modes of oscillation of the T-tail will be assumed and these will be 

numbered from i to k. Let 

= l fx(V)(x  , y ) d  ~ (126) 

= lf~(v)(x, z)d °~t (127) 

of the tailplane and fin respectively in a harmonic displacement in the 
Let the corresponding loadings be ll(V)(x, y)e ~°~t on the tailplane and 

the generalised airforce Pv,~ may be defined by 

Pv,~ = f f lfl(")(x°' yo)li@(Xo' Yo)dxodyo + 
L~dil)lttne 

+ f f lf2(V)(Xo, Zo)I2(q)(xo, zo)dxodzo. (128) 

fin 

If, corresponding to equations (7) and (8) we write 

ll@(Xo, Yo) = poV2h~(m(Xo, Yo) (129) 

l~@(Xo, %) = poV2~2@(xo, %) (130) 
then we have 

2 8  P,,,,l = pV I Q2,,q (131) 
where 

Q2,,~ = ~ fl(v)(xo, yo)Zl@(Xo, yo)dxodyo + 
t~ilplane 

1 
f f f2(~)(xo' Zo)h~@(Xo, zo)dxodzo. + ~  
fin 

(132) 

The quantity Q~),~ is a generalised aerodynamic force coefficient and is a dimensionless complex 
number. For similar wings oscillating in similar modes one can see from dimensional considerations 
that .i.t depends only on the Mach number M of the flow and the frequency parameter v, where 

~ol 
v V (133) 
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By making the transformation of variables from (Xo, Yo) to (~o, ~/o) and from (Xo, %) to (%, ~o) 
as defined in equations (22), (23), (26) and (27) in the integration variables of (132) there results 

f ; Sl +1 q(yo) dro A(~)(Xo, yo?,l(~)(Xo, yo)d& + 
Q~'~ = 7 - 1 - - 7 - -  o 

+ 7 3 o  i o 

f ; = "el +1 q(Yo__ ) d*lo fl(P)(Xo, yo)e-Z°~xolVTtl(q)(fo, Wo)dfo + 
l - 1  l o 

s,~ (+1 c~(Zo) d~o f l  f2(P)(xÜ , Zo)e-~°~xCvft2(eo, ~o)deo • (134) 
+ 7 J _ 1  i o 

Then using the expressions' (71) and (72) with the suffix q attached to the h's this becomes 

'~ "~ sl Xd,)(~?) ' ~j) g~("~(%)dvo x 
O~,~= X X 7 i = 1 j = 1  0 

x ki(n)(~o)e-~°zolvfl(v)(x o , yo)d~o + 
0 

,t m S1 ( 0  Cl(yÜ) 
+ zXl.: 3Z1..: 7 Xl(q)(~'~(0' -- ~b) d_l  l gj('0( -- %)d~ ° x 

x hi(")(~o)e-i°'~¢vfl(~);(x o , yo)d G + 
0 

n ,m, 82 f l  f ~  
+ E E 7 X~(q)(~iq)' 75) gS"°(~°)d$° × 

i = l j = l  0 

x hi(~)(eo)e-~otVf2(p)(Xo, zo)de o . (135) 
o 

w e  shall assume that an adequate approximation to 

q(yo ) f  (p)(xo , yo) e- ~o,:~oIV ( 13 6) 

is given by a double polynomial of not greater than the n'th degree in ~:0 and m'th degree in % over 
each half of the tailplane, and that an adequate approximation to 

co(zo)f2(~')(Xo, Zo)e-i°'xol v (137) 

is given by a double polynomial of not greater than the n'th degree in e 0 and m'th degree in ~0 over 

the fin. 
These approximations may not be so good near points of discontinuity of slope of leading and 

trailing edges, but this is expected to be only a local effect and is equivalent to modifying the 
contour of the tailplane and fin surfaces so that there are no such discontinuities. Also the values of 
(~OXo/V) must not be too large anywhere on these surfaces, its greatest permissible magnitude being 
determined mainly by the number of chordwise points. If large values of (oJxo/V) occur then 
oscillations in the function e-i°Jxo IV become important and this would need special treatment. 

23 



If a(~0) is a polynomial of degree not greater than the n ' th in ~0 and b(%) is a polynomial of 

degree not greater than the m' th  in %,  then by a property of interpolation functions 

and 

where 

Ji 
;1 ° 

and 

(138) 

b(%)gS"o(~/o) d~7o = b( @ G / . o  (139) 

# H<O:> = h~(~)(seo)d ~:o (140) 
0 

Gj(m) = g~(-o(~lo)d~/o. (141) 
0 

+ 

Using this property, we may write instead of (135) 

n '  m 3.1 C1 

Q,,,~ = ~ :S y ~ ? ~ / ~ ) 7  ( y * ' / )  × i =  j = l  

x f i (P)(x: ,~ ,s  (t), yi, j+)exp - -~ x:,i, j Xt(q)(~(o, rS) 

'1~, g/b 
+ Z 23 s: <(,oq:-,)c, 

i=l j=1 7 7 ( Y l ,  3"--) X 

(i~)X:(~'(~#', m.) 
x A(")(x:,.,, y), y:, ~-) exp - g x,, i, j 

+ Z Z s~ H<(,,,OGs(,,.,)c 2 
~=:j=, 7 7 (~'j) x 

) x f2('V)(x2, i , j  ~l), z~ , j )  exp - ~ x~,i, j X~(q)(~i (~), ~%) 

+ 

A,,, + k,, ,-]  

L I:I:I 
or, in matrix form 

Q,,.~ = [f:,,,+ 

The submatrices appearing as elements in equation (143) are defined below. 

[fl, p+] is a row matrix of m n  elements with the element 

i =  1 , 2 , . . . , n ,  
f l ( p ) / ~  (I) 4, +'~ 

v~:,<,j , .~ : , j  i j = 1, 2, . . . , m ,  

in the n ( j -  1) + i ' th column. 

[f2, p+] is a row matrix of m n  elements with the element 

i =  1 , 2 , . . . , n ,  
f2(V)(xz, i, ~(~), z2, ~) j = 1, 2,  . . . , m ,  

in the n ( j -  1) + i ' th column, 

24 

(142) 

(143) 

(144) 

(145) 



[f~, v-] is a row matrix of mn elements wi th  the element  

f,(~)(xa, ¢, Y), Yl, a-) 

in the n ( j -  1) + i ' th  column. 

i = 1 , 2 , . . . , n ,  
(146) 

j =  1 , 2 , . . . , m ,  

[BI+ ] is an ms x mn diagonal matrix wi th  element  

sl c t ~, +~Hi(n) G (m) ~ 1,yl, j ,  " , e x p ( - i c ° x ~ , i , S  ' )  

in the n ( j -  1) + i ' th  row and column. 

i = 1, 2 , . . . ,  n,  (147) 
j =  1 , 2 , . . . , m ,  

[B~ +] is an mn x mn diagonal matrix wi th  element  

S~c tz 'H(n)G(m) ( iC°x a, ) a 2,~J i j exp - V  2,i,j 

in the n ( j -  1) + i 'th row and column. 

i =  1 , 2 , . . . , n ,  (148) 
j =  1 , 2 , . . . , m ,  

Since the tailplane is symmetr ic  we can write 

[B,-] = [BI+ ] . (149) 

The  column matrices [7,~,q+], [X~,q+] and [XI,~- ] are defined by (110), (111) and (112) only now with 

the addition of a suffix q. 
The  equation (143) may be replaced by 

Q~o, q = [fl, ps] [BI+] [2Xl ' qS] q_ [fl, pa, fz, ,,+] 

where 
[ f , , j ]  = ~-[k,~,+ +f,,~-], 

* a l , ( ]  [ 1, ~ ] = ½[zl, ~+ + , 

  +1K2 1 ,150, 

[f~.~,~] = ½[f~,~+-f~,~,-] (151) 

[kl, q~] = ½[A1, q+ - hi, q-]. (152) 

The  matrices [2~1, qs], [2A1 ' q~] and (A2, q+] in equation (150) are obtained by solving equations (125) 
with suffices q added to the 5's and ~'s, and on using these solutions in (150) there results 

Qp, q [fl,~s] [Bl+] [-A11++ + All+-I-1 
2 [ 1 , q ] +  

+ [fl,,, ,f2,p ] BI+ All++ Al1+- n12+-k F~ a-] (153) 2 1, q 

B2 + &,++ &~++J ~ q+ 

where ~l,q and ~,q  are obtained from equations (3), (4), (5), (6), (15) and (30) on adding suffices q. 

So 
i~ol 

@q)(x, y) = l ~fl(q)(x, y) + ~-fl(@(x, y) (154) 

O icol 
~(~)(x, y)  = l g.f~(~)(., y)  + - v  U~(~)(~, y ) .  (155) 
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Now define column matrices [%,q+], [%,q-] and [%, e +] as follows: 

[%,q+] is a column matrix of mn elements with the element 

h = 1 , 2 , . . . , u ,  
c~ {X (zo) 4, +~ 

1, qk 1 , /6  }' , ~Yl, r ] ?" = 1, 2 , . . . ,  m ,  

in the n ( r -  1) + k ' th  row. 

[%, q-] is a column matrix of rnu elements with the element 

%, q ( & ,  k, ,.u~), Yl,,.-) h = 1,  2 ,  . . . , n ,  

r = 1 , 2 , . . . , m ,  
in the n ( r -  1) + k ' th  row. 

[%, q+] is a column matrix of mn elements with the element 

0% ~(x~, 1~, (w), z2 ,,.) k = 1,  2 ,  . . . , n ,  

r = 1 , 2 , . . . , m ,  

in the s ( r -  1) + h ' th row. 

As before, define 

[~1,/]  = ½ [ ~ 1 , / +  ~, ~-], 

Then,  with a symmetric tailplane, 

[~.1 ,?] = [Dp- ]  [~:,.,,?] 

~2, ,/U D2 + % q+ 
where 

[DI+ ] is a diagonal matrix of order mn x mn with the element 

exp ( V  &, ,.,/~o)) h =  1 , 2 , . . . , u ,  
r = 1 , ' 2 , . . . , m ,  

in the n ( r -  1) + h' th row and column. 

[D2+ ] is a diagonal matrix of order mn x mn with the element 

exp ( V  &, t,., fo) ) h =  1 , 2 , . . . , n ,  
t" = 1 , 2 , . . . , m ,  

in the n ( r -  1) + k ' th  row and column. 

The  expression for Q~,,q may now be written 

~O~,q, = [fl,~,~] [BI-'-] [All++ + All+-]  -1 c~ 
2 [D*+] [ ~' q ] + 

+ [fa'v 'f~'*' ] 2 

B 2  + A ~ I  + +  &=++j 
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[0~i ' qa] ~ 1 + -- ~- [~I, ff ~1, (~--] • 

D2+ %, + 

(156) 

(157) 

(158) 

(159) 

(160) 

(161) 

(162) 

(163) 

(164) 



If f~(~)(x, y) = f~(P)(x,-y) and f2(rY(x, y) = 0 then the displacements of the T-tail surfaces are 
symmetric about the mean plane of the fin, whereas if fi(v)(x, y) = -fi(P)(x, y) the displacements 
are antisymmetric. In flutter theory the modes of oscillation usually considered are either symmetric 
or antisymmetric. I fp  and q refer to modes which are not both symmetric or not both antisymmetric 

then 
g ,,q = 0 .  

If 10 and q both refer to symmetric modes then 

Q~,q [fi, ~+] [Bi+] [Aii++ + Ali+-] -i 
= 2 [D~+] [%' q+] 

while i fp  and q both refer to antisymmetric modes then 

(165) 

(166) 

(167) 

The generalised force coefficient corresponding to T-tail symmetric modes is independent of the 
presence'of the fin, as one would expect. This case can be dealt with by applying plane-wing theory 
(see e.g. Ref. 6) to the tailplane only and so it will not be considered further in this paper. 

Equation (166) as it stands determines just one of the possible k ~ generalised airforce coefficients 

Qv, q if there are k modes of oscillation. 
If the rows [ f  i, ±,+, f 2, ~,+ ], p = 1, 2 , . . .  , k are arranged consecutively beneath each other to form 

a rectangular matrix [f] of order h x 2mrz and if the columns 

%, 

are arranged consecutively alongside each other to form a rectangular matrix [a] of order 2ran x k 
then for antisymmetric tailplane modes 

B2-t- m A~x-H- A"2++J m D~+ 

where  [Q] is a square matrix of order k x k with the element Q~,,q in the p' th row and q'th column. 
The matrices [f] and [a] are made up of numbers associated with the displacement and upwash 

points on the port half-tailplane and on the fin. The matrix obtained from the product 

[ B i +  1 [Aii++ 2 Aii+- Ai~++]-i IDi+ ] (169) 

is called the influence matrix. It depends on the Mach number of the mainstream flow, the frequency 
parameter of the oscillations and the wing geometry, but it does not depend on the shape of the 
modes of oscillation. 

27 



7. The T- Tail with Reflector Plate at the Base of the Fin. 

If  the T-tail is attached to an infinite wall at the base AB of the fin with the tailplane parallel 

to the wall, as shown in Fig. 2, then it is possible to obtain the generalised airforces by using the 

method of images. The generalised airforces on a T-tail in a wind tunnel approach these values if 
one of the wind-tunnel  walls acts as a reflector plate at the base of the fin. 

The pair of integral equations corresponding to equations (9) and (10) and appropriate to this 
case is found from the method of images to be 

1 

tailplane 

A~(~o, yo )K~(~-  ~o, y - yo)&odyo - 

1 ;f 
tailplane 

?q(xo, yo)Ka( x -  Xo, Y -Yo ,  2sz)dxodyo + 

lyf + U~ a~(*o, %)K~(.- ~o, y, %)&od% + 
fill 

l f f  ~z(Xo,Zo)K2(x_xo y, 2s2-zo)dxodzo + ~  
fin 

(17o) 

1 

t a i l p l a n e  

,~(*o, yo)K~(~- ~o, ~, yo)&Jyo - 

1 ff 
t~i lph~ne 

~(~o, yo)X~(,~- ~o, 2s~- ~, yo)dXodYo + 

l f f  + ~ ,~(Xo, Zo)K~(x- Xo, z-zo)dxodzo + 
f l i t  

+ 7ff r ?t2(Xo, zo)K~(x-Xo, Z+Zo-2s2)dxodzo. (171) 

f l i t  

The kernel functions K 1 and K~ are given by (11) and (12) as before. The kernel function Ka(x , y, 2s2) 
is given by (see Appendix) 

if ~ u z + y 2 _  8s2~ Ka(x , y, 2su) = e -i°'xlv e-i'o'*t v 
(-x+MR~)/(1-~Vl~) (u 2 + yZ + 4s ~)~t~ 

du + 

f i~o [ - 5 + _  MR3] t t M(Mx + R3) 4s2~M(mx + R3)~ _ + e x p  
, -  V ~ 1 -  M 2 ] , ,R~(x 2+ y2+4s~3) - R3(x ~+y2+4s22)a 

where 

4s~M2(1 - M~)x 8s~2M(Mx + R,) 
R38(x ~ + y2 + 4s 2)3 R~(x ~ + yZ + 4s22)2 

R~ = 5/{x z + (1 - M z) (y~ + 4s22)}. 

i~o 4szZM2(Mx+ R3)t~ 
- V ~ ~ y ~ + ~ J J  

(172) 

(173) 
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The pair of integral equations (170) and (171) may be reduced following the procedure of Section 2 to 

31 f ! l  f l  q(yo )d ,o  {7t1(¢o, ,o)/(~(2)(x- Xo, y - Y o )  + 

- (1) + q(Yo)A1 (Eo, ~o)Kl(a)(x-xo, Y-Yo)} dEo + 

Sl f+1 q(Yo)'~l(1)( 1, ~qo)/£~(~)( x - xT#)(Yo), Y -Yo) d~7o - 
+ ~ -1 

s l f+l  fl q(yo)d~o G(~o, ~o)R~(~(~-,%, y-yo, 2.~) + 4~ -1 o 
- (1) + Q(Yo)A1 (~o, rlo)Ka(3)(X-Xo, Y - Y o ,  2Sg)}d~o - 

$1 _f +1 \~- (1) 1 4-~ - - 1  q (Y° )a l  ( ' *7°)I(a (1)(x-- xT(1)(Y°)' y -- Yo , 2s2)d,o + 

s~ fl  f l  ~(%)d ~o {X~(%, ~o)R~(~(~-,Co, y, %) + 
+ ~  o o 

+ c2(`go)~(I)(%, to)R4~)(x- Xo, y, `go)} &o + 

32 f l  c2(Zo)'~2(~)( 1, tO)R2(1)( x -- XT(2)(ZO)' Y, `gO) d ~o -1- 
+ ~  o 

, f  fl c2(`go)dto G(%, to)R~(~)(~-Xo,y, 2,2-`go) + 
+ ~  o o 
+ ~2(%)X#)(%, ~o)R2(a~(~-Xo, y, 2 ~ -  %)d% + 

S2 ( 1  . xX" (1) 1 
+ ~ 0 c~(`g°)'~ ( ' t ° )R(1) (x -xT(2) (z° ) 'Y '  2s2- `g°)d t°  (174) 

0 

,f+l f q(yo)d~o G(~o, ~o)R~(2)(.-~o, ~, yo) + ~2( C, t )  = G --1 0 

- (1) + q(yo)al (&, ~o)R2(~)(X-~o, ̀g, yo)}d& + 
Sl _f +1 \Y (1) 1 "~ 47 ----1 Cl(Y0J"tl ( ' T]0)K2(1)(X -- '%'T(1)(y0)' `g' Y°)dT]° - 

' i f  +1 f q(yo)d~o G(~o, ~o)G(~)(~ -*o, 2s~-`g, yo) + 4rr _~ o 
X (1) + q(yo) 1 (&, , o ) R # ( ~ - ~ o ,  2~-`g,  yo)}d¢o - 

3 1  f + l  Cl(WO)Xl (1)( ~O , T]0)/~2(1)(X - X0, 2S2-- `g, yo)d~o + 

s2 f l  f l  " ~ (2)(X Xo, c2(`go)dto {x~(eo, ~o)~1 . - `g-%) + 
+ ~ r  o o 

+ c2(`go)X2(l'(%, to)G(~)(X-*o, `g- %)} &o + 

s2 f l  c2(%)X2(1)(1, to)R#l)(~- .~(2)(%), `g_ %)d to + 
÷ ~  o 

s2 f ~ f~ C2(`gO) d tO {'~2(C0, ~0)R1(2)( x -- X0, `g + "gO -- 2Sz) + 
+ ~  o o 
+ C2(`g0)~2(1)(£0 , ~0)1~-1(3)( x -- X0, `g + `gO -- 2sz)} de o + 

f s~ c2(`go)Xz(~)(1, " ^ a)Cx - 2s2)d to (175) + ~ o t°)K1 " - xT(~)(z°)' `g + z° 
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where 

R~ m( x, y, 2s~)  = 
co u ~ + y z _  8 s Z  . 

rr io~ ~ ~ ~ / ( y =  + 

fo + e_~O, ulV u z + y~ - 8s~3 
(-,+~l.,zRa)/(1-M2) (u ~ +y~ + 4sz~)sj~ du . (176) 

/£3(2)(x,y, 282) = exp { - ioo~j ( -  x + MRa] I [ M(Mx+ Ra) _ 4sz2M(Mx+ R3) a 
f -  M2 ]) [Ra(x~+y2+4s2 ~) Ra(x2+y~+4s~2)a 

4s~2M2(1 - M2)x 8s22M(Mx + R,) leo 4sz~M2(Mx + R3) t 
- Raa(xZ+y2+4s22) 3 - Ra(xZ+y~+4s~Z)z V RaZ(xZ+yZ+4s22)J " (177) 

{ _ io, - x +MRa~ 1 (Mx + R3) ~ 12s.,~(Mx + R # t  " 
V (  I -  M ~ ]}-ffaa {(x~+y~+4s22) 2 -  (x~+y2+4s~)4 J 

R3~( x, 28~) (178) Y, exp 

The  procedure for solving the pair of integral equations (174) and (175) is similar to the procedure 
for solving the pair of integral equations (38) and (39). The  main difference is that X~.(eo, C0) does 
not tend to zero as ~0 -> 1 but remains finite. A suitable approximation to the fin spanwise function 
~z(~:~% ~o) is then given by a polynomial of degree ( m - 1 )  in ~0. We define a set of polynomials 
/~(~0) of degree r which are orthogonal over (0, 1) i.e. 

fi#,.(~o)#~(~0)d~ 0 = 8,,,~. (179) 

These polynomials are related to the Legendre polynomials by the formula 

+ 
#,.(~o) = ~/ \ - ~ ]  P,.(~0) (180) 

where P,.(~0) is the Legendre polynomial of order r in the usual notation. 
Let 

~3' j = 1, 2 , . . . ,  m,  (181) 
be the m roots of 

#, , , (~0)  = 0 .  (182) 

Then  again it is very convenient from the point of view of mathematical formulation if the span- 
wise loading points on the fin are taken to be the ~j , j  = 1, 2 , . . . ,  m. 

To avoid complications of numerical evaluation the velocity points on the fin are taken to be the 
points 

~,. r = 1, 2 , . . . ,  m, (183) 
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instead of the more logical values which are the roots of 

~.,+(~) = 0 (184) 
where 

(1 #m(+o) d+ ° (185) 
m(+) = J o ( ~ -  ~ 2  • 

The positions of the loading points and velocity points on the fin are then obtained from equations 
(74) and (77) by replacing T and ~v by 23' and +r respectively. 

Corresponding to each point +j an interpolation function g?~)(~0) is formed which is unity at the 
point +~ and zero at the other ( rn -1 )  spanwise points on the fin, and which is a polynomial of 
degree ( m -  1) in +0 : 

~j(.o(~o ) = #,,,(~o) (186) 
d 

(+o-+.) 
[-.+ +o J #o=#y 

The function g?}+)(+o) in equation (71) is then to be replaced by g/'~)(~o) in order to get the approxi- 
mation to i2(eo, +o) in terms of interpolation functions. The numbers C?,o are obtained from 
formula (141) by replacing gg(~o)d,]o by ~]'~)(~o)d~o. 

By substituting the approximations (60) and (61) for 12(eo, ~o) and ix(~o, To) into the forms 
(174) and (175) of the integral equations we obtain 

~i(~ ¢, ~q) = Z -/#)(~, %,  ~¢)d~o - X+..(~+: (+), Z/o)P?+)(% ~70, ~)d7]o + 
{= i  - --1 (~7 - -  7]0)2 i =  --1 

f~ s~s2~+o X2(U+, +o)J~(+)(~, +o, ~)d+o + + 2 

cZ ~1 SLS27](2- +o) 
+ E ! .X2(~:+(~>, +0)J+{~+)(',r], 2 -  +o t:)d+o (187) +=~+ o [+~%2 + 222(2_ +0)2]2 

'~+, (+1  SlS27]0 ~ 
~2(~, +) = X ~(~+(~>, no)M+{~>(~o, ,~, ~)d~o - 

+ = i .  -1 (Sd~o 2 + s22 +2)2 

__ ~ f + l  SlS2Z/O( 2 __ ~) 
. , := i  - i  [ s i 27 ]~+~(  ~ - -  ~)e]2 ii(~:+(0' ~°)M+<+)(~°' 2 -  ~, e)d~o + 

+&_ f i  ~2(~i(~), ~o) NiO+)(+, +o e)d ~o + + 
+= o (+-+0) 2 

+ +.:~+Y; ~o (~TE-T)2 N?+(;, 2 -  ;o, ~)d+o (188) 
where 

P+;(+>(+, ~o, ~) = G qCyo) {h+(~)(~o)G(2)(~ - ~o, y - y o ,  2s2) + 

+ ct(yo)h/1' +>(~:o)/~+(m( x - Xo, Y -Yo,  2sD}d& 

+ hi <1' n)(1)K3(1)(x - x~#)(Yo), Y -Yo)l 
A 

and we define 

(189) 

c2(2 & -  z) " ca(z ) (190) 

in order to get Y¢(~)(7], 2 -  +o, ~), M~(~)(*lo, 2 -  +, e), Ni(~)(+, 2 -  ~o, ¢) from the definitions (83), (84) 
and (85). 
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The evaluation of the principal-value integrals in equation (187) is exactly parallel to the evaluation 
of the principal-value integrals in equation (80). 

For the evaluation of the principal-value integrals in equation (188) write the identities 

X2(~fl), ~o)Ni(~)(g, go, e) = 12(~ (~, ~)Ho, i(~)(e, g) ( g -  ~o) 2 log I g - goI + 

÷ [A2(~i (z), ~o)Ni(n)(~, go, e) - A2(~i (1), ~)Ho, i(~)(e, ~) ( g -  go) 2 log [~ - go[] (191) 
and 

X~(~fl), go)Ni(~)(~, 2 -  go, e) = Xz(~i('), OHo, i('~)(e, g) (~+ go-2)  2 log ]g + go - 2[ + 

+ [X~(~i(~), go)Ni(") (g, 2 - go, e) - X~(~i(o, 0Ho, i(n)(e, g) (g + ~o - 2) 2 log [ g + ~o - 2[]. (192) 

In virtue of the expansion (88), the lowest-order logarithmic singularity is missing in the 
expressions in square brackets in identities (191) and (192). In identity (192) the definition (190) has 
to be used. We therefore expand these expressions in terms of interpolation functions ffj(m)(g0). On 
doing this and integrating, we get 

f~ N?O(g, go, e)dgo 
5~(8fl), ~o) 

o ( g -  go) ~ 

I l l  ~ f ~ L'('~)(~°) ] 
= X~(~(o, OHo,~(~)(e, ~) log 1~ - gold~o - E ( g -  ~j)2 log [~ - gj.] dg o + 

j=~ o ( ~ -  ~o) ~ 
+ X 5d~? ), ~) , e) 4('~)(g°) gj)N~ (~ gj, dgo (193) 

j=~ o ( g -  ~o) ~ 
and 

f l 12(~i( / )  ' ~0) 
o ( ~ -  ~ - 7 ) ~  N?~)(~, 2 -  go, ~)dgo 

= 0 Ifolog Ig + go- 21dgo- 
m j, I 

- E (g+C~-2)21oglg+gj-21  ~j('")(go) dgo+ 
~=~ o (C+ g o - 2 )  ~ 

m fl 1 + ~ Xz(~:i(o, ~j)N~(~)(~, 2 -  gj, e) dgo • (194) 
~=~ o (g+  ~o -2 )  ~ 

To evaluate the other integrals in equations (187) and (188) we use the interpolation formulae 

X~(~,(~), Vo)Pi(')(V, Vo, ~) = IJ i (195) 
Xl(~i(I) ,  - -  7]j)Pi(n)( v ,  - Vj , ~)gj(m)(__ VO) nO < 0 

',~= ~ 

X~(~i (~), go)J~('~)(V, ~o, ~) = Z Xz(~i(~), g~)J~(~)(~/, g~, ~)2~('~)(go) (196) 
j = ~  

5z(~fl), go)J~("~)(V, 2 -  go, () = Z X~(~(;), g~.)J~('~)(~/, 2 -  ~ ,  ~)2j(m)(go) (197) 

[ i  ~ X~(~i (~), ~?~)Mi(n)(V~, 2 - g, e)gj(~)(Vo) % > 0 

X~(~i(t), Vo)M~(~)(Vo, 2 -  g, i) = ~= (198) 

11(~i( / )  , - -  v j ) m i ( n ) (  - 7~j, 2 -  ~, e)gj (?r0(  - 7]0 ) 7 ] 0 <  0 
\ ~ = ~  
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and the formula 
)1, 

~(~, ~) = 2 

(97). The equations (187) and (188) may then be replaced by 

,_ Ill 

1 - 2 (~7-%')~1og I~ - v ~ I V ( 1 - w j )  dwo + 
=1 o ( ~ -  ~o) ~ 

1 {fl ° + ~/(1 + ~7) log I~ + ~0 [a / (1 -  ~0)d~0 - 

~, f~ g?,,)(,o) ~,o}] + - 2 ( . + ~ . ) ~ l o g  I .  + .~[~/(1+%.) 
=1 o (~ + ~o)~ 

f f  gj(,!)(~°) 
+ 5~(~i(°, fl~)I?~)@, ~7~, ~) d %  + 

o (V - Vo) ~ 

(~+~o) ~ Jo  

~/, 'Db 

2 Z  
i = 1 j = 1  

EY-,  
i=1  j =1 

9~ 7Yt 

Z E  
i=1  j = l  

9~ ?lZ 

Y , E  
i = 1 j = 1  

Z E  
i = 1 j = 1  

Z E 
i = l j = l  

/~i(~/(/), ~ j )p, / ( ,a)(y] ,  7]j, ~ ) G j  (m) - 

X~(~:p, - v j ) P p ) ( v ,  - v j ,  ~:)G?'.) + 

o (~) f f  SlS2,~o _ ( , . )  . . . . . .  
+ X~(~ , ~j)Jp!(~, ~j, ~:) o (h~+s~%~)~g ~ (~o)a{o # 

f l  slsz~7(2_ _~o ) -(-o . . . . .  (199) 
+ ~Z(Ei(t), ~j)Ji(~)(~7, 2 -  ~j, E) o [s~2~72+s2Z( 2 -  ~o)~] 2g~ (g°)ag°  

?l, ?n f 
i=1  j = l  0 ($12T]02 "t- $29~2) 2 gJ(I ;9)( 'o°)d '°  - 

i = l j = l  ~, 1 7/o 2 ~ )"  

'~' " f S l S 2 ~ o ( 2 -  ~) (m)" \ d  

i = l  j = l  0 k 1 '10 2 k "~1 J 

+ Z Z ~1(~:/(/), - -  7 ] j ) M i ( ~ ) (  - -  7~j, 2"-- ~, e)  s~sg)7°(2- ~) ('")" 'd, • [ , ~ % ~ S ~ - b ~ ] ~ .  ~o~ ~o + 
i = l j = l  o 

~7~ 'DZ 
+ Z Z  

i = l j = ~  
, - - 7 S 5  ~0 + 

o ( ~ -  ~o)~' 

+ Z Z X~(~i , ~j)Ni(")(~, 2 -  ~j., e) ( ~ + ~ o _ 2 )  2 + 
i = ]  j = l  

+ Z X~(~:P, , : )Ho.P)(  ~, ':) log I ' : -  ':ol.l,::o - 
i = 1  

- Z (z i -~ jp logl~: - f f j l .  { ~ . _ - - ~ d ~ o -  
j=]. o 

- g ( ~ + ~ j - 2 ) ~ l o g / ~ + c j - 2 l  L(")(~°) d~o • 
j=l o (~+ ~o-  2)~ 
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If  the equation (199) is written down for the 2ran velocity points on the tailplane and equation (200) 

is written down for the mn velocity points on the fin, there results a set of 3mn simultaneous 
equations for the 3ran unknowns ;~a(~q), ~b'), X~(~ (~), - ~ )  and 5~(~ (a), ~?s) for i = 1, 2 , . . . ,  n,  

j = 1, 2 , . . . ,  m ; in terms of the known values of ~(~, ~) or ~(e,  r]) at the velocity points. These 
simultaneous equations can be written as 

/ ~1-1-1 = V A l l + +  -- A13 ++ , 

The submatrices that are different from 

A la +" is a square matrix of order mn x mn with the element 

i =  1 , 2 , . . . , n ,  k = 1 , 2 , . . . , n ,  

j =  1 , 2 , . . . , m ,  r = 1 , 2 , . . . , m ,  

in the n ( r -  1) + k ' th  row and n ( j -  1) + i 'th column. 

$A~2++ is a square matrix of order mn x mn with the element 

J,('°OT,., ~s , ~,~(~)) f l 

i = 1,2 . . . .  , n ,  
j = 1 , 2  . . . .  , m ,  

in the n ( r -  1) + k ' th  row and n ( j -  1) + i ' th column. 

$A1£~- is a square matrix of order m n ×  mn with the element 

the matrix equation 

J'A~ ++ + tA~2 +-,  A I ~ + - -  A~3+- ] IA~ +] 
¢A2,~++ + tA2,2 +-,  , A a + -  tA2a+-] |A,a+[ 

¢A~2 -+ + ca , z - - ,  A**-- & a - - J "  "kX,-/. 
the 

&(~)(W,., 2 -  ~s, ~l~ (~)) e|l 
J 0 

i = 1,2 . . . .  , n ,  

j = 1 , 2  . . . .  , m ,  

ones appearing in equation (106) are defined below. 

sls2W~o 
+ $°)d 

k = 1 , 2 , . . . , n ,  
r = 1 , 2 , . . . , m ,  

s l s ~ ( 2  - ~o) - (m) . . . . .  
[ s 1 2 ~ ( i - ~ o ) z ] z  gJ [go)ago 

k = 1 , 2 , . . . , n ,  

r = 1 , 2 , . . . , m ,  

( 2 0 1 )  

in the n ( r -  1) + k ' th  row and n ( j -  1) + i ' th  column. 

A,a +- is a square matrix of order mn × ms with the element 

- m ,  

i =  1 , 2 , . . . , n ,  k = 1 , 2 , . . . , n ,  

j =  1 , 2 , . . . , m ,  r =  1 , 2 , . . . , m ,  

in the n ( r -  1) + k ' th  row and n ( j -  1) + i'th column. 

"~Az, ++ is a square matrix of order mn × mn with the element 

M~("~)(~s, $,., ~,~(w)) .I1 n s~s~°$" (~)" "d ( S l Z ~ , 2 ) 2 g 5  [n0) ~7o 

i =  1,2 . . . .  , n ,  k = 1,2 . . . .  , n ,  
j = 1,2 . . . .  , m ,  r = 1,2 . . . .  , m ,  

in the n ( r -  1) + k ' th  row and n ( j -  1) + i ' th  column. 

(202) 

(203) 

(204) 

(20s) 

(206) 
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"]'Ag, a ++ is a square matrix of order m n  x m n  with the element 

f~  sxsg~/°(2- g") 2 9 g / , , o (%)d% Mi(~)(~j, 2 -  5 ,  G (w)) o [s,~o 9 + s99( 2 -  ~,.) ] 

i =  1 , 2 , . . . , n ,  k = 1, 2 , . . . , n ,  (207) 
j =  1 , 2 , . . . , m ,  r = 1 , 2 , . . . , m ,  

in the n ( r -  1) + k' th  row and n ( j -  1) + i ' th column. 

tAm 9 ++ is a square matrix of order m n  x m n  with the element 

f I ~ffn)(~0) d~o+ ,jrHoi(,I,)(~l,(W) ~r) [yilog {~r-- ~o[d~o- N.t(~)( g,. , gj , ~, (w)) o (¢ , . -  go) "2 ' ' 

flgJ(m)(~0) ] _ log - g -  @ d 
1=1 0 

i =  1 , 2 , . . . , n , .  k = 1, 2 , . . . , n ,  (208) 
j = 1 , 2 , . . . , m ,  r = 1 , 2 , . . . , m ,  

in the n ( r -  1) + k ' th  row and n ( j -  1) + i ' th  column. 

tAg,9 +- is a square matrix of order m n ×  m n  with the element 

Ni( '* ) (~ , . , 2 -~ j ,  ~7~ (~)) o(~, .+~o_2)9 ' , 

- ~] ( ~  + gy - 2) 9 log ] g,, + ~j. - 21 ~j(m)(go) .~ ;. ] 
j=,  o (g,.+ ~0-2)  9 ~ o ]  

i =  1 , 2 , . . . , n ,  k = 1, 2 , . . . , n ,  (209) 
j = 1 , 2 , . . . , m ,  r = 1 , 2 , . . . , m ,  

in the n ( r -  !) + k ' th  row and n ( j -  1) + i ' th  column. 

Since the tailplane is symmetric the other submatrices are given by the relations 

[tA91+-]  = - [ tAg,++] (210) 

[fAga+-]  = - [ ) & a + + ]  (211) 

[&3-+]  = [ & 3 + - ]  (212) 

[ tA ,9 -+]  = - [ ta~9++] (213) 

[ t & ~ - - ]  = - [ t & ~  ~- ]  (214) 

[Ala- - ]  = [Ala ++1 (215) 

I f  we assume only antisymmetric T-tai l  oscillations then 

D ~ q  = - [ < - ] ,  

and in virtue of relations (210) to (215) we must have 

[ X l q  = - [ x ~ q  
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and the matrix equation (20]) may be replaced by 

[. ~1_t_ 1 = All -H- - A n - -  - Ala ++ + A13-- (218) 
2 ' "I'AI~++ + ]'AI~-'- 251+ 

~+J  J-A21++ - ~'A23 ++ ,. q'A2~++ + t A ~ ' -  ~ ;~2+J 

Equation (218) may be compared with the second equation (125). It is seen that these equations are 
similar, but that equation (218) contains extra elements arising from the reflection effect of the wall. 
There are also the minor differences connected with the different location of the velocity and 
loading points on the fin. 

By following the argument of Section 6 it is easily shown that the matrix [-~Q] of the generalised 
airforces for antisymmetric oscillations of the T-tail is given by 

× 

JfD2+ j 

(219) 

where ['~f] and []-c~] correspond with the [f] and [~] of equation (168) only that the values of the 
elements of [ t f ]  and [j~] are for the new loading and velocity points on the fin. The definition of 
[J-B~ +] is similar to [Bg. -! ] given in equation (148) only that Gs ('~) has to be replaced by G;('*) and 

z2.~ and x~,i,j (l) replaced by the values corresponding to the new loading and velocity points on the 
fin. The definition of ['I'D~ +] is similar to the definition of [D~ +] given by equation (163) only that 
x2, l,,,r (w) has to be replaced by the value corresponding to the new loading and velocity points on 
the fin. 

8. The Treatment of Control Surfaces. 

There may be control surfaces on the T-tail, such as elevators on the tailplane and a rudder on 
the fin. The displacement functions f?)~(x, y) and f2(~))(x, z) of equations (126) and (127) will not be 
smooth across all the inboard edges of the control surfaces, when the mode p is a mode of oscillation 
involving relative motions of the T-tail and these control surfaces. Also the reduced normal-velocity 
functions c~l(q)(x, y) and @q)(x, z) of equations (154) and (155) are not smooth across the inboard 
edges of the control surfaces, when the mode q is a mode of oscillation involving relative motions 
of the T-tail and these control surfaces. When a mode of oscillation does involve relative motion of 
the T-tail and control surfaces we shall say that it is a control-surface mode. 

The generalised airforce coefficients Q;),e may be determined when both p and q do not both 
refer to control-surface modes at the same time. The functionsfl(~)(x, y) and f~(~'~(x, z) of the control- 
surface modes are replaced by equivalent smooth functions and the functions c~l(q)(x , y) and 
c~(q)(x, z) of the control-surface modes are replaced by equivalent smooth functions. The procedure 
for doing this is described in Ref. 6. 

The values of these equivalent functions at the loading and velocity points are then taken instead 
of the values of the actual function fl(~)~(x, y), f2(~)(x, z), @'~)(x, y) and c~2('~)(x , z) to form the matrices 

[f] and [cq of equation (168) and the matrices [j'f] and ['I'c~] of equations (219). It is necessary only 
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to write down the values of these functions at the loading and velocity points since their derivation 
is exactly analogous to the derivation given in Ref. 6. 

If  f l  (~, ~V(x, y), f2( e, ~)(x, z), %(e,q)(x, y )  and %~. ¢(x, z) denote the functions equivalent to the 

functions fl(V)(x, y) ,  fo(~)(x, z), .@q)(x, y) ,  @q)(x, z)  then for the isolated T-tail 

1 1 f~ f~ - c~(yo)g/"')(~o)d,lo f~W>(xo, yo)h~VO(~o)dgo (220) 
H:")C,/'~ q ( Y ~ , F )  o o 

1 l 
- c2(Zo)g/'"~(~o) d ~o f2(~'>(xo, %)h:")(~o)d~o (221) 

H.?'>C?"> c~(~..) o o 

O~l_(e, q)(Xl, (w) 
k , r  , Yl, ,.+) 

1 1 F f - ~ (.,o~ ( , , o  c~(yo)g,.('")(%)d% C¢l(q)(xo, yo)h,~_1~+~(")(1 - 6:o)ds% (222) 
- . - :~+1  "~  q ( y l , , .  +) o o 

~2 (~" ~( x2, :~, ,,(~'), z2, ,,) 

• 1 i f  f, . . . . .  c,(zo)g~("°(~o) d ~o %('~)(xo, zo)h,,->~,°')(l - ~0) d ~o. (223) 
H,~-l~÷l("°G~°'° q(z2, ,  .) o o 

When there is a reflector plate at the base of the fin, the equivalent values of the displacement 

a n d  reduced normaI-velocity functions on the tailplane are still given by equations (220) and (222). 

On the fin, however, we now have 

f.~(o, ,'>(~..~, :(") 

I I f' f' - c~(zo)g.<"°(~o)d ~o /~(v>(xo, z0)h:">(~0)d ~o (224-) 
H :">G("° j o o 

~(~. ~)(.~, ., , .% ~ ,  ,.) 

1 1 f f = Hn_k+~("OU,.("O c~(zz,,.) o c~(z°)gr("°(~°)d~° o c@q)(xo, ZO)hn_Z.+l(n)(1 -- ~o)d~o (225) 

where now xe, i, .(z), z.,. i, x~, 1. ,.(w), z2,,. refer to loading and velocity points on the fin, modified as a 
result of introducing the reflecting plane and obtained from (74) and (77) by replacing r 5 and r b, by 
~- and ~,. respectively. 

The  matrix of generalised airforce coefficients is .then obtained either from equation (168) or 
equation (219) according as to whether  the T-tail is isolated or has a reflector plate at the base of the 
fin. Values for Qv, e when p and q both refer to control-surface modes at the same time are obtained 
in these matrices, but  it must be remembered that the procedure for obtaining these is not valid. 
Nevertheless these values may be used as estimates of the correct values until a proper procedure for 
obtaining them becomes available. 

9. The Numer ica l  Proce&tre. 

The values of the displacement functions and of the reduced normal-velocity functions are to be 

given at the loading points and at the velocity points respectively on the T-tail. The  loading points 

and velocity points are given in equations (74) to (79) in terms of ~(1), ~1.(~o) and ~.. If  there is a 

reflector at the base of the fin then ~: is also required. 
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The ~¢<~) are obtained by solving equation (57) and then the ~:<w) are obtained from (54) and (55). 

Values of ~<z) and fk <w) are given in Table 1, corresponding to the first few values of n. 

The  ~1~ are obtained by solving equation (68) and the ~y are obtained by solving equation (182). 
Values of ~1~ and .~j are given in Table 2, corresponding to the first few values of m. 

The  numerical values of the elements in the matrices 

and 

" A ~ + + -  A,~+- A.x ++~ 
2 

A~++ , & ? - + j  

-A~ ++ - A ~ - -  - A~a ++ + A~a-- 

2 

i -&,++ - )&~++ 

(226) 

of equations (125) and (218) have to be determined. 
expressions (113) to (117) and (202) to (209)• These expressions involve the integrals 

f~  dr/o (228) 
g/'~)(%) 

P~"""~ = o ( v , . -  Vo) ~ 

f' 
O. <, ,0  g~(")(%) dr/o (229) 
~:,,. = o o ( V , . + % )  ~' 

f* /5. ( , , o  2/"°(~°) d~ o (230) 
,,,. = 0 (~ , . -  go)~ 

f * g/,,,>( ~o) ~ .  ("")= d~ o (231) 
~,,/. o (~,. + ~o) ~ 

which are independent of the shapes of the tailplane and fin. These can be worked out and their 
values corresponding to the first few values of m are given in Table 3. 

The  expressions (113) to (117) and (202) to (209) involve the integrals 

, t&,.++ + ~A~+-~ (227) 
" ' I  

| 
, "l'&~ ++ + ~ & ~ + - J  

The  elements are determined by use of 

(232) 

f o  582~"~° .0,0 . . . . .  
(81%1,2 + sz~o~)~ g) ~ ~o) a~o,  

f l sls~%~ ° - e~')'~ "d"  
• 2T~Z,~ .~"  ~,~gJ k g o }  go,  

o (s ,  "% +S~%o" )" 

[z s~s~%(2-~o)  :<m, . . . . .  

Jo 

f l SlS2~o~r (m), ~ 
o t, s l  % -t-s 2 % ) 

f l sls2%~r 

o (~?,)d + , ? U )  ~ g?"~>(%)~° ' 

which are dependent on s 1 and s 2 . These integrals can be worked out only when s 1 and s~ are known 
so their values cannot be given here. In order to work out their values expressions for the functions 
gj('~)(rlo ) and ~.('0(~o) must  be known. These are given in Table 4. Values of GS "~) and G). (m), which 
are also required, are given in Table 2. 

The  expressions (113) to (117) and (202) to (209) involve F0,¢e~(~l~(*~), ~/,.), Ho, i('~)(~l~ (w), ~,,) and 
H o ~o')(~z(w> , ~) and these depend on the values of h~(~)'(~l~(w~), h~(~o(~7~(w) ) and hi (1, '~)(Cz(w)), which are 
given in Table 5 for the first few values of n. 
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The expressions (113) to (117) and (202) to (209) also involve Ii(~)(fl,., ~Tj, ~k(~)), Ii°~)(~7~., - ~Tj, ~k(w)), 
]i(n)(~r, f l j ,  ~k(w)), Mi(,)(~)j, ~?r, Ek(~)), Ni(~0(%, %., ~,(~')), p~(,0(%, ~j ,  ~k{*~')), p{(~)(fi,., - f l ~ ,  ~,(*o~), 
Ji(~)(~r, ~j, ~k('w)), Ji(~)(~r, 2 -  ~j., ~7~(0')), Mi(~)(% • , ~,, ~k(~')), Mi(~)(% • , 2 -  ~., ~1~(~)), NiO~)(~,., ~ ,  ~l~(~)), 
Ni(~)(~,., 2 -  ~j, ~,~(~)). 

If  r = j ,  then Ii(n)(~,, ~j, ~l~(~)), N~(~)(~7,, %., Ek(~)), N~('~)(~,., ~ ,  ~k (~)) cannot be worked out using 
numerical integration for the integrands in the definitions (82) and (85) are singular. The  values are 

obtained from the formulae 

1 c~(y) hi(1 ,n)(~) (233) z y ( f i ,  - 

1 ca(z) h{(X,~)(~:) (234) I{('°(~' ~' f)  - 2 .  s~ 

which are obtained from (82) and (85) by proceeding to the limits n0 = ~ and ~0 = ~. The  derivation 

of these formulae is given in Ref. 6, Appendix V. 
All the other quantities listed can be worked out by numerical integration. In order to do this, 

expressions for the functions h~(")(~) and h~(X-)(~) are required and these are given in Table 6 for 

the first few values of n. 
The  numerical values of the elements in the matrices (226) and (227) can then be determined and 

the matrices inverted for use in equations (168) and (219). Equations (168) and (219) also require 

the numerical values of the elements of the matrices [B~÷], [B~+], [~B~+], [DI+], [Dz÷], [tDz+], and 
these are easily determined. The values of G~. 0m, GSm) and H,¢ (') required are given in Tables 1 and 2. 

10. Examples. 

As a first example we shall consider the tailplane to be rectangular and of aspect ratio 2 andthe  
fin to be rectangular and of aspect ratio 1. The  chords of the tailplane and the fin are of equal 
length and this length is taken to be the typical length I of the T-tail. The  T-tail is immersed in a 
subsonic flow with free stream Mach number  M = 0. 866 and is assumed to be oscillating with a 
frequency parameter v = 0- 3 in one of the six modes of oscillation defined by 

fl(1)(x, y )  = 0 f2(1)(x, z) = 1 (235) 

fl(2)(x, y)  = 0 f2(2)(x, z) = x/ l  (236) 

1 
f~(a)(x, y)  = y / l  f~(a)(x, z) = 7 (82- z) (237) 

fl(¢)(x, y) = xy/ l  2 f2(4)(x, z) = ; x(s z -  z) (238) 

A(~)(x, y) = 2s2y/l 2 f,p)(x, z) = ; (s z - z) z (239) 

1 x ( s z -  z) ~ (240) L(6)(x, y) = s~xy/l ~ f2(6)(x, z) = l~ 

where the origin has been taken at the leading point of the chord of junction. 
Calculations were made on an electronic digital computer  to obtain the matrix [Q] of the 

generalised airforce coefficients using different numbers  m and n of spanwise and chordwise points. 
The  results for the elements Qp, q of the matrix [Q] are given below for the different combinations 
of m and n used. Qv, q is a complex number  so it is separated into real and imaginary parts by 

Qp, q = Q~),~' + iQp, q". (241) 

39 



T h e  r e s u l t s  a r e :  

f/~ 1/. 

3 2 

3 3 

3 4 

4 2 

4 3 

4 4 

5 2 

5 3 

5 4 

11 ~ 

0 0 5 5 6  

0 0 5 5 0  

0 0 5 3 8  

0 0 5 6 1  

0 0 5 6 4  

0 0 5 6 0  

0 0 5 5 6  

0 . 0 5 6 0  

0 . 0 5 6 0  

/q~ n 

3 2 

3 3 

3 4 

4 2 

4 3 

4 4 

5 2 

5 3 

5 4 

Q 
II a 

- 0 - 4 1 6 5  

- 0 . 4 1 6 2  

- 0 . 4 1 5 8  

- 0 . 4 1 6 6  

- 0 - 4 1 6 6  

- 0 - 4 1 6 6  

- 0 . 4 1 6 6  

- 0 . 4 1 6 7  

- 0 . 4 1 6 7  

IIZ 

3 

3 

3 

4 

4 

4 

5 

5 

5 

2 

3 

4 

2 

3 

4 

2 

3 

4 

Q21' 

0 . 0 4 9 5  

0 - 0 4 9 9  

0 . 0 4 9 4  

0 . 0 5 0 0  

0 . 0 5 0 8  

0 . 0 5 0 6  

0 . 0 4 9 9  

0 , 0 5 0 8  

0 . 0 5 0 8  

11Z 

3 

3 

3 

4 

4 

4 

5 

5 

5 

- 0 . 0 7 0 7  

- 0 . 0 6 9 0  

- 0 . 0 7 0 0  

- 0 . 0 7 0 6  

- 0 . 0 6 8 5  

- 0 . 0 6 8 4  

- 0 - 0 7 0 9  

- -  0 . 0 6 9 2  

- 0 . 0 6 8 8  

12 t 

- 1 . 3 8 4 9  

- 1 . 3 8 3 6  

- 1 . 3 8 2 8  

- 1 . 3 8 3 9  

- 1 . 3 8 3 8  

- 1 . 3 8 3 7  

- 1 . 3 8 3 9  

- 1 . 3 8 4 1  

- 1 . 3 8 4 3  

12 

- 0 . 5 3 0 0  

- 0 . 5 2 7 5  

- 0 . 5 2 1 3  

- 0 . 5 3 2 9  

- 0 . 5 3 5 1  

- 0 - 5 3 2 8  

- 0 - 5 3 1 0  

- 0 . 5 3 4 1  

- 0 . 5 3 3 5  

22 t 

- 0 . 2 1 2 3  

- 0 . 2 0 5 8  

- 0 . 2 0 9 6  

- 0 . 2 1 1 8  

- 0 . 2 0 3 7  

- 0 . 2 0 3 2  

- 0 . 2 1 2 9  

- 0 . 2 0 5 9  

- 0 . 2 0 4 6  

22 u 

- 0 . 3 1 1 6  

- 0 - 3 1 5 3  

- 0 . 3 1 1 8  

- 0 . 3 1 3 9  

- 0 . 3 2 0 0  

- 0 . 3 1 8 5  

- 0 . 3 1 3 3  

- 0 . 3 2 0 2  

- 0 - 3 1 9 8  

Q 1 3 '  

0 . 0 3 8 1  

0 - 0 3 7 2  

0 . 0 3 5 7  

0 . 0 3 8 3  

0 . 0 3 8 2  

0 . 0 3 7 6  

0 . 0 3 7 7  

0 . 0 3 7 8  

0 . 0 3 7 5  

Q 
I3 

- 0 . 3 3 9 0  

- 0 . 3 3 8 0  

- 0 . 3 3 7 8  

- 0 . 3 3 7 0  

- 0 . 3 3 6 5  

- 0 . 3 3 6 5  

- 0 . 3 3 6 8  

- 0 . 3 3 6 4  

- O . 3 3 6 4  

Q 23 t 

0 . 0 3 9 1  

0 . 0 3 9 7  

0 . 0 3 9 0  

0 . 0 3 9 3  

0 . 0 4 0 2  

0 . 0 3 9 9  

0 . 0 3 9 2  

0 - 0 4 0 2  

0 . 0 4 0 0  

23 H 

- 0 . 0 6 3 9  

- 0 . 0 6 3 5  

- 0 . 0 6 4 8  

- 0 . 0 6 3 2  

- 0 . 0 6 2 4  

- 0 . 0 6 2 6  

- 0 . 0 6 3 5  

- 0 . 0 6 3 0  

- 0 . 0 6 3 0  

4 0  

QI4' 

- I 1334  

- 1 1304  

- 1 1297  

- 1 1257  

- I  1240  

- 1 1242  

- 1 1251 

- 1 1238  

- f . 1 2 4 1  

QI4" 

- 0 . 4 0 0 4  

- 0 . 3 9 5 7  

- 0 . 3 8 8 7  

- 0 . 4 0 0 8  

- 0 . 4 0 0 7  

- 0 . 3 9 7 5  

- 0 . 3 9 8 4  

- 0 . 3 9 9 2  

- 0 - 3 9 7 5  

Q241 

- 0 - 1 9 5 3  

- 0 . 1 9 3 5  

- 0 . 1 9 8 6  

- 0 . 1 9 2 8  

- 0 . 1 8 9 3  

- 0 . 1 9 0 3  

- 0 . 1 9 3 8  

- 0 . 1 9 1 3  

- 0 . 1 9 1 5  

24 

- 0 2 4 4 5  

- 0 2 4 7 3  

- 0 2 4 3 3  

- 0 2 4 5 4  

- 0 2 5 0 4  

- 0 2 4 8 2  

- 0 2 4 4 7  

- 0 2 5 0 3  

- 0 . 2 4 9 1  

Q 1 5 '  

0 - 0 3 4 8  

0 . 0 3 3 7  

0 - 0 3 1 9  

0 - 0 3 5 3  

0 . 0 3 5 1  

0 . 0 3 4 3  

0 - 0 3 4 5  

0 . 0 3 4 4  

0 . 0 3 3 9  

Q 1 5 "  

- 0 . 3 6 7 0  

- 0 . 3 6 5 4  

- 0 - 3 6 5 1  

- 0 . 3 6 2 3  

- 0 . 3 6 1 2  

- 0 . 3 6 1 3  

- 0 . 3 6 1 7  

- 0 . 3 6 0 8  

- 0 . 3 6 0 9  

~ 25 r 

0 0 4 1 4  

0 0 4 2 3  

0 0 4 1 3  

0 0 4 1 3  

0 0 4 2 6  

0 0 4 2 1  

0 0 4 1 1  

0 0 4 2 5  

0 0 4 2 2  

25 

- 0 . 0 7 4 6  

- 0 . 0 7 4 7  

- 0 . 0 7 6 4  

- 0 . 0 7 3 0  

- 0 - 0 7 2 7  

- 0 - 0 7 3 1  

- 0 . 0 7 3 2  

- 0 . 0 7 3 3  

- 0 . 0 7 3 5  

Q 16 r 

- 0 - 9 0 0 0  

- 0 . 8 9 7 1  

- 0 - 8 9 6 6  

- 0 - 8 8 6 1  

- 0 . 8 8 4 4 -  

- 0 . 8 8 4 5  

- 0 . 8 8 4 3  

- 0 . 8 8 3 0  

- 0 - 8 8 3 3  

Q 16 a 

- 0 . 3 1 0 6  

- 0 3 0 6 3  

- 0 3 0 0 3  

- 0 3 0 9 0  

- 0 3 0 8 5  

- 0 3 0 5 7  

- 0 3 0 6 0  

- 0 3 0 6 3  

- 0 3 0 4 8  

26 t 

- 0 . 1 5 9 8  

- 0 . 1 5 9 2  

- 0 - 1 6 3 7  

- 0 - 1 5 5 9  

- 0 - 1 5 3 9  

- 0 - 1 5 4 9  

- 0 - 1 5 6 7  

- 0 . 1 5 5 5  

- 0 . 1 5 5 8  

026 
u 

- 0 . 1 9 1 8  

- 0 . 1 9 4 0  

- 0 . 1 9 0 6  

- 0 . 1 9 1 1  

- 0 . 1 9 5 0  

- 0 . 1 9 3 1  

- 0 - 1 9 0 2  

- 0 - 1 9 4 6  

- 0 . 1 9 3 5  

( 2 4 2 )  

( 2 4 3 )  

( 2 4 4 )  

( 2 4 5 )  



In  

3 

3 

3 

4 

4 

4 

5 

5 

5 

. Q31 r 

0 . 0 3 7 4  

0 . 0 3 6 5  

0 . 0 3 5 1  

0 . 0 3 8 1  

0 . 0 3 8 1  

0 . 0 3 7 5  

0 . 0 3 7 7  

0 . 0 3 7 8  

0 . 0 3 7 5  

Q 3 2 '  

- 1 1 2 3 4  

- 1 1 2 0 8  

- 1 1 2 0 1  

- 1 1 2 2 3  

- 1 1 2 0 9  

- 1 1 2 1 0  

- 1 1 2 2 3  

- 1 1 2 1 3  

- 1 1 2 1 5  

33 t 

0 . 0 5 8 4  

0 . 0 5 7 6  

0 . 0 5 6 2  

0 . 0 5 8 5  

0 . 0 5 8 5  

0 . 0 5 8 0  

0 . 0 5 7 8  

0 - 0 5 8 0  

0 . 0 5 7 8  

Q 34 r 

- 1 . 3 7 1 3  

- 1 . 3 6 9 4  

- 1 . 3 6 8 6  

- 1 . 3 6 3 7  

- 1 . 3 6 3 0  

- 1 . 3 6 3 0  

- 1 . 3 6 3 3  

- 1 . 3 6 2 8  

- 1 . 3 6 3 0  

Q 35 r 

0 . 0 8 5 4  

0 . 0 8 4 5  

0 . 0 8 3 0  

0 - 0 8 5 5  

0 . 0 8 5 6  

0 . 0 8 5 1  

0 . 0 8 4 5  

0 . 0 8 4 8  

0 . 0 8 4 6  

Q 36 p 

- 1 1 8 6 9  

- 1 1 8 5 3  

- 1 1 8 4 7  

- 1 1 7 3 1  

- 1 1 7 2 6  

- 1 1 7 2 6  

- . 1 7 1 6  

- . 1 7 1 3  

- . 1 7 1 4  ( 2 4 6 )  

/ n  

3 

3 

3 

4 

4 

4 

5 

5 

5 

Q 31 u 

- 0 . 3 3 5 9  

- 0 . 3 3 5 0  

- 0 . 3 3 4 8  

- 0 . 3 3 6 0  

- 0 . 3 3 5 5  

- 0 . 3 3 5 5  

- 0 . 3 3 6 0  

- 0 . 3 3 5 6  

- 0 . 3 3 5 6  

Q32"  

- 0 . 3 9 5 6  

- 0 . 3 9 1 2  

- 0 . 3 8 4 4  

- 0 . 3 9 9 2  

- 0 - 3 9 9 3  

- 0 . 3 9 6 1  

- 0 . 3 9 7 5  

- 0 . 3 9 8 4  

- 0 . 3 9 6 8  

Q 33 ~ 

- 0 . 4 1 3 3  

- 0 . 4 1 2 7  

- 0 . 4 1 2 4  

- 0 . 4 1 1 3  

- 0 . 4 1 1 1  

- 0 . 4 1 1 0  

- 0 . 4 1 1 1  

- 0 - 4 1 1 0  

- 0 . 4 1 1 0  

Q 34 a 

- 0 . 5 3 6 5  

- 0 . 5 3 2 7  

- 0 . 5 2 5 8  

- 0 . 5 3 6 1  

- 0 . 5 3 7 1  

- 0 . 5 3 4 1  

- 0 . 5 3 3 3  

- 0 . 5 3 5 2  

- 0 . 5 3 3 8  

Q 35 

- 0 . 5 6 1 7  

- 0 . 5 6 1 3  

- 0 . 5 6 0 8  

- 0 . 5 5 7 0  

- 0 . 5 5 7 0  

- 0 . 5 5 6 9  

- 0 . 5 5 6 5  

- 0 . 5 5 6 6  

- 0 . 5 5 6 6  

Q 36 

- 0 . 4 7 2 1  

- 0 . 4 6 9 0  

- 0 . 4 6 3 1  

- 0 . 4 6 9 4  

- 0 . 4 7 0 4  

- 0 . 4 6 7 9  

- 0 . 4 6 6 1  

- 0 . 4 6 7 8  

- 0 . 4 6 6 7  ( 2 4 7 )  

/'/Z 

3 

3 

3 

4 

4 

4 

5 

5 

5 

2 

3 

4 

2 

3 

4 

2 

3 

4 

Q41r 

0 . 0 3 8 6  

0 . 0 3 9 2  

0 . 0 3 8 4  

0 . 0 3 9 1  

0 . 0 3 9 9  

0 . 0 3 9 6  

0 . 0 3 9 0  

O . O 4 0 O  

0 . 0 3 9 7  

Q 42 J 

- 0 . 1 9 3 5  

- 0 . 1 9 1 9  

- 0 - 1 9 6 8  

- 0 . 1 9 2 3  

- 0 . 1 8 9 0  

- 0 . 1 8 9 9  

- 0 . 1 9 3 2  

- 0 . 1 9 1 0  

- 0 . 1 9 1 1  

Q43' 
0 . 0 4 9 5  

0 . 0 4 9 9  

0 . 0 4 9 2  

0 . 0 4 9 7  

0 - 0 5 0 4  

0 . 0 5 0 1  

0 . 0 4 9 5  

0 . 0 5 0 4  

0 . 0 5 0 3  

Q 4 4 '  

- 0 . 2 1 0 0  

- 0 . 2 0 5 2  

- 0 . 2 0 9 7  

- 0 . 2 0 8 3  

- 0 . 2 0 1 8  

- 0 . 2 0 2 1  

- 0 . 2 0 9 6  

- 0 . 2 0 4 3  

- 0 . 2 0 3 8  

Q45' 
0 - 0 5 8 3  

0 - 0 6 8 7  

0 . 0 6 8 0  

0 . 0 6 8 3  

0 . 0 6 9 1  

0 . 0 6 8 9  

0 . 0 6 8 1  

0 . 0 6 9 1  

0 - 0 6 9 0  

Q 46 j 

- 0 1 7 7 9  

- 0 1 7 3 4  

- 0 1 7 7 3  

- 0 1 7 5 0  

- 0 1 6 9 1  

- 0 1 6 9 3  

- 0 1 7 6 2  

- 0 1 7 1 2  

- 0 . 1 7 0 8  ( 2 4 8 )  

tH 

3 

3 

3 

4 

4 

4 

5 

5 

5 

n 

2 

3 

4 

2 

3 

4 

2 

3 

4 

41 

- 0 . 0 6 3 3  

- 0 . 0 6 2 9  

- 0 . 0 6 4 2  

- 0 . 0 6 3 0  

- 0 . 0 6 2 2  

- 0 . 0 6 2 4  

- 0 . 0 6 3 3  

- 0 - 0 6 2 8  

- 0 . 0 6 2 8  

g42• 

- 0 . 2 4 1 7  

- 0 . 2 4 4 5  

- 0 . 2 4 0 4  

- 0 . 2 4 4 2  

- 0 . 2 4 9 0  

- 0 . 2 4 6 8  

- 0 . 2 4 3 6  

- 0 . 2 4 9 2  

- 0 . 2 4 7 9  

Q 43 u 

- 0 . 0 7 0 1  

- 0 . 0 6 8 9  

- 0 . 0 7 0 1  

- 0 . 0 6 9 6  

- 0 . 0 6 8 0  

- 0 . 0 6 8 1  

- 0 - 0 7 0 0  

- 0 . 0 6 8 8  

- 0 . 0 6 8 6  

Q44"  

- 0 . 3 0 9 5  

- 0 . 3 1 2 8  

- 0 . 3 0 8 9  

- 0 . 3 1 0 3  

- 0 . 3 1 5 9  

- 0 - 3 1 3 9  

- 0 . 3 0 9 4  

- 0 . 3 1 5 8  

- 0 - 3 1 4 8  

Q45"  

- 0 . 0 9 1 4  

- 0 . 0 8 9 3  

- 0 . 0 9 0 5  

- 0 . 0 9 0 4  

- 0 . 0 8 7 9  

- 0 . 0 8 7 7  

- 0 . 0 9 0 9  

- 0 - 0 8 8 8  

- 0 . 0 8 8 4  

Q46"  

- 0 . 2 6 9 9  

- 0 2 7 2 7  

- 0 2 6 9 5  

- 0 2 6 9 1  

- 0 2 7 3 8  

- 0 2 7 2 3  

- 0 2 6 8 0  

- 0 - 2 7 3 4  

- 0 . 2 7 2 7  ( 2 4 9 )  

4 1  



m 

3 

3 

3 

4 

4 

4 

5 

5 

5 

n 

2 

3 

4 

2 

3 

4 

2 

3 

4 

Q 5 1 '  

0 . 0 3 4 0  

0 . 0 3 2 9  

0 . 0 3 1 2  

0 . 0 3 4 9  

0 . 0 3 4 7  

0 . 0 3 3 9  

0 . 0 3 4 4  

0 . 0 3 4 4  

0 . 0 3 3 9  

Q 52 ~ 

- 1 - 2 0 9 0  

- 1 . 2 0 5 1  

- 1 . 2 0 4 3  

- 1 . 2 0 7 6  

- 1 - 2 0 5 2  

- 1 . 2 0 5 3  

- 1 . 2 0 7 6  

- 1 . 2 0 5 6  

- 1 . 2 0 6 0  

Q 53 t 

0 . 0 8 5 3  

0 . 0 8 4 4  

0 . 0 8 2 9  

0 - 0 8 5 3  

0 . 0 8 5 4  

0 . 0 8 4 9  

0 . 0 8 4 5  

0 . 0 8 4 7  

0 . 0 8 4 6  

Q 5 4 '  

- 1 - 8 4 7 0  

- 1 . 8 4 5 4  

- 1 . 8 4 4 4  

- 1 . 8 3 8 3  

- 1 . 8 3 7 9  

- 1 . 8 3 7 8  

- 1 . 8 3 7 9  

- 1 . 8 3 7 8  

- 1 . 8 3 8 0  

Q 5 5 '  

1 4 0 7  

1 4 0 0  

1 3 8 3  

1 4 0 6  

1 4 1 0  

1 4 0 7  

1 3 9 3  

1 3 9 9  

1 4 0 0  

Q 56 t 

- 1 . 6 5 1 7  

- 1 - 6 5 0 7  

- 1 . 6 4 9 9  

- 1 . 6 3 5 8  

- 1 . 6 3 5 9  

- 1 . 6 3 5 8  

- 1 . 6 3 4 1  

- 1 . 6 3 4 5  

- 1 . 6 3 4 5  (250) 

IT/ 

3 

3 

3 

4 

4 

4 

5 

5 

5 

I1 

2 

3 

4 

2 

3 

4 

2 

3 

4 

Q 51 u 

- 0 . 3 6 0 0  

- 0 . 3 5 8 6  

- 0 . 3 5 8 2  

- 0 . 3 6 0 0  

- 0 . 3 5 9 1  

- 0 . 3 5 9 1  

- 0 . 3 6 0 0  

- 0 . 3 5 9 2  

- 0 - 3 5 9 3  

- 0  

- 0  

- 0  

- 0  

- 0  

- 0  

- 0  

- 0  

- 0  

Q 52 a 

- 3 9 7 9  

. 3 9 1 9  

- 3 8 3 7  

. 4 0 2 5  

. 4 0 1 5  

. 3 9 7 3  

. 4 0 0 5  

. 4 0 0 4  

. 3 9 7 9  

Q 53 ~ 

- 0 . 5 5 8 3  

- 0 . 5 5 7 9  

- 0 . 5 5 7 5  

- 0 . 5 5 6 0  

- 0 . 5 5 6 0  

- 0 - 5 5 5 9  

- 0 . 5 5 5 8  

- 0 . 5 5 5 9  

- 0 . 5 5 5 9  

Q 54 H 

- 0 . 7 5 0 6  

- 0 . 7 4 7 1  

- 0 . 7 3 9 0  

- 0 . 7 4 9 6  

- 0 . 7 5 1 7  

- 0 . 7 4 8 4  

- 0 . 7 4 6 2  

- 0 . 7 4 9 2  

- 0 . 7 4 7 8  

Q 55 

- 0 8 2 9 5  

- 0 8 2 9 8  

- 0 8 2 9 2  

- 0 8 2 4 1  

- 0 8 2 4 8  

- 0 8 2 4 6  

- 0 8 2 3 5  

- 0 - 8 2 4 3  

- 0 . 8 2 4 3  

Q 5 6 "  

- 0 . 6 8 7 8  

- 0 . 6 8 5 2  

- 0 . 6 7 8 3  

- 0 . 6 8 4 1  

- 0 . 6 8 6 3  

- 0 . 6 8 3 7  

- 0 . 6 8 0 0  

- 0 - 6 8 3 1  

- 0 - 6 8 2 1  ( 2 5 1 )  

m 

3 

3 

3 

4 

4 

4 

5 

5 

5 

n 

2 

3 

4 

2 

3 

4 

2 

3 

4 

Q 61 ~ 

0 - 0 3 0 0  

0 - 0 3 0 4  

0 . 0 2 9 8  

0 . 0 3 0 3  

0 . 0 3 1 1  

0 . 0 3 0 7  

0 . 0 3 0 2  

0 . 0 3 1 1  

0 . 0 3 0 9  

Q 62 ~ 

- 0 . 1 5 6 5  

- 0 . 1 5 6 1  

- 0 . 1 6 0 4  

- 0 . 1 5 5 3  

- 0 . 1 5 3 4  

- 0 . 1 5 4 4  

- 0 . 1 5 6 1  

- 0 . 1 5 5 1  

- 0 . 1 5 5 4  

Q63' 

0 . 0 4 2 8  

0 . 0 4 3 1  

0 . 0 4 2 5  

0 - 0 4 3 0  

0 . 0 4 3 5  

0 - 0 4 3 3  

0 - 0 4 2 8  

0 - 0 4 3 5  

0 - 0 4 3 5  

Q64' 

- 0 . 1 7 6 2  

- 0 . 1 7 1 7  

- 0 - 1 7 5 4  

- 0 . 1 7 4 8  

- 0 . 1 6 9 0  

- 0 . 1 6 9 1  

- 0 . 1 7 6 1  

- 0 . 1 7 1 1  

- 0 . 1 7 0 7  

65' 

0 - 0 6 1 4  

0 . 0 6 1 6  

0 . 0 6 1 0  

0 . 0 6 1 3  

0 . 0 6 2 0  

0 . 0 6 1 8  

0 . 0 6 1 1  

0 . 0 6 1 9  

0 . 0 6 1 9  

Q66' 

- 0 1 5 0 4  

- 0 1 4 5 9  

- 0 1 4 9 1  

- 0 1 4 8 0  

- 0 1 4 2 4  

- 0 1 4 2 4  

- 0 1 4 9 2  

- 0 1 4 4 4  

- 0 . 1 4 3 8  ( 2 5 2 )  

m 

3 

3 

3 

4 

4 

4 

5 

5 

5 

61H 

- 0 . 0 5 0 9  

- 0 . 0 5 0 8  

- 0 . 0 5 2 0  

- 0 . 0 5 0 7  

- 0 . 0 5 0 2  

- 0 . 0 5 0 5  

- 0 . 0 5 0 9  

- 0 . 0 5 0 7  

- 0 . 0 5 0 8  

Q 62 

- 0 . 1 8 7 3  

- 0 - 1 8 9 4  

- 0 . 1 8 5 9  

- 0 . 1 8 9 4  

- 0 . 1 9 3 2  

- 0 . 1 9 1 2  

- 0 . 1 8 9 0  

- 0 - 1 9 3 3  

- 0 . 1 9 2 1  

~ 63 y 

- 0 0 5 9 1  

- 0 0 5 7 9  

- 0 0 5 8 9  

- 0 0 5 8 7  

- 0 0 5 7 2  

- 0 0 5 7 2  

- 0 0 5 9 1  

- 0 . 0 5 7 9  

- 0 . 0 5 7 7  

064 n 

- 0 . 2 6 7 8  

- 0 . 2 7 0 6  

- 0 - 2 6 7 4  

- 0 . 2 6 8 4  

- 0 . 2 7 3 1  

- 0 . 2 7 1 6  

- 0 . 2 6 7 7  

- 0 . 2 7 3 0  

- 0 . 2 7 2 3  

065 H 

- 0 . 0 7 8 7  

- 0 . 0 7 6 4  

- 0 . 0 7 7 4  

- 0 . 0 7 7 8  

- 0 . 0 7 5 3  

0 . 0 7 5 1  

- 0 . 0 7 8 3  

- 0 . 0 7 6 2  

- 0 . 0 7 5 8  

Q 66 ~ 

- 0 . 2 3 7 9  

- 0 . 2 4 0 3  

- 0 . 2 3 7 7  

- 0 - 2 3 7 1  

- 0 - 2 4 1 1  

- 0 . 2 3 9 9  

- 0 . 2 3 6 1  

- 0 . 2 4 0 7  

- 0 . 2 4 0 2  (253,) 
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T h e  results  show tha t  the calculated general ised airforce coefficients do not  change very  m u c h  

wi th  the different  combina t i ons  of m and  n, especially those re levant  to r igid oscillations. T h e  

greatest  change  seems to occur on increas ing  m f rom 3 to 4 a nd  on  increas ing  n f rom 2 to 3. For  

the r e m a i n i n g  examples  we shall take m = 4 and  n = 3 and  assume that  results  are ob ta ined  wi th  

good accuracy for this choice of m and  n. 

As a second example  we shall consider  the ta i lp lane  to be rec tangula r  and  of aspect ratio 1 and  

the f in to be rec tangula r  and  of aspect ratio 1. T h e  typical  l eng th  l is again taken to be the  l eng th  

of the chord  of ei ther  ta i lplane or fin. T h e  T - t a i l  is i m m e r s e d  in  a subson ic  f low of f ree-s t ream 

M a c h  n u m b e r  zero, and  is a s sumed  to be oscil lat ing in  one of the four  modes  of oscil lat ion def ined  by 

f~m(x, y) = 0 f~(1)(x, z) = 1 (254) 

1 (255) y )  = 0 z)  = x / l  

f#)(x, y) = y/Z z )  = 7 - z ( 2 5 6 )  

f~(4)(x, y)  = y / l  f2(4)(x, z) = 0 (257) 

where  the  or igin has been  taken at the leading edge at the chord  of j unc t i on .  Calcula t ion  of [Q] was  

made  on an  electronic digital compu te r  for a select ion of values of the f r equency  pa ramete r  v. Some 

of the e lements  of [Q] ob ta ined  are g iven below.  

v =  0 v = 0-1 v = 0 -2  v = 0 .5  v = 0 . 7  v = 1 .0  

O ' = - 1.0865 - 1. 0854 - 1. 0832 - 1. 0748 - 1 .0696 - 1- 0640 

Q j  = + 0 .3282  + 0 .3280  + 0 .3280  + 0-3300 + 0-3331 + 0 .3418  

~Oa~' = -- 1 .2306 -- 1 .2293 -- 1 .2268 -- 1"2172 -- 1-2112 -- 1 .2047 

Q4~' = - 0"0717 - 0" 0716 - 0"0715 - 0"0708 - 0"0704 - 0"0698 

Q j  = 0 .0000  - 0 -0774  - 0 .1560  - 0 .3972  - 0 .5615 - 0-8116 

~)~2" = 0 .0000  - 0 .0104  - 0 .0204  - 0 .0490  - 0 .0672  - 0-0936 

Qa~" = 0 .0000  - 0-0849 - 0 .1710  - 0 .4358  - 0-6163 - 0 .8913 

Q4~" = 0 .0000  - 0-0036 - 0 .0073 - 0 .0187  - 0 .0265  - 0 .0386.  (258) 

Us ing  the  theory  of F i n - B o d y - T a i l p l a n e  a r r angemen t s  given in  Ref. 9 and  taking  the radius  of 

the  body  zero we calculate 

O ' 1 .0587 / 
~1~ - (259) 

J Q4~' = - 0"0705 

w h e n  v = 0, and  these are in  good ag reemen t  w i th  the re levant  resul ts  in  (258). 

Expe r imen ta l  values have been  ob ta ined  for an oscil lating T - t a i l  w i th  rec tangular  ta i lplane and  

fin surfaces and  are repor ted  in  Ref. 10. As the  exper imenta l  values were  ob ta ined  in  a w i n d  t u n n e l  

we should  use the theoret ical  model  of the T - t a i l  w i th  a reflector plate at the base of the fin. 

Calcula t ions  were  pe r fo rmed  on an  electronic digital  mach ine  for v = 0 .5  a nd  the fo l lowing results  

were obta ined.  
Q12 = - 1 .7816 - i 0 . 3 8 7 8  = - 1 .8233 exp (i 12017 ' ) 

Q22 = + 0 4 8 0 5 - i 0 0 8 5 7  = + 0 . 4 8 8 1 e x p ( - i 1 0 ° 7  ') 

Qa2 = - 1-8714 - i 0 . 4 0 1 4  = - 1. 9140 exp (i 12°6 ' ) 

Q4z = - 0" 1006 - i 0" 0 1 4 0  = + o. 1392 expT(i 7°55'). 
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T h e  c o r r e s p o n d i n g  e x p e r i m e n t a l  values ,  in our  no ta t ion ,  are 

Q12 = - 2 '  06 exp (i 9 °) 

Q22 = + 0 " 5 4 e x p ( - i 2 0  ° ) 

Qa~ = - l ' 8 1 e x p ( i 3 ° )  

Q4., = + O. 16 exp ( - i 3°). 

T h e  m o d u l i  of  the  gene ra l i s ed  a i r forces  are thus  seen to be  of  the  same o rde r  of  m a g n i t u d e  in b o t h  

t he  e x p e r i m e n t a l  and  theore t i ca l  cases. T h e  phases  are no t  in  good  ag reemen t .  

As a f inal  e x a m p l e  w e  cons ide r  the  case of  s w e p t  back  f in and  ta i lp lane ,  as s h o w n  in Fig .  3. T h e  

typ ica l  l eng th  l of  the  T - t a i l  is t aken  to be the  l eng th  of  the  c h o r d  of  j u n c t i o n  and  the  or ig in  is 

t a k e n  as the  l e ad ing  p o i n t  of the  c h o r d  of  j unc t i on .  T h e  T - t a i l  is i m m e r s e d  in a subson ic  f low w i t h  

f r e e - s t r e a m  M a t h  n u m b e r  M = 0 . 8  and  is a s s u m e d  to be  osc i l la t ing  w i t h  a f r e q u e n c y  p a r a m e t e r  

v = 0 .5  in one of  the  six m o d e s  of  osc i l la t ion  de f ined  by  

f ,m(x,  y) = 0 f2m(x, z) = 1 (260) 

fl(m(x, y) = 0 f,  fZ)(x, z) = x / l  (261) 

1 
fl(a)(x, y )  = y / l  f2(m(x, z) = 7 ( s z -  z) (262) 

y) = 0 f.,(4)(x, z) = ~ x(s.a- z) (263) f ,(4)( x, 

y) = 2szy / l  ~ k(5'(x, z) = i~ (s,, - z)" (264-) k(5,(., 

.f,(G)(x, y) = y / l  .f2(")(x ', z) = O. (265) 

Ca lcu la t ions  we re  m a d e  on an e lec t ron ic  d igi ta l  c o m p u t e r  w i t h  m = 4 and u = 3 for  the  i so la ted  

T - t a i l  and  for  the  T - t a i l  w i t h  re f lec to r  p la te  at the  base  of  the  fin. F o r  the  i so la ted  T - t a i l  t he  ma t r i x  

[Q] of  the  gene ra l i s ed  a i r force  coefficients is 

[ Q ]  = - +  0 . 2 1 6 4  - 2 -0977  0 .1589  - 1-7000 0 .1529  

- 0 .0129  + 0 . 6 8 4 7  0 .0261  + 0 .3520  0 .0529  

+ 0 -0859  - 2 . 2 2 0 2  0 .1759  - 2 . 0 5 7 4  0 .3505  

+ 0 .0201  + 0 . 2 9 2 2  0 . 0 4 1 4  + 0 -1658  0 .0661  

- 0 .0451  - 3 . 1 9 4 2  0 .2505  - 3 .0975  0 .7556  

- 0 .0563  - 0 . 4 5 2 2  0 -0334  - 0 . 4 3 7 2  0 .1889  

- -  1 .0246  - 0"7804 - 0 . 9 6 5 4  - 0 . 6 9 4 6  - 1 .2249  

+ 0 .3185  - 0 . 1498  + 0 .1489  - 0 . 1 6 1 2  + 0 .0703  

- 1 .0942  - 0 . 6 1 0 4  - 1 .6627  - 0 .7025  - 3 -0422  

+ 0 . 1 3 2 4  - 0-1723 + 0 . 0 4 7 7  - 0 . 1987  - 0 .0271  

- 1 -5684  - 0-5691 - 3 . 2206  - 0 . 8 1 7 4  - 6 . 8032  

- 0-2163 + 0 . 0 2 6 4  - 0 .7215  - 0 .0163  - 1 .7757  
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+ i  

- O. 0010- 

+ O. 0047 

+ O. 0764 

-~ O. 0047 

+ O. 2304 

+ O. 0762 

- 0 11911 

- 0 0122[  

- 0 6391]  

- 0 0222 

- 1 6910J 

- 0 5126 . (266) 



F o r  t he  T - t a i l  w i t h  a re f lec to r  p la te  a t t a c h e d  to t he  f in t he  m a t r i x  [O] of  the  gene ra l i s ed  a i r force  

coefficients is 

[ 9 ]  = - -  0 .1633  - 4 . 0155  - 0 .2935  - 2 . 7973  - 0 . 5 6 7 4  - 0 . 1 2 6 6 -  

+ 0 .1813  + 1 .2695 + 0 .2143  + 0 .4973  + 0 .2890  + 0 . 0 2 6 2  

- 0 .3858  - 3 .8891  - 0 -2594  - 3 .1439  - 0 . 2 8 6 9  - 0 . 0 2 5 2  

+ 0 .1201  + 0 . 4 1 8 7  + 0 .1356  + 0 .1743  + 0 . 1 8 2 6  + 0 . 0 1 2 9  

- 0 .8453  - 5 -6930  - 0 . 3958  - 4 . 8 0 0 0  - 0 . 1 0 3 2  + 0 . 1 1 6 6  

- 0 . 2158  - 0 . 9 0 2 4  - 0 .0763  - 0 . 7 5 3 2  + 0 . 0 7 0 2  + 0 . 0 6 9 6  

+ i I -  1 .8334  

+ 0 .5678  

- 1 .8023 

+ 0 .1798  

- 2 .6355  

- 0 . 4099  

- 0 -0574  - 1 .4569  - 0 .1158  - 1-7800 - 0 .17127  
! 

- 0 . 7720  + 0.14-72 - 0 .6228  - 0 . 0736  0 .061  | 

+ 0 .2201  - 2 . 2 4 4 2  - 0 . 1 8 7 7  - 3 .8973  - 0 . 7819  

- 0 .4995  - 0 . 0039  - 0 .4681  - 0 . 1 8 4 4  - 0 . 0 6 5 9  

+ 0 . 7 9 6 4  - 4 .2391  - 0 . 0469  - 8 .4671  - 2 . 0150  

+ 0 .2922  - 0 .9365  + 0 .1285  - 2 -1611  - 0 .5973  (267) 

It  is seen tha t  t he  p re sence  of  the  re f lec to r  sur face  at t he  base  of  the  fin modi f i e s  the  i so la ted  

T - t a i i  gene ra l i s ed  ~ierodynamic force  coefficients  cons ide rab ly .  N o  c o m p a r i s o n s  w i t h  o the r  theore t i ca l  

w o r k  or  w i t h  e x p e r i m e n t a l  resu l t s  to check the  ca lcu la t ed  effect of  the  re f lec to r  sur face  have been  

possible .  

11. Conchtsions. 

A theory ,  based  on  o r d i n a r y  p l a n e - w i n g  l i f t ing-sur face  theory ,  for  d e t e r m i n i n g  gene ra l i s ed  

a i r forces  on  a T - t a i l  osc i l la t ing  in  s u b s o n i c  f low has been  desc r ibed .  T h e  ca lcu la t ions  are long  b u t  

s t r a i g h t f o r w a r d  and  are  be s t  ca r r i ed  out  on  an e lec t ron ic  d ig i ta l  c o m p u t e r .  F o r  th is  p u r p o s e  

p r o g r a m m e s  R A E 2 6 4 A  and  RAE265A have  been  c o n s t r u c t e d  for  use  w i t h  the  F e r r a n t i  M e r c u r y  

C o m p u t e r .  P r o g r a m m e  RAE264A ob ta ins  gene ra l i s ed  a i r forces  on  an i so la ted  T - t a i l  a n d  p r o g r a m m e  

RAE265A ob ta ins  genera l i sed  a i r forces  on  a T - t a i l  w i t h  a r e f l ec to r  p la te  a t t a ched  to the  base  of  

the  fin. 

Some  examples  have  been  given.  T h e  f i rs t  exa mp le  i l lus t ra tes  the  effect of  t ak ing  d i f fe ren t  

n u m b e r s  of  s p a n w i s e  a n d  c h o r d w i s e  points .  S o m e  of  the  resul t s  in the  s econd  example  m a y  be 

c o m p a r e d  w i t h  theo re t i ca l  resu l t s  in  s t e ady  f low a n d  also w i t h  e x p e r i m e n t a l  resu l t s  in  osc i l l a to ry  

f low.  T h e  t h i r d  example  gives resul t s  for  a T - t a i l  w h i c h  has s w e p t - b a c k  t a i lp l ane  and  fin. T h e  

c o m p a r i s o n  of  the  theo re t i ca l  resu l t s  is good,  b u t  the  c o m p a r i s o n  of  the  e x p e r i m e n t a l  resul ts ,  t h o u g h  

i t  gives  to l e rab le  a g r e e m e n t  in  t he  abso lu t e  m a g n i t u d e ,  shows  d i sc repanc ie s  in  the  phases  of  the  

gene ra l i s ed  a i r force  coefficients.  
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a 

a,,(¢o) 

b,,(go) 
[BI+ ], [B2+], [B1- ] 

c~(y) 
c~(~) 

[D;'-], [D~÷] 

k(*, y) 

A(~, ~) 
k(,')(., y) 

f~(;)(., ~) 

[ k , / ] ,  [f~, ~+], [k, ~-] 

[f] 

fl (e'/))(Xl, i, j(1), Yl, j +) 

f~(~, V)(x~, i, 9 ,  z2, 5) 

[fl, A ,  [A, ¢'] 

GS m) 

aS(m) 

Gs,?~)( c, 0, ~L,i(~)( c, ~) 
h?~)(~o) 

SYMBOLS 

Speed of sound in undisturbed main stream 

Coefficients appearing in equation (44) 

Coefficients appearing in equation (47) 

Diagonal submatrices, the elements of which are defined in 
equations (147), (148) and (149) 

Chord of tailplane at spanwise station y 

Chord ot fin at spanwise station z 

Diagonal submatrices, the elements of which are defined in 
equations (162) and (163) 

Coefficients appearing in expansion (87) 

Shape of tailplane surface, see equation (1) 

Shape of fin surface, see equation (2) 

Shape of tailplane surface in the p'th mode of oscillation, 
see equation (126) 

Shape of fin surface in the p ' t h  mode of oscillation, see 

equation (127) 

Row matrices, the elements of which are defined in equations 
(144), (145) and (146) 

Matrix whose rows are the row matrices [fl, ~+, f2, ~+] 

Equivalent values of tailplane displacement defined in 
equation (220) 

Equivalent values of fin displacement defined in equation 
(221) for an isolated tailplane and in equation (224) for a 
tailplane with a reflector surface 

Defined in equations (151) 

Spanwise interpolation functions, defined in equation (69) 

Spanwise interpolation functions, defined in equation (186) 

Defined in equation (141) 

Defined in equation (141) with g~('~)(~0)d~/0 replaced by 

~;(")(~0)d g0 
A Jacobi polynomial, see equation (66) 

Coefficients appearing in expansion (88) 

Chordwise interpolation functions, defined in equation (59) 

Defined in equation (86) 

Defined in equation (140) 
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I?'>(> vo, ~:) 

4('>(v, ¢o, ~:) 
G(~, y) 

G(*, y, ~) 

G(~, y), G(~, y, ~) 
&<~(~, y), &(~>(~, y) 

&(l~(~, y, ~), &<~>(~, y, ~) 

&(~)(~, y), R# ( . ,  y, ~) 

/(am(x, y, 2@,/~a(e)(x, y, 2@, 

R#)(~, y, 2~) 

l 

l~(~, y) 

l~(~(., y) 

12(P)(x~ ~) 

Id*, y, t) 

L~(X, Y, t) 

in 

M 

M#)(,o, ~, ~) 
~t 

N~(~)(¢, ¢o, c) 

P 

Po 

P2~, q 

P~', r (m), Pi, r (m) 

P~(~)(~, no, ~) 
q 

9 
93), q 

SYMBOLS--cont inued  

Defined in equation (82) 

Defined in equation (83) 

Kernel function defined in equation (11) 

Kernel function defined in equation (12) 

Kernel function defined in equation (302) 

Modified kernel functions defined in equations (17) 

Constituents of/( l(x,  y) defined in equations (34) and (35) 

Constituents of/(~(x, y, z) defined in equations (36) and (37) 

Defined in equations (42) and (43) 

Defined in equations (176), (177) and (178) 

Typical dimension of the T-tail 

Loading function on the tailplane 

Loading function on the fin 

Loading function on the tailplane in the p' th  mode of 
oscillation 

Loading function on the fin in the p ' th  mode of oscillation 

Loading at time t at a point x, y on the tailplane 

Loading at time t at a point X, I 7 on the tailplane 

Number of spanwise points on the half-tailplane and on the 
fin 

V/a, Mach number of the main stream 

Defined in equation (84) 

Number of chordwise points on the half-tailplane and on 
the fin 

Defined in equation (85) 

Ambient pressure 

Free-stream pressure 

Generalised aerodynamic force, defined in equation (128) 

Defined in equations (228) and (230) 

Defined in equation (189) 

Velocity of a fluid particle relative to X,  17, Z coordinate axes 

Matrix with elements Q~, q 

Generalised aerodynamic force coefficient, defined in equation 
(132) 
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Q~j,q', Q~,,q" 

Qj, (m), ~j, r(m) 

R 

R1 

Ra 

31 

3 2 

t 

u(e, io) 

V 

w,,,(O 

ZtJI(X; y )  

w (x, y,  t) 

t) 

y,  z, t) 

x, y, z 

X,  Y , Z  

X 

X 

N 

N 

,~ (l) 
2, i , j  ~ ~2 , j  

Xl,  i, i (1), Yl,  j+  

xi, i, 7 ), Yl, j- 

~2, k, ~.(w) Z2 ' r 

(w) ~, + 
Xl, l,~, r , 2'1, ~' 

Og (w) ,~, - 
1 ,  k ,  r ~ . ) '1 ,  r 

SYMBOLS--cont inued 

Real and imaginary parts of Ql,, 

Defined in equauons (229) and (231) 

Defined in equaUon (277) 

Defined in equation (294) 

Defined in equation (14) 

Defined in equation (13) 

Defined in equation (173) 

Semi-span of tailplane, see Fig. 1 

Span of.fin, see Fig. 1 

Time 

Defined in equation (51) 

Main-stream speed 

Defined in equation (63) 

Defined in equation (185) 

Tailplane velocity function defined in equation (3) 

Fin velocity function defined in equation (4) 

Defined in equation (273) 

Defined in equation (274) 

Defined in equation (304) 

Rectangular Cartesian coordinates, stationary with respect to 
the mean position of the oscillating wing 

Rectangular Cartesian coordinates, stationary with respect tO 
the main-stream flow 

XLO)(y ) equation of leading edge of tailplan e 

XL(2)(z) equation of leading edge of fin 

xT(1)(y) equation of trailing edge of tailplane 

xT(~)(z) equation of trailing edge of fin 

Loading points on fin, defined in equations (74) 

Loading points on port half-tailplane, defined in equations (75) 

Loading points on starboard half-tailplane, defined in 
equations (76) 

Velocity points on fin, defined in equations (77) 

Velocity points on port half-tailplane, defined in equations (78) 

Velocity points on starboard half-tailplane, defined in 
equations (79) 
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y(~, ~, t) 

z ( , ,  y, t) 

r~(~, ~, t) 

z~o(~, y, t) 

o,l(x, y) 

~(~, z) 

~1(~, ~), ~(~, ~) 

cqe, ~)(xl, k, (w), Y:t, r +) 

@e,  q)(x2, ~', (w), z2 ' ~) 

~(~) 

[~+], [~+], [~1-] 

[~d, [~1"] 

[cq, q+], [c~, q+], [o~1, q-] 

[=~, qq, [=I, q"] 

6' 

CO 

~j 

~7 

~7i 
~lr (w) 

S Y M B O L S - - c o n t i n u e d  

Normal displacement of a point x, z on the surface of the fin 
at time t 

Normal displacement of a point x,y, on the surface of the 
tailplane at time t 

Normal displacement in the p ' th  mode of oscillation of a 
point x, z on the surface of the fin at time t 

Normal displacement in the p ' th  mode of oscillation of a 
point x, y on the surface of the tailplane at time t 

Reduced tailplane velocity function, defined in equation (5) 

Reduced fin velocity function, defined in equation (6) 

Defined in equations (15) 

Defined in equations (30) 

Functions ~1(~:, ~/), ~2(~:, ~) appropriate to the q'th mode of 
oscillation 

Equivalent values of tailplane reduced normal-velocity 
function, defined in equation (222) 

Equivalent values of fin reduced normal-velocity function, 
defined in equations (223) or (225) 

Normal velocity on a tw0-dimensional wing, corresponding 

to a loading, distribution l,,(~0)~/{(1 - e0)/e0} 

Matrices, the elements of which are defined in equations 
(107), (108) and (109) 

Matrices defined in equations (123) 

Matrices, the elements of which are defined in equations 
(156), (157) and (158) 

Matrices defined in equations (159) 

Matrix wh°se c°lumns are the c°lumn matrices [~1'; +]~2, + 

Defined in equation (24) 

Defined in equation (26) 

Defined in equation (25) 

Defined in equation (27) 

The roots of equation (182) 

Defined in equation (21) 

Defined in equation (23) 

The roots of equation (68) 

The real roots of equation (65) 
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z~(~, y), z~(~,, ~) 
~1(~, y), ~(~, ~) 

X~(8o, no), X~(~, ~) 
~1(~(~o, yo), ~(~)(~o, ~o) 

5~'~(eo, ~o) 
G+], G+], G-]  

[XIS], [#1 a] 

G,.+], G, ~+], IX1. ~-] 

[AI, 1++], [A1, 2++], [A1,1--] 
[&, F+], [&, ~++], [&Fq  

[&l-+], [&~-+], [&l--] 

[~A12-I-+], [~A12-1--], [A13 +-] 

I f&, F-'-], [~&, ~++], [ l&, ~+-q 
I f&, ~++], [ i&, ~+-], [ i&, F-] 

It&, a+-], [A1~-q, [11~--'-] 
[i'A1~--], [A1a--] 

~,,(go) 

~,(t), ~(t) 
t , I ( X ,  Y ,  t),/~(X, Z, t) 

v 

~o 
~ i  (l) 

b~l? v) 

Po 

Xo 
O) 

SYM B 0 L S--continued " 

Reduced loading functions defined in equations (7) and (8) 

Defined in equations (16) 

Defined in equations (31) 

Defined in equations (129) and (130) 

Approximation to X~(e0, ~0), defined in equation (44) 

Matrices, the elements of which are defined in equations 
(110), (111) and (112) 

Matrices defined in equations (123) 

Matrices [Xl+], [7~+], [Xl- ] appropriate to the q'th mode 

Matrices defined in equations (152) 

Submatrices, the elements of which are defined in equations 
(113) to (121) 

Submatrices, the elements of which are defined in equations 
(202) to (215) 

The polynomial of degree r in C0 satisfying equation (62) 

The polynomial of degree r in ~0 satisfying equation (179) 

Doublet strengths, appearing in equations (275) and (276) 

Doublet strengths, defined in equations (279) and (280) 

col 
g ' frequency parameter 

Defined in equation (20) 

Defined in equation (22) 

Chordwise loading points, defined in equation (58) 

Chordwise velocity points, defined in equations (54) and (55) 

Free-stream velocity 

Velocity potential 

Defined in equation (288) 

Circular frequency 

The sign J~ placed before symbol indicates that the symbol is appropriate to the case of a reflector 
plate attached to the base of the fin. 
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APPENDIX 

Derivation of the Integral Equations 

Besides the system (x, y, z) of right-handed Cartesian coordinates in Section 2 of the main text, 

another system (X, Y, Z) of right-handed Cartesian coordinates is introduced which is stationary with 
respect to the main-stream flow and which coincides with the system (x, y, z) at time t = 0. Then 

at time t the following relationships exist between the coordinates of a point in the two systems 

x = X +  Vt 
y = Y , (268) 

If the flow of air about the wing is assumed to be irrotational then a velocity potential ¢ exists 
such that the velocity q of a fluid particle relative to the (X, Y, Z) coordinate system is given by 

a¢ a¢ a¢ 
q = i ~ + j ~-~. + k --aZ (269) 

where i, j and k are unit vectors directed along the X, Y and Z axes respectively. 
With the usual assumptions of linearised theory it is found from Euler's equation of motion of 

inviscid flow, the continuity equation, and the adiabatic equation of state that q5 satisfies the wave 
equation 

( a2 02 ~2) 1 ~ ¢  (270) 
gX~ + UY~ + ~ 2  ~ ¢ - a s at~ 

The airflow must be tangential to the surfaces of the tailplane and fin and this leads to boundary 
conditions. Within the accuracy of linearised theory it is permissible to apply the boundary con- 
ditions at the mean position of the tailplane in the plane Z = 0 and at the mean position of the fin 
in the plane Y = 0 rather than on the surfaces. The conditions may then be written 

t) (271) 

_ _ ( # ) r = 0  = w2(x, z, t) (272) 

over the mean positions of the tailplane and fin respectively, where 

( a O) Z(x, y, t) (273) wl(x, y,  t) = v g~ + 

( a ~) Y(x,z,  t) (274) w2(x, z,  t) = V g~ + 

and Z(x, y, t) and Y(x, z, t) are respectively the normal displacements of a point (x, y) on. the 
surface of the tailplane and of a point (x, z) on the surface of the fin at time t. 

The functions 

¢1(X, Y, Z, t) = 4~r OZ 

¢2(X, Y, Z, t) 47r ~ Y 

where 
r = ~ / { ( X - X 0 )  2 + ( Y -  Y0) 2 + ( Z - Z 0 )  2} 

(275) 

(276) 

(277) 
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and /,l(t) and /,~(t) are arbitrary differentiable functions, satisfy the wave equation (270) and 
correspond to potentials about doublets of strengths /a~l(t) and/,~(t) at time t placed at the point 

(Xo ,  Yo,  Zo) and pointing in the positive directions of Z and Y respectively. 
If  there are doublet  layers on the planes Z = Z 1 and Y = Y1 then the potential of the flow about  

them, by the principle of superposition, is 

¢(X, Y,  Z, t) = 4~ Xo, ro 8 Z  r J ,zo=z~ 
plane 

l f f  i a {[&I(Xo,Zo,~--Y'/a)I 1 dXodZo (278) 
4re Xo, Zo 8--Y r j ,  ja0=z~l 

plane 
As is usual with doublet  layers, there is a discontinuity of potential across the layer. It may be 

shown, as in Appendix II  of Ref. 6, that the discontinuity in potential across a layer at any point on 

it is of amount  equal to the strength of the layer at that point, so that 

¢(Xo, Yo, Z l ~  O, t) - ¢ (X  o , Yo, Z l - O ,  t) = /.61(X o , Yo, t) (279) 

q~(Xo, YI+  0, Z0, t) -- ¢(Xo, Y1-0 ,  Z0, t) = /z2(Xo, Z0, t). (280) 

The  linearised Bernoulli equation is 

84 _ (P -Po)  (28a) 
3t Po 

where p is the pressure at a point in the flow, P0 is the free-stream pressure mid P0 is the free-stream 

density. 
In linearised theory the wakes shed from the trailing edges are plane and parallel to the main- 

stream flow. The  T-tail and the wakes will be replaced by doublet sheets and the strengths of the 
sheets will be adjusted so that the boundary conditions (271) and (272) are satisfied on the T-tail 
surfaces and so that no loading is sustained by the wakes. If  there is a reflector surface at the base 

of the fin then the flow about the T-tail is the same as if the T-tail and the wall were replaced 
by the T-tail and its image in the wall. The wakes on the T-tail  will also have corresponding image 

wakes. 
Let us investigate the velocity field about  a surface which sustains a given load distribution. We 

shall take the tailplane to be this surface. We replace the tailplane and its wake in the plane Z = 0 

by a doublet sheet of s t rength/xl(X o , Yo, t) at the point (X0, Y0) at time t. 

Let 
LI(Xo, Yo, t) = p ( X o ,  Yo, - 0 ,  t) - p ( X  o, Yo, +0,  t) 

8 
= po [¢(Xo, Yo, + o, t) - ¢(Xo,  Yo, - o ,  t)] 

a 
= Po ~ t~(Xo, Y0, t) (282) 

be the pressure force per unit area, or loading, in the positive direction of z at the point (X o, Yo) 

on the tailplane or its wake at time t. 
The  equations of the leading and trailing edges of the tailplane are respectively 

x = XL(1)(y), Z = 0 (283) 

x = xT(1)(y), z = O. (284) 
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Since the two systems of axes coincide at time t = O, the point (X0, Y0, O) is on the leading edge 
of the tailplane at time 

to(~) = XL(1)( Yo) - Xo 
v (285) 

provided 
]Y o[ < q .  (286) 

Before time to <1~ the strength of the doublet layer at the point (X0, Yo, 0) is zero for the tailplane 
has not yet reached it. By integrating equation (282) and making use of this last observation we get 

~l(Xo, Yo, t ) =  _1 f t  P0 {@~(r o)-Xo}/V LI(X°' Yo, u)du (287) 

and then on making the change of variables 

Xo = Xo + Vu (288) 

in the integral in equation (287) we get 

= L1 Xo, Yo, Xo dXo. m(Xo, Yo, t) ~ J~L(~/(ro ) 

The contribution to the velocity potential from the doublet layer is then 

(289) 

o. d x L ( 1 ) ( Y 0 )  ' , 
t a i l p l a n e  
and w a k e  

If we write 

ldxo, yo, t) = L d X o ,  t o ,  t) (291) 

where (Xo, Yo) in the (x, y, z) coordinate system corresponds to (Xo, Yo) in the (X, Y, Z) coordinate 
system, then ll(x , Yo, t) is the loading distribution on the tailplane and its wake as a function of the 
coordinates fixed relative to the mean position of the tailplane, and it is non zero only on the 
tailplane. 

Since 

L~ {X0, Yo, X--@vX°}=ll  {Xo+ V ( ~ - ~ 2 ) ,  Yo, X-@vX° } 

= ll ( Xo, Yo, X° - x° } - ~  + t (292) 

the expression (290) for ¢ becomes 

Cdx, y, z, t) = 1 ~ [c+sl_s~ dyo f *  dxo (Xo-;~If,.J 11 { Xo, Yo, Xo-Xov 
4~rp0 V 3z ~ xL(1)(uo) Jr] dxL(a)(uo) 

where 
[~] = V { ( ~ - ~ o )  ~ + ( y - y o )  ~ + ~} 

V 
M ~ - - .  

¢Z 

- -  + t} dXo (293) 

(294) 

(295) 
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The order of integration of the inner two integrals in (293) is to be changed. The expression for 
then becomes 

¢ l ( x , y , z , t ) -  1 3 +*ldyo dXo x 
4~'po V ~z .~ _sl ox2(vo) 

X X+{1/(l_dkl2)} {(Xo_x)+JTI.~/[(XO_:C)2+(I_i]I2) {(y_yO)2+z2}] } 11 Xo, Yo, Xo -V X o + t dX°[r] 

_ 1 3 +81 dyo dXo x 

4~'po V 3z ., -sz ~L(vo) 

X 
{11//(1_1~,d2) } {llt(Xo_g)+~/[(Xo_X)2_b(1_l112) {(y__yO)2+z2}] } ll_ Xo,  S o ,  t --  V{(cr -- x "q- X0) 2 -}- ( J  - -J0)  2 -~- ,~,2} 

. . .  (296) 
If the tailplane is oscillating harmonically, then we may write 

ll(x, y, t) = &(x, y )d  ~t (297) 

where only the real or imaginary part of a complex function represents the pertinent physical 
quantity. So, using the fact that 

for 

l~(x, y, t) = 0 (298) 

x > XT(1)(y) (299) 

i.e. beyond the trailing edge, the expression for the potential becomes 

¢~(x, y, z, t) - 4~p0V az ~-,1 dXL(1)(;0} &(Xo, yo)dXo × 

X e_iroo.iV dff 
{M/(>M~)} {-~(~o-x)+,/E(xo-x)~+(1-~-~){(~-~o>~+~}]} V { ( ~ -  x + Xo) ~ + (y -yo )  ~ + z~} 

(300) 

The  contribution w~(x, y, z, t) from the tailplane and its wake to the component of velocity in the 
positive direction of z is then 

__ e i~l f+Sl fxT(1)(yo) 
4~poV d_~ dyo &(xo, yo)dXo x 

dxZ(1)(y O) 

32 f ~ da e-iCoo-IV 
× D {~/(1-~)} {~%-~)+<~(xo-~)~+(~-_~){(~,-~o)~+oq]} V { ( ( ' -  x + Xo) ~ + (y -yo)~ + z ~} 

eicog 

taiIplane 
&(Xo, yo)G(x- Xo, y -  yo, Z)&odyo (301) 
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where 

Ka(x, y, z) = a 2 f ~  ~ go e -  i~ocrlV 

8 ~  , o~ du 
= --  e - i o ) x t V _ _  e-iomlV 

Oz 2 (-~+~uR)fa-lv~) ~/( u2 + 9  + z2) 

= - -  e -i~''xlV --~ - -  z ( m  £-h,mlV dzt 
02: J (_x+MIe) / ( I_M 2) (U2 + y2 + 2:2)312 

" ex i w / - x + M R \  }/ 
M z  P - -V t - - l - Z - M r - ) }  

) z  - z (u~ +y2 + z~)aI~ - 
( - x  + M I~)/ (1- M ~) 

M z ( M x + R )  { i a ~ [ ' - x + M R ~ t  ~ 
- R(x~+Y2+ ~2) exp - F \ 1 ----M ~ ]JJ 

[f~o - u2+y2_2z~.  = e-.io, xlV e-io)~,lV 
(-x+Mz~)/(1-~l~z) (u z + yZ + z ~ ) S m  + 

io~ [ - x q- MR~ ~ [ M(Mx + R) Mz2(Mx + R) ~ f + 
exp t - V  ~ 1 ~  ~/~ ] J ' R ( ( ~ + ~ - ~ ) - R ( x ~ + Y ~ + Z 2 )  a -  

M-~(1-M~")z2x 2Mz2(Mx+R) iwM2z2(Mx+R)}]  
- Ra(x"+y~+z 2) - R(x~"+y~+z2) 2 V R~(x~+y2+z 2) " 

(302) 

If  we take z = 0 in equation (302) we get 

I~'1(*, Y) = /~'3( x, Y, O) 

[[ -~ e_ioml V e_ieoutV d u  (-~+_~znl)1(1-~112) (u 2 +y~)am + 
M(Mx + R1) I { £ °  - x + MR~ I ~ (303) 

+ Rl(x2+y 2) e x p [ - v ~  1---aTI ~ ]J/ 
K,(x, y) has a non-integrable singularity at x = 0, y = 0 and the resulting integral in (301) has to 

be dealt 'with by Hadamard 's  'Finite Part '  method of integration when z = 0. 
The  contribution w,~(x, y, z, t) from the tailplane and its wake to the component  of velocity in 

e-i~oo-tv 

4~rpog . II(X0, yo)Kz(x- Xo, z, Yo-  y)dxodyo 
tailpl~ne 

&r 

.,,/{(,~_ ~+ x,,)~ + ( y _ y o ) ~  + z2} 

(304) 

the positive direction of y is then 

- ; +o (xp(,,o, l (xo, yo)dXo × 4~po V j_sl  JXL(1)(yo) 

x ~ {~/(~-~>}{~<~o-x)+,/[(xo-*)~+(> ~){<'~-,,o)~+'~}]} 
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where 

a s f d~ e-i(ocrIV 
Ke(3¢' "% Y) - ~J0g {jy//(l_~ie)} {~]l/]-x+R} ~ { ( G  - x) 2 -~ j 2  -t- ;g2} 

0 2 f du e - i o m l V  
= e-i°'xlv ayOz (_x+MR)/(I_M e) ,~/(U e +y2 + zZ) 

= e _ i ~ x , v a [ (  ~ _  e_~ou,v zdu  
Oy ~ (-~-,-MR)/(~-~,lle) (u e + Y~ + Z2) 31e 

+ R) exp I - (- 

(-x+MR)/(1-1"~Z e) (U 2 + Y o + Z2 ) 512 + 

{ £o (-__x_:_MR]}[ M(Mx+_R) a M2(1-Me)x  
+ yz  exp - F [ 1 - M s ] [R(x °'+y~+ze) 3 + Ra(x 2+ye+z 2) + 

2M(Mx + R) iw MZ(Mx +_R) t 
+ R(xe+ye+z2) e + V  Re(xe+ye+ze))] " (305) 

We have found above the contributions to the velocities in the directions of y and z from a surface 

in the Z = 0 plane which sustains a given load distribution. By similar arguments we can obtain 

the contributions to the velocities in the directions of y and z from a surface in the Z = Z~ plane 

which sustains a given load distribution and from a surface in the plane Y = 0 which sustains a 
given load distribution. 

I f  there are several load sustaining surfaces then by the principle of superposition the velocities 

in the directions of y and z at any point is obtained as the sum of the separate contributions from 

each of the load sustaining surfaces. Thus the velocity in the z direction at the surface of the isolated 
tailplane is 

w~(x, y, t) = w~(x, y)e i°~t (306) 

where 

1 f f  Wl(*, Y) - -  47p0 V /1(*0, yo)K~( x - Xo, Y - yo)dxodyo + 
tailplano 

1 f f  + 4~poV Ze(x°' z°)Ke(x- x°' y' z°)dx°dz°" (307) 

f in  

The velocity in the y direction at the surface of the fin is 

we(x, z ,  t) = we(x, z )e  ~t  (308) 
w h e r e  

• f f  we(x, z) - 4zcpoV l~(xo, yo)Ke(x- Xo, z, yo)dxodyo + 
tailplane 

+ 4~po V le(xo, zo)K~(x-Xo, z-zo)dxod%. (309) 
fin 

If  equations (5), (6), (7) and (8) of the main text are used in the integral equations (307) and (309), 
then the pair of integral equations (9) and (10) of the main text are obtained. 
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When there is a reflector plate at the base of the fin, then, as has already been mentioned we 

replace the T-tail  and reflector plate by the T-tail  and its image in the plane wall. 
I f  ll(x, y ,  t) is the loading at the point (x, y ,  0) on the tailplane, then the loading at the point 

(x, y, 2s2) on the image tailplane is - ll(x, y ,  t). If  l~(x, z, t) is the loading at the point (x, z, 0) on 

the fin, then 12(x, 2s 2 -  z, t) is the loading at the point (x, 2 s z - z ,  0) on the fin. The  velocity in the 
direction of z on the surface of the tailplane and the velocity in the direction of y on the surface of 
the fin are then obtained by summing the contributions from each of the load sustaining surfaces 

on the T-tail and its image. This leads to 

and 

1 f f  wi(x, Y) - 4rrpoV ll(X° ' y o ) K i ( x -  Xo, Y-yo)dxodyo - 
t~ i lp la ,ne  

1 y; 
4~poV l~(~o, y o ) G ( * -  Xo, y - y o ,  2s~)&odyo + 

t, Mlpla, ne  

+ 4~--OoV 1~(~o, ~o)G(~-~o, y, ~o)a~d~o + 
:fin 

+ 4-UpoV l~(~o, ~o)G(~-  Xo, y, 2s~- Zo)d,~o&o 
fin 

(310) 

1 f ;  ~ ( . ,  ~) - ;~,(*o, yo)G(x-  ~o, ~, yo),t.odyo - 
4~po V 

t~ i lp la ,ne  

4rrpo V A~(x° ' Y°)K2(x - x°' 2s~ - z, yo)dxodyo + 
t a i lp l~ ,ne  

+ GpopoV z~(~o, ~o)G(~-~o,~-~o)d~o&o + 
fin 

+ ~ ~(~o, ~o)G(~-~o, ~,+ % -  2,~)d~o&o. (311) 
;fin 

If  equations (5), (6), (7) and (8) of the main text are used in the integral equations (310) and (311), 

then the pair of integral equations (170) and (171) of the main text are obtained. 
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n = 2  

T A B L E  1 

Values of ~k (0, ~1~ (~) and Hk (~) 

k = 1 2 

~k(l) = 0-095492 0"654508 

~e(w) = 0-345492 0"904509 

Hk(~) = 0-369316 0.597566 

n = 3  

k = 

G(~) 

0-049516 

0.188255 

0.194727 

0.388740 

0.611260 

0.437547 

0.811745 

0-950484 

0-350885 

n = 4  

~ (w) 

Hk (n) 

0.030154 

0.116978 

0.119388 

2 

0.250000 

0.413176 

0.302300 

0.586824 

0.750000 

0-343763 

0-883022 

0-969846 

0.224375 
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m = 2  

TABLE 2 

Vahtes of Vj, Gj (''~), ~j a n d  G~ ('0 

j = 1 2 

rlj = O" 178838 O" 710051 

Gg") = O' 429397 O' 515454 

~j = 0"211325 0 '788675 

Gj  (~) = O. 500000 0" 500000 

77l ~ 3 

j = 1 2 3 

= 0.099194 0.450132 0. 835290 

r~ -('~) = 0.245790 0.414821 0. 309928 

= 0.112702 0. 500000 0- 887298 

G9 '~) = O- 277778 O- 444444 O. 277778 

m = 4  

j = 1 2 3 4 

~ = 0"062666 0"301052 0"623775 0"894860 

Gj ('~) = 0 '157373 0 '302055 0"319702 0"202559 

~ = 0.069432 0"330009 0"669991 0-930568 

Gj  ~)  = 0-173927 0-326073 0-326073 0.173927 
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m = 5 

T A B L E  2--continued 

j = 

= 

•j(m)" = 

O- 043069 

0. 108913 

O- 046910 

O- 118463 

0-213120 

0. 222795 

0- 230765 

0-239314 

0.466878 

O- 272040 

0- 500000 

O. 284444 

4 

0- 730539 

O. 242100 

O. 769235 

0. 239314 

0. 927346 

0. 141674 

O. 953090 

0.118463 

m = 6  

= 1 3 4 5 6 

Gj("~) 

G j('~) 

0.031384 

0. 079687 

0.033765 

0.085662 

2 

0-158013 

0-169061 

0.169395 

O- 180381 

0.357473 

0" 222636 

0" 380690 

0.233957 

O. 587387 

O. 228864 

0.619310 

0.233957 

0-798854 

O- 186408 

O- 830605 

0. 180381 

0. 946889 

0. 104298 

O. 966235 

0. 085662 

T A B L E  3 

Values of P~, ,.(r~), Qj,/m), Pj. ,.('~) and ~j,O. ,.(~) 

1 n ~ 2  

P j  , r (m) 

r j = l  2 

1 -9 .518531  2-548367 

2 2. 807973 - 9-417170 

Qj, r (m) 

r j = l  2 

1 4.567635 -0 .031926  

2 O. 563100 O. 237099 
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T A B L E  3--continued 
Pj ,  r (m) 

r j = l  2 

1 -8"281038 2"281038 

2 2"281038 -8"281038 

() .  (m) 

r j =  1 2 

1 I O- 190525 O' 518351 
L 

2 O. 164525 3.741983 

m = 3 

p. (m) 
:I,?" 

r j =  1 2 3 

1 -16 .398798  4.070202 1-341310 

2 3.638673 - 11.581868 4.008660 

3 0.126345 5-469741 --15.853708 

Qj,  r @~) 

j =  1 

1 8.430222 -0 .223962  1.133921 

2 0.833395 0-486518 0.202195 

3 0.282898 0-248674 0.112578 

62 



p.  (m) 
T A B L E  3--continued 

j =  1 

- 14.658324 

3.333333 

0-669448 

3.988877 

- 10.666667 

3.988877 

0 .669448  

3-333333 

-- 14.658324 

j =  1 

0.088982 

0.150672 

0.607306 

0.228858 

O. 425942 

0.056694 

0.279318 

0.756719 

7.310269 

m = 4  

Pj ,  .r (m) 

2, 

j = l  

-25 .451941 

5.022717 

0.152620 

I 

O. 372449 

5.932427 

- 15.825107 

5.631828 

0.095233 

3.104863 

5.770737 

- 15.308302 

8.627186 

-0 .956458  

0.189552 

5.445832 

-24 .322979  

Q.j, r (m) 

1 

2 

3 

j = l  

13.475880 

1-211599 

0.334841 

0.171784 

-0 .493871 

0.799357 

0.351460 

0.210896 

2.447914 

0-400114 

0.206935 

0-138913 

--0.642971 

0.127882 

0.086985 

0.063072 
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2 

T A B L E  3--continued 

0.206675 

j = l  

-23.188159 

4.644974 

-0-181066 2.043919 5.848081 

5.848081 2.043919 

- 14.652359 5-277936 

5.277936 - 14-652359 

P j ,  r (m) 

-0.181066 

0.206675 

4.644974 

-23.188159 

Q j  0~ ) 

m = 5  

P j  , r (ra ) 

j = l  

0.050135 

0.067554 

0.104272 

-0.152388 

2 

0.127515 

0-182648 

0-343017 

1.732847 

0.204893 

0.324604 

0.721327 

-0.172940 

0-174086 

0-318946 

1.109725 

12.060018 

r j = l  

1 -36.654032 

6.812513 

0.193307 

8.204778 

-21.395018 

6.692443 

5.284580 -2.441495 1.718142 

7.842744 0.415356 0.345390 

- 17-946446 6.828673 0-070062 

-20.312798 7.278869 4 0. 371843  0.111502 7.728426 

5 il 0- 058549 0.797841 II 0.067790 12.451713 - 34. 806374 
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Qj (~n) 

T A B L E  3--continued 

2 

4 

j =  1 

19.706913 

1.686414 

0.419532 

0.182049 

0-115671 

-0-832375 

1-181859 

0"480300 

0.250043 

0.171255 

,~3 

4.028973 

0.627216 

0.313584 

0.189902 

0-139994 

4 

- 1.613904 

0.244812 

0.167662 

0,113274 

0.088044 

1.092911 

0-122642 

0-073508 

0.051617 

0.041206 

~. (m.) 
y , r  

j = l  

-33 .861386  

6.349251 

0.198913 

0.301227 

0.640618 

8.062735 

-19 .949937  

6.334420 

0.333492 

- 1.174384 

3.965818 

7.332571 

- 17.166667 

7.332571 

3.965818 

- 1.174384 

0.333492 

6. 334420 

- 19.949937 

8.062735 

0-640618 

0-301223 

0.198913 

6.349251 

- 33.861386 

Q-j, ~,(m) 

j = l  

0.032612 

0.039962 

0.056323 

0-089206 

0.442992 

0.080647 

0.101021 

0.147837 

0.223424 

-0 .775040  

i 

3 

0.134758 

0.176710 

0.285653 

0.561607 

3.183321 

0.170711 

0.239171 

0-446802 

1.085863 

-0 .483796  

0-118482 

0.177913 

0.396718 

1.560804 

17.994713 
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m =  6 

Pj ,  r (m) 

T A B L E  3--continued 

j = l  

-49.997973 

8.974522 

0.244704 

0.412270 

0.059968 

0.145874 

10-900261 

-28.147670 

8-200450 

0-135013 

0-741709 

0-061559 

7.879665 

10.305251 

-21.895089 

8.296396 

0.078680 

1.221566 

I 4 

-4.284168 

0.680211 

8-444675 

--21.458991 

10.170993 

0"049932 

3.785728 

0.449913 

0.147159 

8.265228 

-26-427640 

16.977256 

- 1.629086 

0.229954 

0.525785 

0.036664 

9.495349 

-47.296467 

0 (m) 
',dy, r 

j = l  

27.124013 -1.237307 5.895373 =2.570997 2-328977 -0.906849 

2 2-254827 1.635617 0.890982 0.370479 0.231522 0.071421 

3 0-527679 0.634688 0.437271 0.254895 0.140445 0.060773 

4 0.208168 0.304171 0.249505 0-165717 0.097088 0-044262 

0.115613 0.166528 

0.130865 0.083268 

! 0.119077 

0.097216 

0-184630 0.073039 

0.061170 0.138478 

0.034215 

0.029079 
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P j ,  r (m) 

T A B L E  3--continued 

i j = l  
I 
--46.674227 

8.424154 

0.236004 

0.380819 

0.128051 

-0.438162 
I 

10.678482 

--26.429205 

7-783803 

0-195836 

0.507723 

2.117525 

6.366758 

9.732129 

-20.809157 

7.971187 

0.529854 

-2.701571 

-2.701571 

0-529855 

7.971187 

--20.809157 

9-732129 

6.366758 

2.117525 

0.507723 

0.195836 

7.783803 

-26-429205 

10.678482 

-0.438162 

0.128051 

0.380819 

0.236004 

8.424154 

-46.674227 

(~ (m) 
~ j ,  r 

2 

j =  1 

0.022937 

0.026529 

0.034060 

4 0.047050 

0.062006 

6 -0.237792 

I 
2 

0-055873 

0.065373 

] 0.085852 
- - I  

0.123506 
I 

0.195600 
I 

1.373232 

0-093057 

0.111273 

0.152412 

0.128966 

0.159473 

0.234064 

0.139861 

0.180365 

0.289880 

0.232928 

O. 347214 

- 1.679025 

0- 404973 

0-815892 

4.943319 

0.594749 

1.521543 

-0.866137 

0.085665 

0-114661 

0-200886 

0.499325 

2.105954 

25.115319 
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T A B L E  4 

m = 2  

m = 3  
g~(3)(7 ) 

g3(a)(7) 

m = 4  

g4(4)(~) 

m = 5  

Expressions for g~(m)(7 ) and ~S"*)( ~) 

= ( 1 . 4 7 5 0 4 9 -  2 . 0 7 7 3 8 5 7 ) ~ / ( 1  - 7) 

= ( -  O. 625217 + 3 . 4 9 5 9 9 3 7 ) ~ / ( 1  - 7) 

= ( 1 . 3 6 6 0 2 5  - 1 . 7 3 2 0 5 1 ~ )  

= ( - O. 366025 + 1 . 7 3 2 0 5 1  ~) 

( 1 . 5 3 3 5 4 7  - 5 . 2 4 2 8 3 5 7  + 4 . 0 7 8 6 9 0 7 z ) ~ / ( 1  - ~7) 

( - O. 826657 + 9- 3233867  - 9- 9 7 7 0 4 3 ~ ) V ' ( 1  - 7) 

( 0 . 3 8 8 0 5 4 - 4 . 7 7 4 1 5 1 7 +  8 . 6 9 0 9 3 1 7 ~ ) ~ / ( 1  - ~) 

( 1 . 4 7 8 8 3 1  - 4 . 6 2 4 3 2 8  ¢ + 3 . 3 3 3 3 3 3  Cz) 

( - O. 666667 + 6 . 6 6 6 6 6 7  ¢ - 6 . 6 6 6 6 6 7 ¢  z) 

(0 .  1 8 7 8 3 6 -  2 . 0 4 2 3 3 9 ¢  + 3 . 3 3 3 3 3 3  Cz) 

= ( 1 . 5 5 9 2 8 0  - 9 - 4 2 1 6 6 6 7  + 1 6 . 8 8 4 8 0 1 7 2  - 9 . 2 7 8 9 5 8 ~ 3 ) ~ / ( 1  - 7) 

= ( - O. 915869 + 17.  106893~ - 41 • 4032557  ~ + 26 .  183033f i a )~ / ( i  - 7) 

= ( 0 . 5 6 0 6 8 7  - 1 1 . 4 3 6 2 5 4 7  + 41 • 79975772 - 3 3 . 2 1 1 9 0 6 7 3 ) ~ / ( 1  - 7) 

= ( - O-270920  + 5- 657485~7 - 2 2 . 7 3 3 9 4 9 7 2  + 23-  021879~3)~ / (1  - 7) 

= ( 1 . 5 2 6 7 8 8  - 8 . 5 4 6 0 2 3  ~ + 1 4 . 3 2 5 8 5 8 ¢  ~ - 7 . 4 2 0 5 4 0  ¢ a) 

= ( - O. 813632 + 13- 807167~ - 31.  388222¢  z + 1 8 . 7 9 5 4 4 9 ~  3) 

= ( 0 . 4 0 0 7 6 2  - 7 . 4 1 7 0 7 0 ~  + 2 4 . 9 9 8 1 2 6  ¢2 _ 1 8 . 7 9 5 4 4 9  ~3) 

= ( - O- 113917 + 2 .  155927¢  - 7 . 9 3 5 7 6 2 ~  z + 7- 420540~  ~) 

= ( 1 . 5 7 2 8 2 2 -  1 4 . 5 9 7 7 9 7 7  + 4 4 . 4 3 3 1 4 4 7  ~ -  5 4 . 5 4 9 3 2 1 7 8  + 23 .33277874) -v / (1  - 7) 

= ( - 0 . 9 6 2 9 8 2  + 26-  7784137  - 1 0 9 . 0 7 7 3 3 2 7 2  + 1 5 3 . 2 4 7 3 9 7 7  ~ -  7 0 . 6 9 1 5 3 3 7 4 ) ~ / ( 1  - 7) 

= (0 .  652261 - 1 9 . 8 0 1 4 2 0 7  + 1 1 6 . 5 7 6 2 7 3 ~  2 -  2 0 0 . 7 7 4 7 2 0 ~  3 + 104.  8 9 3 8 9 9 7 4 ) ~ ( 1  - 7) 

= ( -  0 . 4 1 4 7 6 3  + 1 2 . 9 1 2 0 3 3 7  - 8 3 . 4 2 3 7 0 0 7 2  + 1 7 2 . 2 5 0 6 6 4 7 3 -  104.  36820774)5 / (1  - 7) 

= ( 0 . 2 0 2 9 2 6 -  6.  3762867  + 4 2 . 5 8 7 4 9 0 7  ~ -  9 4 . 2 2 2 0 6 9 7  ~ + 64 .  81954374)~ / (1  - 7) 

= ( 1 . 5 5 1 4 0 8  - 1 3 . 4 7 0 2 8 5  ~ + 38- 644499 ~ - 44-  988985 ~8 + 1 8 . 3 3 9 7 2 1  ~4) 

= ( - 0 . 8 9 3 1 5 8  + 2 2 . 9 2 4 3 3 4 ~  - 88- 222811 ~z + 117. 863415 ~3 _ 5 1 . 9 3 9 7 2 1  ~4) 

= ( 0 . 5 3 3 3 3 3  - 1 4 . 9 3 3 3 3 3  ~ + 82 .  133333 ~2 _ 1 3 4 . 4 0 0 0 0 0 ~  3 + 6 7 . 2 0 0 0 0 0 ~  4) 

= ( - 0 . 2 6 7 9 4 2  + 7.  6 8 9 9 2 7 ~ -  4 6 . 2 7 0 8 9 2 ~  2 + 8 9 . 8 9 5 4 6 9  ~8_ 51 .939721~4)  

= ( 0 . 0 7 6 3 5 9  - 2 . 2 1 0 6 4 3  ~ + 1 3 . 7 1 5 8 7 1 ~ 2 - 2 8  • 369899~8 + 1 8 . 3 3 9 7 2 1 ~  4) 
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T A B L E  4--continued 

m = 6  

g1(6)(,7) = (1. 580813 - 20. 766095,7 + 94. 142330,73- 191. 546669"q 3 + 179 .426751,74-  

- 6 2 . 9 8 7 3 3 6 , 7 5 ) v ' ( 1  - ,7 )  

g2(6~(,7) = ( - 0 .990835 + 38.317004-7 - 231.250693,72 + 536 .758939 ,73-  541.064783,74 + 

+ 198.775681,75)~/(1 - ,7) 

g(6)(,7) __ ( 0 . 7 0 6 5 6 0 -  29. 818666,7 + 254 .40884%73-  714. 680690,73 + 808. 902634,74--~ 

- 320.671491,75)-v/(1 ~ ~1) 

g4<6)(,7) = - 0. 500279 + 21.660840,7 - 202. 319164,72 + 665.498511,7 a - 855.333967,74 + 

+ 373. 082630~5)C(1 - v) 

g5<6)(,7) = (0 .323501 - 14. 152607,7 + 136.957984,73-  481.625472,73 + 682 .833293 ,74-  

- 328. 104504v5)~/(1 - 7) 

g6¢6)(,7) = ( - O. 159325 + 7 .0013647  - 68.783206,73 + 248. 996133,7 s -  370.261279,74 + 

+ 191. 536478,7~),x/(1 - :7) 

g1<6)(~) = (1 .565673 - 19.388900~ + 83. 356172~ ~ -  161. 633449~ 3 + 144- 893361 ~4_ 

- 48 ,847570~ 5) 

, ~ ¢ 6 ) ( ~ )  = ( _ O- 940463 + 33 .947557  ~ - 194.590041 ~3 + 431.244211 ~3 _ 416 .671896  ~4 + 

+ 147. 202432~ 5) 

ff(6)(~) = (0 .616930 - 24 .290507  ~ + 195.304165 ~2 _ 523.416261 ~3 + 568.416487~ 4 -  

- 217. 010043 ~5) 

ff, t(6)(~) = ( - O- 379228 + 15.315224~ - 134. 546123 ~3 + 419.850741 ~3 _ 516- 633728 ~4 + 

+ 217. 010043 ~ )  

g5¢6)(~) = (0. 1 9 1 8 0 0 -  7 .824684~ + 71. 135538 ~2_ 236. 580950~ 3 + 319.340266~ 4 -  

- 147. 202432~ ~) 

~6(6)(~) = ( -  O. 054713 + 2 . 2 4 1 3 1 0 ~ -  20 .659712~ z + 70. 535708~ s -  99 .344492~ 4 + 

+ 48.  847570 ~ ~) 

69 



T A B L E  5 

Vahtes of hiO~)'(~k(w)), hi('~)(sek(~)) and hi (~, n)(~: (w)) 

n = 2 

h~(~) ' (~(~) = - 1 . 3 4 6 6 2 5  

hz(~)'(~l (~)) = 1 . 5 1 5 5 4 2  

h,(~) ' (G (~)) = 0 . 0 8 4 4 5 8  

h=(~) ' (~  ~ )  = - 2 - 9 4 6 6 2 5  

h~(Z)(~:, (~)) = 0 .  2 4 7 2 1 4  

h=(~)(~:~ °°)) = 0 .  8 4 7 2 1 4  

h~(~)(G (w)) = - 0 '  0 4 7 2 1 4  

h=(~)(~:= °°)) = 0 .  6 4 7 2 1 4  

h?l, ~)(G(w)) = 

~ = 3  

hl(3)'(~1(w) ) = - 2" 2 6 0 0 2 6  

hz(Z)'(se~ (~)) = 2 .  3 2 7 9 2 3  

ha(a) ' (~  (w)) = 0" 3 9 1 3 6 1  

hl(3)'(G(~)) = 0.081594 

hz(a)'(~:z (~)) = - 2 .  6 5 1 3 8 7  

ha(3)'(~:~ (*°)) = 2 .  6 7 7 0 7 5  

hl(3)'(~:a(u') ) = --  0" 0 2 5 6 8 8  

h~(a)'(G ('~)) = O. 3 6 5 6 7 2  

h3(3)'(~:a (~)) = - 5 . 7 5 3 6 7 1  

h~(~)(~:, (w)) = 0" 2 2 9 1 2 5  

h~(~)(~:~ (w)) = 0" 9 9 8 2 7 4  

ha(Z)(~ (~)) = - 0 " 3 7 1 9 8 2  

h,(m(~z(~)) = _ 0 . 0 3 1 4 0 5  

h(~)(((~v)) = 0 . 4 9 9 1 3 7  

ha(~)(~ (~')) = 0 .  6 4 1 9 9 4  

ht(~)(G (~)) = 0 .  0 1 5 7 0 2  

h~(~)(~:a (~)) = - 0 .  1 5 8 5 5 9  

ha(~)(~:a (w)) = 0" 7 4 3 9 6 4  

G(~, 3)(~?o)) 

ha(l. a)(~:l(W)) 

h?~, 3)(G(~)) 

h~(~, 3)(G(.)) 
h,(~, ~)(Gc')) 

Z@,3)(G(w) ) 

n = 4  

h~(4)'(~i (~)) = - 3 - 5 0 9 3 0 2  

h2(4) '(~ (~)) = 3 .  4 2 9 7 2 5  

hz(4) ' (~ (~)) = 1 . 1 1 9 3 7 9  

h4(4)'(~1 (~)) = - 0 . 7 6 0 5 0 5  

h~(4)'(G (~)) = 0 . 1 0 2 4 1 4  

hz(4)'(~:z (w)) = - 3 .  3 6 6 2 1 2  

ha(4)'(~:~ (~)) = 3 - 4 1 5 9 0 7  

h4(4)'(~:~ (w)) = - O" 2 0 4 0 4 8  

h~(4)'(sea (w)) = - O. 0 2 1 7 6 2  

h2(4)'(s~a (~')) = O. 2 9 6 2 9 6  

h3(4)'(sea (~)) = - 4 .  0 3 0 5 7 6  

h4(4)'(G ('°)) = 3 .  9 9 1 1 8 6  

h1(4)'(~:40°)) = O. O11265 

h2(4)'(6:40°)) = - O. 129271  

h3(4)'(~:4 (~')) = O. 6 9 4 7 4 7  

h4(4)'(~:[ w)) = - 9 - 4 4 4 8 7 4  

h1(4)(~1 (w)) = 0" 2 2 2 2 2 2  

h2(4)(~l(u') ) = 1" 0 5 7 5 0 5  

h3(4)(~:1 (~°)) = - 0" 5 2 1 6 2 1  

h4(4)(~:z (~)) = 0" 2 5 6 1 5 6  

hl(4)(G (~)) = - 0 . 0 2 6 8 0 3  

h~.(4)(~2 ('w)) = 0 . 4 5 8 7 0 6  

hz(4)(G. (w)) = ~ 0 .  7 5 0 9 7 4  

h,(4)(G (~)) = - O. 2 2 2 2 2 2  

h~(4)(~:a (~)) = 0 . 0 1 0 5 8 5  

h~(4)(G (~)) --  - 0 .  111111  

ha(4)(G (~)) = 0 .  5 9 3 1 6 6  

h4(4)(~3 (w)) = 0 . 5 8 2 5 8 0  

h~(4)(~:4 ('~)) = - 0 . 0 0 7 1 3 1  

h~(4)(~4 (~)) = 0 . 0 6 7 8 6 8  

ha(4)(~4 (w)) = - 0 . 2 2 2 2 2 2  

h4(4)(~4 (w)) = 0 . 7 8 4 9 0 9  

h71,4)(~?~)) 
h2(~,4)(~?w)) 
h3(1, 4)( ~?~)) 
h~(1, 4)(~?w)) 

h?l, 4)(G(w)) 

h4(1, 4)( ~(w)) 
h~(1, 4)( G(,~)) 
h~(~, 4)( G(w)) 
h3(1, 4)( G(~,)) 

h?,  4)(~:4(~) ) 
G(1, 4)(~:2~)) 
G(1, 4)(~:4(~)) 
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0 . 3 4 9 9 8 1  

0 . 0 3 6 7 7 2  

0 , 3 7 2 7 0 7  

0 . 5 5 5 3 0 7  

= 0 . 1 8 4 6 2 6  

= 0 . 0 2 6 0 1 9  

= - 0 . 0 0 3 7 6 0  

= 0 - 1 9 6 2 0 5  

= 0 . 4 1 0 1 6 2  

= 0 . 0 2 3 0 5 6  

= 0 . 1 9 4 1 1 9  

= 0 . 4 4 3 6 0 0  

= 0 . 3 2 5 1 6 5  

= 0 1 1 3 2 0 7  

= 0 0 1 7 8 6 5  

= - 0 0 0 3 3 7 5  

= 0 0 0 0 8 7 9  

= 0 1 2 0 2 6 2  

= 0 2 8 3 6 8 2  

= 0 0 2 1 6 6 3  

= - 0 0 0 2 8 4 4  

= 0 1 1 9 0 9 0  

= 0 3 0 5 7 0 0  

= 0 3 2 1 6 0 9  

= 0 . 0 1 5 0 1 9  

= 0 . 1 1 9 5 5 8  

= 0 . 3 0 0 6 8 3  

= 0 . 3 4 8 9 7 6  

= 0 " 2 0 7 7 1 2  



TABLE 6 

Expressions for h~:(~)(~) and hi (~, ~)( ~) 
n = 2  

hl(~)(~) = (0" 380423 - 0"581234Q ~ ( ~ )  

h~(Z)(~) = ( -  O" 235114 + 2" 462147~) N / ( ~  ) 

h~ (~' ~)(~) = O" 235114 sin -1 ~/~ + (0. 525731 - O. 290617~)~{~(1 - ~)} 

h(~, 2)(~) = O. 380423 sin -~ ~/~ + ( - O. 850651 + 1.231073~)~/{~(1 - ~)} 

n = 3  

ht(Z)(sa) = (0" 278551 - 1 • 059699~: + 0. 882727~:2) N / ( ~ )  

h(~)(s~) = ( -  0" 223380 + 4. 786503 ~:- 5 • 557555~:~) N/(1-  ~-~ ) 

ha(a)(~) = (0" i 2 3 9 6 7 -  2" 282249~ + 6" 440282~2) % / ( - 1 @  ~ ) 

hi (~' ~)(~) -- 0" 123967 sin -~ ~ + (0. 433135 - 0. 603410~ + 0. 294242~ ~),v/{~(1 - ~)} 

hz (~, ~)(~) = 0" 278551 sin -1 ~/~ + ( - 0. 725313 + 2. 856381~- 1. 852518~z)~/{~(1 - ~)} 

h(  ~, ~)(~) = 0. 223380 sin -~ -V/~ + (0. 024553 - 1. 947933 ~ + 2. 146761~),V/{~(1 - ~)} 

n = 4  

h1(4)(~) = (0. 218846-  1.496156~ + 2. 905421~2- 1. 689349~a) N / ( 1 ~ 3 -  ) 

h(4)(~) = ( -  O. 192450 + 6-928203~-  18.475209~ + 12.316806~a) ~ / ( ~ )  

h(4)(~) = (0. 142842- 5.470253~ + 24. 9 6 0 2 1 3 ~ -  21. 458674~a) % / ( ~ _ ~ )  

h4(4)(~) = ( -  O. 076004 + 2. 954106~- 14. 895625~2 + 17. 181092~a) ~ / ( ~ )  

h~(1, 4)(~) = O. 076004 sin -1 ~/~ + (0. 361688 - O. 902209~ + 1. 038863 ~2_ 
- O. 422337~)~/{~(1 - ~)} 

h2(1, 4)(~) = O. 192450 sin -1 ~/~ + ( - O. 577350 + 4. 362202~- 6. 671603~ 2 + 

+ 3. 079201~a)~v/{~(1 - ~)} 

ha(~, 4)!~) = O. 218846 sin -~ ~/~ + (0. 066837-  3. 697505~ + 9. 214182~ ~ -  

- 5 • 364668~a)X/{~(1 - ~)} 

h4(~, 4)(~) = O. 142842 sin -z ~/~ + ( - O-294851 + 1. 823507~- 5- 681087~ 2 + 

+ 4" 295273 ~a)X/{~(1 - ~)} 
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A 

FIO. 1. Diagram of the isolated T-tail .  

FIG. 2. Diagram of T-tai l  attached to a reflector plate 
at the base AB of the fin. 
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D - -  - -  

F I ' 1-2952 

PLAN O F  T A I L P L A N E  

2 
a k _ _ _  

PLAN OF FIN 

FIO. 3. Planforms of a tailplane and 
fin of a swept-back T-tail. 
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