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Summary. - -Range of InvesEgation.--Formulae are obtained which provide an estimate of the amount of artificial 
control needed to prevent binary flutter. Results are expressed in terms of a 'minimum damping multiplier '  R, 
defined as the ratio of the least direct damping coefficient required for absolute flutter prevention to the ' n a t u r a l '  
direct aerodynamic damping coefficient of the control surface concerned. Numerical results are obtained for five 
different types of aircraft. 

ComIusioas.--The main conclusions are as follows : - -  
(i) R varies with the type of flutter and increases markedly with l~eight. 

(ii) Large values of R are to be expected with high structural density or mass-underbalance of the control surfaces. 
(iii) Maximum height should (in general) be assumed in the estimation of artificial damping. 
(iv) With artificial damping of conventional type servo-operated controls and devices for reduction or cut-out of 

the damping at low speeds will normally be necessary. 
(v) If artificial damping is applied to a main control surface, mass-balancing of the servo-flap may be necessary. 

1. Introduction and Conclusions.--The theoretical advantages of heavily damped control 
surfaces from the standpoint of flutter prevention have long been recognized.* Recently it has 
been suggested that  artificial damping might be preferable to mass-balancing as a means of 
preventing flutter, since weight might be saved. The purpose of the present paper is to provide 
simple formulae from which the amount of additional damping required can be estimated. 

Attention is restricted to binary flutter, which is referred to as being of Class A or B according 
to the nature of the dynamical coefficients (see Table 1). With Class A two of the aerodynamical 
stiffness coefficients are zero (cl = c~ -- 0) ; whereas with Class B all the aerodynamic stiffnesses 
are present. The formulae obtained differ for the two classes of flutter• The detailed proofs, 
which assume simple classical derivative theory and depend on the properties of test conics,~ 
are given in the Appendix. In general, the control surfaces considered are assumed to be mass 
underbalanced. 

The damping values obtained are theoretically sufficient for the absolute prevention of flutter 
(i.e. prevention for all elastic stiffnesses). In practice, increased values should be taken, to allow 
for uncertain data. For convenience, results are expressed in terms of a minimum damping 
multiplier R, which is defined as the ratio of the least direct damping coefficient required for 
absolute flutter prevention to the ' n a t u r a l '  direct aerodynamic damping coefficient of the 
control surface concerned. The value of R varies with the altitude h owing to the increasing 
influence of the structural inertias with decreasing air density p. 

* See, for example, recommendation (e) of section 9, R. & M. 11551. 
t See Chapters I I I  and VIII of R. & M. 1155 I. 

Also Conclusion (d) on p. 1 of R. & IV[. 16852. 
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In practice, artificial damping proportional t o : p  a n d  t o  airspeed .V, (and thus  providing an 
increase of damping coefficient) is unlikely to be achieved by any simple means. I f  the device 
used provides merely constant additional, damping, the amount of this should be of sufficient 
magnitude to ensure that  at any height h (It), and for the corresponding true maximum diving 
speed V,, (It/sec) flutter is absent. ~ihe total  effective damping coefficient Will then 'be on the 
safe side for other flight conditior~s. Suppose, for example, that  the case considered is flexural- 
aileron flutter, and let the coefficients* be defined as in Table l(a). Then if R denotes the 
minimum damping multiplier corresponding to air densi ty  p, the constant artificial aileron 
damping to be supplied is given by 

K -- p (R -- 1) V,,}Co'~e~, . . . . . . . . . . .  .:~,~,..:.. (1) 

where the height should be chosen such that  p (R -- 1) V~ has its greatest value. In this case 
the effective damping multiplier for any other air density p' and for any speed V '  <~ V,,, will be 

1 q-  pV,,, (R  - -  1) 
p ' V '  

which will certainly exceed R' .  the minimum multiplier corresponding to air density o'. 
Numerical examples given in sections 2 and 3 indicate that  (in general) maximum height should 
be assumed in the estimation of K. In the absence of definite information t h e  value of V,~ is 
taken to be independent of the height in the examples. 

The quanti ty K in (1) measures the aileron hinge moment (in lb ft) due to artificial damping 
when the aileron is rotated steadily at a rate of 1 rad/sec. 

(a) Damping  Formulae for. Class A F lu t t er . - -Th i s  class is represented by standard flexural- 
aileron flutter and by rudder flutter involvil~g fuselage torsion. The formulae, which involve 
one or both of the moment-of-inertia coefficients as well as the product-of-inertia coefficient p, 
differ according to the sign of fl (for symbols, see Table l(a)). 

Case (i). Flexural-Ai leron Fl~tter (f2 > O, fl > 0). 
The value of R is here given by tile greatest positive root of the equation 

b~eOR ~ - -  b~ea (b~e~ + p/~) R -Jr b2f~ {15 (e~ + b~) --  d2b~} = 0 . . . . . . .  (at) 

Case (ii). Rudder-torsional Flutfer (f2 > O, ~ < 0). 

For (A~) substitute 

Condit'ions (A~) and (A~) ensure test conic diagrams of the types Figs. 1(c) and 1 (b) respectively. 

(b) Damping  Formulae fo r  Class B F lu t t er . - -Th i s  class includes most other varieties of flutter 
(e.g. torsional-aileron, servo-rudder, elevator-fuselage, etc.). The formu!ae are independent of 
the moments of inertia. 

Let/zl, ~*a denote the two roots of the equation 

~ , ~ - - { e 3 j z + 2 p ( k ~ + f 3 ) } / ~ + p z ( k z - - f a ) 2 + 2 5 / 3 ( j ~ + e a ) = O  . . . . . . .  (2) 

Then if t~l, f~2 are real (,.~ > ~q) the multiplier R to be applied to the product e2j3 of the two natural  
direct damping coefficients is given by 

If [q, Et~ are unreal, choose 

R . . . . . . . . . . . . . . .  (B1) 

R = /32/4ez kJ . 

* I f  the coefficients used are not non-dimensional, the formulae should be applied with l and c o suppressed. 
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Conditions (B~) and (B~) correspond respectively to test conic diagrams of the types Fig. 2(d), 
and Fig. 2(b) with T below H,,. W i t h t y p e s  of flutter other than those considered in this paper 
the formulae used should be guided by the geometry of the test diagram. 

Numerical results for some representative aircraft and for various types of flutter are sum- 
marized in Table 2. ~Ihe following conclusions are indicated by the calculations. 

General Co ndusions.--(i) The minimum damping multiplier R varies with the type of flutter 
and increases markedly with height. 

(fi) Large values for R are to be expected with high structural density or pronounced mass 
underbalance of the control surfaces. 

(iii) Maximum height should (in general) be assumed in the estimation of the artificial damping 
K. 

(iv) With artificial damping of conventional type, servo-operated controls and devices for 
reduction or cut-out of the damping at low speeds will normally be necessary. 

(v) If artificial damping is applied to a main control surface, mass-balancing of the servo-flap 
may be unnecessary. 

I t  is considered probable that  an aileron which is adequately damped to prevent flexural- 
aileron and torsional-aileron flutter, will also prove to be adequately damped against ternary 
flutter and tab-aileron flutter. However, a verification of this conjecture by calculation would 
be desirable before altificial damping were tried out in practice. 

2. Numerical Examples (Class A Flutter).--(i) Flexural-Aileron Fh#ter (Fighter Aircraft).-- 
The data are taken from the end of section 2, R. & M. 2551 a, and relate to a fighter aircraft 
(aircraft S of Ref. 5). ~fhe dimensions, in feet, for full-scale are 

Co (ro0t-chord of wing) = 5.87 
s (span Of one wing) = 18.5 
G (aileron mean chord) = 1.38 
s~ (aileron span) = 6-85 
1 = 0.57s = 10.54 

Aerodynamic Coefficients (non-dimensional, Table 1 (a) ) 
bl -- 5.78, el = 0.298, f l  = 1.39, 
b~ = 0-00972, e2 = 0.009225, f2 = 0. 0146. 

Aero@namw Dwrtial Coefficients (non-dimensional) 
Po =: 0.0162, d2o = 0"00054. 

Total Inertial Coefficients (Structural plus Aerodynamic) 

dtitude (ft) . . . . .  

o/p . . . . . .  

"abric aileron covering 

duminium aileron covering 

P 
d~ 

p 
d~ 

0 

1-0 

0-0998 
0.00587 

0.325 
0.0202 

10,000 

1 '35 

0.128 
0'00773 

0"433 
0.0271 

20,000 

1 "88 

0"173 
0'0105 

0'597 
0'0376 

30,000 

2"67 

.0"239 
0.0148 

0"841 
0"0531 

40,000 

4"06 

0"356 
0"0222 

1 "27 
0"0805 

3 
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The results by fornmla (A,) are as follows : ~  . . . . .  ' 

Flexural-A ileron Flu#er (Fighter Aircraft) 

H e i g h t  (ft) . . . .  

F a b r i c  R . . . . . .  
p ( R - - 1 )  . . . . . .  

A l u m i n i u m  R . .  . . . .  
p ( R - - 1 )  . . . .  

0 

2 . 6 6  
0 .00395  

8 ' 5 4  
0 .0179  

10,000 

3"40 
0"00422 

11"4 
0 .0183  

20,000 

4"58 
0"00451 

15"6 
0"0184 

30,000 

6- 30 
O- 00472 

2 2 . 0  
0 -0187  

40,000 

9"35 
O. 00489 

33"2  
0"0189 

The values of K given by equat ion (1) for full-scale, and based on V,,, = 800 ft/sec and 40,000 ft, 
are 77 and 298 for the  fabric and the a luminium covering respectively. T h e  corresponding values, 
based on sea level, would be 63 and 283 respectively. 

(it) Flexural-Aileron Flutter (Wing of R. & M. 1685=).--This example compares results based 
on formula (A,) with damping values calculated by Falkner  ~ for a rectangular  canti lever wing 
(s = 15 ft, c = 5 ft). The aileron, which ex tended  to the  wing tip, was of span 7 It and chord 
1.25 ft. 

Aerody~camic Coefficients (p = 0"002378) 

bl = 0" 334, cl = 0, el = 0" 0122, f l  --  0" 211, 
b2 = 0"00114, c2 = 0, & = 0"000517, f2 = 0"00302. 

The coefficients here are defined to accord with the  nota t ion  of R. & M. 1685 and R. & M. 1155, 
and are appropriate  to sea-level only. 

Inertial Coefficients.--In R. & N. 1685 the s tandard  Values specified for 15 and & are p = 0.0011 
and d.., = 0"0001226, but  for the  damping  calculations made  in tha t  r epor t  p was increased to 
0.00176, and d~ was given the range of values 0"0001226n, where n = 0.2,  1.6. 5, 10, 50. 

The following table summarizes the results obta ined by formula (A~), and also gives a comparison - 
with damping ratios read from the curves in Fig. 7 of R. & M. 1685. I t  should be noted tha t  
symmetr ical  flutter only (against a specified elastic stiffness) was assumed for the calculations 
in R .  & M. 1685. 

Flexural-Ailero~ Flutter (Wi%e of R. ~' M. 1685) 

p X 10 a d~ × 10 a 

0 .1226~ 
0 . 2  × s t a n d a r d  
1 . 6 ×  ,, 
5"0 × ,, 

. 1 0 . 0  × ,, 
5 0 . 0  × ,, 

R 
( F o r m u l a  A1) 

1 .6  
2 . 2  
2 . 4  
2 . 7  
3 . 2  
5 . 3  

1.1 t 
1 .6  × s t a n d a r d  
1 .6  x ,, 
1 .6  × ,, 
1 .6  × 
1 .6  x ,, 

R** 
(R. & M. 1685 a) 

1"1 
2"1 
2"2  
2"6  

** Ef fec t ive  for  s y m m e t r i c a l  f lu t te r  agains t  a specif ied e las t ic  stiffness. 
' S t a n d a r d '  values .  

(iii) Rudder-Torsional Flutter (see Chap. V, R. & M. 12254).--This il lustration relates to a 
biplane on which violent rudder  oscillations occurred a t  a flight speed of about  250 ft/sec. The 
principal dimensions of the tail uni t  Were : -  

Total  span of tailplane . .  12 ft. 8 in. 
Total  chord of tai lplane (including elevators) .. 4 ft 8 .95 in. 
Total  height  of rudder  surface . . . . . .  5 It 1.5 in. 

The rudder  lay wholly above the fuselage axis, and was slightly underbalanced aerodynamical ly  
by  a horn. - 

4 



Aerodynamic and Inertial Coefficients 

Fuselage Torsional Moments Rudder Hinge Moments 

bl 
C 1 

C 1 

fi 

44"7 
1"77 
0 

--1.15 
--0.186 
--0'101 

b2 
Ca 

4 
g2 

A 

--1.15 
0-041 
0 
0.745 
0.034 
0.00358 

These data are taken from Table 43 of R. & M. 1255, with the gravitational cross-stiffness term 
omitted. The coefficients refer directly to the full-scale aircraft and to flight at sea-level. A 
negative product of inertia here indicates mass underbalance. 

Since in the present case /~ ( =- b~f~) < 0, formula (A~) must be used. The value of R works 
out as about 3.0, giving 

K - - 2  × 300 × 0 . 0 3 4 - - 2 0 . 4  

for V,,, = 300 ft/sec and p =- 0.002378. 

3. Numerical Examples (Class B Flutter).--(i) Torsional-Aileron Flutter (Light Aircraft Wing 
of section 50, R. & M. 1155).--The basic data for this rectangular wing are given in section 5 
of the Appendix to the present note, and are used there to obtain Fig. 3. The torsional axis is 
assumed to coincide with the ftexural axis {about 0.4c behind the leading edge). ~he corre- 
.sponding total product of inertia coefficient, deduced from inertias measured for the actual wing, 
as/5 = 0.0216 (for sea-level). 

On substitutioii of the data, equation (2) and formula (B1) yield R = 2.5. The higher root 
of (2) would give R' = 7 . t ,  and this would ensure a test diagram of the type Fig. 2 (f). The 
multiplier R would, of course, normally be applied to the aileron damping. 

(ii) General Flexural-Aileron Flutter (Large Civil Transport Aircrafl).--This example relates to 
a large transport aircraft (s = 105 ft ;  Co = 30.35; l = 0"75s). The aileron control circuit is 
assumed to the offset from the neutral axis of the wing, so as to provide gearing action between 
the flexural displacements of the wing and the angular displacements of the aileron. Owing to 
this gearing and the flexibility of the control circuit, a cross-stiffness is introduced in the dynamical 
equations for symmetrical oscillations. Elimination of this cross-stiffness by the choice of new 
('barred') dynamical coordinates is accordingly necessary before formulae (B) can be applied. 
The details of the treatment,  which follow the lines adopted with spring tabs 5 will be omitted, 
and only the essential data will be stated. 

The data for the example are taken from section 11 of R. & M. 2362 ~. The derivative values 
are classical approximations to frequency-dependent air-load coefficients, and it should be noted 
that they do not accord with the simple assumption c~ = c~ = 0. A parabolic flexural mode 
is assumed. 

A erody~,anzic Coefficie¢#s (for nom,tal control circuit). 
bl =-- O. 7925, cl = O. 3342, el = O. 000303, 
b2 = 0.000866, ca = 0.0004273, e2 = 0-000612, 

p (aerodynamic) = 0.00071 
d~ (aerodynamic) = 0.000019. 

f ~ = 0 . 3 0 0 9 ,  
~ = 0 . 0 0 2 2 1 4 .  

8 



Relations Connecting Original and Barred Coefficients. 

bl = bl + N (el -5. b2) + N~e~, 
81 = el + Ne2, 
51 = cl --t- N (fl -]- c~) + N2f2, 
/I=fl +NA, 

=/) + Nd , 
where N denotes the gearing ratio. 

b,~ = b2 -k Ne.,., 
~ 2  ~ e 2  

52 ~--~ c 2 - @ N f 2 ,  

= 

Barred Aerodynamic Coefficients (for N = 2.5). 

bl = 0.799, 51 = 1.10, gl -- 0.00183, /1 = 0.306, 
b2 = 0. 00240, 52 = 0. 00596, 82 = 0- 000612, [2 = 0. 002214. 

The estimated structural inertial coefficients for sea-level were p = 0. 00210 and d2 = 0.000117, 
giving the following values for the total  barred inertias. 

Total Barred Inertial Coefficients 

Height 
(ft) 

dz 
0"000315 
0"000136 

10,000 

0"00398 
0.000177 

20,000 

0.00525 
0"000239 

30,000 

0.00714 
0.000331 

40,000 

0.0105 
0-000494 

With the present type of flexural-aileron flutter, formula (B), with the appropriate interchange of 
symbols, must of course be used, since all the aerodynamic stiffnesses are present. Moreover, 
the roots ~ will here determine the safe bounds for the product of the barred direct damping 
coefficients. The corresponding bounds for the true direct aileron damping coefficient e2 are then 
given by 

{b~ + N (el + b2) + N~'e2} e2 = # ,  

with bl, el, b.~ treated as assigned. 

The final values of the minimum (tree) aileron damping multipliers R, corresponding to the 
geared control N = 2.5, and to the normal control N = 0, are given below. The table also 
includes the values of the more exacting ratios R', derived from the higher root/~2 of equation (2) 
(see last footnote, Appendix). 

Height (ft) 

N =  2.5, 
R 

p (R--l) 
. ~ !  . . 

N = 0 ,  
R 

p (R- l )  
R ! . , 

. ° 

• ° 

1.5 
0.00119 
2.5 

1.6 
0.00143 
1 . 9  

10,000 

1.9 
0. 00158 
3 ' 2  

2.0 
0'00176 
2.4 

20,000 

2-4 
0"00176 
4-2 

2.7 
0" 00214 
3"1 

30,000 

3"3 
0 -00205 
5"7 

3.6 
0.00231 
4.2 

40,000 

4.8 
0'  00223 
8.2 

5"3 
0-00252 
6.2 
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The values .of the  constant  artificial damping,  based 
270 m.p.h., true), are as fotlows. 

K (lb ft/(md/sec)) 

on R and V,, , --600 fl/sec (about 

Type  of Control 

Geared ( N =  2.5) . . . .  
Normal  (N = 0) . . . .  

~ = 0  

960 
1170 

20,000 

1425 
1730 

40,000 

1800 
2040 

The value of V,,, is here assmned to be constant  for all heights. 

(iii) Servo-rudder Flutter (Aircraft X of R. & M. 152T) . - -Rudder  flutter occurred on this 
aircraft at a speed of about 270 ft/sec. Twill rudders were fitted, symmetr ical ly  disposed about  
the  ends of the tailplane, and a small t r iangular fin was present in front of each rudder.  The 
principal rudder  dimensions were as follows (see section 8, R. & M. 1 5 2 7 ) -  

Total  height  165 in. 

Overall chord 54.7 in. 

Distance of main rudder  hinge from leading edge 10-0 in. 

Chord of servo-flap 10.2 in. 

Calculations in connection with the binary servo-rudder flutter of this aircraft are given in 
sections 8 to 12of  R. & M. 15277, in section 17 of Ref. 5 and in section 3 of R. & M. 255P. The 
relevant  numerical  data, in the nota t ion of the last two reports, are listed below. In  the  present 
case the dynamical  coefficients adopted  are not  non-dimensional.  They  correspond to the  
coefficients in Table 1 of the present report, with p, I and Co suppressed. All data  given refer to a 
single rudder  only. 

Aerodvnamw Coefficients (basic, for p = 0" 002378) 

Servo e, = 0.008, f ,  = 0. 0038, 

Main Rudder  e~ : 0.09, fa = 0. 088, 

j2 = 0. 025, 

j~ = 0.80, 

k~ = 0.0013, 

k3 = 0.072. 

Barred Aerodynamic Coefficients (N = 2.73, p = 0.002378) 
~ = 1.17, ], --  0" 344, ~,~ 0.868, k,~ = 0"0756, 

aa -= 1"045, /a --  0"312, ~a = 0"80, ka --  0.072. 

The appropriate  t ransformat ion formulae are given in section 17 of Ref. 5. 

Jnertias.--With the  ' s tandard  ' inertial  condit ion (leading to severe flutter on full-scale) each 
rudder  weighed about  55 lb, and the  C.G. was 12.1 in. behind the  rudder  hinge axis. Moreover 
the  servo-flaps were not  mass-balanced. In  section 17 of Ref. 5 the critical length for a servo 
mass-balancing arm is given as ~ = 9.26 in. The values of/$ for several representat ive conditions 
a~e as follows : - -  

S tandard  
Servo-flap statically balanced (~ == 6) 
Servo-flap dynamical ly  balanced (3. =: 6) 
Servo-flap dynamical ly  balanced (2 = 10:2) 

/5 = 6"601, 
= 6 . 9 1 2 ,  

fi = 7.047, 
= 6 . 5 2 5 .  

7 



The minillmm multipliers for the true main-rudder damping are summarized below. 

Servo-rudder Flutter (Aircraft X) 

Ine r t i a l  Condi t ion  R 
(from root  ~1) 

R 
(from roo t /~ )  

S t a n d a r d . .  
Servo-flap staticaily baianced'(i = d)" [[ :[ 

. . . .  d y n a m i c a l l y  ,, (~ = 6) . . . .  

. . . . . . . .  (;t = 10-2) . . . .  

1 "33 
1 "34 
1 "35 
1 "33 

2-43  
2"49 
2"52 
2"42 

If the damping is assumed applied to the fla, p, instead of to the main rudder, the required minimum 
multiplier is of the order 13.5. 

The values of artificial damping for each main rudder, derived from root ~,a and estimated for 
sea-level and V,,, = 300 ft/sec, are K = 79 for the standard servo and. K = 84 for the dynamically 
balanced servo (t == 6). 

A P P E N D I X  

Proofs of the Formulae 

4. Class A Binary Flutter.--In Tab]e 1 (a) the relevant dynamical coefficients are appropriate 
to flexural-aileron flutter and are expressed in the non-dimensional form. The reference section 
lies at a distance 1 from the wing root, and Co denotes the root chord. In this case the two 
dynamical coordinates are the linear noimal displacement of the wing at the reference section 
divided by l, and the aileron angle. "I he inertial coefficients are expressible as follows : -  

Let m denote the mass at distance y from the root and at  distance CoO behind the aileron hinge 
ax i s .  Also let .fy denote the ratio of the linear normal displacemen~ of the wing at distance y 
from the root to the corresponding displacement at the reference section. Then the total inertial 
coefficients are given by 

s'/ °) a l  ~ 7¢t plCo" -{- a l o ,  

m ,hfdplCo + ]50, 

m o~/flcO) + d2o, 

where alo, P0, d20 denote the aerodynamic inertias, and ~ . ,  ~ .  denote respectively summation 

over the complete wing (with aileron) and over the aileron only. 

Fig. 1 (a) shows the noimal type of test-conic diagram for flexural-aileron flutter, when the 
aileron is mass-underbalanced. The stiffness point Z(0, f2) has the positive ordinate f~, and the 
points of intersection M, N, M', N '  of the conic with the coordinate axes are all real. In particular, 
the positions of M and N m-e given by OM = $/bl and ON = ~/e2. Hence 

o z  - -t Vl/b,. 
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The first essential condition, for absolute prevention of flutter is that  Z shall be above M: this 
requires 

]bf] > 0 .  

This inequality cannot, of course, be controlled by changes of the direct aileron damping e2, and 
must be assumed to be already satisfied. If in fact Z lies below M, the minimum aileron damping 
indicated by the present theory should ensure high critical speeds and will almost certainly be as 
effective as mass-balancing. 

Two cases arise, according as /~ > 0 or < 0. 

Case (i) (/~ > 0).--This is representative of standard flexural-aileron flutter, and corresponds 
to OM and ON, both positive. 

Let MM1 in Fig. 1 (a) be the chord parallel to OX. Then it is readily shown that  M~ lies to the 
right, or to the left, of M according as 

W -- b~e~ ~ - -  b~e2 (b~e~ + p.f~) + b~f, {p (e~ + b~) - -  d~bl} < 0 or > 0. 

Hence if e~ is regarded as variable and is chosen so great that  W > 0, the conic is necessarily 
d!sposed as in Fig. 1 (b), and flutter is prevented absolutely. The minimum safe value of e2 is 
gtven by the greatest root of the equation W ---- 0 ; M2 and M then coincide, and OM is the maxi- 
mum ordinate (see Fig. I (c)). 

If the equation W = 0 (which corresponds to forma!a (As) of the main text) has unreal roots, 
W is necessarily positive. Increased damping is then not required. 

Case (ii) (fl < 0).--This case arises with rudder fuselage-torsional flutter. If the faselage 
torsional moments and the rudder hinge moments are taken to correspond respectively to the 
left-hand and right-hand entries in Table 1 (a), the signs of ex and f~ will be nega t iveand  the 
remaining coefficients will be positive. Then Z lies above O, but OM and ON are both negative, 
since /~ < 0. In this case the condition W > 0 (i.e. 1~ to left of N) does not preclude flutter, 
as shown by Fig. 1 (d). However, a relatively simple sufficient condition is given by the restric- 
tion that  M' shall not lie above O. This ensures a safe test diagram of the type Fig. 1 (e). The 
minimum value of e~ is here given by the greatest root of the quadratic equation 

This corresponds to formula (A~) of the main text. A more exacting, but simpler, sufficient 
condition is that  M' shall not lie above M. This would give the damping value* 

b~e~ - .  b...e~ + pf~ - -  a~b~f~. 
b1 

. S ! , m ~ m a r y . l L e t  e.~, Re2 denote respectively the natural  direct damping coefficient, and the 
minimum coefficient accepted for safety. Then the formulae are 

C~se (i) (A > 0, ~ > 0). 

b ? ~ R  ~ - -  ble~ ( b ~  + ~fl) R + b~f~ {p (el + b~) - -  d~t~} --- 0 . . . . . . .  (&) 

Case  (ii) (f~ > O, fl < 0). 

{ a ~ R  + b,d~ - p  (~ + b~)) {blear --  b ~  --  p (e~ + t,~)) + (a~d~ --  ~ )  b2f~ = O. (A~) 

In each case the greatest root is to be taken. 

* S e e  :Equation (129) of R. & M. 11551. 



5 .  Class B, Binary Flutter.lTable 1 (b) defines the dynamical coefficients. With torsional- 
aileron flutter the dynamical coordinates would be the wing twist at the reference section, and 
the aileron angle at the reference section. The inertias would then be defined as follows. 

Let m denote the mass at distance y from the wing root and at distance Cod behind the aileron 
hinge axis. Also let this axis* lie at distance coD behind the axis of twist OY. Then, if Fy denotes 
the ratio of the twist at section y~ to that  at the reference section, the total inertial coefficients 
required are 

Fig. 2 (a) shows the normal type of test conic diagram for torsional-aileron flutter. The stiffness 
point Z lies at (k,, f3), and the points M, N which are common to the test conic T, the frequency 
line LL, and the upper branch H,, of the divergence hyperbola, are given by,t 

where 

2j3X~--: ~ - -  ~ ,  2e~YM-- fl + ~.), 

/~ - e~ A (product of direct damping coefficients). 

The points M, N are accordingly unreal when # exceeds the critical value (Fig. 2 (b)) 

/z = ~/4k2f 3. 

The conic T then lies either wholly below H,,, or wholly above (cases of Fig. 2 (c)). In the first 
case flutter is either prevented absolutely or cannot occur before divergence. In the second case 
it is possible by further increases o f ,  first to shrink the test conic to a point (Fig. 2 (d)), and then 
make it unreal (Fig. 2 (e)). If t* is increased sufficiently, the ellipse again becomes real (Fig. 2 (f)), 
but  is situated below H,. To determine the limiting values of/~ certain further formulae are 
required. 

First, the condition for an imaginary test conic is§ 

f -=-Y'--2,,p(k~+f3) +p2(k~- -A)~- -~e3A + p ~ ( A  +e~)<O.  (3) 

Again, when the conic is real but M, N are unreal, the ellipse will lie below or above H,  (Fig. 2 (c)) 
according as the pole Q of the frequency line LL with ~espect to the conic lies below or above LL. 
The co-ordinates of Q are found to be 

XQ YQ 1 
d2~ ~ + e2R g3~ ~ + j3R 2,~c,. -t-Pfl (j~ _,a e3) ' 

where 

* For simplicity the hinge axis is here assumed to be parallel to OY. 
t See for example, section 7 of Ref. 5. 

See section (c) of R. & M. 11551. 
§ See Equation (72) of R. & M. 11551. 
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These relations yield, after some reduc t ion  

j~XQ + e2YQ - -  {3 - -  ~2q ,  2~c,. + p ~ (A + e~) 

Hence, if a t tent ion  is restr icted to the  case s9 ~ < 0 (M, N unreal) the point  Q lies below or above 
H,, accord ing  as 

2l~+pfl(j2+e3) > Oor  < 0 .  

On subst i tut ion for c~ from Table 1 this inequal i ty  can be wri t ten 

g =_ 2~ ~ - -  2~p (k~ + f ,)  - -  2,ue~j2 + p/~ (j2 + e3) > 0 or < 0 . . . . .  (4) 

The inequalit ies (3) and (4) are most  s imply discussed by a .graphical representat ion of the  two 
conics f = 0, g = 0, in the (~, p) plane (Fig. 3 ) .  Both  comcs are hyperbolic, and their  main  
characteristics are as follows. 

Hyperbola f = O. 

(i) Intercepts on axes 

p - o ,  

# = 0 ,  

(ii) Centre 

= 0 a n d #  = e~j~, 

15--, 

= e 2 sk.,Lf, ~ + k2A (A + ~), 
" 2  Sk~f,p = 327~ + e~k~ • 

(iii) Asymptotes .  

- p (k2 + f,~ + 2vk~f0) = - ( A V T -  e ~ / ~ !  ~ 
4~/k.~f~ 

4~k2A 

Hyperbola g = O. 

(i) Intercepts on axes 

p = o ,  # = 0 a n d , . =  e3j~. 

(ii) Centre. 

2 (k~ + L),,, = ~ (L + e~), 

(k~ + A)~p =- j£f~ + e?k2. 

(iii) Asymptotes  

" - 2 (k2 + A)'  

- p ( k ~  + L )  + ~' ( j ~ - e . . ) - o .  
2(k~ + L )  

11 



The four points  of intersection of the two curves are given by  (Fig. 3) " 

# 

4 z  

4 k J ~  

The tangents  to f = 0 at 
# 

# 

/ ~ = 0 ,  

= ~3Y2 
= ( A  + 
= ~ 2  j 

p = 0 (origin O) 
p = 0 (point S) ,  

4p (k~ -- f3) = j2' --  e~' (point K ) ,  
4k~.f~ (k~ --f.,) p -- -- /~ ~' (point J ) .  

K and J are parallel  to ~, = 0, and are 
= (j~ + e~)~/~ ( tangent  AA'  at-point  K ) ,  
= f l~ /4kJ3  ( tangent  BB '  at  point  J ) .  

The region of the (~,, p) diagram to the r ight  of AA'  Corresponds to A = 4~ -- ( j2 ,~  e3) ~ > 0 
and so to elliptic test  conics. T h e  region t O the r ight  of B B '  corresponds to the cases where M, 
N are unreal  (P- 2 < 0). 

Fig. 3 is the  diagram appropria te  to tors ional-ai leron flutter of the rectangular  l ight  aircraft  
wing (s = 9 It, Co -- 3 It) specified in section 50 of R. & M. 1155L The torsional axis is assumed 
to be coincident wi th  the  flexural axis (14.5 in from leading edge). As in R. & M. 11551 the 
reference section is chosen at the  wing t ip (l = s), and the appropriate  derivat ive coefficients 
(converted from Table 16 of R. & M. 1155 to accord wi th  the definitions in Table 1 of the  present  
report) are 

e,,. = O" 0046,  e3 
A --  0 . 0 0 9 0 ,  
j~ = 0 .0087 ,  j ,  
k,~ = 0"0048,  k3 

The value of the na tura l  main  damping product  

These da ta  yield 
Point  S 
Point  K 
Point  J 
Centre of f = 0 
Centre of g = 0 
Asymptotes  of f - -  0 

Asymptotes  of g = 0 

= 0- 020,  
= 0 . 0 4 5 ,  

= 0 . 0 5 4 ,  

-- --  0 . 0 8 0 .  

is tt - e, j2 --  2. 484 × 10 -4. 

10 -4 (1- 74, 0) 
10 -4 (2.06, 20.17) 
10 -4 (2.75, 41.5) 
lO -~ (2.4, 30.4) 
10 -4 (1.4, 21.5) 
# - - 0 . 7 9 2 p - - - - 3 . 5 8  × 10 -6 
~ - -  0 " 0 2 0 p  = 1 " 7 7  × 10 -4 

= 1 - 4  × i 0  - 4  

, ,  - 0 . 0 5 p  = 0 . 3 4  x 10  -4  . 

Points  on the upper hyperbolic branch  V J W  of f = 0 indicate reduct ion of the test  conic T fo a 
point.  This degenerate ellipse lies below or above H,, (Figs. 2 (f)) and 2 (d)) according as the lower 
segment JV, or the upper segment  JW,  is taken.  Hence, the safe region of the (~, p) diagram 
lies to the  r ight  of the  composite boundary* BJW.  

S u m m a r y . - - L e t / ~ 1 ,  ~2 denote the  two roots of the equat ion 

# ~ - - ~ t { e ~ j ~ +  2p (k~ +f~)}/,~ q - p ~ ( k 2 - - f ~ ) ~ + , p f l ( j 2 - k - e 3 ) = 0 .  

Then if ~q, #~ are real (#~ > #1) the mult ipl ier  R to be~applied to the product  e~j~ is given by  

R = . . . . . . . . . . . . . . . . .  ( K )  

I f / , , ,  ~, are unreal  

R = f12/4e~ysk2/3 . . . . . . . . . . . . . . .  (B,) 

* A limitation to the region to the right Of BJV would be unnecessarily severe, and would correspond to tile values 
R'  quoted in some of the numerical examples. 
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T A B L E  1 

D y n a m i c a l  Coefficients and  s u p p l e m e n t a r y  Symbols  

(a) Class A F l u t t e r  ( T y p i f i e d b y  F lexura l -Ai l e ron  Flu t te r ) •  

Flexural Moments Aileron hinge-Moments 

Non-dimensional 
Non-dimensional Coefficient Significance Form Coefficient Significance Form 

A l 
B1 
C 1 
P 
E1 
FI 

Inertia 

Inertia 
--L~ 

p~3Co2a 1 
pVl3cobl 
pV2I~X 
pt%o3p 
pVl%o~el 
pV~l~cofl . 

P 
B2 
Ca 
D2 
E~ 
F~ 

Inertia 
--Ha 

0 
In ertia 

h~-  H~ 

OZ2Co~p 
pVl%o%~ 

0 
plCoM2 
pVlcoae2 
o V 2lco~ Y 

X - 1JoV2P,  
[be[ - b~e~ - -  b2e~ , 

- [ b e ] - -  P f l ,  
ql'  = ale2 + bfl2 - -  p (e~ + b,,) , 

Y =- (h,/PV"lco ~) + A ,  
I bfl  _= b~f£ - -  b, , f .  

=_ b,J~, 
A =- 4b~e~ - -  (e~ + b~) ~. 

(b) Class B F l u t t e r  (Typif ied b y  Tors iona l -a i le ron  F lu t t e r )  

Aileron hinge-Moments Wing Torsional Moments 

Non-dimensional 
Non-dimensional Coefficient Significance Form Coefficient Significance Form 

D 2 
Eo 
F2 
P 
]2 
K~ 

Inertia 

h~ --H~ 
Inertia 

--Ho 
--Ho 

plco4d~ 
pVlco3e2 
pV2lco~X 
plco~ 
pVlco3j2 
pV~lco2k2 

P 
E3 
F~ 
G3 
]3 
K3 

Inertia 
--M~ 
--M~ 

Inertia 
--M0 

mo --Mo 

pZco~p 
pVlco~ea 
p V2lco2f 3 
plco~3 
p Vlco~j8 
pV~lco~Y 

X = (a~/pV~lCo ~) + A ,  

q,' ; d2A + g~e, - P (L + e~), 
13 

y =_ (mo/PV~lco ~) + k . ,  
o: =- l d l - - ~  (k. + A )  , 

=_ + x /  ~ ~ - 4 e ~ A k J ~ ,  



TABLE 2 

Surnmary of Results of Numerical Examples (sections 2 and 3) 

Aircraft  Type  

Modern fighter 3, 5 (example 2 (i)) 

Biplane (example 2 (iii)) . .  

Large civil t ranspor t  6 (example 
3(ii)) 

Military t ransporff  (twin-tail) 
• (example 3 (iii)). 

v~ 
(ft/sec) 

800 

300 

600 

Specification of F lu t te r  T y p e  Control Surface 

Flexural-ai leron Fabr ic  covered ailerons . .  
A l u m i N u m  covered . .  

Multiplier R 
(main control surface) 

h = O  

2 .7  
8 .5  

3 .0  

20,000 

2.4 

2 .7  

40,000 

9 .4  
33 

4-8 

5 .3  

Artificial Damping  K 
(lb ft /rad/sec) 

63 
2s3 

': 20-4 

300 

Rudder- tors ional  Rudder  horn-balanced and 
above fuselage axis 

Flexural  - aileron Control circuit offset f rom 
(geared) neut ra l  axis 

Flexural  - aileron Control circuit normal  . .  

Servo-rudder  . .  Servo not  mass-balanced 
Servo dynamical ly  balanced 

1-5 

1"6 

1 "33 
1 "35 

96O 

1170 

79 
84 

20,000 40,000 

7 7  
298 

1425- 1800 

1730 2040 

Notes. (a) R is defined as tile ratio of tile m i n i m u m  d i r e c t d a m p i n g  coefficient %1 absolute flutter prevention to the na tu ra l  direct damping  
coefficient. 

• (b) K denotes the constant  artificial damping  to be applied to each relevant  main  control surface, and measures  the addi t ional  damping  
hinge moment  (lb ft) whei1 tha t  surface is tu rned  uniformly at  tile ra te  of 1 rad/sec. 
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FIG. 2. Test Conics for Class B Flutter. 
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