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Summary.—Range of Investigation—Formulae are obtained which provide an estimate of the amount of artificial
control needed to prevent binary flutter. Results are expressed in terms of a ‘ minimum damping multiplier ’ R,
defined as the ratio of the least direct damping coefficient required for absolute flutter prevention to the ‘natural’
direct aerodynamic damping coefficient of the control surface concerned. Numerical results are obtained for five

different types of aircraft.

Conclusions.—The main conclusions are as follows :— o
(i) R varies with the type of flutter and increases markedly with height. A
(if) Large values of R are to be expected with high structural density or mass-underbalance of the control surfaces.
(iii) Maximum height should (in general) be assumed in the estimation of artificial damping.
(iv) With artificial damping of conventional type servo-operated controls and devices for reduction or cut-out of
the damping at low speeds will normally be necessary.
(v) If artificial damping is applied to a main control surface, mass-balancing of the servo-flap may be necessary.

1. Introduction and Conclusions—The theoretical advantages of heavily damped control
surfaces from the standpoint of flutter prevention have long been recognized.* Recently it has
been suggested that artificial damping might be preferable to mass-balancing as a means of
preventing flutter, since weight might be saved. The purpose of the present paper is to provide
simple formulae from which the amount of additional damping required can be estimated.

Attention is restricted to binary flutter, which is referred to as being of Class A or B according
to the nature of the dynamical coefficients (see Table 1). With Class A two of the aerodynamical
stiffness coefficients are zero (¢, = ¢, = 0); whereas with Class B all the aerodynamic stiffnesses
are present. The formulae obtained differ for the two classes of flutter. The detailed proofs,
which assume simple classical derivative theory and depend on the properties of test conics,}
are given in the Appendix. In general, the control surfaces considered are assumed to be mass

underbalanced.

The damping values obtained are theoretically sufficient for the absolute prevention of flutter
(1.e. prevention for all elastic stiffnesses). In practice, increased values should be taken, to allow
for uncertain data. For convenience, results are expressed in terms of a minimum damping
multivplier R, which is defined as the ratio of the least direct damping coefficient required for
absolute flutter prevention to the ‘mnatural’ direct aerodynamic damping coefficient of the
control surface concerned. The value of R varies with the altitude 7 owing to the increasing
influence of the structural inertias with decreasing air density p.

* See, for example, recommendation (e) of section 9, R. & M. 1155%.  Also Conclusion (d) on p. 1 of R. & M. 16852
1 See Chapters III and VIII of R. & M. 1155,
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In practice, artificial damping proportional to' p and: to- airspeed -7 (arid ‘thus providing an
increase of damping coefficient) is unlikely to be achieved by any simple means. " If the device
used provides merely constant additional damping, the amount of this should be of sufficient
magnitude to ensure that at any height % (ft), and for the corresponding true maximum diving
speed V,, (ft/sec) flutter is absent. The total effective damping coefficient will then be on the
safe side for other flight conditions. Suppose, for example, that the case considered is flexural-
aileron flutter, and let the coefficients* be defined as in Table 1(a). Then if R denotes the
minimum dampmg multiplier correspondmg to air density p, the constant artificial aileron
damomg to be supplied is given by

K=p(R—1O)V,Jedes, .. o o e e o)

where the height should be chosen such that p (R — 1) V,, has its greatest value. In this case .
the effective damping multiplier for any other air density p’ and for any speed V' < V,, will be

me (R '_ ])
1+W—:

which will certainly exceed R’. the minimum multiplier corresponding to air density p’.
Numerical examples given in sections 2 and 3 indicate that (in general) maximum height should
be assumed in the estimation of K. In the absence of deﬁmte information the value of V,, is
taken to be independent of the height in the examples.

The quantity K in {1) measures the aileron hinge moment (in 1b ft) due to artificial damping.
when the aileron is rotated steadily at a rate of 1 rad/sec. '

(a) Damping Formulae for Class A Flutter. —This class is represented by standard flexural-
aileron flutter and by rudder flutter involving fuselage torsion. The formulae, which involve
one or both of the moment-of-inertia coefficients as well as the product-of-inertia coefficient p,
differ according to the sign of § (for symbols, see Table 1(a)).

Case (1). Flexural-Ailevon Flutter (f, > 0, p > 0}, ‘
The value of R is here given by the greatest positive root of the equation
b7’ R* — bies (baoey + D) R -+ bofs (P (62 + bs) — dobi} = 0. ce oo (AY
Case (i1). Rudder-torsional Flutter (f, > 0, § < 0).
For (A,) substitute
{me.R 4 bid, — P (e, + by) }{blez — by — ples 4+ b))} + (@ds — P°) 0y =0 .. (A
Conditions (A;) and (A,) ensure test conic diagrams of the types Figs. 1(c) and 1(b) respectively.

(b) Damping Formulae for Class B Flutter.—This class includes most other varieties of flutter
(e.g. torsional-aileron, servo-rudder, elevator-fuselage, etc.). The formulae are independent of
the moments of inertia. '

Let u,, . denote the two roots of the equation
p—Aegs 4+ 20 (ke +fo)bpe + 9° (ke — fo)* + P (Ja+e)) =0 .. e (9

Then if py, py are real (u, > ,ul) the multiplier R to be applied to the product e, 7; of the two natural
direct damping coefficients is given by

R:T/,tl/8273. .. .« .. « . . n , . . (Bl)
If g4, 1, are unreal, choose

R=fMeajdafs. o . .. . . .. .. (B

* If the coefficients used are not non-dimensional, the formulae should be applied with / and ¢, suppressed.
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Conditions (B,) and (B,) correspond respectively to test conic diagrams of the types Fig. 2(d),
and Fig. 2(b) with T below H,. With.types of flutter other than those considered in this paper
the formulae used should be guided by the geometry of the test diagram.

Numerical results for some representative aircraft and for various types of flutter are sum-
marized in Table 2. The following conclusions are indicated by the calculations.

General Conclusions.—(i) The minimum damping multipiier R varies with the type of flutter
and increases markedly with height.

(i1) Large values for R are to be expected with high structural density or pronounced mass
underbalance of the control surfaces. ' ‘

(111) Maximum height should (in general) be assumed in the estimation of the artificial damping

(iv) With artificial damping of conventional type, servo-operated controls and devices for
reduction or cut-out of the damping at low speeds will normally be necessary.

(v) If artificial damping is applied to a main control surface, mass-balancing of the servo-flap
may be unnecessary.

It is considered probable that an aileron which is adequately damped to prevent flexural-
aileron and torsional-aileron flutter, will also prove to be adequately damped against ternary
flutter and tab-aileron flutter. However, a verification of this conjecture by calculation would
be desirable before artificial damping were tried out in practice.

2. Numerical Examples (Class A Flutler)—(i) Flexural-Ailevon Flutter (Fighter Adrcraft).—
The data are taken from the end of section 2, R. & M. 25513, and relate to a fighter aircraft -
(aircraft S of Ref. 5). The dimensions, in feet, for full-scale are

¢y (root-chord of wing) = 5-87

s (span of one wing) = 18-5
‘¢, (aileron mean chord) = 1-38
s, (aileron span) = 6-85
t=0-57s - ’ = 10-54
Aerodynamic Coefficients (%on-dz'me%szfdml, Table 1(a)) '
61:5'78, ) 61:0'298, >f]_: 1'39,
b, = 0-00972, e, = 0-009225, J: = 0-0146.
Aevodynamac Inertial Coefficients (non-dimensional)
$o = 0-0162, By = 0-00054.
Tolal Inertial Coefficients (Structural plus Aerodynamic)
Altitude (ft) .. .. . 0 10,000 20,000 30,000 40,000
PolP - e e 1-0 - 1-35 1-88 2-67 4-06
Fabric aileron covering b 0-0998 0-128 0-173 0-239 0-356
dy 0-00587 0-00773 - 0-0105 0-0148 0-0222
Aluminium aileron covering P 0-325 , 0-433 0-597 0-841 1-27
- dy 0-0202 0-0271 0-0376 0-0531 0-0805 " -
3
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The results by formula (A,) are as follows :—

Flexural-Ailevon Flutter (Fighter Adrcraft) =

Height (ft) .. .. e 0 10,000 20,000 30,000 40,000
Fabric R S 2-66 340 4-58 6-30 9-35
pR—1) .. .. .. 0-00395 0-00422 0-00451 0-00472 000489
Aluminium R .. .. .. 8-54 11-4 15-6 22-0 332
p(R—1) o 0-0179 0-0183 0-0184 0-0187 0-0189

The values of K given by equation (1) for full-scale, and based on V., = 800 ft/sec and 40,000 ft,
are 77 and 298 for the fabric and the alumininm covering respectively. “The corresponding values,
based on sea level, would be 63 and 283 respectively.

(i) Flexural-Adleron Flutter (Wing of R. & M. 16852) —This example compares results based
on formula (A,) with damping values calculated by Falkner® for a rectangular cantilever wing

(s = 15 ft, c = 5 [t). The aileron, which extended to the wing tip, was of span 7 ft and chord
1-25 ft.

Aerodynamic Coefficients (p = 0-002378)
b, = 0-334, ¢, = 0, e, =0-0122, fi=0-211,
b, = 0-00114, s = 0, e; = 0-000517, J2 = 0-00302.

The coefﬁéients here are defined to accord with the notation of R. & M. 1685 and R. & M. 1155,
and are appropriate to sea-level only.

Inertial Coefficients—In R. & M. 1685 the standard values specified for $ and d, are p = 0-0011
and 4, = 0-0001226, but for the damping calculations made in that report $ was increased to
0-00176, and d, was given the range of values 0-0001226xn, where # = 0-2, 1-6, 5, 10, 50.

‘The following table summarizes the results obtained by formula (A,), and also gives a comparison -
with damping ratios read from the curves in F ig. 7 of R. & M. 1685. It should be noted that

symmetrical flutter only (against a specified elastic stiffness) was assumed for the calculations
in R. & M. 1685.

Flexural-Asleron Flutter (Wing of R. & M. 1685)

10° 4, x 108 R B
px 10 z X 10 (Formula A) | (R. & M. 16859)
1-1¢ 0-12261 1-6 —
1-6 X standard 0-2 x standard 22 —
1-6 % ,, 1-6 x . 2-4 1-1
16 X " 5-0 % 27 21
1:6 x » -10-0 x 32 2-2
1-6 x v 50-0 x 5-3 2-6 -

##* Effective for symmetrical flutter against a specified elastic stiffness.
t * Standard * values.

(itl) Rudder-Torsional Flutter (see Chap. V, R. & M. 1225%.—This illustration relates to a

biplane on which violent rudder oscillations occurred at a flight speed of about 250 ft/sec. The
principal dimensions of the tail unit were:—

Total span of tailplane .. .. .. .. 12 {t. 8 in.
Total chord of tailplane (including elevators) .. 4 ft §-95in..
Total height of rudder surface .. .. .. S5ft1-5in.

‘The rudder lay wholly above the fuselage axis, and was slightly underbalanced aerodynamically
by a horn. : : o
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Aerodynamic and Inertial Coefficients

Fuselage Torsional Moments Rudder Hinge Moments
a 44-7 p —1-15
. 1-77 b, 0-041
N 0 . €y 0
P —1-15 d, 0-745
¢, —0-186 ¢ 0034
N —0-101 e 0-00358

These data are taken from Table 43 of R. & M. 1255, with the gravitational cross-stiffness term
omitted. The coefficients refer directly to the full-scale aircraft and to flight at sea-level. A
negative product of inertia here indicates mass underbalance. "

Since in the present case g (= 8,f,) < 0, formula (A,) must be used. The value of R works
out as about 3-0, giving :

K =2 x 300 x 0-034 — 20-4
for V,, = 300 ft/sec and p = 0-002378.

3. Numerical Examples (Class B Flutter).—() Torsional-Aileron Flutter (Light Adrcraft Wing
of section 50, R. & M. 1155).—The basic data for this rectangular wing are given in section 5
of the Appendix to the present note, and are used there to obtain Fig. 3. The torsional axis is
assumed to coincide with the flexural axis (about 0-4¢ behind the leading edge). The corre-
sponding total product of inertia coefficient, deduced from inertias measured for the actual wing,

is p = 0-0216 (for sea-level).
On substitution of the data, equation (2) and formula (B,) yield R = 2-5. The higher root

of (2) would give R’ = 7-1, and this would ensure a test diagram of the type Fig. 2 (f). The
multiplier R would, of course, normally be applied to the aileron damping.

(i) General Flexural-Aileron Flulter (Large Civil Transport Asreraft) —This example relates to
a large transport aircraft (s = 105 ft; ¢, = 30-85; [ = 0-75s). The aileron control circuit is
assumed to the offset from the neutral axis of the wing, so as to provide gearing action between
the flexural displacements of the wing and the angular displacements of the aileron. Owing to
this gearing and the flexibility of the control circuit, a cross-stiffness is introduced in the dynamical

equations for symmetrical oscillations. Elimination of this cross-stiffness by the choice of new
~ (‘barred’) dynamical coordinates is accordingly necessary before formule (B) can be applied.
The details of the treatment, which follow the lines adopted with spring tabs® will be omitted,
and only the essential data will be stated.

The data for the example are taken from section 11 of R. & M. 2362°. The derivative values
are classical approximations to frequency-dependent air-load coefficients, and it should be noted
that they do not accord with the simple assumption ¢, = ¢, = 0. A parabolic flexural mode
is assumed.

Aerodynamic Coefficients ( for normal control circuit).
b, = 0-7925, c; = 0-3342, e, = 0-000303, Ji=0-3009,
b, = 0-000866, ¢y = 0-0004278, e, = 0-000612, f; = 0-002214.
: # (aerodynamic) = 0-00071
dy (aerodynamic) = 0-000019.
5.



Relations Connecting Original and Barved Coefficients.

b, =256, +N (31 -+ bz) + N, Z—)z = b, + Ne,,
¢, = e; + Ne,, €y = €,
h=a+N(fite)+ N  &=at+Nf
f_} :fl +Nf2, 2 :f2;
j):jﬁ +Nd2> dzzdz,
where N denotes the gearing ratio.
Barved Aevodynamic Coefficients (for N = 2-5).
b, = 0-799, ¢, = 1-10, é, = 0-00183, f» = 0-3086,
b, = 0-00240, ¢, = 0-00596, ¢, = 0-000612, f. = 0-002214.

The estimated structural inertial coefficients for sea-level were p = 0-00210 and d, = 0-000117,
giving the following values for the total barred inertias.

Total Barred Inertial Coefficients

(£t) 0 ’ 10,000 ’ 20,000 I 30,000 ’ 40,000
b 0-000315 0-00398 0-00525 0-00714 0-0105
d, 0-000136 0-000177 0-000239 0-000331 0-000494

With the present type of flexural-aileron flutter, formule (B), with the approprirate interchange of
symbols, must of course be used, since all the aerodynamic stiffnesses are present. Moreover,
the roots u will here determine the safe bounds for the product of the barred direct damping

coefficients. The corresponding bounds for the true direct aileron damping coefficient e, are then
given by : :

{b] + N (e, + b,) + -Nzez} e =W,

with by, e,, b, treated as assigned.

The final values of the minimum (true) aileron damping multipliers R, corresponding to the
geared control N = 2-5, and to the normal control N = 0, are given below. The table also

includes the values of the more exacting ratios R’, derived from the higher root x, of equation (2)
(see last footnote, Appendix).

Height (ft) 0 10,000 20,000 30,000 40,000
R .. 1-5 1-9 2-4 3-8 4-8

N =25 p({R-1).. 0-00119 0-00158 0-00176 0-00205 0-00223
R .. 2-5 32 4-2 5-7 8-2
R .. 1-6 2-0 2-7 3-6 5-3

N=0 p(R-1.. 0-00143 0-00176 0-00214 0-00231 0-00252
R 1:9. 2:4 3-1 4-2 6-2




The values of the constant artificial damping, based on R and V,, = 600 fi/sec (about
270 m.p.h., true), are as follows.

K (ib {t/(rad/sec))

Type of Control ’ =0 ‘ 20,000 ‘ 40,000
Geared (N = 2-5) .. .. 960 1425 1800
Normal (N = 0) .. 1170 1730 2040

The value of V,, is here assumed to be constant for all heights.

(iil) Servo-rudder Flutter (Aivcraft X of R. & M. 1527").—Rudder flutter occurred on this
aircraft at a speed of about 270 ft/sec. Twin rudders were fitted, symmetrically disposed about
the ends of the tailplane, and a small triangular fin was present in front of each rudder. The
principal rudder dimensions were as follows (see section 8, R. & M. 1527)—

Total height 165 in.

Overall chord 54-7 .
Distance of main rudder hinge from leading edge 10-0 in.
Chord of servo-flap 10-2 in.

Calculations in connection with the binary servo-rudder flutter of this aircraft are given in
sections 8 to 12 of R. & M. 15277, in section 17 of Ref. 5 and in section 3 of R. & M. 2551°. The
relevant numerical data, in the notation of the last two reports, are listed below. In the present
case the dynamical coefficients adopted are not non-dimensional. They correspond to the
coefficients in Table 1 of the present report, with p, Z and ¢, suppressed. All data given refer to a
single rudder only.

Aerodymnmc Coefficients (basic, for p = 0-002378)
- Servo e; = 0-008, f,=0-0038, j,=0-025 %, = 0-0013,
Main Rudder ¢, = 0-09, Ja = 0-088, js = 0-80, &y = 0-072.

Barred Aerodynamic Coefficients (N = 2-783, p = (-002378)
g, = 1-17, fo == 0-344, 7. =0-868, k=
& = 1-045, f,=0-312, 7s = 0-80, ky =

The appropriate transformation formulae are given in section 17 of Ref. 5.

Inertias.—With the ‘ standard ’ inertial condition (leading to severe flutter on full-scale) each
rudder weighed about 55 1b, and the C.G. was 12-1 in. behind the rudder hinge axis. Moreover
the servo-flaps were not mass-balanced. In section 17 of Ref. 5 the critical length for a servo
mass-balancing arm is given as 2 = 9-26in. The values of $ for several representative conditions
are as follows :(—

Standard

Servo-flap statically balanced (1 == 6)

Servo-flap dynamically balanced (1 = 6)

Servo-flap dynamically balanced (4 = 10:2)
7
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The minimum multipliers for the true main-rudder damping are summarized below.

Servo-rudder Flutter (Aircraft X)

. .. R R
Inertial Condition (from Toot ;) (from root 1,)
Standard. . . .. .. .. .. .. 1-33 2-43
Servo-flap statically balanced (1 = 6) 1-34 2-49
. ,» dynamically ,, (A =6) .. .. 1-35 2-52
" - . v A=10-2) .. .. 1-33 2-42

If the damping is assumed applied to the flap, instead of to the main rudder, the required minimum
multiplier 1s of the order 13-5.

The values of artificial damping for each main rudder, derived from root 1, and estimated for

sea-level and V,, = 800 ft/sec, are K = 79 for the standard servo and X = 84 for the dynamically
balanced servo (1 =: ).

APPENDIX
Proofs of the Formulae

4. Class A Binary Flutter—In Table 1 (a) the relevant dynamical coefficients are appropriate
to flexural-aileron flutter and are expressed in the non-dimensional form. The reference section
lies at a‘distance / from the wing root, and ¢, denotes the root chord. TIn this case the two
dynamical coordinates are the linear normal displacement of the wing at the reference section
divided by /, and the aileron angle. The inertial coefficients are expressible as follows :—

Let m denote the mass at distance y from the root and at distance ¢,5 behind the aileron hinge
axis. Also let f, denote the ratio of the linear normal displacement of the wing at distance y

from the root to the corresponding displacement at the reference section. Then the total inertial
coefficients are given by

a, = (%m fyz/pl602> + ay,,
p= (2 7 rﬁfy/plcf) + 2,
d, = <2m 52/pzc02) + dy
where @y, po, ds denote the aerodynamic inertias, and Z s >, denote respectively summation
over the complete wing (with aileron) and over the aileron only.
Fig. 1 (a) shows the normal type of test-conic diagram for flexural-aileron flutter, when the
aileron is mass-underbalanced. The stiffness point Z(0Q, f,) has the positive ordinate f2, and the

points of intersection M, N, M’, N’ of the conic with the coordinate axes are all real. In particular,
the positions of M and N are given by OM = /b, and ON = §/e,. Hence

07 — OM = |bf| /b .



The first essential condition for absolute prevention of flutter is that Z shall be above M: this
requires )

|of] >0.

This inequality cannot, of course, be controlled by changes of the direct aileron damping e,, and
must be assumed to be already satisfied. Ifin fact Z lies below M, the minimum aileron damping
indicated by the present theory should ensure high critical speeds and will almost certainly be as
effective as mass-balancing. ‘

Two cases arise, according as g > 0or < 0.

Case (2) (# > 0).—This is representative of standard flexural-aileron flutter, and corresponds
to OM and ON, both positive.

Let MM, in Fig. 1 (a) be the chord parallel to OX. Then it is readily shown that M, lies to the
right, or to the left, of M according as

W = be? — bie, (boey + pf) + bofi {0 (61 + bs) — doby} < Oor > 0.

Hence 1if ¢, is regarded as variable and is chosen so great that W > 0, the conic is necessarily
disposed as in Fig. 1 (b), and flutter is prevented absolutely. The minimum safe value of ¢, is
given by the greatest root of the equation W = 0; M, and M then coincide, and OM is the maxi-
mum ordinate (see Fig. 1 (c)).

If the equation W = 0 (which corresponds to formula (A,) of the main text) has unreal roots,
W is necessarily positive. Increased damping is then not required.

Case {12) (B < 0).—This case arises with rudder fuselage-torsional flutter. If the fuselage
torsional moments and the rudder hinge moments are taken to correspond respectively to the
left-hand and right-hand entries in Table 1 (a), the signs of ¢, and f; will be negative and the
remaining coefficients will be positive. Then Z lies above O, but OM and ON are both negative,
since f < 0. In this case the condition W > 0 (i.e. M, to left of M) does not preclude flutter,
as shown by Fig. 1 (d). However, a relatively simple sufficient condition is given by the restric-
tion that M’ shall not lie above O. This ensures a safe test diagram of the type Fig. 1 (e). The
minimum value of ¢, is here given by the greatest root of the quadratic equation

{6, + bidy — P (51 +- bz)} {6132 — by — P (er 4- bz)} + (@dy, — ]52) byfy =0.

This corresponds to formula (A;) of the main text. A more exacting, but simpler, sufficient
condition is that M’ shall not lie above M. This would give the damping value*

bies = baty - fs — “lng :

Sdmmmy.—Let ¢, Re, denote respectively the natural direct damping coefficient, and the
minimum coefficient accepted for safety. Then the formulae are

Case (1) (f, >0, g >0).

b2’ R? — biey (bt 4 pR) R+ bofs {p (en + B) — dib = 0. .. .. .. (A)
Case (i) (f, >0, § < 0).

{16 + bidy — P (61 + b)) {B16aR — by — P (62 + b)) + (aads — p?) bofy = 0. (As)

In each case the greatest root is to be taken.

* See Equation (129) of R. & M. 11551,



5. Class B, Binary Flutter—Table 1 (b) defines the dynamical coefficients. With torsional-
aileron flutter the dynamical coordinates would be the wing twist at the reference section, and
the aileron angle at the reference section. The inertias would then be defined as follows.

Let m denote the mass at distance y from the wing root and at distance ¢,8 behind the aileron
hinge axis. Also let this axis* lie at distance ¢,D behind the axis of twist OY. Then, if F , denotes
the ratio of the twist at section yt to that at the reference section, the total inertial coefficients
required are ’

dy = (2@: mé%iZcf) + day ,
p = (Zms (5 + DF,)plei) + po.

Fig. 2 (a) shows the normal type of test conic diagram for torsional-aileron flutter. The stiffness
point Z lies at (&, f;), and the points M, N which are common to the test conic T, the frequency
line LL, and the upper branch H,, of the divergence hyperbola, are given by}

2 Xy =p— 0, 2Y,=810,
] Xy =8+ 0, 2eYy=p—20,
where '
QF = p* — dukyfs,
B Ej2f3‘|‘53732:

# = €75 (product of direct damping coefficients).

The points M, N are accordingly unreal when p exceeds the critical value (Fig. 2 (b))
H = /32/4sz3 .

The conic T then lies either wholly below H,, or wholly above (cases of Fig. 2 (c)). In the first
case flutter is either prevented absolutely. or cannot occur before divergence. In the second case
it is possible by further increases of x first to shrink the test conic to a point (Fig. 2 (d)), and then
make it unreal (Fig. 2 (e)). Ifu isincreased sufficiently, the ellipse again becomes real (Fig. 2 (f)),
but is situated below H,. To determine the limiting values of 4 certain further formulae are
required.

First, the condition for an imaginary test conic is§ ‘
fo=ut— 2up (ke + fo) + P? (kz —fa)z — pesds + A (]2 + &) < 0. (3)

Again, when the conic is real but M, N are unreal, the ellipse will lie below or above H, (Fig. 2 (c))
according as the pole Q of the frequency line LL with respect to the conic lies below or above LL.
The co-ordinates of O are found to be

Xq _ Y, _ 1
&2 4 e,R - g,2° 4 j,R 2uo PB (J2 4 ) ’

where

R =g+ 8" (ka—1fi).

* For simplicity the hinge axis is here assumed to be parallel to OY.
1 See for example, section 7 of Ref. 5.

T See section (c) of R. & M. 1155

§ See Equation (72) of R. & M. 11551,
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These relations yield, after some reduction
) o
2[“0' + P8 (7. + 63)

Hence, if attention is restricted to the case 2° < 0 (M, N unreal) the point Q lies below or above
H, according as

JsXg +&Yg— f =

‘L

Quo + pB (42 + &) > Oor < 0.

On substitution for « from Table 1 this inequality can be written
g =t — 2up (ky + fo) — 2uesfs + PB (Jo 4 ) >00r< 0. .. oo (4)

The inequalities (3) and (4) are most simply discussed by a graphical representation of the two
conics f =0, g = 0, in the (¢, p) plane (Fig. 3).” Both conics are hyperbolic, and their main
_ characteristics are as follows.

Hyperbola f = 0.
(1) Intercepts on axes
p=0 p=0andu = e,

. ﬁ(]z“l_e:s)
=0 p=—RlES

(i) Centre
8kyfou = B + Rofs (42 + )’
8kofsp = Jo'fs + eka .

(iii) Asymptotes.

(b fot 2V = — BV — eV R

ANV Ry f

p—p (ke fo — 2V RS, _ GV + eV
p—2( j‘f ) e

Hyperbola g = 0.
(i) Intercepts on axes
p=0, i =0and g = e37,.

(ii) Centre.
2k +f)p =B 7.+ ¢,
(kz ‘l‘fs)zjb = j22f3 + e’ks .

(iii) Asymptotes

B (_7.2 + €3
S TCE A

ﬁ( &) _
P (ke + 1) + (k2+f..;) =0.
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The four points of intersection of the two curves are given by (Fig. 3) -

vw=0, 5 = 0 (origin O) ,

&= eJs, $ = 0 (point S) , -

dp = (7, + &5)°, 4p (ks — f5) = 7i° — &’ (point K) ,
4k fou = 7, 4kofy (ke — fo) p = — BB’ (point J) .

The tangents to f = 0 at K and J are parallel to x = 0, and are

u = (7, + e)¥, (tangent AA’ at point K) ,

u = p*/4k.fs  (tangent BB’ at point J) .
The region of the (4, p) diagram to the right of AA’ corresponds to 4 = 4y — (Jeirt€5)® > 0
and so to elliptic test conics. The region to the right of BB’ corresponds to the cases where M,
N are unreal (2% < 0).

Fig. 3 is the diagram appropriate to torsional-aileron flutter of the rectangular light aircraft

wing (s = 9 ft, ¢, = 3 ft) specified in section 50 of R. & M. 1155'. The torsional axis is assumed
to be coincident with the flexural axis (14-5 in from leading edge). As in R. & M. 1155' the

reference section is chosen at the wing tip ({/ = s), and the appropriate derivative coefficients
(converted from Table 16 of R. & M. 1155 to accord with the definitions in Table 1 of the present

report) are

¢, = 0-0046 , es = 0-020
fo = 0-0090 , f, = 0-045
4, = 0-0087 s = 0-054
k, = 0-0048 , Fy = — 0-080..

The value of the natural main damping product is p = e,j, = 2-484 X 107
These data yield

Point S ~*(1-74, 0)

Point K —*(2-06, 20-17)

Point J —*(2-75, 41-5)

Centre of f =0 ~4(2-4, 30-4)

Centre of g = 0 10 (1-4, 21-5)

Asymptotes of f==0 p —0-792p = — 3-58 x 10~°
w—0-020p = 1-77 X 107*

Asymptotes of g = 0 po=1-4x10"*

u — 0-05p = 0-34 X 10™*.

Points on the upper hyperbolic branch VJW of f = 0 indicate reduction of the test conic T to a
point. This degenerate ellipse lies below or above H, (Figs. 2 (f)) and 2 (d)) according as the lower
segment JV, or the upper segment JW, is taken. Hence, the safe region of the (i, p) diagram
lies to the right of the composite boundary* BJW.

Summary.—ILet u;, u, denote the two roots of the equation
pt— pieads + 2P (e + oo + 9° (ke — [o)* +-DB (Ja + ) = 0.
Then if y;, . are real (, >p,) the multiplier R to be-applied to the product e,j, is given by
R = u,fes7s . .. .. . .. .. .. .. .. (B
If 4, u, are unreal

R = p*/desichsfs . L By

* A limitation to the region to the right 6f BJV would be unnecessarily severe, and would correspond to the values
R’ quoted in some of the numerical examples.
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TABLE 1
Dynamical Coefficients and Supplementary Symbols
(a) Class A Flutter (Typified by Flexural-Aileron Flutter).

Flexural Moments Aileron hinge-Moments
Coefficient Significance Non—dlgr;lrerr;sional Coefficient Significance Non—dﬁgﬁgsmn&l
A Inertia plicy’a; P Inertia 12co?
B, —Lg pVBeyb, B, —H, pVPcy?b,
o - pVARX C, 0 0
P Inertia pl2c,p D, Inertia pleytd,
E, —Lg pVi2c e, E, —H; pVlicle,
F —L¢ pV3%c, fi - Fy he — He pV3c2Y
X = 1[pV, Y = (he/pV?eo?) + fa
IbglE bie, — bat Ibf|5 blfz—“bzflx
& = lbel—_/[/)fls 5Eb2f1;
91’ = @6 + bd, — P (31 + bz.) s 4 = 46152 — (61 —+ bz)z .
(b) Class B Flutter (Typified by Torsional-aileron Flutter)
Ajleron hinge-Moments Wing Torsional Moments
Coefficient Significance Non—d}i?mensional Coefficient - Significance Non-dimensional
orm Form
D, Inertria plegtdy P Inertia plcg*p
E, —H; pVicle, £, — M pVice,
F, he —He pV3c2X Ey —M; pV3c¥ 5
P Inertia plegtp Gy Inertia plegtes
e —Hy pVici’ss Js —Ms pYicis
K, —Hy pV¥cy 2k, K, mp —Me pV3c Y
X = (he/pV7les®) + f, Y = (mofpV%les’) + ka,
ﬁzﬂzfa—l“@akz; ®x = lejl—'P(kz 4 f3)
g = jzfa — €3k, , 2 =+ '\/.32 - 452j3sz3 )
g." = dofs + G — P+ e, A = degfs — (J2 -+ A
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TABLE 2

Summary of Results of Numerical Examples (sections 2 and 3)

Multiplier R Artificial Damping K
: Vo Specification of {(main control surface) {Ib ft/rad/sec)
Alrcraft Type | (ft/sec) Flutter Type Control Surface :
A =0 | 20,000 { 40,000 | A=0 | 20,000 | 40,000
Modern fighter3 5 (example 2 (i)) | 800 Flexural-aileron | Fabric covered ailerons .. | 2-7 — 9:4 - 63 — 77
Aluminium covered | 85 | — 33 | .283 — 298
Biplane (example 2 (iii)) .. | 300 | Rudder-torsional | Rudder horn-balancedand | 3-0 — — " 20-4 — —
: ' above fuselage axis :
Large civil transport® (example | 600 | Flexural - aileron | Control circuit offset from | 1-5 2-4 4-8 960 1425 1800
3(ii)) _ (geared) neutral axis : , '
Flexural - aileron | Control circuit normal .. | 16 2-7 5-3 1170 ° 1730 2040
Military transport? (twin-tail) | 300 Servo-rudder .. | Servo not mass-balanced 1-33 — — 79 — —
- (example 3 (iii)). ‘ Servo dynamically balanced| 1-35 — —_— 84 — —

Notes. (a) R is defined as the ratio of the minimum direct damping coefficient for absolute flutter prevention to the natural direct damping
coefficient. : .

- (b) K denotes the constant artificial damping to be applied to each relevant main control surface, and measures the additional damping
hinge moment (Ib ft) when that surface is turned uniformly at the rate of 1 rad/sec. :
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Hlustrative (4, p) Diagram (see Section 5).
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