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Summary. 
A general theoretical technique is presented for the estimation of structural damage caused by impulsive 

loads. The technique, though approximate, takes account of differences that may exist between the elastic 
and plastic modes of deformation. A detailed analysis, with some numerical results, is presented for the case 
when the impulsive load is a uniformly distributed pressure whose magnitude varies time-wise as a rectangular 

pulse. 
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1. Introduction. 

The theoretical estimation of structural damage caused by impulsive loading, particularly blast 
pressure, has been considered by a number of authors, e.g. Fox 1, Christopherson~, Montgomery 
and Taub ~, Beer and Dahl 4, and Thornhill ~, 6. The pressure-time (p, t) variation most commonly 
assumed is of the form 

P = po(1 - ct)e -a, 

an empirical relation appropriate to conditions a moderate distance away from a spherical explosion: 
p is the pressure in excess over atmospheric pressure and c is a constant. 

In the above investigations the target is a single mass attached to a spring and friction slide. 
Thornhill and Coombs 5, 6 have analysed such a system, particularly in the context of aircraft attack 
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by blast, and have shown that the relevant parameters may be chosen to describe adequately the 
results of numerous experiments. They also distinguish between 'localised damage' which is 
characterised by a short-time interval of loading, and 'lever-type damage' which describes the 

damage mechanism in a wing which is subjected to a long-time interval of loading. In an actual 
structure, of course, infinitely many modes are generally excited, but analysis and experiment (in 

the elastic regime) show 7,8 that a single mode tends to be dominant. Furthermore, the dominant 

mode often closely resembles the static mode of deflexion under the given applied load distribution. 
This resemblance is particularly marked when the applied load distribution is not dissimilar to the 

distribution of inertia loading. 
Now, we are concerned here with the estimation of damage to a structure, and accordingly the 

plastic behaviour of the structure is no less important than the elastic behaviour. Of course, if the 

plastic mode of deformation coincides with the elastic mode--differing only in magnitude--it is 

possible to represent the structure precisely by a mass attached to a spring with appropriate inelastic 
characteristics. In general, however, the elastic and plastic modes differ and some account should 
be taken of these differences. Such account is taken here by assuming that the structure deforms 
under dynamic loading in precisely the same deflexion patterns that it would develop under static 
loads. Thus, initially the structure deforms in an elastic mode until the magnitude of this mode is 
such that yielding occurs; further deformation takes place in a plastic mode superposed on the 
maximum amplitude of the elastic mode. Such a scheme is not, of course, rigorously correct (except 
under certain 'soft' time-wise load variations), but it is the most realistic physical assumption that 
can be made which, at the same time, retains the simplicity inherent in a single-degree-of-freedom 
(albeit with a 'split mode') analysis. The novel feature of this paper is the adoption of such a 'split 
mode' analysis which provides a supplementary approach to earlier analysis and which has more 
direct application to structural-damage studies for isolated structural members. 

The dynamic elasto-plastic behaviour of structures deforming in such a split mode is considered 

here, with particular reference to beams and plates; the extension of the analysis to incorporate the 
split-mode feature is shown to be quite small. A detailed analysis is then presented for the case 

when the impulsive load is a uniformly distributed pressure whose magnitude varies time-wise as 

a rectangular pulse. 

2. Simplified Elastic Behaviour of Structures. 
In solving dynamic load problems involving a structure with many degrees of freedom, Williams 7 

has shown that it is often sufficient to restrict attention to a single, arbitrarily chosen mode. In 
such a case, the real structure is said to be replaced by a 'semi-rigid' structure, in which the shape 
of the deflexion pattern is fixed and only the amplitude of movement is variable. Furthermore, the 
overall behaviour of such a semi-rigid structure is not very sensitive to the precise form chosen for 
the mode. Thus, the period of vibration of a simply supported beam, constrained to deflect into 
the shape it would assume under a uniform load, is only 1.2% in excess of the true value. Similarly, 
if the beam is constrained to deflect into its true fundamental mode (a half sine wave) the strain 
energy stored by a uniformly distributed load is only0.15 % less than the true value. The closeness 
of these results is due to the fact that the uniformly distributed load acts in much the same way as 
the inertia loading or, in mathematical terms, the first term in the Fourier expansion of the uniform 
load is the dominant term. There are analogous results for plates, and for boundary conditions other 

than simple support. 
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In the subsequent analysis, advantage is taken of the simplifications resuking from the assumption 
of a single degree of freedom. Furthermore, this concept is carried over into the plastic range, 
despite the fact that the elastic and plastic modes of deformation are, in general, different. We also 
adopt William's device in which the semi-rigid structure is replaced by an equivalent mass-spring 
system (see Fig. 1). This is done purely on grounds of convenience, and it involves no additional 
simplifications. The general method for deriving the equivalent mass and the equivalent spring 
constant is illustrated in Section 2.1. In Section 3 attention is given to the behaviour of structures 
in the plastic regime. 

2.1. Equivalent Mass-Spring System for Semi-Rigid Structure in Elastic Mode 

To illustrate the method for calculating the equivalent mass-spring system, we consider first a 

beam whose assumed mode of deflexion, apart from a time-dependent factor of proportionality, is 
given by x(e) where e is the distance along the beam. We also define e = eo as our reference point, 
so that a knowledge of x(~o) completely determines the deflexion of the beam. 

Now the kinetic energy of the beam is 

1 m{~(e)}~d~ 
2g 0 

where m is the mass per unit length, and this must be equated to the kinetic energy of the equivalent 
mass M acting at the reference point e0: 

Me {~(eo)} ~ • 

The equivalent mass is therefore given by 

M = o m [x~j0) . (1) 

Similarly the strain energy in the beam is 

EZ{x"(e)}~de 
0 

where a prime denotes differentiation with respect to ~. Equating this to the strain energy in the 
equivalent spring yields the following equation for the spring constant K: 

K = f °E!  [x"(e)/~ d~. o [X(eo)J (2) 

It is to be noted that the natural frequency f of the equivalent mass-spring system is the same as 
that of the semi-rigid structure: 

47r2f 2 = gK/M 

; } g o EI{x"(e)}~ de 

fo m{4e)? de 
(3) 

The loading on the beam is represented by an equivalent load P which acts at the reference point 
and which does the same amount of work. Thus 

P = f°  I x( )t de. 
o p tX(~o)) 

(4) 



The  calculation of M and P for plates is straightforward; to calculate K, we require the expression 

for the strain energy of a plate, and hence 

K - {x(~0.%)}2 . D  L\a~:~ + an~/ - 2 ( i - ~ )  ~a~:~ an ~ ~a~:an! . (5) 

2.2. Values of M, K, f and P for Beams (Elastic Mode). 

The  following values are appropriate for a uniform beam subjected to a uniformly distributed 

load per unit length. The  reference point is taken at the centre. 

If  the beam is simply supported, we take 

x(~) = sin rr~/a, say, (6) 

where, for convenience, the (dimensional) constant of proportionality has been omitted. This yields 

If  the beam is clamped, we take 

which yields 

M = 0"5 ma, "~ 

K 48" 6 Et/a a , 

• f a 2 

P 0" 637 pa. 

(7) 

~(~:) = ~:~(a- ~:)~, say, (8) 

M =  0 " 4 0 6 m a ,  

K = 205 EI/a 3, 

f =  a -  ~ -  , 

P = 0 . 5 3 3 p a .  

(9) 

2.3. Values of M, K, f and P for Plates (Elastic mode). 

A rectangular plate with an aspect ratio greater than about  5 acts effectively as part of an infinite 

strip, and it can therefore be treated as a 'beam'.  The  stiffening influence of the end supports in 
rectangular plates with more modest  aspect ratios is not negligible, and the deflexion under  uniform 

pressure- -which  we define as the elastic mode- -can  be estimated, for example, by the method of 

Kantorovich (see Refs.9, 10). However ,  in most cases such precision is not justified, and an accurate 
enough value can be obtained by a form of interpolation between the infinite strip and the square 

plate considered below. The reference point (~0, %) is taken at the centre (½a, ½a). 

2.3.1. Square plates.--If the sides of the square plate are simply supported, we  take 

x(~, ~7) = sin (rc~la) sin ( ,~da),  (10) 
which yields 

71//= O. 25 ma 2 , 

( = 0.25 pha°'), 

K = 8.9 Eha/a 2, (11) 

f =  0 . 9 5 ~  , 

P =  0 . 4 0 5 p a  ~. 



which yields 

If the sides of the square plate are clamped, we take 

7 )  = 

M =  O.165 ma 2, 

( = 0" 165 pha~), 
K = 19" 6 Eha/a 2, 

= 1 . 7 4 ~  , 

P =  0.285pa 2. 

(12) 

(13) 

2.3.2. Rectangular plates.--In what follows it is assumed that the reference point is at 
the centre, and that b > a. For simply supported rectangular plates a crude interpolation, based on 
a composite mode in which equation (10) is valid at the ends and equation (6) valid over the central 
length of ( b -  a), now yields the following values: 

M = 0.25 ma(2b- a), 

{ = 0.25 pha(2b- a)}, 

K = 4.45 Eh3(a + b)/a ~ , 

h [gE(b+a)tZ/2 (14) 
f =  0 . 6 7 ~ [ ~ ]  , 

P = 0. 637 pa(b- O. 364a). 

Similarly, for clamped rectangular plates, the adoption of a composite mode based on equations 
(12) and (8) yields the following values: 

M = 0.406 ma(b-O.59a), 

{ = 0.406 pha(b-O.59a)}, 
K = 18.8 EhS(b + O.04a)[a a, 

h [gE(b + 0.04a) 11/2 (15) 
f =  l ' 0 8 ~ ( p - ~ _ 0 . - - - - ~ a  ) J ' 

P = 0"533pa(b-O.465a). j 

3. Simplified Plastic Behaviour of Structures. 

When part, or all, of a structure is stressed beyond the elastic limit the structure is said to be in 
the plastic regime. To assist in the understanding of the plastic behaviour of structures, it is helpful 
to consider first some simple structures whose material possesses idealised elasto-plastic 
characterstics. 

A material whose stress-strain relationship is as shown in Fig. 2 is said to possess perfect plasticity, 
and a rod of such material would necessarily possess a load-displacement relationship which is 
similar to this. The same remarks would also apply to the bending moment-curvature relationship 
for an I-beam whose web does not contribute to the flexural rigidity. However, in a beam of 
rectangular section the spread of plasticity through the load-bearing material is gradual, and the 
bending moment-curvature relationship is as shown in Fig. 3. Fig 3 is also applicable to a plate in 
pure bending; but the loading on a plate is generally more complex, and the onset of the plastic 
regime then depends upon the magnitudes of the two principal moments. The critical combinations 
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of the principal stresses which suffice to initiate plasticity in a material are, strictly speaking, only 
determinable by experiment. However, although different materials behave in different ways, there 
is a corresponding choice of theories available which are in accord with experiment 11,1~. Further- 
more, for plates under normal pressure the predominating stress combination is such that the 
principal stresses are of the same sign, and it is in this region that the various theories, and experi- 
mental results, differ by only a few per cent. Thus the simplest of theories is sufficiently adequate 
and advantage is taken of this in Section 3.5 where the maximum principal stress criterion is 
adopted. Finally we may note that if the material stress-strain relationship is as shown in Fig. 4, 
which is not unlike that of mild steel, the corresponding bending moment-curvature relationship 

for a plate or beam of rectangular section is as shown in Fig. 2. 

3.1. Plastic Behaviour of Redundant Structures. 

So far, the discussion has been centred on the basic plastic behaviour of a beam or plate in 

bending. However, if the beam (or plate) forms part of a structure or is supported in such a way 
that it is 'redundant',  the load-displacement relationship exhibits an additional complicating feature 

associated with the spread of plasticity through the structure as a whole. This is most readily 
demonstrated by considering the uniformly loaded idealised I-beam whose bending moment- 
curvature relationship is as in Fig. 2..Both simply supported and clamped boundary conditions are 
considered, although it is only the latter condition which exhibits this additional feature. The ends 
of the beam are assumed to be free to move along the line of the beam so that membrane forces 

cannot occur. 

3.1.1. Ends simply supported.--In the elastic state the maximum (+ve)  bending moment 

occurs at the centre and is given by 

d/d = pa~'/8. 

Thus, when 
P = P:r, say 

= 8Jg~/a ~ (16) 

the bending moment at the centre attains its limiting value J///r ; a 'plastic hinge' develops there, 
and the beam can carry no further load because it is now acting as a mechanism. The central 

deflexion is plotted against the load in Fig. 5. 

3.1.2. Ends clamped.--In the elastic state the maximum ( - r e )  bending moment occurs 

at the ends and is given by 
= pa~'/12. 

Thus, when 
p = 12Jd~./a 2 (17) 

the bending moments at the ends attain the limiting value ~/d F ; plastic hinges will develop there, 
but the beam does not yet fail because there are not sufficient hinges formed to convert the beam 
into a mechanism. Indeed, when equation (17) is satisfied, it can be shown that the ( + r e )  bending 

moment at the centre is ½,//{g. Now when 

p > 1 2 ~ / a  ~ 



the slope of the load deflexion curve is the same as that for the simply supported case because there 

is no change in the end moments. It follows from equation (17) and (16) that a central hinge will 
form, resulting in failure of the beam, when 

p = p y  

- ! 

= 16d~Y/a~" (18) 

The complete load-deflexion curve is shown in Fig. 5 ; the three straight lines comprising this curve 
correspond to three distinct modes of deformation. The behaviour of a plate is more complex 
because there is, in general, a gradual mode change from the onset of plasticity to failure. Fortunately, 
the failure of a plate or beam can be estirnated without recourse to a detailed examination of the 
elasto-plastic behaviour. For example, if the position of the plastic hinges is known the principle of 
virtual work may be applied to determine the failing load. Thus for the clamped beam previously 
considered, the work done at failure by the applied load is ½paAx, where Ax is a virtual increase in 
the central deflexion, and this must be equated to the work done in the plastic hinges by the moment 

//{~ acting over a total angular rotation of (2Ax/a+4Ax/a+2Ax/a), which leads directly to 
equation (18). 

3.2. Plastic Behaviour of Practical Strzwtures. 

We have already seen that in a redundant structure, such as a plate or clamped beam, there is a 
gradual transition from the elastic mode to the mode at failure, even when the material or the basic 
structural element possesses idealised elasto-plastic properties. Most practical materials exhibit no 
clearly defined yield point, and there is some work hardening in the plastic regime. These effects 
inevitably lead to further smoothing of this transition zone so that, for example, in the clamped 

beam the actual relationship between the central deflexion and the applied load could be as shown 

by the broken line in Fig. 5. Furthermore, all the curves of Fig. 5 refer to static loading conditions; 
under dynamic loading there will be an additional smoothing between the elastic and plastic modes 
due to the inertia of the structure resisting a sudden mode-to-mode change. The exact dynamic 

analysis of even the simplest of structures presents formidable difficulties but, fortunately, the 
errors caused by ignoring the transition zone and neglecting work-hardening are of opposite sign 

and are, roughly speaking, of comparable magnitude (see dotted lines in Fig. 5). This simplified 
approach is adopted here. 

3.3. Determination of J ~  for Beams and Plates. 

Let us assume that the material possesses idealised elasto-plastie characteristics with a yield 
stress ~ ,--which may be taken to be equal to the O. 2% proof stress of the actual material. When 
a beam of this material is subjected to its limiting bending moment d/i~ , the whole of the cross- 
section is assumed to be plastic, and the 'neutral axis' is determined from the condition of equilibrium 
of the direct stresses (+  err and - ay)  acting over the cross-section: in other words, the neutral axis 
is at the centre of area. If z is measured from the neutral axis the moment ~ :  is therefore given by 

~:v j" [zldA (19) d @  
A 

where dA is an element of the cross-sectional area. 



For an I-beam whose flange areas are A 1 and A~. (A 1 ~< A2), and the distance between flanges is 

h, equation (19) reduces to 

/di~ = hAle  r . 

Similarly for a plate of thickness h: 

~ r  = kh2¢r • 

Alternatively, the limiting moment iN/. may be determined directly by experiment. 

3.4. Equivalent Mass-Spring System for Structure in Plastic Mode. 

The concept of the equivalent mass, etc., introduced in Section 2.1, may be conveniently carried 
over into the plastic mode. Thus, if the suffix p is introduced to indicate that the plastic mode is 

under consideration, equations (1) and (4) for example, become simply 

m f ~(~)~ M~ = o ~ o ~ t  d~ 
(20) 

F ~ ~ x~(f) ~ _ 

P~ : )0 p i ~ 0 ~ / ~  

These values generally differ from M and P. 
Now the concept of the equivalent mass and the equivalent force has been introduced merely for 

convenience, and the displacement of this equivalent mass--which is what matters--is unaffected 
by a proportional increase in Mp and P~). Thus either M~ or Pp may be scaled up (or down) to 
the appropriate value of M or P. In what follows M~) and P~ are scaled up by the factor (P/Pv), 
so that the 'equivalent force' in the plastic mode is the same as that in the elastic mode, P; the 
'equivalent mass' in the plastic mode is now defined by 

where 
M', say = /~M (21) 

PM~ 
I~ - P ; M '  

f x(~0) px(~) d~ m{~(~)}  2 d~ 
0 0 

f f° xp(~o ) px~,(~) d~ m{x(~:)} 2 d~ 
0 0 

The adoption of this scaling factor is not, of course, essential to the analysis, but it brings with it 
the advantage of continuity of P and F *~ at the mode-to-mode change. 

3.4.1. Velocity change at mode-to-mode change.--It is shown in Appendix I that the velocity 
of the equivalent mass (M') immediately after the onset of the plastic mode is ~ times the velocity 
of the equivalent mass (M) immediately before the mode-to-mode change, where--to quote the 
formula appropriate to a plate-- 

to, ~o) 6 t ~(~, ~/,%(~, ~/d~ d~ 
= J J (22) 



3.5. Values of P, F*, i~ and ¢ for Beams (Plastic Mode). 
If both ends of the beam are either simply supported or clamped, the mode at failure is given by 

x~,(~) = 1 - 21 ~ l a l  , (23) 
where, for convenience, ~ is now measured from the centre. Substitution of equation (23) into 
equation (20) gives 

M~ = 0.333 ma, 

P~ = 0.5 pa. ] (24) 

Now the values of M and P, appropriate to the elastic mode, have already been determined and 
hence the factor /, is known. Also, the magnitude of the equivalent static force F "~ required for 
failure is given by equations (7), (16), or (9), (18). 

Thus  if the beam is simply supported we find 

p 

F ~ 

0.637pa,  {(7) b i s}}  

5 0 9 d d r / a  ! 

0 848, " 

1 22. 

(25) 

The corresponding values for the clamped beam are given by 

P = 0.533 pa, {(9) bis} "~ 

F* 8 53 dZr/a, 

/~ 0. 874, 

1.10.  

(26) 

3.6. Values of P, F*, ff and d? for Plates (Plastic Mode). 

A rectangular plate with an aspect ratio greater than about 5 acts effectively as part of an infinite 
strip, and it can therefore be treated as a 'beam'. The strengthening influence of the end supports 
in rectangular plates with more modest aspect ratios is not negligible, and there are methods avail- 
able for its estimation ls. However, in most cases such precision is not justified, and an accurate 
enough value can be obtained by a form of interpolation between the infinite strip and the square 
plate considered below. 

3.6.1. 
they result in the following values. For simply supported boundaries: 

P = 0.405 pa ~, {(11) bis} "~ 

F* 9.73 J @ ,  

ff 0.811, 

¢ = 1.22. 
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If the boundaries are clamped: 

P = 0-285 pa 2, {(13) bis} "~ 

F * 12.2 ~//Zr, 

/, 0. 863, 

4, 1 . o o .  

3.6.2. 

(28) 

Rectangular plates.--In what follows it is assumed that the reference point is at 

the centre, and that b > a. The assumption of a composke mode--similar in character to those of 

Section 2.3.2--yields the following results. For simply supported boundaries: 

P = 0. 637 pa(b- O. 364a), {(14) bis} "~ 

F * =  5 - 0 9 ~  ( b ~ a ) ( b - 0 . 3 6 4 a ~  
- -  0 . 3 ~ ]  ' (29) 

_ o. 

/z = 0.848 _ 0-333a] ' 

4, = 1.22. 

If the boundaries are clamped: 

P = 0.533pa(b-O.465a), {(15) bis} 

F* 8 " 5 3 ~  (b+O-'a667a) (b~-O'465a~ 
= - - 

[b - 0.534a] [b - 0.465a] (30) 
/~ = O. 874 \ b - 0-. 5-~-a / lb, ~ 1 '  

( ~ -  0-578a'~ 
4, = 1.  lO 

4. Dynamic Loading of Simplified Elasto-Plastic Structures. 
In Section 2 it was shown that by restricting attention to a single mode the behaviour of a 

structural component (e.g. an inter-rib panel) under impulsive pressure is readily analysed by 
reducing it first to an equivalent mass-spring system. Such a system, with the addition of a purely 
plastic component in the spring characteristic and with due allowance for the mode-to-mode 
change is now considered. We will determine the displacement x{= x(~0) } of a mass M subjected 
to a force P for a time t o , the mass being attached to an elasto-plastic spring such that the restoring 
force F is equal to Kx in the range 0 < x < x* and equal to Kx ~ ( = F ~) for x > x% When x reaches 
the value x ~ (corresponding to the mode-to-mode change) the mass M becomes/zM and its velocity 

is altered by the factor 4,. 
Attention is given to the effects of non-linear elastic response and imperfect plasticity in Section 

4.6.1. 

4.1. Non-dimensional Time, Force, Impulse and Damage Terms. 
Before proceeding to the analysis of the elasto-plastic mass-spring system it is convenient to 

introduce some non-dimensional terms which facilitate the presentation of results. The fundamental 
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f requency f of the structure is equal to that of the mass-spring system {see equation (3)} and it 

provides a convenient means for non-dimensionalising the time interval t o by introducing 

T ~ f t  0 

2~r 

Similarly the force P is conveniently expressed non-dimensionally 5 as a multiple of the yield force 
F e by writ ing 

X = P~ F'~, (32) 

while a non-dimensional measure of the impulse Pto is given by 

J = w 

_ P t  o [g_K~'~ ( 3 3 )  

2 ~ F  ° \ ]VII " 

The  damage done to the structure may be equated to the amount  of plastic deformation (i.e. per- 

manent  set) which the structure suffers 5, and it is convenient to express this non-dimensionally as 

a multiple of the elastic deformation of the reference point prior to yielding: 

= ( x ~ - x O ) / x  ° , ( x ~ , :  > x ° ) .  (34) 

It  is to be noted that the numerical value of ~ depends upon the position chosen for the reference 

point; note that if xln~x ~< x e the structure remains elastic and ~ is zero. It  is also convenient to 

be able to equate ranges of the numerical value of ~@ with such phrases as 'slight damage',  'severe 

damage',  etc. Obviously there is no universally valid scale, but  to fix ideas we suggest the following 
average values for an aircraft or missile structure: 

0 < ~ < ½ : slight damage 

1 < ~ < 2 : moderate damage 

2 < ~ < 8 : severe damage 

> 8 : lethal damage 

4.2. Analys is  f o r  t o > t ° and P > F °. 

The  equation of motion in the initial elastic phase is given by 

MSO/g = P -  K x ,  x < x* 
whose solution is 

P 
x = ~7 (1 - cos 2rrft).  

When x = x ° it is convenient to write t = t °, where, f rom equation (36) 

1 
t °  = 2 ~ f  c o s - 1  (1  - Fo/p), 

and in this section we assume that 
t o > t *¢ , 
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so that the load is being applied when the structure starts to yield. Now at time t* the velocity 

2" is given by 

2* - 2~rfP sin 2~rfte 
K 

and hence, from equations (22) and (37), the velocity immediately after time t* is given by 

[2]~,=i% = 42"  

= ¢ L K M  

This provides one of the boundary conditions for the behaviour in the range 

t* < t < to (40) 
when the equation of motion is 

l~M£/g = P - F * ,  (valid for 2+ve)  (41) 

which may be integrated to give 
g ( P -  F*)  (t - t*) 2 (42) 

x = x* + 42" ( t - t* )  + 2/~M 

When t = t o the displacement and velocity, which will be identified by the symbols x o and So, are 

therefore given by 

Xo= x* + 4 2 * ( t o - t * )  + g ( P - F ; ) ~ d ° - t * ) ~  

(43) 
g ( P -  F*)  (t o - t*) [ 

¢2* + 
I~M j ! S o 

Now when t > t o the equation of motion is simply 

t ,M~/g  = - F * ,  (valid for 2 + re) (44) 

and the maximum displacement, which occurs when 2 is zero, is accordingly given by 

Xm~x = Xo + 2 ~  (2°)3" (45) 

Expressed in non-dimensional terms equations (34), (37), (39), (43) and (45) reduce to 

= M ~ ( x -  ½) + ¢xA(2x - 1) 1/2 + x A ~ ( x -  1)/2~ ) 
where j (46) 

A 2 ~  - cos-1 ( ~ )  • 

4.3. Analysis  for  t o > t 1 and ½F e < P < F*.  

If P < F* the analysis may require modification. This is because equations (41) and (42) are 

valid only if 2 is + re, in other words up to such time t l ,  say, at which 

• g(P- F*) (t~- t*) t 
2 = 42" + 7 ~ -  (47) 

J = 0 ,  
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where ¢~e is given by equation (39). The time t 1 is accordingly given by 

The corresponding value of x is Xm~ ~ and finally, in non-dimensional terms, we obtain 

[ X - ½ ~  (49) 
= ~¢~ \ 1 -  x]" 

If t~ > t o > t '~ the analysis of Section 4.2 is valid. If P < ½F* the structure remains elastic and 
there is no damage. 

4.4. A n a l y s i s  f o r  t o <<. t*. 

Equation (36) which gives the displacement in the initial phase, is now only valid up to time 
t o ~ w h e l l  

x0 = _g (1 - co s  2~fto), 

( 5 0 )  

2~rfP sin 2rcft o . x ° =  K 

In the range t o < t < t ° the equation of motion is 

M 2 / g  = - K x  (51) 

whose solution, which satisfies equation (50), is given by 

P 
. = ~7 {cos  2 = f ( t -  to) - cos  2~ft}. ( 5 2 )  

The value of t * is determined by equating the above displacement to x ~', whence 

1 ( 
t* = ~to + ~ sin-1 2P Z ~fto ' 

and the corresponding velocity ~e is accordingly given by 

~ 2 , ¢ P  {sin 2, , f t  ~ sin 2 ~ f ( t *  - to) } 
K 

_ 2rrfP {4 sin2~rft0 - (Fe /P)~}  ~12 (54) 
K 

Finally, for t > t* the equation of motion is 

i~M2/g  = - F ~ , (valid for ~ + re) 

and the maximum displacement, which occurs when ~ is zero, is accordingly given by 

xm~ X = x ~ + 2 g F ,  ~ (55) 

In non-dimensional terms the damage is given by 

= / z # ( 2 x  2 sin2rrr - ½). (56) 
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4.5. Graphical Presentation of the Damage. 

Equations (46), (49) and (56), which express the damage in terms of the pressure and time 
interval, constitute one of the main features of the report. The results, for/x = $ = 1, are expressed 
in graphical form in Figs. 6, 7 and 8. In Fig. 6 ~ is plotted against ~- for various values of X. If X 
is large and ~- small it is difficult to determine ~ from Fig. 6, and accordingly Fig. 7 has been 
prepared in which ~ is plotted against ~- for various values of j (  = X~-). Finally in Fig. 8 2/o¢ r2 is 
plotted against ~- for various values of X, to facilitate the determination of ~ if 7 is large. If the 
parameters/z and $ differ significantly from unity, their influence on ~ must be determined from 

the appropriate preceding equation; note that in equations (49) and (56) the damage varies with 

/~ and ~ in proportion to/z~ ~. 

4.6. Structural Behaviour under Sudden Impulse. 

It is clear from Fig. 7 that the maximum damage caused by a given 'impulse' Xz occurs when 

~ 0 ,  although for practical purposes the damage does not vary significantly over the range 

0 < z < 0.2. In other words, if the time of application of the pressure is small in comparison with 

the fundamental period of vibration, the resulting damage to the structure depends only on the 

of pressure x time; more generally, the damage depends upon t- X d~ so that the case in product 

which the pressure is not constant may also be readily analysed, for equation (56) may then be 

cast in the form 
~ /x~(2~-aJ  ~ -  ½) (57) 

where 

J = f x (58) 

4.6.1. Non-linear structural behaviour.--It has just been shown that when 0 < + < 0.2 
the loading acts effectively as a sudden impulse, which leads to considerable simplification in the 
analysis of the idealised elasto-plastic structure. Of greater importance, however, is the fact that the 
analysis can also be readily extended to the case of a structure with quite general characteristics. 
Thus we determine below the damage caused by a sudden impulse applied to a mass-spring system 
whose force-displacement curve is arbitrary, as shown in Fig. 9. The structure is assumed to be 
elastic up to the point A beyond which it deforms plastically with arbitrary work-hardening. To 

simplify the discussion the influence of the parameters/x and ~ is ignored, and we will again define 
the damage by equation (34), although this definition is now not necessarily proportional to the 
actual permanent set. The initial elastic but non-linear curve OA might, for example, represent the 

deflexion of a thin plate in which membrane forces play a significant role. 
After a sudden impulse I ( = Pto) the velocity of the mass is given by 

~o = g I / M  (59) 

and accordingly the kinetic energy U is given by 

U = g P / 2 M .  (60) 

Now when the velocity of the mass falls to zero, at x = Xmax, this kinetic energy is equal to the 
work done on the spring, so that 

gI  ~ = ~xm~ F dx (61) 
2M 3 o 

from which may be determined Xmax, and hence a measure of the damage. 
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Structure with linear work-hardening. 

As an example in the application of equation (61) we determine below the damage caused by a 
sudden impulse to a structure exhibiting linear work-hardening as shown in Fig. 10. The spring 
characteristics are 

F =  K x ,  O < x <~ x* ] 
(62) 

F = F* + ~ K ( x - x * ) ,  x >>. x* 

where a, the ratio of the slopes of AB to OA, is a measure of the degree of work-hardening. 
Substitution of equation (62) into equation (61) now gives, in non-dimensional form 

~@ = [(1 + ~(4~r~d 2 -  1)}1/°-- 1]/~. (63) 

The variation of ~ with J and ~ is shown in Fig. 11. As might be expected the influence of work- 

hardening is small for small values of ~ ,  but it can become of overriding importance for large values 

of ~ .  Similar conclusions may be drawn when the time of application of the pressure is not small in 
comparison with the fundamental period of vibration. 

4.7. Influence of Rate of Loading on the Yield Stress. 

It is shown in Refs. 15 to 18, for example, that the yield stress of a material is increased at 
extremely high rates of strain. In other words cry and hence F* and x* may depend on the variation 

of ~ in the elastic range. The precise variation of ~ is probably of little consequence, and it is sufficient 
to consider the average value x*/t*. 

Now t* is given by equations (37) and (53): 

~ - , 

t* = ½t o + ~ s i n  -1 2xsinTrft o ' 

and hence xe/t  * may be determined. 

to > t'~ ' 1 

t o < t*, 
(64) 

I t  is to be noted that an extremely high rate of loading (i.e. very small to) does not imply an extremely 

high rate of strain (i.e. very small t*). This is because the inertia of the structure intervenes, and the 
rate of strain in then primarily determined by the fundamental frequency of the structure. This 
point is made clearer by combining the second of equation (64) with equation (56), which gives 

t* = ½t 0 + 1 tan -1 ( I~¢2"~I  °~ (65) 
27rf \ 2 ~ ]  " 

Thus, for a given value of ~ ,  the value of t* cannot be less than (1/2rrf) tan -1 (tzCz/2~)l/°~ however 
small t o may be. 

5. Comparison with Two-Term Solution and with Previous Theory. 

The novel feature in this paper is the adoption of a 'split mode' to account for the different 
structural behaviour in the elastic and plastic regimes. As stated in the Introduction there are 
certain time-wise load variations for which this 'split mode' assumption is rigorously correct. This 
is so, for example, if the time-wise variation of the load is such that the velocity is zero when yielding 

starts; a small increase in load over that required for static equilibrium then results in motion purely 
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in the plastic mode. Generally, however, the adoption of the 'splk mode' is not rigorously correct, 
and in order to test its merits in a more realistic and critical case we have compared the damage with 
that predicted by a more accurate method and with previous 'single mode' theory. The analysis 
for the more accurate method is given in Appendix II, which treats the simply supported beam 
subjected to uniformly distributed impulsive loading; the analysis is based on a two-degree-of- 
freedom system in which the deflexion is expressed as an arbitrary combination of the elastic and 
plastic modes. The results of calculations based on this two-term solution are given in Fig. 12 and 
compare very favourably with the approximate method developed here; the damage ~ has been 
plotted against 702, where 70 is a non-dimensional measure of the velocity at the onset of yielding, 
and is defined in Appendix II. The oscillatory character of the two-term solution is due to the 
occurrence of purely elastic phases which are interspersed with the elasto-plastic phases. An exact 
solution would show additional deviations due to the spreading of the central hinge and to the higher 
elastic modes which might, for example, result in permanent shear deformation at the supports; 
indeed, there would no longer be a unique correspondence between a simple damage criterion (such 
as ~ )  and the final damaged form of the structure. 

6. Conclusions. 

A simple theoretical technique has been presented for the estimation of structural damage caused 
by impulsive loads. The basis of the analysis is the assumption that the structure deforms under 
the impulsive loads in the same deflexion patterns that it would develop under static loads. The 

assumption leads to the concept of a 'split mode' in which, in the plastic regime, the plastic mode is 
superposed on the maximum amplitude of the elastic mode. The dynamics of the associated mode- 
to-mode change admit of simple analysis and, for a particular example, the predicted damage shows 
good agreement with a more exact analysis. 

The case of a uniformly distributed impulsive pressure whose magnitude varies time-wise as a 
rectangular pulse is considered in detail and the results are presented in graphical form. 
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LIST OF SYMBOLS 

Width of beam or plate 

Flange area 

Length of plate (b > a) 

Flexural rigidity of plate, Eh3/{12(1-  v~)} 

Non-dimensional measure of damage defined by equation (34) 

Young's modulus 

Flexural stiffness of beam 

Frequency of vibration in elastic mode, c/s 

Restoring force in spring 

Yield force in spring 

Acceleration due to gravity, 32.2 ft/sec 2 

Thickness of plate 

Impulse defined in Section 4.6.1 

Non-dimensional measure of impulse defined in equation (33) 

Equivalent spring constant 

Mass per unit length of beam, or unit area of plate 

Equivalent mass in elastic mode 

Equivalent mass defined in equation (21) 

Bending moment in beam, bending moment per unit length in plate 

Pressure per unit length of beam, per unit area of plate 

Equivalent force 

Time 

Time of application of pressure 

Defined in Section 4.3 

Time at which yielding starts 

Kinetic energy 

Displacement of mass 
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X ~ 

x(¢, 7) 

J~ 

ot 

7o 

I z 

P 

(Y 

A 

f 

X 

~ , ~  

~o, ~1o 

LIST OF S Y M B O L S - - c o n t i n u e d  

Value of x when yielding starts 

Displacement of beam 

Displacement of plate 

Distance from neutral axis 

Defined in Section 4.6 

Non-dimensional measure of velocity when yielding starts, introduced in Section 5 

Non-dimensional parameter defined in Section 3.4.1 

Non-dimensional parameter defined in equation (21) 

Poisson's ratio (assumed equal to 0.3 in numerical calculations) 

Density of plate material 

Stress 

Defined in equation (46) 

Non-dimensional measure of time defined in equation (31) 

Non-dimensional measure of force defined in equation (32) 

Distance along beam 

Reference point in beam 

Co-ordinates in plate 

Reference point in plate 

Suffix p refers to the plastic mode 

Suffix Y refers to conditions at yield 

A dot denotes differentiation with respect to time 
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ADDITIONAL NOTATION 

~1 ~ ~2 

fo,f  

k 

Ko, K1, 

Mo, M1, 

P0, P1, 

t 

t' 

T 

T' 

T£ 

V 

V* 

Vo 

Wo 

Wl,  ~)2 

A, 

An, .n+l ~ ~g, n+ l  

7n 
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USED IN THE APPENDICES 

Introduced in equation (72) 

Non-dimensional measure of total damage at end of nth elasto-plastic phase 

Natural frequencies appropriate to modes Wo, w 2 

Impulse per unit length 

Introduced in equation (73) and defined in equation (87) 

Equivalent spring constants for modes w0, wl, w 2 

Equivalent masses for modes w0, wl, w 2 

Equivalent forces for modes w0, wl, w 2 

Time measured from start of each elasto-plastic phase 

Time measured from start of each elastic phase 

27rf2t, a non-dimensional measure of t 

2~rfot', a non-dimensional measure of t' 

Value of T at end of (n + 1)th elasto-plastic phase 

Value of T' at end of (n + 1)th elastic phase 

Velocity of beam 

Velocity of reference point (in Appendix I) 

Values of v(~), V at mode-to-mode change 

Introduced after equation (88) 

Deflexion of beam 

Defined in equation (81) 

Normal modes introduced in equation (73) 

Non-dimensional measures of the beam deflexion introduced in equation 
(73) 

Values of A, ~ at end of (n + 1)th elastic phase 

Values of A, ~ at end of (n + 1)th elasto-plastic phase 

Non-dimensional measure of velocky of beam centre at end of (n+ 1)th 
elastic phase, see equations (95), (111) 

Non-dimensional measure of velocity of beam centre at end of (n+ 1)th 
elasto-plastic phase, see equations (100), (117) 
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APPENDIX I 

Dynamics of the Mode-to-Mode Change 

For simplicity the discussion below is limited to the dynamics of the mode-to-mode change in 
a beam; the extension to the plate is straightforward. 

In the elastic mode x(~), the velocity v(~) at any point may be expressed in terms of the velocity 

V, say, of the reference point ~0: 

v(£)- Vx(~) (66) 
x(~0) " 

Similarly, in the plastic mode xv(~), the velocity v~(~) is given by 

Vvx~)(~) (67) 
% ( ~ ) -  ~ ( ~ 0 )  

Now let v~(~) and V '* denote the values of v(~) and V at the maximum amplitude in the elastic 
mode, i.e. immediately prior to the introduction of the plastic mode, and let v~*(~) and V~ ~ denote 
the values of vp(~:) and V~ immediately after the introduction of the plastic mode. The problem 
is to determine the relationship betwen V~ ~: and V% 

It is convenient to regard the velocity distribution v~(~) as the immediate result of a distributed. 
impulse applied to a stationary but deflected beam. The magnitude of this distributed impulse 
per unit length is given by 

i(~) = lim p(~)3t, say 
6t-->O 

mv~(O 
- g ( 6 8 )  

V%,x(O 

g~( ~o) 
The effect of this impulsive pressure distribution p(~) on a beam constrained to deflect in the 

plastic mode x~(~) may be readily determined from the analysis of Section 2.1 and equation (20). 
The equivalent impulsive force P~, is given by 

. .  = I 
d0 t x~Ag0)J 

1 ~ . x~o(~) 

The velocity V~o ~ is now given by 

gP~St 
V ~  - M~, 

V ~ fa mx(~)x.(~) d~ 
o X(£o)X~(~o) 

f a m(~o(~:)? d~ 
o (x , , (~0)p  

in virtue of equations (69) and (20). 

(70) 
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Finally 

¢ = V */V.fa ) 
0 
Cb " 

X( o) f 
0 

(71) 

APPENDIX II  

Impulsive Damage in Simply Supported Beams: a Two-Term Soh#ion 

The following analysis, though approximate, is an attempt to analyse in a simple engineering way 

the complex dynamical interaction between the elastic and plastic behaviour which occurs after the 

initial formation of a plastic hinge. The simply supported beam subjected to a sudden impulse 

has been chosen on grounds of convenience; the general method of solution could, however, be 

applied to any beam which exhibits a single plastic hinge at failure, and any time-wise variation of 

the impulsive loading; beams exhibiting more than one hinge would require a more complex 

analysis. The results indicate that the introduction of the parameters /x and ~ leads to a more 
accurate estimation of damage. 

A. 1. Characteristics of the Assumed Beam Modes. 

The beam deflects symmetrically about the centre and it is therefore sufficient to consider the 
behaviour of half the beam, and for convenience we take the origin at one of the simply supported 
ends. The underlying assumption of the following analysis is that the deflexion w of the half-beam 

may be expressed at all times as a linear combination of the elastic and plastic modes introduced in 
Sections 2 and 3, i.e. 

w(~) = a 1 sin 7r~/a + a2~ (72) 

where a 1 and az are functions of time (to be determined) and 0 ~< ~ ~< ½a. 

The analysis is considerably simplified by recombining the elastic and plastic modes into normal 
modes as follows: 

w(~) = k{(A+ 3)wz - 3w2} (73) 
where 

w l  = 2 /a, 

w 2 = (24~/a-zr ~ sin ~# /a ) / (12 -~ ) ,  (74) 

and k is a disposable constant introduced for convenience. 

It is to be noted that w 1 and w~ are equal to unity at the reference point ~ = ½-a, and accordingly 

kA is the deflexion of the centre of the beam. The grouping of terms in w 2 was obtained from the 
condition 

f al2 wiw2 d~ = O. 
0 

23 



Now the effect of the sudden impulse is to impart a certain velocity distribution to the undeflected 
beam. Thereafter each half-beam is unloaded, apart from the bending moment ~/g at ~ = ½a which 
may be elastic (Jd < d@) or plastic (Jg = ~ y ) .  

Associated with each of the normal modes w 1 and w s there is an 'equivalent mass' M 1 and M2 ; 
an 'equivalent spring constant' K 1 and K s ,  and an 'equivalent force' P1 and Ps which thus depends 
only on the magnitude of the central moment Jg. Substitution of equations (74) into equations 
(1), (2), (3) gives 

M1 = m. /6  / 
(75) 

J K1 0 

in virtue of the fact that w 1 is a rigid-body displacement, and 

J 2 J Z  / a 

where a dash denotes differentiation with respect to ~. 
Also 

(76) 

M s  = ma(~r ~ -  96) 
4(12_7r2)s (77) 

Elrr  s 
Ks - 4a8(12_ ~r2) s (78) 

Ps = 

and finally 

24J~ 
a(12 - 

(79) 

4rrsf2 ~ = g K s / M  2 ] 

_ gEIrrS j (80) 

ma4(rr ~ - 96)" 

The change of sign in the expressions for P1 and Ps is due to the change in the direction of 
measurement of positive w 1 and w2, which results from the minus sign in equation (73). 

In the initiM purely elastic state 

w(~)  = k A w o ,  say ] 
where ) (81) 

w0 = s i n - ~ / a  

and the corresponding values of the 'equivalent mass', etc. for the half-beam are given by 
equation (7): 

M o = rea l4  (82) 

zr~ E I 
K 0 -  4a 3 (83) 

and 
Po = p a / ~  (84) 

47rsf0 ~ = g EITr~ 
m a  4 . (85) 
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Also, from equations (16) and (84) 

8d/@ 
F o * _  

I r a  

and accordingly the central deflexion kAo, say, at the end of the initial purely elastic state is given by 

kA o = Fo*/K o 

32a~d{r (86) 

zrS E I 

This provides a convenient means for choosing k, for by taking 

k - 32a2d/@ 
' zrSEI (87) 

we see that 
A 0 = 1 

and A, 8 are now non-dimensional measures of the magnitudes of the two components in the 
deflexion. 

A.2. Conditions after the Initial Elastic State. 

Now the effect of a sudden impulse Poto is to impart kinetic energy to the half-beam, and this 
may be equated to the kinetic energy + strain energy in the half-beam at the end of the initial purely 
elastic state, i.e. 

g(P°t°)~ M°V°Z K°ka (88) 
= + 2 

where 

Vo = [khL= o. 

Equation (88) enables V o to be determined for a given sudden impulse Poto ; the value of V o for 
the case of the 'not so sudden' impulse is given by equation (54). The values of hA o and V 0 provide 
the initial conditions for the elasto-plastic motion in which the deflexion is represented by equation 

(73). The corresponding values of [8]~=Ao, (=  80, say) and [8]~=Jo' (=  80, say) are derived from 

w'(½a) = k{(A + 8)wl'(½a ) - 8w((½a)} = 0 (89) 

1.1 } 
8 o = or- ~ - 

go = W" 

the condition that initially 

whence 

(90)  

A.3. General Equations of Motion. 

Now the equations of motion in the modes w 1 and w 2 are as follows 

kM~ (.A + .~) = p~ 
g 

and 

kM2 .~ + kK28 = P2 
g 

(91) 

(92) 
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where P1 and P~ are given by equations (76) and (79) with ~ = ~//d r provided the central hinge 

angle is increasing. If at any stage in the motion the rate of opening of the central hinge fails to zero, 
the hinge may 'lock' and the possibility of a further purely elastic phase in the motion must be 
considered. 

A.4. The First  Elasto-Plastic Phase. 

The solution of equations (91) and (92) subject to the boundary conditions (90) may be written 
non-dimensionally in the form 

69' 0T 3(w 4 -96)  T ~ 
A + ~  = A o + g o +  ~.a 167r ~ (93) 

and 

( 1 2 -  7r2] {3(1-cos T ) +  ½9'0 sin T} (94) 3 =  g o c ° s T +  \ ~r 3 } 

where 9'0 and T have been introduced for convenience and are given by 

9"O = k f  2 

T 2~rf~t 

(95) 

and t is assumed zero at the start of the motion when A = A o = 1. 

Equations (93) and (94) are valid only as long as @'(½a) is positive, i.e. up to such time when 

(12) 
( 2 x + 8 ) -  8 = o. (96) 

Substitution of equations (93) and (94) in (96) and writing T o for the critical value of T gives 
the following relation for determining T o in terms of 9'0: 

w * - 96] 
16 ] T° - (27r-6) sin T O 

9'0 = 1 - cos To (97) 

Let us now denote by Aol, 8ol the values of A, 8 at time To, and by Aol , 8ol the values of A, 8 at 
time T o. Let us also introduce 9'ol {el. equation (95)} such that Aol = 9'olf2. Equations (93), (94) 
and (96) then give 

69'oTo 3(~ 4 -  96) 
Aox + 3ol = Ao + 3o + - w~ 16w~ To ~ (98) 

and 

(12 - rr~ {3(1-cos To) + ½Yo sin To} 3o1= ~ o c ° s T  o +  \ ~r ~ ] 

9 ,01  = AO1/f2 

9% 
= 9 ' ° - I ,  16 ] T°. 

(99) 

(100) 
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Equations (98) to (100) provide the initial conditions for the behaviour of the beam in the purely 

elastic phase which occurs after time T O . The amount of damage suffered by the complete beam at 
time T O depends on the angular movement of the plastic hinge, and this may be readily expressed 

non-dimensionally--as in the main text--as the ratio of the corresponding permanent central 

deflexion/k. This non-dimensional measure of the damage is denoted by the symbol ~1 and it is to 

be noted that further damage may occur before the beam finally comes to rest. Thus we find 

(12) 
~1 = A o i + 3 o l -  ~ 3ol 

6 
= 7r ~ ((2~r - 6) (1 - cos To) + ~/o( To - sin To) - (~r 4 - 96) To2/32}. (101) 

A.5. The Second Elastic Phase. 

Now in the elastic phase which occurs after time T O the equations of motion are (91) and (92) 
in which d£ is at present unknown, together with equation (96) which expressed the constancy of 
the central hinge angle. The moment ~¢d may be eliminated from equations (91) and (92) by writing 

where 

M1 (Z~ -~- '~) P1 (M2 ~ _}_ K-93) (102) 
Y = E - Z  

P2 

Similarly (? '+ 3) may be eliminated from equations (96) and (102) to yield 

+ 4~f0~3 = 0 

whose solution, which satisfies the initial conditions (99) and (100), is given by 

{~01] 
3 = 3ol cos 2rrfot' + \2E[o] sin 2rrfot' 

where 

t' = t To 
2% 

which is zero at the start of the elastic phase. 
Substitution of equation (104) into equation (96) gives, on integration, 

A = ?'o1+ ] - 2 - ~  (3-3ol ) .  

(103) 

- . 

(104) 

32 } 16yol sin To' 
1 7r(12-- ~r 2) 3°1 cos To' - 7r~/(~, _ 96) = 0. (106) 
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Finally, the range of validity of equations (104) and (105) may be established by determining J d  
from equations (91) or (92), and equating this to J d g .  It follows that the elastic phase ceases at 
time t' = To'/(2rrfo), say, where 

(105) 



At this critical value of t', which heralds the appearance of a further elasto-plastic phase, the 
displacement and velocity of the beam are given by 

3 = 31, say 

( t = 8ol cos T o' + 2 7 r ~ - - -  96) 

8 = 81, say 

= 8ol cos T o' - 2wfo3ol sin T o' 

A = A1, say 

= A01+ ~ (81-801) 

/k = /kx, say 

qr 2 

Vol sin To' ~ (107) 

(108) 

(109) 

(110) 

A.6. The Second Elasto-Plastic Phase. 

Equations (107) to (110) provide the initial conditions for the beam in the elasto-plastic phase 
for which the equations of motion are (91) and (92) w i t h / g  = / g g .  The  solution of these equations 
may be writ ten non-dimensionally in the form 

and 

where 

6y 1T 3(w ~ - 9 6 )  T 2 
A -[- 8 = A I +  8 1 +  " wa 16ws (111) 

(12 - ~2~ {3(1-cos  T) + ½71 sin T} (112) S = 31 cos T +  \ ~ ]  

t 2 w x / ( ~ -  96)/ 
=VolC°S T o ' -  ~ 1 2 - ~ ' ~  J 8°1 sin T O ' (113) 

and a fresh origin, zero at the start of this elasto-plastic phase, has been chosen for T ( =  2wf#). 
Equations (111) and (112) are valid only as long as ~b'(½a) is positive; i.e. up to such time when 

equation (96) is satisfied. I t  may then be shown that this critical value of T, denoted by T1, is 
determined from the relation: 

y l ( 1 -  c o s  T 1 )  - 6 sin T1 
( ~ -  96) ( 2~ "8 

16 T1 + \12 - ~r ~] 81 sin T 1 = 0. (114) 
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Let us now denote by A12 , 813 the values of A, 8 at time T1, and by zX12, 81~ the values of/~, 8 at 
time T 1. Let us also introduce 7~2 {cf. equation (100)} such that /~19. = 71ff~. Equations (111), 
(112) and (96) then give 

6y l r l  3(~4- 96) rl~ (115) 
A12 + 812 = k I + 81 + 7 r 7  16~r a 

and 

/12 - ~re~ {3(1 - cos  /'1) + ½Yl sin T1} (116) 812 = 81 cos T 1+  \ ~r a ] 

[ : ' -  % r l  
= Y l - \  16 ] 

(117) 

Similarly, the non-dimensional measure of the total damage incurred during the first two elasto- 
plastic phases is given by 

( 1 2 )  
~@2 = Al~ + 81~ - 1 - 2 - ~  812" (118) 

A.7. Analysis for Further Elasto-Plastic Phases. 

Whether or not this is the final measure of the total damage depends on whether there is a further 
elasto-plastic phase. Following an analysis similar to that of Section A.5, it will be seen that a further 
elasto-plastic phase will occur if a term T z' exists which satisfies the equation 

{ } 16y12 sin TI' 
32 813 cos T 1' 1 ,r(1T_~r~) 7r%/(Tr4_96) - 0. (119) 

The cycle of operations for determining ~a may now be repeated. Apart from a unit increase in 
each suffix, it follows an identical pattern to that used to determine ~ in terms of A01,801, Y0t. If 
we iiltroduce the notation -+ to mean 'is a function of' we may write the necessary steps in the 

following symbolic form: 

To' -+ 801, Y01 

ml,  81, Yl -+ m01, 801, ~01, To" 

T1 -+ 81, ~'1 

A12,812, Y12 -~ A1, 81, Yl, 711 

N2 -+ A12, 813 

711' -> 812, ~12 

etc. 

[equation (106)] 

[equations (107), (109), (113)] 

[equation (114)] 

[equations (115), (116), (117)] 

[equation (118)] t 

[equation (119)] 
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A.8. Comparison with Present Simplified Theory and Previous Theory. 
According to the simplified theory presented in the main body of the report the damage due to a 

sudden impulse is given by equation (57), 

Also, from equation (54) 

= z~2(2=2j2_ ~). 

g o = ~  

_ 2~foPo [ 4~2fo~to ~ - [Fo*~2tl/2 
Ko t \ P o /  J 

so that 
2 2 2 2 2 1 z d  = 8 .  k fo (2~- j - ~ )  

and hence 

= 8~2" f0 

Nowf~,  .f0 are given by equations (80), (85) and t~, ~ by equation (25); hence 

@ = 1. 096 702. (120) 

The relationship between ~ and 702 is therefore linear and it provides a convenient basis for 
comparison with the more accurate two-term solution and with previous theory in which the 
factors t* and ~ were inherently assumed equal to unity, and for which 

= 0. 876 703 . (121) 

The comparison is shown in Fig. 12. 

t It is, of course, unnecessary to determine ~ when T~_ 1' exists. 
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