
L|BR~R¥ 
~ O y A L  A!,~.cRAFT ESTABUsHMENt 

BEDFORD. 

M I N I S T R Y  OF A V I A T I O N  

R. & M. No. 3406 

A E R O N A U T I C A L  R E S E A R C H  C O U N C I L  

R E P O R T S  A N D  M E M O R A N D A  

Design of Warped Slender 
Attachment Line along the 

BY J. WEBER 

Wings with the 
Leading Edge 

L O N D O N :  H E R  M A J E S T Y ' S  S T A T I O N E R Y  O F F I C E  

z965 

PRICE 15s. 6d. NET 



Design of Warped 
Attachment Line 

Slender Wings with the 
along the Leading Edge 

By J. WEBER 

COMMUNICATED BY THE DIRECTOR-GENERAL OF SCIENTIFIC RESEARCH (AIR), 
MINISTRY OF SUPPLY 

Reports and Memoranda No. 34o6 * 

September, i957 

Summary. 

This report deals with the design of slender warped wings with unswept trailing edge but otherwise arbitrary 
planform which have, at the design lift coefficient, zero load along the leading edge and a near planar vortex 
sheet from the trailing edge. The wing can have an arbitrary chordwise curvature on which a spanwise curvature 
is superposed so that in any spanwise section the wing is straight over the inner part of the wing and curved 
over the portion near to the leading edges; the position of this change can vary arbitrarily in the chordwise 
direction. Formulae and working charts are given for determining the local load coefficient (and with it the 
streamwise velocity component), the spanwise velocity component, the total lift coefficient and the total drag. 
Numerical examples, for the gothic planform, are given to illustrate some of the effects of the various parameters 
on the load distribution, the section shapes and the drag. Slender-wing theory has been applied except for 
determining the wave drag which has been obtained from an approximate relation derived by the not-so-slender 
theory of Adams and Sears. 
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1. Introduction. 

The flow past a wing with a highly swept leading edge at incidence usually separates at the edge 
forming a vortex layer, which rolls up into a rotating core lying above and inboard of the edge. 

Sharp edges are thought to be desirable on slender wings so that the conditions under which this 
separation occurs are determined. With these slender, sharp-edged wings separation will occur from 

all edges except in special cases, of which the flat plate at zero incidence is an example. As the 

incidence of a wing increases from negative to positive values, the attachment line near the leading 

edge (see Maskell 1) moves from being entirely on the upper surface to being entirely on the lower 

surface and vortex cores form below and above the wing respectively. However, unless the warp 

of the wing (the term 'warp' is used in the following to describe camber and twist together) is 

specially designed, there will be a range of incidence for which the attachment line crosses the 
leading edge and this point of intersection will vary with the incidence. This undesirable phenomenon 
is avoided on a wing for which the attachment line lies all along the leading edge at some incidence. 
No separation takes place at this incidence, at higher or lower values the vortex cores lie entirely 
above or below the surface. 

The simplest form of warp satisfying this condition is the flat plate. On a flat plate the flow 
separates at any non-zero lift from all edges. Under these conditions the vortex drag of a delta wing 
substantially exceeds the value for a wing with trailing-edge separation only, at least in the range of 
lift coefficient where the maximum lift-drag ratio is expected to be found ~t°¢. The use of other 
planforms may modify this result to some extentS; but, certainly for wings not too far removed from 
the delta, it is desirable to design cambered surfaces to have separation only from the trailing edge 
at some non-zero lift coefficient. The condition for this is that the attachment line should lie along 
the leading edge for its whole length. According to attached-flow theory, the local load at a subsonic 
leading edge of a thin wing with finite slope to the free-stream direction is either infinite or zero. 
The latter case occurs when the attachment line is along the leading edge. In accordance with the 
account of separation given above, it is only in this case that attached-flow theory can be expected 
to apply to a slender wing, and it is only in this case that We use it. Thus no attempt is made to 
realise a flow with theoretically infinite suction peaks at the leading edge. On the contrary, warped 
surfaces are proposed which in their design condition have vanishing load at the leading edge, 
combined with suction forces on forward-facing surfaces inboard of it. These wings have in this 

way values of the vortex drag which are almost as low as those predicted by the unrealisable attached 
flow past the flat wing at incidence. 
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Many different warped wings can be designed on which theory predicts the attachment line to lie 

along the leading edge and the vortex drag to be low. Whether these properties persist in a real flow 
depends on the development of the region where viscous forces are dominant and thus on the 
pressure distribution over the wing. The pressure gradients occurring along streamlines in the flow 
over the wing with finite thickness will to some extent decide whether flow separations and shock 

waves inboard of the leading edge are avoided. Furthermore, the value of the load which can be 

maintained at the trailing edge when the main stream is supersonic is limited by the shock system 

there, which cannot be studied by the present theory. 

The choice.of a wing shape will further depend on the pressure distribution at off-design con- 

ditions. The aim is to achieve with increasing lift coefficient a smooth variation of the flow field 

which is dominated by the primary separation developing from the leading edge and not by a 

secondary separation somewhere inboard on the wing. 
The planform and camber surface, to be chosen for a practical design, are also affected by con- 

siderations outside the field of aerodynamics. For example, it may be desirable to have a curved 
centre section of the wing so that, at the design lift coefficient, the incidence at which the centre 
section is set against the main stream is smaller than for the uncambered centre section, with the 
same slope at the trailing edge. This brings a reduction of the difference in height between the nose 
and the trailing edge of the wing and thus, presumably, in the height of the undercarriage. These 
remarks show that we require a family of wing shapes with several free parameters from which 
to choose. 

In this report, thin slender wings of arbitrary planform but with unswept trailing edges are 
treated. The chordwise curvature of the centre section of the wing is arbitrary, but only some special 
types of spanwise curvature are considered. In a spanwise section the wing is straight over the inner 
part and curved over the portion near to the leading edges. The spanwise position of this 'shoulder', 
where the spanwise curvature begins, is a free parameter which can vary along the chord. Two 
different types of curvature are considered; the surface slope outboard of the shoulder varies either 
linearly or quadratically across the span, as in the case of wings with conical flow treated by 
Brebner% For completeness, the case of constant surface slope over the outer part is also included, 
though the corresponding load distribution has logarithmically infinite values at the shoulder as a 
consequence of the discontinuous change of the wing slope. 

In this report, formulae are given for the local load distribution (and thus within linear theory for 

the streamwise velocity increment) and for the spanwise velocity component. The total lift and the 
vortex drag are determined, and the chordwise distribution of the cross load, required for calculating 
the wave drag, is also determined. The given formulae apply to any slender smooth planform with 
unswept trailing edges. Num.erical examples have been worked out for the so-called 'gothic' plan- 
form which has a pointed nose, streamwise tips and parabolically varying leading edges. The 
pitching moments have not been determined. 

2. General Outline of the Method. 

The theory of lifting wings of given planform usually deals with one of the following three 
problems: 

(i) The load distribution is given and the shape of the wing, which has the required load 
distribution, is to be determined. 
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(ii) The wing shape is given and the load distribution which this wing has in a given flow is 
to be determined. 

(iii) The wing shape is to be found which produces the minimum drag due to lift for a given 
amount of total lift. 

When solving our special problem by the first method, it is of course easy to satisfy the require- 

ment of zero load at the leading edge. It is more difficult to prescribe load distributions which satisfy 
the requirement of lowish drag. The properties of the pressure distribution would of course depend 

on the prescribed load distribution, i f  we express the latter as a finite series of some basic solutions 

(as e.g. in Ref. 7), then the pressure distributions as well as the resulting wing shapes may exhibit 

some waviness. A chordwise waviness in the pressure distribution implies the undesirable feature 
of having several compressions on the wing. 

The second method is unsuitable for solving our problem, since, for arbitrary planforms, it is 

impossible to guess a wing shape such that at some C L the attachment line shall lie along the whole 

leading edge. Only if the distribution of surface slope is conical can it be assumed a priori that the 
attachment line will occur at the leading edge for some C L. 

The methods developed for solving the third problem of wing theory are not applicable to our 

task, since the leading-edge condition does not fit in. We want to design wings of general planform 

and there are cases, as e.g. the delta planform, for which the condition of minimum vortex drag is 

incompatible with the condition of zero load at the leading edge. The latter leads to a spanwise 

distribution of the chord load which has zero slope at the tips, whilst the condition of minimum 

vortex drag requires an elliptic distribution. We do not restrict our design problem to the cases 

where the total lift-dependent drag is exactly at R. T. Jones' lower bound s,9, but require that it 

should be reasonably low. 

It has been found convenient for solving our problem to apply a mixed procedure by prescribing 

the wing shape to some extent only and prescribing some properties of the load distribution. Apart 

from the consideration of more general planforms, it is mainly in this respect that the present 

treatment differs from that of Smith and Mangler 7. The present method has been applied by 

Brebner ~ to conical flow. We prescribe a certain type of downwash distribution over the wing 
(i.e. within linear theory, of the chordwise wing slope 3z/3x), but leave the ratio between the 

downwash at the leading edge and that at the centre of the wing free so that we can satisfy the 
condition of zero load at the leading edge. In some cases, we introduce the further condition that 

the spanwise distribution of the chord load at the trailing edge is elliptic to obtain m.inimum vortex 
drag. We do not introduce a condition concerning the wave drag but shall find that among the large 
number of solutions there are some for which the drag value is close to the lower bound of R. T. Jones. 

The calculations are based on slender-wing theory except for the wave drag which is determined 
by applying the not-so-slender thin-wing theory of Adams and Sears 9. 

We begin with a required type of spanwise downwash distribution, which contains a free 
parameter to be determined later. A solution of the two-dimensional Laplace equation for the 
velocity potential is taken which produces the required downwash distribution. The velocity potential 

gives the spanwise distribution of the local chord load, from which the local load is obtained by 
differentiation in the chordwise direction. The free parameter in the downwash distribution can 
then be chosen such that the local load at the leading edge is zero. The spanwise velocity component 

is obtained from the spanwise distribution of the local chord load by differentiation in the spanwise 

direction. The spanwise distribution of the chord load at the trailing edge determines-the total lift 



and the vortex drag. For determining the wave drag the chordwise distribution of the cross load is 
required. This is obtained by integrating the local load coefficient across the span. 

The above procedure is not only simple but has further advantages. It guarantees that the resulting 

shapes do not exhibit any waviness and allows certain properties of the shape to be prescribed as 
e.g. the spanwise extent of the inner part of the wing which is uncambered in spanwise sections. 
The leading-edge condition is automatically fulfilled and the condition of minimum vortex drag 

can be fed in. The method can be applied to slender wings with unswept trailing edge but arbitrary 

shape of the centre section and the leading edge. A number of results can be written in closed form. 

3. Details of the Method. 

3.1. Geometry of the Wings Considered. 

A right-handed system of Cartesian co-ordinates x, y, z is used. The origin is at the leading edge 

of the centre section, the x-axis in the direction of the undisturbed stream, y spanwise and z positive 
upwards. The wing chord c o at the centre section of the wing is taken as unity throughout. 

The planform of the wing is given by 

[y] ~< s(x). (1) 

s(x) and its first derivative with respect to x, ds(x)/dx, are assumed to be continuous for 0 < x ~< 1. 
The wings considered have curved or straight sweptback leading edges such that the forward part 
of the wing is pointed, i.e. s(O) = O, s'{ds(x)/dx}z= o is finite. In a planview the trailing edges of the 
wings are unswept. The planforms are such that the maximum span is reached at the trailing edge. 
The value of the semispan a t the  trailing edge is denoted by 

s(1) = 'T. (2) 

We consider slender wings only, so that sT/c o ~ 1. The theory is developed for arbitrary functions 
s(x), but the numerical examples given in this report are calculated for the so-called gothic planform: 

s(x) = sTx(2-x) .  (3) 

The shape z(x, y) of the wing surface is determined as that of a stream surface in the known 
velocity field by applying the linearized boundary condition. 

3z(x, y) v~(x, y, O) 
- ( 4 )  

8x V0 
J 

where V 0 is the velocity of the undisturbed stream and v~(x, y, 0) the velocity component normal to 
the chordal plane of the wing. 

As mentioned before, we begin by prescribing the spanwise distribution of v z. Three different 
distributions of the downwash will be treated in this report (see Fig. 1). Using the notation 

Y 
T - s(x)' (5) 

they are: 

v~(x, y, O) t C(x) for 0 < [~l -< To(x) 

V o - [ C(x) + D,(x)  FITI - To( )-I L1 --no~- / for  0(x) ITI ( 6 )  

where ~ = 1, 2, 3. 
T h e  distributions considered are thus such that for spanwise sections, x = const., the slope 
3z(y; x)/3x is constant over the inner part of the wing 0 < ]~7[ < T0(x) • Over the outer part of the 



wing, 17] > 70(x), az/ax is given by a different expression. It is either constant or varies linearly or 
quadratically. The shape of the inner part of the wing is determined by the choice of C(x). The 
centre section in particular can be straight or curved, depending on C(x). The values of C(x) and 
70(x) can be chosen arbitrarily but the values of D~(x) depend on C(x) and %(x) in such a way that 
the condition of zero load at the leading edge is satisfied. The relations between D,(x), C(X) and 
70(x) will be derived in Section 3.3. 

Anticipating the results of Section 3.3, we may rewrite the three types of downwash distribution 
in the form 

(i) %(x'y'O)- {~ ( x ) V  o C(x) [ 7r/2 ) f ° r 0 < [ 7 [ < % ( x )  

\ c o s - %  i for 70(x) < 171 < 1 (7) 

(ii) %(x,y,O) _ (C(x) V ~('~11-%)__ ] f o r 0 < , ~ l < % ( x )  

V° (LC(x) 1 - 2{~/(1 - ~ 5 o  2) - 70 cos-l~To}] for 7o(X) < t71 < I (8) 

(iii) %(x,y, O) {C(x)[ ~r(]7t-70) z 1 f o r 0 <  171 < T0( x ) 

No - C(x) 1 - ( I  + 2 7 o  ~) cos-~7o - 3 7 o I / ( 1 - 7 / )  f o r  To(X) < 171 < i .  (9) 

The ratio between the downwash required at the leading edge and the value at the inner part of the 
wing, to achieve zero load at the leading edge, is: 

% ( 7  = 1) D.(x). 
- 1 + - -  (10 )  ~(7 = o) c(x)' 

it is plotted in Fig. 2. The figure shows that the slope at the leading edge is larger the closer the 
shoulder % is to the leading edge and that for quadratically varying downwash the required slope 
at the leading edge is larger than for the linearly varying one, if we compare for the same 70- 

From the known slope 3z(x, y)/3x of the wing surface the shape of chordwise sections z(x, y = 
const.) can be determined by integration except for an additive termf(y).  The choice of the function 
f(y), which in linear theory is arbitrary, determines the spanwise shape of the trailing edge. In our 
numerical examples, we have chosen such a value of f (y)  that the trailing edge becomes a straight 
line, z(1, y) = z(1, 0) = ZT, 

f l az(x', y) 
z(x, y) = a(1, y ) -  • ax' dx'. (11) 

This implies that the leading edge is not planar. 

3.2. Spanwise Distribution of the Local Chord Load for Various Downwash Distributions. 
As a starting point, we will derive in this section a relation between the spanwise distribution of 

the local chord load L(x, y) and the local downwash - %(x, y). The local chord load L(x, y) is the 
integral at a station y = const, of the local load coefficient l(x, y) from the leading edge to the 
station x considered: 

f L(x, y) = l(x', y)dx' (12) 
xL~,(Y) 

The local load coefficient l(x, y) is defined by 

l(~, y) = - A C ~ ( x ,  y) 
= - [ c , , d ~ ,  y )  - c ~ , ~ ( x ,  y ) ]  d 3 )  

7 



where the suffices U and L denote the upper  and lower surfaces of the wing. In slender-wing 
theory Bernoulli 's equation is applied in the form 

C~, - p - Po _ 2 % %2 + %~ (14) 
½P0V0 ~ V0 V0 ~ 

With wings on which the flow separates only from the trailing edge, we can, to a first order, 
approximate wing and wake by a planar distribution of singularities, even though the camber may 
be appreciable. For planar sheets the term vv~ is the same on the upper and lower surfaces, if we 
ignore the contribution of the sources which would represent the finite thickness of the wing. 
In this case 

l(., y) = 2 [vx~(x, y) ~.~(x, y)] [ Vo Vo 

(15) 

sin 18 - ~'[ r(y; x) _1 (~ v~(~'; x) 8' 2 
2s(x)V o - rr Jo Vo sin log ~ + 8' d~' (19) 

sin - - -  
2 

where cos t9 = r/ = y/s(x)~ 
Equation (19) enables P to be found for the velocity distributions 

v~(y; x) {0 
- -  = F i l l -   0(x)l -I Vo D~(x) ( f _7 % ~ )  _j 

The cases v --- 1 and 2 were calculated by Watson 10. 

f o r O <  ]~7] < %  

for ~o < ]rj] < 1. 

where ¢ is the perturbation velocity potential in the plane x = 0. 
Using equations (12) and (15), we find that L(x, y) is related to the difference in the potential 

function on the upper  and lower surfaces of the wing, A¢(x, y) = ¢u(x, y) - dpL(x , y), by: 

L(x, y) = V~ A¢(x, y ) .  (16) 

A¢(x, y ) i s  equal to the circulation P(x, y) around the part of the wing in front of the station 
x = const, and outboard of y = const. 

In slender-wing theory the velocity potential ¢(x, y) is a solution of the two-dimensional Laplace 
equation : 

Oy-- i +-yzz z = 0. (17) 

We have to find the solution which gives for each station x = const, in the plane z = 0 the required 
normal velocity component  %(y, z = 0; x). To solve this problem is equivalent to determining the 
strength dF(y ;  x)/dy of a system of two-dimensional vortices (in the plane z = 0 and parallel to 

the x-axis) which produce the given velocity %(y; x): 

1 d a y ; x )  (is) 
%(y; x) = - 27 J-,(x) dy' y - 

The  solution of this integral equation reads (see e.g. Ref. 10): 



Superpos ing  the elliptic spanwise  dis t r ibut ion of the  chord load, cor responding  to a constant  
- %(y;  x) = C(x) for 0 < ]r/] < 1, we  obtain for the veloci ty dis tr ibut ions of  equat ion  (6) the  

spanwise  dis t r ibut ions of the  chord  load: 

L,(x ,  y )  = 4C(x)s(x)%/(1 - r/s) + 4_rr D~(x)s(x) {2 cos-*%%/(1 - @) + 

+ % l n  I%/(1- r/z) - %/(1-w°e)l [r/oV(a- r/z) - r /%/(1-%z)]  t (20) 
%/ (1- r / s )  + - % / ( 1 7 @  - r / in  % % / ( l _ r / z )  7+-r/%/(l_r/oS) j 

[ Le(x , y)  = 4C(x)s(x)%/(1 - r/e) + 7r(1 - r/~o) De(x)s(x) {%/(1 - r/oe ) - 2"qo cos-1%}%/(1 - r/a) _ 

r/o = + r/e in 1%/(1- r/e) - %/(1- r/°e)l I w , / ( 1 - r / e ) -  r/%/(1- r/g)l] 
2 %/(1-r /e)  + %/(1- r /o  e) + r / ° r / l n  %%/(1 r/e) 7 r / ~ 7 ] - - Z - @  j (21) 

4 
La(x , y )  = 4C(x)s(x)%/(1 - r/s) + 3~r(1 - r/0) e Da(x)s(x) x 

x [{(1 + 2r/s + 6% 2) c o s - l %  - 5%%/(1 - ,oS)}%/(1 - r/e) + 

+ ( % a +  3r/or/e) in ]%/(1 - r/z) _ %/(1 - r/oS)[ 
%/(1 r/z) ~ ~ O . C  r/o ~) - 

_ (r/a + 3%zr/)  in  I%%/(1 - @)  - r/%/(1 - r/oS)] ] ( 2 2 )  
r/o%/(1 r/a) 7 r/%/(1 r/o e) j 

Anticipat ing again the  relations (28) to (30) be tween  D~(x) and C(x) and r/o(x) f rom Sect ion 3.3, 
we  obtain  for the spanwise  dis t r ibut ions of the  chord  load: 

L l ( x  , y)  : C(x)s(x) 2 { I%/( 1 _ r/s) _ %/(1 - r/#)[ 
cos_l% - % in %/(1 - @) + ~/(1 - r/o s) + 

+ r /In ]r /°%/(1- r/s) - r /%/ (1 -%e) l  } (23) 
r/o%/(1 r/s) 7 r/'V/(1 - r/o s) " 

1 {2%/(1 - r/oS)%/(1 - @) + Le(x, y)  = C(x)s(x) %/(1 - %2) _ % c o s - l %  

+ (r/o 2 + r/s) in t%/(1 - r/a) _ %/(1 - r/oZ)[ _. 
%/(1 - r/s) + %/(1 - ,70 s) 

' 2%r/In ] r / ° % / ( 1 - r / s )  _ r/%/(1 _ % e ) ] }  
r/o%/(1 - r/D + r/%/(1 - r/o e) " 

4 
La(x , y)  = C(x)s(x) 3 [(1 + 2r/oS ) cos-lr/o - 3r/o%/(1 - r/oe)] x 

x I { 2 ( 1  - r/~) c o s - ~ r / o  - 4r/o%/(a - r /g ) }%/(1  - r/a) _ 

- (r/oa + 3r/o~q e) In ]%/(1 - rfl) - %/(1 - %z)[ 
%/(1 r/s) 7 A,/(1- vg) + 

+ (~+3~&)in I noV(1-~)- ~V(1- ~o~)I] 
~oV(1 ~) 7 ~%/(I- ~o ~) 3" 

(24) 

(25) 



The limit of L~(x, y) as % tends to 1 is, of course, for all three cases the elliptic loading function: 

L(x, y) = C(x)s(x)4.v/(1 - v=). (26) 

3.3. Local Load Distributions. 

Knowing the local chord load, we can now determine the local load l,(x, y) by differentiation" 

l~(~, y) - aL~(~, y) 
ax (27) 

In particular, we can determine by equations (20) to (22) the load at the leading edge, l(x, ~ - 1). 
The  condition of zero load at the leading edge leads to the following relations between D,,(x) and 
C(x) and %(x): 

Dx(x ) _ w/2 
cos_ l~o(X)  c ( x )  (28)  

=(1  - ~?o) C(x) (29 )  
D~(x) = - 2~/(1 - ~7o ~) - % cos-X~7o 

D~(x)  = - ~(1  - ~o) 2 
(1 + 2 ~ g )  c o s - l ~ o  - 3 ~ o ~ / ( 1  - ~o ~) c ( ~ ) .  (30)  

The same relations are obtained from the condition that the spanwise velocity component, %,  at 
the leading edge vanishes, which is a consequence of the condition of zero load at the leading edge. 
Within slender-wing theory, vv is related to the spanwise distribution of the local chord load by: 

v,,(x, y) 1 aP/V o 1 aL(x, y) 
- ~ - 0  = + 2  ay - -+4 ay (31) 

Applying the condition %(x, ~7 = 1) = 0 to the functions L~(x, y) given by equations (20) to (22), 
leads to equations (28) to (30) and to equations (23) to (25). 

Differentiating the distributions of the chord load given by equations (23) to (25), we obtain the 
following relations for the local load: 

de(x) s(x) 2 { I-V/(1- ~7 2) - %/(1 - r/o2)[ 
l~(x, y )  = d ~  ~ _ - '7o In ~ / ( 1  - r~ 2) + ~ / ( 1  - %2) + 

111 [ r~°'V/(1 _~72) _ .q.V/(1 _ %~)1 } + 
~0~/(1 ~ )  7 VV'(1 V0 ~) + 

+ C(x) 
dx cos-lrlo - % In .V(1 .q~)~-~/(1 -qo ~) _ + 

d~o( X_~) 2 
[ - 2%/(1-  7/~) - + C(x)s(x) 

dx cos-lF0~/(1-7/0z ) 

{ r /~°  + ~e/(1-'qo2)} in [ 5 / ( 1 - @ ) -  5/(1-r~°2)1 

+ - ~  In ] ~°~/(1 - .2) _ ~7~/(1 - ~7o2) 1] (32) 
cos-1~7o ,o@(1 - ,7~) 7 ~ ~ o ~ o ~ ) -  J " 
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dc(x) 
12(x' Y) - dx 1 { 2 V ( 1  - 7o2)¢(1  - 72) + 

. . . .  s (x)  %/(1 - 702) - 7o cos - : ,o  

+ (702 + 7 ~) in {%/(1 - 7 2) - %/(1 - 7o2) 1 17o%/(1 - 7 ~) - 7%/(I - 7o2) 1} 
%/(1 7 ~) ¥ %/(1 702) - 2707 1~ 70%/0 7 ~) g 7 % / ( 1 -  702) + 

+ C(x) ds(x) 1 {2%/(1 - 7o2)%/(1 - 72) + 
dx %/(1 - 7o ~) - 70 cos-17o 

+ (702--02)  in l % / ( 1 - 7 2 )  - %/(1- w°")l }~ + 
%/(1 72) ¥ %/(1 702) ) 

+ C(x)s(x) dT°(x) 1 [ 
dx  [%/(1 - 702 ) - 7o cos-17o] 2 2 cos-17o%/(1 - 7o2)%/(1 - 72 ) ÷ 

+ {27o%/(1 - 702) + ( 7 2 -  7o 2) cos-:7o} In [%/(1 - 72) - %/(1 - 7o2)1 
%/(1 7 2 ) + % / ( 1  ~7o 2) - 

- 27%/(1 - 702) In 17o%/(1 - 72) - 7%/(1 - 7o2)l] 
7o%/(1 - 72) T 7%/(1 - ~o ~) J 

(33) 

&(x, y )  - dC(x) s(x) 4 
dx 3[(1 +2702)  cos-17o - 3-qo%/(1 - 702)] x 

x [{2(1 - 72) c o s - l ~ o  - -  47o%/(1 - 7o2)}%/(.1 - 72) - 

- (7o 3 + 37072) in I%/(1 - 72) - %/(1 - ~o~-)] 
%/(1 72 )~%/(1 702 ) + 

+ ( 7 3 ÷ 3 7 o 2 7 ) I n  17°%/(1--72)- 7 % / ( 1 -  7°2)1-] 
7o%/(1 7 2) ¥ 7%/(1 - 7o 2) J + 

+ C(x) ds(x) 4 
dx 3[(1 +2702)  cos-~7o - 37o%/(1 - 702)] x 

x [{2(1 + 272) cos-aTo - 47o%/(1 - 7o2)}%/(1 - 72) + 

+ (3 -qo72 -7o  3) in I % / ( 1 - @ )  - % / ( 1 - 7 ° 2 ) 1  [7°%/(1-  72) - 7%/ (1 -  7°~)1] 
%/(1 72) T %/(1 702) - 273 in 7o%/(1 - 72) + 7%/(1 - 7o 2) j + 

dTo(X) 4 
+ C(x)s(x) dx 3 [ ( 1 + 2 7 o  2) c o s - : 7 o  - 3 7 o % / ( 1 - 7 o 2 ) ]  2 x 

x [2{70(1 - 7o ~) + (1 + 2702 - 472)%/(1 - 702) c o s - : 7 o  - 47o(1 - 72) (cos-17o)2}%/(1 - 72) + 

+ {(5702 - 37~)70%/(1 - 702) - 

- (27o ~ - 67o272 + 3702 + 372) cos-%o} in Iv'(1 - 7 ~) - %/(1 - 7o2) 1 + 
%/(1 72) T- %/(1 702) 

+ { ( 4 7 2 -  6Vo2)7%/(1 - 7o ~) + (6 - 472)7 7o cos-17o} in [ 7°%/(1 - 72) - 7%/(1 - 7°2) [[ q (34) 
7o%/(1 72) + 7%/(1 702) .3 
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T h e  func t ions  l~(x, y) are of  the  fo rm:  

¢ ( * ,  y) - & s(*)G.(70, 7) + c ( . )  G(7o,  7) + c( . ) s ( . )  G(70,  7). (35) 

T h e  func t ions  F~,  are zero for  7 = 1, i.e. lv{x , y = s(x)} = 0 as required.  T h e  F,~,(70 , 7) are finite 

for  all values  of  7o and  7, except  for  F21 and  Fal wh ich  have  logar i thmical ly  infini te values  for  

7 = % as a consequence  of  the  d i scont inu i ty  in v,~ at 7 = 70. T h e  load d is t r ibut ions  l,(x, y) (wi th  

the  except ion of  the  line 7 = %), Is(x, Y) and / a (x ,  y )  have,  therefore ,  finite values over  the  who le  

w ing  surface  if dC(x)/dx, ds(x)/dx and d%(x)/dx are finite over  the  wing.  

T h e  fo rmu lae  for  F~ 8 and F~a are ra ther  l eng thy  and of  such  a f o r m  tha t  the  numer i ca l  calculat ions 

have to be p e r f o r m e d  wi th  a larger  n u m b e r  of  s ignif icant  f igures  than  r equ i red  for  the  final result .  

We have, therefore ,  calculated the  t e r m s  F~8 and Fna for  a f ew values of  % only and p lo t ted  char ts  

for  these  t e rms ,  see Figs.  3 to 8. 

T h e  l imits  of  Fn~ as 7o --> 1 were  r equ i red  w h e n  d rawing  these  charts .  T h e  l imit  of  l,(x, y) for  

7o -+ 1 is of  fu r the r  in teres t  since we  in tend  to take in some  cases 70 = 1 at the  t ra i l ing edge to 

achieve elliptic d i s t r ibu t ion  of the  chord  load. Fo r  ~/{(1 - 7o2)/(1 - 78)} -+ 0, the  n u m e r a t o r  and  the  

d e n o m i n a t o r  in the  F,~, t end  to zero. After  some  leng thy  calculat ions we  obta in  for  70 -> 1: 

tiC(x) s(x)4~/(1 - 7 8) + C(x) ds(x) 4 d~o(X ) 8 1 (36) 
ls(x' Y) - dx dx ~/(1 - 7 8) + C(x)s(x) ~ 5 V'(1 - 7 2) 

dC(x) s(x)4~/(1 - 7 ~) + C(x) ds(x) 4 dTo(X ) 8 1 (37) 
/a(x,y)  = dx dx 5 / ( 1 - 7  =) + C(x)s(x) dx 7 ~ / ( 1 - 7 8 )  . 

Fo r  70 -> 1, h(x, y)  is infini te unless  d7o(x)/dx is zero. I f  {d7o(x)/dx},~o= ~ = 0, t hen  {l,,(x, Y)},~0=* is, 
of  course,  the  same  for  all v. 

3.4. Chordwise Distribution of the Cross Load. 

As can be seen f r o m  equat ion  (67) in Sect ion 3.7, a k n o w l e d g e  of the  chordwise  d is t r ibu t ion  of 

the  cross load, L(x),  is r equ i red  to de t e rmine  the  wave  drag  at supersonic  speed  by  the  no t - so - s l ende r  

w ing  theo ry  of A d a m s  and SearsL T h e  chordwise  d is t r ibu t ion  L(x) can also be used  to calculate the  

total  lift on the  wing.  L(x) is re la ted to l(x, y) by: 

~*(~) l(x, y)dy C(.) = 

= 2,(x) f i l(x,  7)dT. 
By equat ions  (32) to (34) and (38) 

L (x) - 

- 

(38) 

dC(x) 2rr ds(x) 4rr 
dx se(x) c o ~  o 7°~/(1 - 7°8) + C(x)s(x) dx cos-17o 7°~/(1 - 702) + 

+ dTo(X) 
dx cos-17oa/(1 - ~/o 8) {1 - 2708 - 70 cos-17oa/(  1 - 708)} 

dC(x) sS(x ) 2 ~ / ( 1  - VoS) 3 C(x)s(x) ds(x) 4 ~ / ( 1  - 708) 8 
dx 3[~/(1 - 708) - 7o cos-17o] + dx 3 [ ¢ ( 1  - 708) - 7o cos - l%]  

+ C(x)s~.(x) dTo(X ) 2~r[(1 + 2708) cos-*7oa/(1 - 708) - 37o(1 - 708)] 
dx 3[~/(1 - 708) - 70 cos-*7o] ~ 

(39) 

+ 

(40) 
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dC(x) s~(x ) 7r[3 cos-1% - (57] o -  27o3)1/(1 - 7]02)] 

L3(.) - & 3[ (1+27]o~)CO~--~o- -3~: / ( i -7o~)  ] + 

+ C(x)s(x) ds(x)2rr[3 cos<7o - (57o-27]oa)1/(1- 702)] + 
dx 3[(1+27o 2) cos-17o - 37o1/ (1-  702)3 

+ c(~)~(x) d7o(X) - G -  x 

47r[(% - 4703) (1 - 702) + (1 + 37]02 + 27]04) cos-17o~/(1 - 7o z) - 3 %(cos-XTo) z] 
x 3[(1 + 27]02) cos-17]o - 37o1/(1 - 7]02)] 2 (41) 

The limit of Ll(x ) as % tends to o n e i s  infinite unless dT]o/dx is zero. The  limits of L~(x) and 

Ldx ) for 7]0 + 1 are: 

ds(x) d7o(X) 8 (42) 

ds(~) dTo(~) 8 dc(~) 52(.) 2~ + c(~),(~) ~ 4~ + c(~)s2(~) dx L 3 ( x ) -  dx - - -  ~ w.  (43)  

The total load if.,(x) acting on the part of the wing in front of the station x = const, can be 
determined either by integrating the cross load L,(x) from the apex (x = 0) to the station x or by 
integrating the  local chord load L,(x. y) with respect to y:  

f x  fs(~) [,,(x) = L,(x')dx' = 2 L,(x, y)dy. (44) 
0 d O  

We have obtained/ , , (x)  by integrating L,(x, y) and used the relation 

c9 E,(x) (45) L,(x) = 3-x 

as a check of our various formulae. The result is: 

COS_IT]0(X ) (46) 

1 / ( 1  - ~o2) ~ (47)  
G ( ~ )  = c ( ~ ) s ~ ( . ) 2 ~  3[v ' (1  -7]02) - 7o cos-~7]o] 

3 c o s % o  - (57]0 - 27o3)1 / (1  - 7]o ~) (48)  
E3(x) = C(x)s2(x)2w 6[(1 + 2702) cos-1% - 37101/(1 - %~)]" 

Denoting by the suffix T the values at the trailing edge, the lift coefficient of the whole wing is 

given by relating the total load [,(xT) to the wing area, 2sTG (g is the geometric mean chord): 

C~ - f'(~*) A 
2STg -- 4S~ 2 [,(x~e). (49) 

Thus:  
77" C~ = ~ AC~ 7]o~V(1  7]o~, ~) (5o)  

COS-19"/O2' 

_ ~ 1 / ( 1  - v o ~ ) ~  (51)  
CL2 = ~ AC~, 311/(1 - 7oT 2) - 7oa- cos-~7]oT] 

7r 3 cos-1%T - (5%.~. - 2%,r3)1/(1 - 7OT 2) (52) 
CL3 = 2 ACT 6[(1 + 2%,p 2) cos-1%T - 3%T1/(1 -7oT~)] " 
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The  limit as 7oT -~ 1 is, of course: 

AC~ (53) c ~ = ~  . 

This is the lift coefficient of the fiat wing set at an incidence a = Cz to the main stream if the flow 
separates only at the trailing edge. The  ratio CL/(V/2)AC T of the lift coefficients for the cambered 
wing and for the flat wing is plotted in Fig. 9. That  the total lift is fully determined by the shape of 
the wing at the trailing edge ( CT and 70T) is a consequence of the assumptions of slender-wing theory. 

3.5. Spanwise Velocity Component. 

Our final aim is to calculate the pressure distribution on thick wings which have the warped 
wings of this report as mean surfaces. To determine the pressure distribution and the direction of the 

streamlines, we require the chordwise and spanwise velocity components on the thin wing. 
The  streamwise perturbation Velocity, %,  is given in terms of the local load coefficient: 

%u(x, y) 1 
v0 = ~ l(x, y ) .  (54) 

The spanwise perturbation velocity, %,  which is induced on the thin warped wing is, within 

slender-wing theory, related to the spanwise distribution of the chord load, L(x, y), by equation (31). 

We obtain by equations (23) to (25): 

%l(x'Y~) - + C(x) 1 In I % V ( 1 - @ )  - 7~/(1-7°8)1 (55) 
Vo - 2 cos-170 7o~/(1 - 7 ~) + 7~/(1 - 708) 

%8(x'Y) + C(x) 1 
- -  - -  X 

V o - 21%/(1 - 7o ~) - 7o cos-17o] 

x {71n IV ' (1 -78)  - ~ / (1-%2)1 In 17°1/(1-7~) - 71 / (1 -%2)1  } (56) 
~/(1 - 78) 7 ~ / ( 1 -  7o e) - 7o 7o~(1 7 ~) 7 7~/(1 708) 

%a(x, y) + C(x) 1 
- - (1 + 2708) cos-~7o - 37oV(1 - 7J)  x 

IV(1 7 8 ) ,/(1 7:)1 
x { - 27 cos-17o~/(1 - 78) - 2707 In 

V(1  78) ¥ V ( 1  - 7 o  ~) + 

+ (78 + 7o ~) In ] 7°~/(1 - @) - 7%/(1 - 7°8)I / (57) 
7oV'(1 - rl~) 7 7V/(1 - 708) j " 

For 70 ->  1 

%~(x, y) 
yo 

7 
- -  - g -  C ( x )  ! / ( 1  _ 72 ̀  . )  (58) 

3.6. Vortex Drag. 
Within slender-wing theory, the drag which occurs on a thin wing in non-viscous flow is only 

vortex drag, since lift-dependent wave drag is absent in this approximation, The  vortex drag can 
be determined from the spanwise distribution of the chord load at the trailing edge and the down- 
wash which the trailing vortices induce far downstream in the so-called Trefftz-plane: 

f 1%(x = co, y') D~ _ s~ L(x = 1, y') 2 Vo dy'. (59) 
½P0 V0 2 -aT 
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Within the present approximation, the downwash in the Trefftz-plane is equal to the downwash 
at the trailing edge, so that: 

• f ; D~ = srCr  1 L,(1, v')dT' + sTD~T 
½PoVo 2 o 'lot TOT / 

Introducing the l if t-dependent drag factor K:  

K -  C~ 
CL~/~A 

D~ 47rsr ~ 

½PoVd D '  
we obtain for the three.cases considered the relations: 

L,(1, v ' )dT' .  (60) 

(61) 

- 2 in  */or (62)  
K1 - 1 - ro t  2 

K2 = - (9Tot2--3) ( 1 -  TOT ~) -- 12Z/or4 In ToT 
2(1 - Tot2) a (63) 

{-- 64Tot 6 in ~?or + 15(cos-~7or) 2 + ( -- 54TOT + 28~7or a -- 4Tora)V/(1 - V0T 2) COS-~TOT + 

K3 - 4 + (51~or 2 -  68~or ~) (1 - Vor~)} (64) 
5 [3 COS-IToT -- (5To r -  2TOT3)~/(1 -- Tor2)] 2 

For  ToT -+ 1, K ,  -+ 1. To  achieve min imum vortex drag, it is only necessary to have To = 1 at the 

trailing edge, whereas elsewhere 70 can be smaller than 1. This  can easily be obtained on a wing 

with gothic planform. Values of K~ are plotted in Fig. 10. Th e  infinite value of K 1 for T0f ->0 is a 
consequence of 

(c,, t lim = A Cr  
~oT-~o \To~" 1 

{see equation (50)} and of 

D~I 2~ 
½PoVo2 - Cr~sr ~ (cos_lTor) ~ Tot 2 in T0r 

For  all values of ~70T the vortex-drag factors K S and K~ are smaller than the value K = 2 which 

is the limit of K for C L --> 0 for a flat plate with flow separation from all edges. Values of the drag 

factor which are of the same magnitude as the values of K 3 are obtained for the flat wing, if at all, 

only at relatively large CL - values, which are much higher than those which lead to the opt imum 

lift-drag ratio. But, on the other hand, the calculated results make it clear that a warping of the wing 
is only useful when the wing is carefully designed. 

Let  us consider wings with the same lift coefficient and the same vortex drag but  with different 

spanwise downwash distributions (v = 2 and , = 3). For  the quadratically varying downwash the 

shoulder position is farther inboard than for the linearly varying downwash, ~70r3 < ToT2. I f  we 

take from Fig. 10 values of Tor~ which give the same value of K , ,  and determine from Fig. 2 for 

these Tot, the ratio %~(1)/%(0), then we find that these are nearly equal. Fig. 9 shows that the values 

of C'z/(Tr/2)AC r are also not very different. All this means that we obtain for the quadratically 

varying downwash a smoother section shape than With linearly varying downwash on wings with 
the same lift coefficient and the 'same vortex drag. 
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This  fact poses the question, of why we have not gone further  in our series of downwash 

distributions: 

vo(x,y, 0) C(x) + D~(x) [-I~l - ~o(X)y-~ 
Vo - L T--;~o~ j 

for  rjo(X ) < Ivl  < 1. 

The  reason for not doing so is that we expect the amount  of work involved to be disproportionate 

to possible gains. 

3.7. Wave Drag. , 
In supersonic flow, a wave drag, Dw, arises in addition to the vortex drag, D 0. Th e  total lift- 

dependent  drag, D, is equal to the sum of vortex and wave drag: 

D = D o + D ~ .  (65) 

The  wave drag can be determined by means of the 'equivalent lineal lift distributions'  (see e.g. 

Refs. 11 and 12). The  result can be expressed as a power series in fiST, where 

/? = ~/(Mo ~ -  1) (66) 

and M o is the Mach number  of the undis turbed flow. Adams and Sears 9 have determined the first 

term of this series. In our notation this term is: 

½PoVo ~ 16~ -1 

f l  51 d (L(x)t d (L(x')l In Ix-x '[dx'dx- 
+ o o ~ \  sT /-d~x'\ s-~-/ 

_2L(1) f l d  (L(X)tln(l_x)dx_,_(L(l)l" { 1 ? } 1  sT odx\ s T / \ s--T// - 2  + I n  (67) 

where l(1, ~)) is the load at the trailing edge and L(x) the chordwise distribution of the cross load. 

For  some special types of the functions 1(1, ~?) and L(x)/sT, expressions in closed form for the double 

integrals of equation (67) are given in Appendix I. 

For  a wing with given geometry, the local load varies with increasing Mach number,  i.e. increasing 

/?s T. Therefore ,  on a warped wing, designed by slender-wing theory so as to have zero load at the 

leading edge, the load will not be zero for finite values of/?s T . To  produce zero load at a non-zero 

fisT, a somewhat different wing shape is needed. To  determine this, one might take the load distri- 

bution from slender-wing theory and calculate by linear theory the wing shape which produces that 

load distribution at a given/?sT. We do not intend to perform such a calculation but  we can determine 

the l i f t -dependent  drag which the slightly modified wing would have and use this as an approxi- 

mation to the drag which the warped wing, designed for/?s T = 0, would have at a finite/35 T . 

We insert the load distribution by slender-wing theory l(x, y;/?s  T = 0) into equation (67). This  

gives us an estimate of the wave drag of the known wing which is correct to the order of t3~sT a or 

/345T 4 in fiST, because the difference between the load distributions dete~mined for fis T = 0 and 

/?s T + 0 is of the order/?2sT~ or/?ZsT z In/?s T . We are thus able to determin~ the wave drag due to lift 

to an absolute accuracy which is better than that for the wave drag due to thickness which we can 

determine easily only by slender-wing theory. Th e  relative accuracy of the wave drag due to lift is 

of the same order as for the drag due to thickness. 
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For a given wing, the coefficients of the total lift and the vortex drag vary also with increasing 
fiST. The correction terms to the results by slender-wing theory are of the order fi2sT2. But the 
vortex-drag factor Cjg~/(CL2/~rA) varies less with increasing fis T than the vortex-drag coefficient. 
There are cases, as for instance the flat delta wing at incidence, for which the vortex-drag factor is 
independent of fiST, i.e. equal to the value by slender-wing theory. For some other warped delta 
wings, see Appendix II, the error in the vortex-drag factor by slender-wing theory is only of the 
order fi4ST4. We may thus expect to obtain a satisfactory estimate of the total lift-dependent drag 
factor for small finite fis T by relating the sum of the vortex drag from slender-wing theory and the 
wave drag determined by equation (67) (from the load by slender-wing theory) to the term CL2/rrA 
determined by slender-wing theory: 

e~  C~(fis T = 0) + C~w{l(x , y; fiST = 0)} 
CL2/Tr A - [CL(ph " = 0)]z/rrA (68) 

4. Calculated Examples. 

Some shapes of warped wings having zero load along the leading edge at the design U L have 
already been given in Refs. 6 and 7 for the delta wing planform. The cambers considered are conical 
which in our case would mean straight shoulder lines {constant T0(x)} and a straight centre section 
{constant C(x)}. 

For the numerical examples of this report, we have chosen a wing with a gothic planform. The 
chosen aspect ratio is 0.75, i.e. sT/c o = 0.25. The design lift coefficient is U L = 0.1. The spanwise 
downwash distribution outboard of the shoulder varies quadratically. Preference was given to 
the quadratically varying distribution since it produces smoother section shapes without any 
discontinuity in curvature. The centre section is straight. Since we have made the trailing edge 
straight, this implies that the inner part of the wing, ]Yl < Y0, is uncambered. The leading edge is 
not planar. If we had made it planar the spanwise sections would be cambered across the whole span. 

The position of the shoulder, Y0, has been varied. We have chosen two shoulder lines. The first 
has ToT = 1, which produces an elliptic spanwise distribution of the chord load at the trailing edge 
and thus a wing with minimum vortex drag. The corresponding wing shape has rather highly 
curved spanwise sections near the wing tips (see Fig. 13). The manufacture of this type of warped 
wings may be difficult since these highly curved parts occur at positions where with ordinary wing- 
thickness distributions the wing is relatively thin. It is also not quite certain whether it is justifiable 
to apply linear or slender-wing theory at these highly curved portions of the wing. We have, there- 
fore, also considered wings with non-elliptic spanwise distribution of the chord load at the trailing 
edge (ToT + 1). This means that the vortex-drag factor is larger than 1. For the chosen example 
ToT = 0.8 the factor is 1.07. We may, however, assume that a vortex-drag factor of 1.07 is still low 
compared with the drag factor on the flat wing with leading-edge separation, specially for the small 
value of the, design lift coefficient chosen in our examples. 

To simplify the geometry of the wing shapes, we have chosen two straight shoulder lines, one 
joining the apex to the tips and one joining the apex to the point at 0.8 semispan of the trailing edge. 
With these shoulder lines dTo(x)/dx at the trailing edge is finite. As a consequence the load at the 
trailing edge of these wings is finite, because it follows from equation (35) and Figs. 6 to 8 that the 
load at the trailing edge has a positive finite value if {ds(x)/dx}T > 0, or {dTo(x)/dx}T > 0, or 
{dC(x)/dx}T = {32z(x, O)/Ox2}T > 0. For planforms with streamwise tips, such as the gothic plan- 
form, {ds(x)/dx}T = O. 
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The considered chordwise variations of the position of the shoulder are such that the farther back 
on the wing the closer the shoulder is to the leading edge, as a consequence the spanwise sections 
are more highly curved near the trailing edge than near the apex. The least curved sections are, of 

course, obtained for wing (2) where the shoulder is everywhere more than 0.2 of the local span 

inboard of the leading edge. 
Span- and chordwise distributions of the local load, span- and chordwise section shapes and 

spanwise velocity components for the two wings are plotted in Figs. 12 to 17. 
The chordwise pressure distributions on the two wings show adverse gradients for most of the 

wing. So also do the spanwise distributions, if we consider a flow direction from the leading edge to 
the wing centre. We can, however, not yet decide whether the gradients are too large. The pressure 
distributions on thick warped wings, which have one of the two wings as their mean surface, depend 
at the small design C L to a considerable degree on the thickness distribution. As a first step, to find 
out whether the pressure gradients are too large, we have to determine from the span- and chordwise 
velocity components on the thick warped wing the direction of the stream lines and then the pressure 
gradients along the stream lines. This has not yet been done. But we know that most thickness 
distributions have a beneficial effect on the pressure distribution, since thickness alone produces 
a positive pressure coefficient near the leading edge. We may, however, recall that the magnitude 
of the pressure coefficient near the leading edge, calculated by linear theory, is somewhat doubtful 
(see e.g. Ref. 13). There exist thickness distributions which give also farther inboard a beneficial 

reduction of the chordwise and spanwise pressure gradients (see e.g. Refs. 13 and 14). Let us 
choose e.g. a thickness distribution which has a cross-sectional area distribution corresponding to 
the distribution V of Ref. 14, cross-sections of diamond shape and a centre section with a thickness- 
chord radio of 0.08. Superposing this thickness distribution on the mean surface given by wing (2) 
we obtain, at the design C-L, chord- and spanwise pressure distributions which are almost free of 

adverse gradients. 
For wing (1) we have determined the wave drag for non-zero/3s T by equation (67). For wing (1) 

~/0~' -- 1 and therefore the load distribution at the trailing edge l(1, ~1) is of the type given by 

equation (69) in Appendix I, so that the first double integral in equation (67) can be evaluated 

explicitly by equation (71). For the cases with W0T 4:1 and {d%(x)/dx}T 4:0 {as e.g. wing (2)}, 

no explicit value for the integral has yet been found. 
The value of the second double integral in equation (67) can be estimated by means of equation (73) 

of Appendix I. For the wings considered, the chordwise distribution of the span load L(x) (see Fig. 18) 
is such that it can be approximated by a polynomial in x, equation (72). The resulting drag factor, 
equation (68) is given by 1 + fi2s~.~(1"83-0"08 In fis,r); for the flat wing the factor is 1 + fl2ST2 X 
2" 33. For wing (2) {for which we have not yet calculated the first double integral in equation (67) 
since W0T 4: 1}, we can assume that the wave drag is of the same order as that for wing (1), since 

the chordwise distributions of the span load are very similar (see Fig. 18). 
We have plotted in Fig. 19 also the drag factor for the plane gothic wing with trailing-edge 

separation only, i.e. assuming at fis T = 0 a drag factor of 1. The wave drag on the flat wing is 
17 per cent higher than the minimum wave drag for very narrow wings, which is obtained with an 

elliptic chordwise load distribution (R. T. Jones' 'lower bound'). 
With the irrelevant exception of very small fisT, wing (1) has a smaller drag than the plane gothic 

wing; the values are near R. T. Jones' 'lower bound'. The elliptic chordwise loading is only the 

optimum for small values of fis T . It is therefore theoretically possible to obtain for larger values of 
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fis T for some cases {as wing (1)} a smaller drag factor than R. T. Jones' lower bound tbr narrow 
wings. 

5. Conclusions. 

The aim of this report is to design warped slender wings such that the calculated flow represents 
a realistic physical flow and that low values of the drag due to  lift are achieved. Existing methods of 
designing warped wings which have, at the design CL, zero load along the leading edge are usually 
restricted to wings of delta planform and to conical flow. In this report, the problem has, therefore, 
been extended in three directions: 

(i) Slender wings with pointed nose and straight trailing edge but otherwise arbitrary planform 

are treated. 

(ii) The basic wing can be plane or curved, i.e. the centre section can possess an arbitrary 

chordwise curvature. 

(iii) The spanwise downwash distribution can vary along the chord, e.g. on a delta wing with 

straight centre section the flow need not be conical. 

With the present method one can satisfy a variety of conditions, though not all at once: 

(i) It is possible to choose for a given thickness distribution a mean surface so that no adverse 

pressure gradients or a limited adverse pressure gradient (if one knew what is desirable) 
occurs on the wing. 

(ii) One can choose the amount of the rise in pressure required from the flow behind the wing 
to return to the free-stream pressure. 

(iii) Low vortex drag, even the minimum value, can be obtained. 

(iv) Low wave drag due to lift can be obtained. 

(v) A spanwise section shape, in particular the position of the shoulder, could be chosen as to 
ensure that in off-design conditions the primary separation from the leading edge dominates 
the flow field, if one knew the geometric requirements. 

(vi) One can choose from a variety of geometrical shapes to meet other than aerodynamic 
requirements. 

(vii) One can choose the position of the centre of pressure at the design C L. 

(viii) One can choose a compromise between the various requirements. 

The calculations are based on slender-wing theory except for the wave drag which is determined 
from an approximate relation derived by the not-so-slender wing theory of Adams and Sears 9. By 
making use of calculations by Lance 15, who has applied linear supersonic ~eory  to warped wings 

of delta planform, it is shown that the value of the slenderness parameter fisT, up to which slender- 
wing theory is applicable, depends to a large extent on the chordwise curvature. However, the drag 
factors, determined by the approximate relation, are reasonably accurate for ]3s T < 0.4. 

The theory, as available at the present, cannot yet give us an answer to the following questions: 

(i) What is the range of the validity of slender-wing theory for warped wings of other than 
delta planform? Is the surface slope near the leading edge on the wings, as designed in this 
report, small enough to allow the application of linear theory? 
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(ii) How do viscous effects alter the calculated pressure distribution and the drag at the design 

eL? 
(iii) How do the wings behave at off-design conditions? 

(a) Does the flow separation from the leading edge dominate the flow field? 

(b) Is it more profitable to cruise at the C z where the attachment line is along the leading 
edge or at a slightly higher C L - value? The answer to this question will determine the 

value of the C z for which the warped wing ought to be designed. 

(c) How do the warped wings behave at high lift and under asymmetric conditions, e.g. yaw? 

(d) How does the centre of pressure vary with C L ? Is there a need for a special study of 
warped wings with fixed centre of pressure? 

It is hoped that answers to at least some of these questions will be given by experiments now 

planned. 
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X, y ,  Z 

~(~, y) 

z T = z(1, O) 

CO 

~(~) 

sT 

Yo 

~0 

~70T 

A 

Vo 

V x , Vy ,  V z 

Mo 

c(~) 

CT 

D,(x) 

l(~, y) 

L(x, y)  

r~(~) 

LIST  OF SYMBOLS 

Cartesian co-ordinates; origin at the wing apex; x along the free-stream 
direction, y spanwise, z positive upwards; all lengths are made dimensionless 
with the root chord 

Ordinate of wing surface 

Ordinate of the trailing edge 

1, chord of the centre section 

Geometric mean chord 

Local semispan 

Semispan at the trailing edge 

Spanwise position of the 'shoulder' where the spanwise curvature begins 

_ Y s(x)'  non-dimensional spanwise ordinate 

_ Y 0  s(x) '  non-dimensional spanwise position of the 'shoulder' 

Value of ~10 at the trailing edge 

2sT 
- _ , aspect ratio 

c- 

Velocity of the undisturbed flow 

Components of the perturbation velocity 

Mach number of the undisturbed flow 

= V(Mo ~-  1) 

o~(~, o) vo(~, o, o) 
Ox Vo 

Downwash at the trailing edge of the centre section 

Parameter in the downwash equation, see equation (6) 

Local load coefficient 

Y = l(x', y)dx' ,  local chord load 
xL E(Y) 

f s(x) r 
= l(x, y )dy ,  cross load 

d -s(x) 

f x ( s(x) = L(x')dx'  = L(x,  y)dy,  local total load 
0 d -s(x) 
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Suffices 

D~ 

D~ 

D 

.CDw 

K 

AS 

F 

LIST OF S Y M B O L S - - c o n t h z u e d  

Total lift coefficient 

Vortex drag 

Lift-dependent wave drag 

Total lift-dependent drag 

Vortex-(trag coefficient 

Wave-drag coefficient 

Total lift-dependent drag coefficient 

CD lift-dependent drag factor ,, 
CL / A 

Perturbation velocity potential in plane z = 0 

Difference of ~ on upper and lower surface 

Circulation 

Factors in the loading equation, see equation (35) 

Suffix which characterises the type of the spanwise distribution of the down- 
wash, see equation (6) 

Trailing edge 
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APPENDIX i 

S o m e  Special  Integrals 
i 

For , 
1 

l(1, ~7) = a,v/(1- V~) + b 

the double integral 
~v/(1 - V~) 

f+l f+1 I = l(1, ~/)I(1, ~/)In 1~/- ~?'[d~l'd~ 1 
--1 --1 

can be evaluated in closed form. We consider first the function 

"\,. 
\ \  

f [ 1 ] in  [~ _ ,,./id , " +1 a'v/( 1 _ ~,2) + b ~ / (1 -  V '2) II(V) = - 1  

Its derivative with respect to 

dZl(~) = 
d~ 

can be determined explicitly. 

f + l [ a ~ / (  1 _ V'~) + b 1 ~ dr '  
-1 V ' (  1C  V'~) V - 'r/ 

We introduce 

71 t = COS 

then 
dldv) 

d~7 

cos ¢ 

f " a sin~9 + b 
o c o s  ¢ - c o s  a 

d~ 

= a 'n" COS ¢ 

Therefore 
= a ~ ' ~ .  

-n" y/2 I!(~)=a~ +I1(7=0) 

1 1 ;  
I1(  = O ) =  

(:a ) = -~-  + ~ l n 2 + b l n 2  

I1(~1) = 7 r ( 2 @  . . . . .  4a a ln 2 2  b l n 2 ) .  

Inserting this expression of I1(~) into equation (70) we get finally 

f - 1  av ' (1-~2)  + b ~ / (1 -@)]  a~/(1-~/2) + b %/(1_ ,2 ) 

° 2 4  

(69) 

(70) 

( 7 1 )  



For a polynomial expression of L(x)  

L (x !  = ' c x  + dx ~ + ex ~ + f x  ~ + g x  5 
sT 

the double integral 

f o o d - x \  sT / d - 2 \  s T / 

can be evaluated in closed form. The result is: 

I / 

(72) 

o o d x \  sT / d x ' \  s T / 

3 ca _ 3cd - 35 17 c f -  497 7 da 11 
2 - ~ c e  - - ~  i - ~  c g -  71. - - f i d e  - 

L 

67 56 ~ 1021 53.2 1307 143 
18 d f  - -]~ dg - 2e ~ - e f  - ~ eg - - ~ ]  - f g  - - 60  ga (73) 

fl f a ( L ( x ) ]  d ( L ( x ' ) ]  in I x -  x ' ] d x ' d x -  
o o-d-x\ sT / - ~ \  sT / 

sT o ~ \ sT / - - 2  \ sT / 

7 7 101 3 
cd + 7~ ce + -~ c f  + -fi~ cg + ~ d 2 + 2de + 

8 143 35 2 ~ 101 22 7 e~ ~ ef  + + + f g  + (74) +Vd/+ dg+~ + 2-~eg ~ /  -~0-g ~. 
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APPENDI X II  

Compar i son  o f  Resul t s  Ob ta ined  by S l e n d e r - W i n g  Theory ,  

N o t - S o - S l e n d e r - W i n g  T h e o r y  and  by L inear  Theory  

To investigate the range of validity of slender-wing theory for lifting wings, we make use of 

calculations made by LancO 5 for warped wings of delta planform, applying linear supersonic 

theory. No such calculations for wings with highly swept leading edges but other than delta plan- 

form are known to the author. We shall compare some of the results of Ref. 15 with those by 

slender-wing theory. 

Let us consider the cases where the downwash is of the type: 

- - " 1 3  z = V n X  n . 

These downwash distributions are different from those in the present report since they lead to wing 

shapes which have infinite load at the leading edges. We quote the load distributions from Ref. 15. 
In our notation: 

- -  V z ~ V 0 :  

l(x, y )  = 4s Vo 1 1 
v0 E (75) 

- -  V z ~ V l X :  

l(x, y )  = 4s v-Ak 1 - fi2s2 x ( 2 -  @) 
Vo ( 1 -  2p%2)E + ~%ZK ~ / ( 1 -  ~72) " (76) 

- -  V~ ~ V2X2:  

l(x, y )  = 4s v~ x ~ ( q - c 2 ~  ~) 
Vo ~/(1 _ ~/2 ) (77) 

where: 
4(3 - 5fi% ~ + fi4s4)E - 2fi%~(3 - 5fiZs~)K 

cl = (4-19fi% 2 +4fi4s4)E 2 + 8fi%2(1 + f i % Z ) K E -  5fi4saK z (78) 

2 ( 4 -  7/3~s z + fi4s4)E - 4fi2sZ(1 - 2~%~)K (79) 
c2 = (4-19/~s~+ 4/34s4)E2 + 8fi%2(1 + ~ s ~ ) K E -  5fi4s~K 2" 

- - V  z = 733X~: 

l(x,  y )  = 4s -v--3 x3(c3 - c4'2 - c~14) (80) 
Vo V(1 

8(1 - f i %~ )  [ (6 -  15fi2s2 + 5fi4s*--4fi6sG)E -- fi~s~(3 - 9 1 3 % ~ -  2fi4s*)K] (81) c 3 -  D 

2(1 
[(18 - 5 lf3~s ~ +,~*s ~ - 8~%~)E - f3%~(9 - 45fi~s ~ -  4fi~s*)K] (82) c 4 -  D 

2(1 - fi%z) [(3 + 7fi% ~ - 2fi~s~)E - fi%~(9 - fiZs~)K] (83) c ~ -  D 

D = (12 - 119fi% ~ + 15 lfi~s ~ -  64fl~s 6 + 32fiasS)E ~ + 

+ 2fi%~(24- 5/3% ~ - 15fias ~ -  16f i%~)KE - fi~s~(27 - 3 lfiZs ~ - 8flas4)K ~ . (84) 

E and K are the complete elliptic integrals of the modulus h, with k z = 1 - k 'z = 1 -/?Zs ~, and s is 

the ratio be tween the  semispan at the trailing edge and the root chord. 
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The load distributions of slender-wing theory are obtained by putting fis = 0. In Figs. 20, 21 we 
have plotted the ratio between the values of the local load obtained by slender-wing theory, 
l(x, y; 13s = 0), and by the more exact theory, l(x, y). For the constant and the linearly varying 
downwash distributions (n = 0, 1), this ratio is the same for all points on the wing, but for the 
two other cases (n = 2, 3) it varies somewhat with the spanwise position of the point considered, 
see Fig. 21. In Fig. 20 we have compared the values of the load at the centre section. It has been 
suggested in Ref. 13 that for sharp edged delta wings the pressure distribution due to wing thickness 
can be estimated fairly well by slender-wing theory for values of fis smaller than about 0.3 (except 
very close to the leading edge where linear theory and slender-wing theory fail). Fig. 20 shows that 
for the pressure distributions due to camber the agreement between the exact results and those 
calculated by slender-wing theory depends noticeably on the wing shape. The error is largest for 
the wing with the largest value of the maximum curvature of the chordwise sections, i.e. 
[8~z(x, y)/3x~]m~. This was to be expected since with relatively large values of the maximum of 
the chordwise curvature and correspondingly large variations of the chordwise curvature the 
assumptions of slender-wing theory are less justified. 

Generalizing the present results, we may expect that for wings with relatively small values of 
[8~z(x, y)/OX~]ma~ slender-wing theory gives reasonable estimates for values of fis of about 0.3, but  
for wings with not so small values of [32z(x, y)/3x2]m+~ a value of fis smaller than 0.3 is required to 
obtain a sufficiently accurate estimate of the load distribution. 

Using the exact load distributions of Ref. 15, we can also check the accuracy of the drag values 
obtained from the approximate relation, equation (68), which was derived by the not-so-slender 
wing theory of Adams and Sears. From the exact load distributions we have determined the total 
lift coefficient, CL, and the coefficient of the total lift-dependent drag, CD, taking account of the 

chordwise component of the suction force, Cs~: 

G = G v -  (85) 

The coefficient of the local pressure drag at the section y, C;ge(y), is given by 

f 
l 

cD (y) 4 y )  = - 
X L E ( V )  

az(x, y) 
3x 

~x,y)dx .  (86) 

If the load distribution near the leading edge is expressed in the form: 

where 

4 
l(x, y) - ~/(2~ F (87) 

_ _  X - -  X L E  . 

c(y) ' 

the chordwise component of the local suction force is: 

Cs~(Y) = - ~rF2V'( tan~ CLE- fi2) (88) 

and in the special case of a delta wing: 

C~x(y ) = _ mF2~/(l  -fi2s~), (89) 
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Finally, we determine the drag factor, CD/C~2/TrA. The results are: 

- -  7) z ~ 7 ) 0 :  

- - V  z ---- ~ l X :  

- -  V z ---- V 2 X 2 :  

- - V  z ~ VSX3:  

CD = 2 E -  ~/(1-fl2s~) (90) 

CD 3 [(1 - 2fi~s~)E + 3~s~K] 1 
_ _  _ ,V'(1 _ f i % 2 )  
CL~firA 2(1 --fi~s ~) 2 

(91) 

C D 16 ( 2 c l -  cz) - V' (1- f l2s  ~) ( q - c 2 )  2 
C r 3 / ~ r ~ -  3 ( 2 c l - q )  2 (92) 

C D 40(11c3- 4c4) - 4~/(1-fi~s 2) (5c3- 4c4) 2 

CL2/IrA (11 c a - 4q) ~ 
(93) 

Using the load distribution derived by slender-wing theory, l(x, y; fis = 0), we have determined 
the wave drag by equation (67) and related it to the value of CL2/~rA for [3s = O. 

For the present examples the spanwise distribution of the chord load for fis = 0 is elliptic and thus 

G 

The approximation to the drag factor for small fls obtained from equation (68) is thus for 

- - V  z ---- 7)0"_ 

- - ' V  z = ' ~ l X :  

- -  7) z ~ V 2 X 2 :  

- - 7 )  z : V3X3". 

G 
G2/ A - 1 + f12s212 In 2 - In fls] (94) 

CD = 1 + f12# [ ~ l n 2  13 91rips ] (95) 
CL~/~A 8 4 

CD --1  + fl2s~ ~8 ln2 - 53 _ 4 lnfls] (96) 
CL~/~A 1_ 12 J 

CD = l + 3~s 2 ln2  821 ,251ntis (97) 
CL~/rrA 96 4 

Expressing the exact results for the drag factor, equations (90) to (93), as a power series in fis, we 
obtain for the first terms the same relations as in the approximations, equations (94) to (97). This 
is a consequence of the fact that for the present examples the power series for the vortex-drag factor 
CDd(CL2/~rA) does not contain a term of order fi~s 2. Fig. 22 gives a comparison of the exact and 
approximate values of the drag factor. The accuracy of the results obtained by the approximate 
formula, equation (68), is sufficient for fls < 0-3 for all examples. 
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