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S u m m a r y . - - A  graphical method, based on ' classical' flutter theory, is described which provides a simple test of the 
effectiveness of mass-balancing in the prevention of flutter at various heights. Illustrative applications are made to 
flexnral-aileron and servo-rudder flutter. It  is suggested that diagrams of this type may be a useful aid in design. 

1. Puuhose of the Investigation.---In A.R.C. Report No. 56681 the greatest length of balancing 
arm which is effective in the prevention of certain types of binary flutter is deduced from stability 
diagrams calculated by vortex strip theory. The present paper shows that  similar diagrams can 
be derived simply by classical flutter theory and known properties of test conics 2. 

The diagram, which is illustrated for flexural-aileron flutter and servo-rudder flutter by Figs. 3 
and 6, indicates immediately whether a proposed modification of the masses from any g!ven 
inertial condition of the system will be effective in the absolute prevention of flutter at any given 
height. The abscissa and the ordinate are, respectively, the produc{ of inertia coefficient and 
the moment of inertia coefficient of the flap; and the diagram consists essentially of a curve B,, 
(stability boundary) which depends solely on the aerodynamic coefficients. This curve separates 
the diagram into ' s a f e '  and ' unsafe '  region's. Flutter is prevented absolutely for alf ' inertia 
values which plot within the safe region. 

I t  is suggested that  the preparation of diagrams of this type appropriate to standard types of 
flutter and standard types of aircraft would be a useful aid in design. 

2. Flexural-aileron Mass-balancing Diagram.--The basic formulae required are given in 
Chapters 3 and 8 of R. & M. 11552, but  the definitions of the non-dimensional dynamical co- 
efficients are modified in Table 1 below to accord with modern notation 1. The root chord of the 
wing is denoted by co, and the reference section is assumed to lie at distance I from the root. 

TABLE 1 

Coefficients for Flexural-aileron Motion 

Significance 

Flexural Moments 

;oefficient Non-dimensional Form Coefficient 

Aileron-hinge Moments 

Significance Non-dimensional Form 

A 1 
B1 

G 
P 

• E1 

G 

Inertia 
--L¢ 

z~ 
Inertia 
--L4 

I 

pZ 3 c o 2a 1 

p Vl a c o bt 

pl~ %a p 
pV12 Co ~ e 1 

p V2I 2 Co f l 

P 
B2 
Co. 

D2 
Ez 

F2 

Inertia 
--He 
0 

Inertia 

h~--H~ 

pl ~ Co ~ p 
.pVl2 %2 b2 

0 

pl Co ~ G 
pVl  Co 3 e 2 

[" he .  
pv~z ~o ~ \ ) v ~  io ~ - - - -  + f2)  

(93oos) A 



Supplementary symbols required are : 

X ' 1,~/eV'la; V - (hjpV'~lCo 2) + f2,; 

I b e l -  b , e = -  b2e~; [ b f l -  b~f2 - -  b~f~; 

-Ib l- A; - -  

ql - ale~ + d2bl --15(el  + b2) ; A - 4ble~ - -  (el + b~)2 : 

The inertial coefficients can be defined as follows. Let m denote the element of mass at distance 
y from the wing root and at distance c0~ behind the aileron hinge axis. Also let fy denote the 
ratio of the linear bending displacement of the wing at distance y from the wing root to the 
corresponding displacement at the reference section. Then 

al = ~ mfy2/flco=; p = ~, m@/plco=; d2 = 7Z m~=/flCo ~ , . .  . .  (1) 
~g a a 

where Z denotes summation over the complete wing and Z denotes summation over the 
w a 

aileron only. 

Some possible types of test-conic appropriate to flexural-aileron flutter are shown in  Fig. 1. 
In each case the stiffness point Z has the co-ordinates (0, f=), and the points of intersection of the 
conic with both co-ordinate axes are real. Two of these points M, N, are independent of inertias, 
and are given by O M  - -  p/bl, O N  =f i /e=.  Thus 

O l  - O M  I bfl  

On tile other hand the positions of the other two intersections M ' ,  N ' ,  depend on the inertias. 

With symmetrical flutter the slope of the stiffness line Z P  is proportional to the stiffness ratio 
hell,, and with anti-symmetrical flutter Z P '  is parallel to O X .  Since h~-- the stiffness of the control 
c i rcui t - -may be subject to some. variation in practice even on aircraft of a given type, the ideal 
safeguard is absoluZe prevention of flutter. The conic must then be so disposed that  real inter- 
sections with all stiffness lines are avoided. 

The first essential condition for absolute prevention of flutter is that  Z shall lie above M. This 
requires 

' Ibfl > 0 ,  . . . . .  . . . . . . .  (2) 

which inequality will be assumed to be satisfied. Flut ter  is then certainly prevented absolutely 
provided the maximum ordinate Ym= of the conic does not exceed OZ.  This restriction is 
sufficient but  not necessary, as is obvious, for example, from Figs. 1 (c) and (d). The restriction 
will, however, first be imposed and later relaxed. 

Now the two stat ionary ordinates of the conic are given by* 

S ( Y ,  15, d2) = g2p~/~ - -  2 Y  {2e2~p ~ + fl (e~ + b2) (c~e~ - -  fld2) - -  2b~e~cd~} 

- + = 0 ,  . . . . . . . . . . . .  ( a )  

and the positive root corresponds to Y=~. Thus Y~.~ is independent of a,, and the critical 
pairs of values of p and d2 separating the cases Ym~.~ > f~ and Y=~ < f2 are given by the condition 

S (f~, p, d~) = 0 . . . . . . . . . . .  (4) 
/ /  

Values of fl and d= which render S (f,, p, d~) < 0 correspond to the cases Y== > f2. For example, 
when d~ is very large, S (f2, P, d2) < 0 and by (3) Ym~= is then also large. 

*Equation (3) is deducible from (152) of R. & M. 1155 ~ by appropriate changes of the symbols. 
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Equation (4) represents a conic section in the plane of (p, d-o) which depends solely on the aero- 
dynamic coefficients. The equation to the curve is expressible as 

where ~ - p/e~lbe I ; 

and 
Ao 

2H0 

B0 

2Go 

2Fo 

Ao~ ~ + 2Ho~ q- B0~ ~ + 2G0~ if- 2Fo~ -- 1 = 0 ,  

= A f d  + 2e-o (e~ - -  Q ) A A  - e ~ A  ~, 

= 2 {b~ (~ + b~) - 2 b ~ } A f ~  + 2~b.~A ~, 

= _ b ~ A  ~, 

= 2e2 A - -  2 (el d- b-o)f-o, 

= - 2bJ~ + 4b~f~. 

(5) 

I t  is found that  
Ao - H d  - -  AoBo ---- 4e-olbf [ [ b e l f r y , ,  . .  

which is positive in view of (2) and the known condition ]be[ > O. 
bolic. The centre, say (p, d2~), !s given by 

. . . . . . . .  (~) 

Hence the conic (5) is hyper- 

2f~p~ = 2b~e~ - -  b2 (e~ + b~) ~t 

2f12d-o~ - - ~  e-o (el - -  b~)./'l q- A f2 f ' "" "" 

and the asymptotes are parallel to 

(H0 ± ~/Ao)P = b-oy?d-o . . . . . . . . . . . . .  

. . . . . . . . .  (7) 

. . . . . .  (8) 

The two intercepts on the axis p = 0 are positive, and are given by 

f?bddde-olbel= (v, lbfl ± V(blf2))-o ' . . . . . . . . . . . . . .  (9) 

while the intercepts on d~ = 0 are given by 

Aop/e-o lbe l= _ e j ~  + (e~ + b-o) f~ ± 2 ~ / ( e J ~ l b f ]  ) . . . . . . . . .  (10) 

In Fig. 2 the upper and lower branches of the hyperbola are respectively marked B~, B~, and 
the region lying above B,, (shown shaded) is termed ' unsafe '. Points in that  region, and points 
in the region below B~, correspond to the condition Ym~x > f-o: whereas points lying between 
B,~ and B~ correspond to Ym~x < f2, and thus to cases in which flutter is certainly prevented 
absolutelv. I t  will now be shown that  flutter is also certainly prevented for all points below 
B~, so tha t  B, can be regarded as the effective ' stabili ty boundary '. 

Let M M ~  in Fig. 1 be the chord of the test conic drawn through M parallel to O X .  Then it 
is readily shown that  

XM~ = - q~ ~ (e~ + b-o) + ~e~ - -  

where A -e-o {b~&. 2 -  pd~ (e, + b 2 ) +  e-opt}. Now q, and A a r e k n o w n  to be both positive. 
Hence M, lies to the right or to the left of M according as 

/3p /3G < 0 or  > 0 w (p, d~) = ~ (~  + b o) + ~-o 

When W (p, d2) = O, M and M~ are coincident, in  this case the tangent at M is horizontal, so 
tha t  Y m ~  = O M  < f~. I t  follows tha t  if the straight line W (/5, d~) = 0 were plotted in Fig. 2, 
this locus would lie wholly between the branches B,~ and Bz. Moreover, all points below the line 
(whether above or below Bz) would yield test conics satisfying the condition Xm < 0 .  But from 
Fig. 1 (c) it is clear that  when the conic is such tha t  Xm < 0, flutter is prevented even when 
Ym~ > f2; that  is to say, everl for points in Fig. 2 si taated below the branch Bz. The whole 
of the region below B,~ may accordingly be classed as safe. 
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From the preceding discussion it does not follow that  all parts o f  the region above B,, are 
necessarily to be classed as unsafe. In fact, while it is true tha t  for a n y  point of that  region 
Y ..... > f2 and X~I > 0, yet flutter would be pIevented absolutely if the conic happened to be 
as shown in Fig. 1 (d). The characteristics of such a conic are 

(a) O Z  >~ O M '  >~ O M  , 

d Y  
(b) d-X < 0 at M ' ,  

(C) Yma, > f2. 

The discussion of these conditions is complicated and will be omitted. I t  can be shown that  
conditions (a) certainly cannot be satisfied unless ~ < 0 (i.e., unless P >~ !be t/f~), and that  
a~ must then lie between the bounds 

- -  bi~l~ >~ ai >~ - -  c~/f2. 

Moreover, the slope of the tangent at M is given by 

B (dY'~ O M '  biA 
ql ~ \ ~" - -  O M ' - -  O M  e~ql ~ ' 

from which it follows that  condition (b) certainly cannot be satisfied when M '  is close to M. 
These considerations indicate that  a conic of the type Fig. 1 (d) cannot arise without severe, if 
not quite impracticable, restrictions on the values of all three inertial coefficients a~, ~b and d~. 
Hence any possible extension of the safe region would merely cover very exceptional inertial 
conditions of t he  system, and would destroy the attractive simplicity of the diagram. 

The application to the problem of mass-balancing will now be considered. In Fig. 2 J0 is the 
inertia point corresponding to a d a t u m  mass distribution and to a datum air density po (e.g., 
0" 002378, at sea-level). If J0 falls within the safe region flutter is already prevented absolutely 
for p = p0. Suppose, on the other hand, that  J0 falls within the unsafe region, as shown in Fig. 2. 
Then if a mass m is added to the aileron at distance k from the wing root and at distance .Zc0 
forz~,al, d of the hinge axis, the changes of the co-ordinates of J are (see (1)) 

~p = - ~,~fk/polCo ~; ~d~ = ~¢~Z~/polCo ~ . . . . . . . . . . .  (11) 
The diagram tests immediately whether the new inertia point, say J~, lies in the safe region, as 
required. The optimum mass modification in any given case will of course depend very largely 
on the practical restrictions to the length of the balancing arm. I t  may be noted here that  no 
point J0 can be brought from the unsafe to the safe region unless the gradient Z/f~ of the line 
JoJ~ is numerically less than the gradient of the steeper asymptote L L  (see (8)). Thus, theoretically, 
there exists a maximum permissible length of balancing a rm in each wing section, which depends 
solely on the aerodynamic coefficients and is independent of altitude. A numerical example 
given later indicates that ,  when the aileron is hinged near its leading edge, the critical length of 
arm is very great. 

For flight at heights other than sea-level the datum values of the inertias require to be multiplied 
by the factor po/p. Representative values s of this factor are as follows. 

Altitude (ft) 0 10,000 20,000 30,000 40,000 

Factor Po/P 1 "0 1-35 1 '88 2.67 4"06 

With a diagram of the type shown in Fig. 2 an increase of altitude ze~itho~;t alteratios of k, Z, and 
m, will displace both J0 and J1 outwards along the radii through 0 to, say, Jo' and J l ' ;  also 
Jo'J~' will remain parallel to JoJi.  Hence, as the height increases J / t e n d s  to approach, or recede 

4 



from, the  unsafe region according as 011 is steeper, or less steep, than  the asympto te  LL. In  
particular, if static balance is applied, O J1 will coincide wi th  the axis of d~, and the  m a x i m u m  
safe flying height  will bd given by the condition* d2 --  OV. I t  follows also that ,  unless con- 
siderable mass-overbalance is applied, any remedial  mass modification should be based on the  
m a x i m u m  flying height.  

An approximat ion to the  diagram which errs on the  safe side and probably covers practical 
requirements,  is obta ined by replacing the  hyperbolic branch B,, by the  asympto te  LL. When  
the aileron is h inged near  its leading edge the coefficient H0 in (8) will be negative, and the  equat ion 
to LL then is 

( p  - -  p~) ( H o  - -  V A o )  - -  b ? f ?  (d,, - -  d ~ ) ,  

Where  p~, d2~ are given by (7). 

Numerical Example.--Fig. 3 shows the diagram calculated for a fighter aircraft with the  use 
of rough data. The values adopted  for the aerodynamic coefficients were derived by approxima- 
tions to the  air-load coefficients calculated in A.R.C. 86681, and are 

bl --  8 .78;  el = 0 .298;  f l  = 1.39;  

b2 = 0-00972; e2 = 0.009225;  f2 = 0 .0146 .  

The reference section is chosen at the section I = 0.57s (inboard end of aileron). Also it is 
assumed tha t  for full-scale c0 = 5.87 ft and ca (aileron chord) = 0-235c0. 

The equat ion to the  hyperbola  (5) works out as 

- -  144.2p 2 --  1784pd~ --  843.6d~ ~ + 35.82p + 667.6d~ --  1 = 0 

The centre is at ~b, = 0.0373, d2~ = 0.001405, and the  slopes of the two asymptotes  are -- 21.14 
and --  0.0081. In  this case the  l imit ing length  for a balancing arm fit ted in the  reference section 
(fk = 1) is given by 2 = 21.14, and is thus of the  order 20 wing chords. 

Values given in A.R.C. 5668 for the  structural  inertial  coefficients appropriate  to sea-level, 
wi thout  any mass-balance applied, are as follows. 

Fabric-covered aileron fl = 0. 0836,  d~ --- 0 .00533,  

Aluminium-covered aileron 15 = 0 .309 ,  d2 = 0 .0197 .  

When  the aileron is u~¢iformly statically balanced (i.e., p = 0, with centre of mass on hinge axis 
in every section), the values of d, are 0. 0107 and 0.0395 for fabric and a luminium respectively. 

The situations of some representat ive  inertia points are indicated in Fig. 3. Points marked  
F,  A, refer respectively to the  fabric and the  a luminium covering. The intercept  O V of the  
stabil i ty boundary  on the  axis of d2 is about  0" 79 and is well beyond the limits of the  diagram. 
Uniform static balance would thus be effective in prevent ing  flutter of the  a luminium-covered 
aileron at all practical flying heights. 

3. Aileron-spring-tab and Servo-rudder Diagrams.--A simple discussion of these two types of 
binary flutter on the basis of classical der ivat ive theory  and wi thout  the  use of non-dimensiohal  
coefficients is given in section 10 of A.R.C. 56681. The theory  is similar to tha t  for torsional- 
aileron flutter, except tha t  ' barred ' dynamica l  coefficients are ~introduced in order to el iminate 
the  elastic cross-stiffness. The ba i red  coefficients, in general, depend upon two positive geo- 
metr ical  constants  u and N subject  to the  restriction N > n. Wi th  the normal  type  of servo- 
rudder  n = 0. The dynamical  coefficients appropriate  to s tandard  air densi ty (flight at  sea-level) 
are as defined in Tables 2 and 3. For flight at other  heights the inertial  and elastic coefficients 
require to be mult ipl ied by the  factor p0/P. 

OK is given by (10) with the positive sign for the radical. 
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T A B L E  2 

Unbarred Dynamical  Coefficients ~ ' 

Tab or Servo Hinge Moments T Aileron or Rudder Hinge Moments H 

Coefficient Significance Equivalent Coefficient Significance Equivalent 

D a 

G 
G 
P 

G 
G 

Inertia .. 
- - T / ~  . . 

t¢-- T~ .. 
Inertia .. 
--T~ .. 
t e - -  T~ .. 

G 
e~V 

~ + A v  a 
P 

A v  
t~ + kaV = 

P 
E~ 
Fa 
Ga 

A 
K~ 

Inertia 
--H~ 

Inertia 
- -  H ~  

h~ --  H~ . 

P 
e3V 

h~ + f 3V = 
g3 

y=V 
h~ + k3V = 

N e w  
Coefficient 

7= 
P 

L 
r~ 

T A B L E  3 

Barred Dynamical  Coe~cients 

Value in Terms of 
Original Coefficient 

GN = + 2pN + g= 

A N~ + G + f J  + k~ 
danN + p(N + n) + 'g~ 
e#N + jaN + e3n + J3 

t~N = + 2h~N + he 
0 

N e w  
Coefficient 

T 
e8 

Y3 
L 

Value irt Terms of 
Original Coefficient 

d#N + p ( n + N )  +g3 
eanN + j #  + e3N + J3 
AnN + k# + fan + G 
dan = + 2pn + g3 
e# a + (Ja + e~)~ + j~ 
f=~ + (ka + f , ) -  + k3 
0 
t~n = + 2h~n + h e 

Other  symbols required are" 

X =  G/V a) +la;  Y =  G/V a) + ;= ;  

= ( c a ) = -  ed=) - 5 ( L  + i=); 
q= = d,& id=) - £(}= + ~=) ; 

A -- 4 G y = -  (}a + ,e-=) = =  (N --  n) = {4e=j=- (ja + e=)=} • 

I t  is assumed tha t  the test conic appropriate  to the  barred coefficients is elliptic (A > 0). T_he 
common intersections of the  ellipse, the frequency line, and the  divergence hyperbolic X Y - - / = G ,  
are given by* 

2GYM = fl + 9 ;  2GYN = /3 --  .o.. 

F rom numerical  examples it ap_pears tha t  in normal  practical cases the  points M, N will be real, 
and tha t  the  stiffness point  Z(/a, k3) will lie above the  frequency line M N  and to the  r ight  of N, 
as shown in Fig. 4. F lu t te r  will then  certainly be p reven ted  if X . . . . .  the  m a x i m u m  abscissa of 

* See equations (142a) and (142b) of R. & M. 1155. 



the ellipse, does not exceed f2. The equation* giving Xmax. is similar to (3), but contains some 
additional terms : thus 

s ( x , / 5 ,  &) = x~/52zx - 2x{2~2~  ~ + (L + ~) (~& - ~&)/5 - 2 ~ d d ~ }  

+ 4&Le2{LdZ - (L. + ~)/sd~ + e~/52} 
° - (~g2 + ~G) ~ 

= 0  . . . . . . . . . . . . . . . . . . . . .  (12) 

Hence the values of/5 and d~ for which Xm,x. = [~ are given by 

s(L,/5,&) = o ,  . . . . . . . . . . . . . . . .  

which represents a conic section in the (/5, d2) plane. 
in a form similar to (5), but  the general expressions 
be omitted. In numerical cases the conic, which is 
directly from (12) and (13). 

I t  will now be shown that  the upper branch B,, of the hyperbola can be taken as the stabil i ty 
boundary. The proof is similar to that  given for flexural-aileron flutter. In Fig. 4, let N~N be 
the chord through N parallel to OY.  Then~ 

2~%B(YN-  Vm) 
= (~ + ~ ) ( L  + ~)/5 + 2 ~ ( ~ 2 - -  ~d.,),  

ql 

where B and q~ are positive quantities. Hence N~ lies below or above N according as 

w(5 ,  d2) - (8 + ~) (~, + e~)/5 + 2j~(~e2 - ~d2) < 0 or > 0 .  

But when N~ coincides with N, the tangent at N is vertical, so tha t  Xm= = X~ < ]2. I t  follows 
tha t  the straight line W = 0 in the @, d,) plane necessarily lies wholly between the branches 
of the hyperbola (13). Moreover, all points below the line yield test conics for which N~ lies 
below N. But with such conics (e.g., curve No. 2 of Fig. 4) flutter is prevented absolutely even 
when X .... > [2, provided Z lies above M N  and to the right of N, as is assumed. Hence the 
region of the mass-balancing diagram which is below Bz can be included as safe. 

Fig. 5 indicates the type of mass-balancing diagram to be expected. The gradient of the 
steeper asymptote will usually be slightly greater than uni ty  and the centre C will be close to 
the origin. Thus the stabili ty boundary B, will be approximately represented by the straight 
line of unit gradient through the origin. In practice the constants n and N in Table 3 are small, 
so that  both/5 and d~ will not differ greatly from g~ (namely the true moment of inertia of the 
tab or servo). Hence any inertia point will lie close to the stabi l i ty boundary. 

Suppose Jo(f)o, d~0) in Fig. 5 to correspond to any datum inertial condition and to p = p0. Then 
if a mass m is added to the flap (tab or servo) at distance ~ forward of the flap hinge axis, and if 
D denotes the distance separating the two hinge axes of the system, the changes of the true 
inertias are 

~d2 = m , ~ ;  ~ p  = - -  m ~ ( D  - -  ~ . ) ;  ~ g 3  = m ( D  - -  Z) 2 . 

Hence by Table 3 

@ = m{2n -- (D -- a)}{,~N -- (D -- 2.)}, 

~& = , . { ~ N -  ( D -  ~)}2. 

The changes will certainly be beneficial provided the displacement of Jo is towards the right 
and has a gradient less than unity. These conditions require, first, tha t  @ > 0, or 

{2(n + 1) -- D}{,t(N -k l) -- D} > 0 .  

. . . .  (13) 

The equation to the curve can be expressed 
for the coefficients are complicated and will 
found to be hyperbolic, can be constructed 

* See equation (152) of R. & M. 1155. See equation (150) of R. 6: M. 1155. 



Hence m must  lie outside the  two l imit ing positions defined by  2 = D/(n + 1) and Z -- D/(N + 1). 

The second requi rement  is @ > dd2, or 

{;~(n + 1) --  D} {2(N + 1 ) -  D } -  {2(N + 1 ) -  D}2> 0 .  
Thus 

+ 1) - -  D }  - -  N)  > 0 .  

When  as normal ly  N > n, the  condit ion becomes 

~ ( N +  1 ) - - D  < 0 .  

Hence, finally m must  be placed at the right of the l imit ing position ~ = D/(N + 1). This 
generalizes recommendat ion  (C) given in section 16 of A.R.C. 5668, which was restr icted to the  
special type  of spring tab for which n = 0. The conclusion reached is independent  of the  flying 
height.  

Numerical Example.--The following values for the  barred coefficients relate to b inary  servo- 
rudder  on a part icular  full-scale aircraft ,  and are calculated from data  given in section 17 of 
A.R.C. 5668. The gearing constants  are assumed to be n = 0 and N ----- 2.73. 

i2 --  1 .17 ,  [5 = 0 -344 ,  ~ = 0 .868 ,  k~ = 0 .0756 .  

z = 1-045,  [3 = 0 . 3 1 2 ,  ~ -- 0 . 800 ,  ka = 0 .072 .  
These yield 

-- 0" 35007, ~2 - 0 "  1843, c~ = 0"03095 --  0" 3877/5, 

XM --- 0" 1036, X~ = 0" 3340,  

YM = O" 2277 , Yz~ = 0" 07062 . 

The point  Z (0. 344, 0.072) thus lies close above, and to the  right of, N (0. 334, 0.0706). 

Equa t ion  (13) reduces to 

0.03229/5 ~ -- 0.06671/5d~ + 0.03397d~ ~ + 0:012t78/5 --  0.01456d~ + 0.0013194 - :  0 .  

which represents a flat hyperbola  (Fig. 6). The centre is at/5~ = 0. 518, d.~ = 0. 723, and the  
gradients  of the two asymptotes  are 1.10 and 0. 865. The stabil i ty boundary  (upper branch) 
is practically indist inguishable from the steeper asymptote ,  and agrees closely with the linear 
s tabi l i ty boundary  obtained by another  me thod  in section 17 of A.R.C. 5668, and shown in Fig. 17 
of tha t  report. 

The two inertia points 3r0, Jo '  marked  in Fig. 6 are bo th  appropriate  to a dynamical ly  balanced 
servo-flap and to flight at sea level. They correspond to the  following inertia values taken from 
Table B of section 17 of A.R.C. 5668 : - -  

(J0) Balancing arm ~ = 6 in., d~ --  7. 667, 25 = 7.047. 

(Jo') Balancing arm ~ = 10.2 in., d~ ---= 7. 488, t5 --  6.525. 

The critical length  of arm in the case taken  is 

D/(N -t- 1) = 9 .26 in. 

No. Author. 
1 R .A.  Frazer and W. P. jones . .  

2 R . A .  Frazer and W. J. Duncan. .  
3 R .C.  Pankhurst  and J. F. C. Corm 
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