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Graphical Treatment of Binary Mass-balancing Problems
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Reports and Memoranda No. 2551
28th August, 1942

Summary.—A graphical method, based on ‘ classical’ flutter theory, is described which provides a simple test of the
effectiveness of mass-balancing in the prevention of flutter at various heights. Illustrative applications are made to
flexural-aileron and servo-rudder flutter. It is suggested that diagrams of this type may be a useful aid in design.

1. Purpose of the Investigation.—In A R.C. Report No. 5668' the greatest length of balancing
arm which is effective in the prevention of certain types of binary flutter is deduced from stability
diagrams calculated by vortex strip theory. The present paper shows that similar diagrams can
be derived simply by classical flutter theory and known properties of test conics®

The diagram, which is illustrated for flexural-aileron flutter and servo-rudder flutter by Figs. 3
and 6, indicates immediately whether a proposed modification of the masses from any given
inertial condition of the system will be effective in the absolute prevention of flutter at any given
height. The abscissa and the ordinate are, respectively, the product of inertia coefficient and
the moment of inertia coefficient of the flap; and the diagram consists essentially of a curve B,
(stability boundary) which depends solely on the aerodynamic coefficients. This curve separates
the diagram into ‘safe’ and ‘ unsafe’ regions. Flutter is prevented absolutely for all inertia
values which plot within the safe region.

It is suggested that the preparation of diagrams of this type appropriate to standard types of
flutter and standard types of aircraft would be a useful aid in design.

2. Flexural-aileron Mass-balancing Diagram.—The basic formulae required are given in
Chapters 3 and 8 of R. & M. 1155? but the definitions of the non-dimensional dynamical co-
efficients are modified in Table 1 below to accord with modern notation®. The root chord of the
wing is denoted by ¢,, and the reference section is assumed to lie at distance / from the root.

TABLE 1
Cocefficients for Flexural-aileron Motion

Flexural Moments Aileron-hinge Moments
Coefficient | Significance Non-dimensional Form Coefficient | Significance Non-dimensional Form
Ay Inertia P& ¢y 2a; P Inertia pl2c® P
B, —Lg pVE ¢y by B, —Hg pVIEEc? b,
1y Cy
P Inertia plEc® p D, Inertia plocot dy
" E, —L¢ pVI% c)? e, E, | —H; oVicd e,
]’l{: R
Fo| —L PV fy P hette | o7 ed (et + 1)
1
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Supplementary éymbols required are — -
X = LoV V= (V) + o5
|be| = byes — bty |0f| = bifs — baf1s
w =|be|—pfi; B =bfi;
G = dea + diby — ples + b); A = dbiey — (e + D)

The inertial coefficients can be defined as follows. ILet # denote the element of mass at distance
y from the wing root and at distance ¢,£ behind the aileron hinge axis. Also let f, denote the
ratio of the linear bending displacement of the wing at distance y from the wing root to the
corresponding displacement at the reference section. Then

a, =% mfyz/glc[)?; p = Zméflple®; dy = Zmé&plcy?, .. . (1)

where X denotes summation over the complete wing and X denotes summation over the
aileron only.

‘Some possible types of test-conic appropriate to flexural-aileron flutter are shown in Fig. 1.
In each case the stiffness point Z has the co-ordinates (0, f;), and the points of intersection of the

conic with both co-ordinate axes are real. Two of these points M, N, are independent of inertias,
and are given by OM = g/b,, ON = f/e,. Thus

0Z — OM = I%i[ | .
1 .
On the other hand the positions of the other two intersections M’, N’, depend on the inertias.

With symmetrical flutter the slope of the stiffness line ZP is proportional to the stiffness ratio
h¢Jl;, and with anti-symmetrical flutter ZP' is parallel to OX. Since Aé—the stiffness of the control
circuit—may be subject to some variation in practice even on aircraft of a given type, the ideal
safeguard is absolute prevention of flutter. The conic must then be so disposed that real inter-
sections with all stiffness lines are avoided. ‘ '

The first essential condition for absolute prevention of flutter is that Z shall lie above M. This

Tequires o
|of| >0, .. .. . .. - . (2)

which inequality will be assumed to be satisfied. Flutter is then certainly prevented absolutely
provided the maximum ordinate Y. of the conic does not exceed OZ. This restriction is
sufficient but not necessary, as is obvious, for example, from Figs. 1 (c) and (d). The restriction
will, however, first be imposed and later relaxed.

Now the two stationary ordinates of the conic are given by*
S(Y, p, ds) = YA — 2V {26,89* + P (&2 + ba) (wes — Beda) — 2b,e.0}
— (oey + Bd) =0, .. . . . .- .. (3)

and the positive root corresponds to Y,... Thus Y, is independent of a,, and the critical
pairs of values of $ and d, separating the cases Y. > frand Y. < f>are given by the condition

) S(Uapd)=0. .. .. . .. . @

Valtes of p and d, which render S (f;, p, ds) <0 correspohd to the cases V., > fa For example,
when d, is very large, S (fs, £, ds) <0 and by (3) Y., is then also large. :

*Equation (3) is deducible from (152) of R. & M. 11552 by appropriate changes of the symbols.
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Equation (4) represents a conic section in the plane of (p, 4,) which depends solely on the aero-
dynamic coefficients. The equation to the curve is expressible as ' '

A&+ 2H ey + By + 2G& +-2Fp —1 =0, .. . . (5)
where & = pley|be|; # = dyfe,|bel,
and

Ay = Af2 -+ 2, (e, — by) fife — & 3%
2H, = 2{b, (e, + bs) — 2bsea} fifu + 202 [,
By = — b f7,
2G, = 2¢5f; — 2 (ex + by) fo,
2F, = — 2b,fy + 4b.f, .
It is found that :
‘ Ay = HE — AyBy = 4e,|bf| |be| ffe .. .. .. .. .. (6)

which is positive in view of (2) and the known condition |be| >0. Hence the conic (5) is hyper-
bolic. The centre, say (p., @x), is given by

2f1p. = 2bie, — b, (e, + b)) » 1 ' ‘ 7
2f12dzc:€2(61—bz)f1+ﬂfz f, o o o o o

and the asymptotes are parallel to

| (Hy = 4/40) p = b3f%da . .. . . .. . .. o .. (8
The two intercepts on the axis p = 0 are positive, and are given by :
Fib2dsles | be| = (V| bf| £ v/ (Buf2))? - .. .. .. ce .. 9)
while the intercepts on d, = 0 are given by
Aoples|be| = — esfi + (e + b)) fo £ 24/ (e212]0f]) - . . . .o (10)

In Fig. 2 the upper and lower branches of the hyperbola are respectively marked B,, B;, and
the region lying above B, (shown shaded) is termed ‘ unsafe’. Points in that region, and points
in the region below B, correspond to the condition Y. > f;: whereas points lying between
B, and B, correspond to Y. < fs, and thus to cases in which flutter is certainly prevented
absolutely. It will now be shown that flutter is also certainly prevented for all points below
B, so that B, can be regarded as the effective * stability boundary .

Let MM, in Fig. 1 be the chord of the test conic drawn through M parallel to OX. Then it
is readily shown that

Xy = — {%? (e, + bg) + e, — ﬂdz}'/A ,

where A = e, {bds® — pd, (e + b)) + ep”}. Now ¢y and A are known to be both positive.
Hence M, lies to the right or to the left of M according as

W (p, d) E%?-(el+bz)+aez—' Bdy <0Oo0r>0.

When W (p, d5) =0, M and M, are coincident. In this case the tangent at M is horizontal, so
that YV,.. = OM < f,. It follows that if the straight line W (p, d,) = 0 were plotted in Fig. 2,
this locus would lie wholly between the branches 5, and B, Moreover, all points below the line
(whether above or below B) would yield test conics satisfying the condition X,; < ¢. But from
Fig. 1 (c) it is clear that when the conic is such that Xy, <9, flutter is prevented even when
Y.ax > fo; that is to say, even for points in Fig. 2 sitaated below the branch B,. The whole
of the region below B, may accordingly be classed as safe.
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From the preceding discussion it does not follow that all parts of the region above B, are
necessarily to be classed as unsafe. In fact, while it is true that for any point of that region

Y x> fznand Xy > 0, yet flutter would be prevented absolutely if the conic happened to be
as shown in Fig. 1(d). The characteristics of such a conic are

(@) 0Z = OM’ > OM ,
iy

() 75 <0at M’,

(€) Vo > fo

The discussion of these conditions is complicated and will be omitted. It can be shown that
conditions (a) certainly cannot be satisfied unless o <0 (i.e., unless P > |be|/f1), and that
@, must then lie between the bounds

— b/ = a, > — a/fa
Moreover, the slope of the tangent at M is given by

B _@) oM b4
¢* \iX/w = OM'— OM ~ z,q,*"

from which it follows that condition (b) certainly cannot be satisfied when M’ is close to M.
These considerations indicate that a conic of the type Fig. 1(d) cannot arise without severe, if
not quite impracticable, restrictions on the values of all three inertial coefficients a,, p and d,.
Hence any possible extension of the safe region would merely cover very exceptional inertial
conditions of the system, and would destroy the attractive simplicity of the diagram.

The application to the problem of mass-balancing will now be considered. In Fig. 2 J, is the
inertia point corresponding to a ‘datum mass distribution and to a datum air density p, {e.g.,
0-002378, at sea-level). If J, falls within the safe region flutter is already prevented absolutely
for p = p,. Suppose, on the other hand, that J, falls within the unsafe region, as shown in Fig. 2.
Then if a mass m 1s added to the aileron at distance % from the wing root and at distance ic,
Jorward of the hinge axis, the changes of the co-ordinates of J are (see (1))

0p = — mifi/polcs?; ddy = mA?polcy® . .. .. .. .. .. (11

The diagram tests immediately whether the new inertia point, say J,, lies in the safe region, as
required. The optimum mass modification in any given case will of course depend very largely
on the practical restrictions to the length of the balancing arm. It may be noted here that no
point [, can be brought from the unsafe to the safe region unless the gradient 4/f, of the line
JoJ11s numerically less than the gradient of the steeper asymptote LL (see (8)). Thus, theoretically,
there exists a maximum permissible length of balancing arm in each wing section, which depends
solely on the aerodynamic coefficients and is independent of altitude. A numerical example
given later indicates that, when the aileron is hinged near its leading edge, the critical length of
arm is very great. :

For flight at heights other than sea-level the datum values of the inertias require to be multiplied
by the factor po/p. Representative values® of this factor are as follows.

Altitude (ft) 0 10,000 20,000 30,000 ’ 40,000

Factor p,/p 1-0 1-35 1-88 2-67 \ 4-06

With a diagram of the type shown in Fig. 2 an increase of altitude without alteration of k, 2, and
m, will displace both [, and J, outwards along the radii through O to, say, J, and J,’; also
Jo'Ji" will remain parallel to J,/,. Hence, as the height increases J,’ tends to approach, or recede

4



from, the unsafe region according as O], is steeper, or less steep, than the asymptote LL. In
partlcular if static balance is applied, O], will coincide with the axis of d,, and the maximum
safe flying height will be given by the condition® d, = OV. It follows also that, unless con-
siderable mass-overbalance is applied, any remedial mass modification should be based on the
maximum flying height.

An approximation to the diagram which errs on the safe side and probably covers practical
requirements, is obtained by replacing the hyperbolic branch B, by the asymptote LL. When
the aileron is hinged near its leading edge the coefficient H, in (8) will be negative, and the equation

to LL then is
(ﬁ p) (HO - '\/AO) == bzzflz (dz - ch) ’
Where ., ds, are given by (7).

Numerical Example—Fig. 3 shows the diagram calculated for a fighter aircraft with the use
of rough data. The vajues adopted for the aerodynamic coefficients were derived by approxima-
tions to the air-load coefficients calculated in A.R.C. 5668!, and are

by = 5-78; e, = 0-298; fi=1-39;
b, = 0-00972; g, = 0-009225; fo=0-0146 .

The reference section is chosen at the section / = 0-57s (inboard end of aileron). Also it is
assumed that for full-scale ¢, = 5-87 ft and ¢, (aileron chord) = 0-235¢,.

The equation to the hyperbola (5) works out as
— 144-2p> — 1784pd, — 843-64," +- 35-82p +- 667:6d, — 1 =0

The centre is at p, = 0-0373, 4,, = 0-00140;, and the slopes of the two asymptotes are — 21-14
and — 0-0081. In this case the limiting length for a balancing arm fitted in the reference section
(f. = 1)isgiven by 4 = 21-14, and is thus of the order 20 wing chords.

Values given in A.R.C. 5668 for the structural inertial coefficients appropriate to sea-level,
without any mass-balance applied, are as follows.

Fabric-covered aileron = 0-0836, d, == 0-00533 ,
Aluminium-covered aileron  p = 0-309, d, = 0-0197 .

When the aileron is uniformly statically balanced (i.e., » = 0, with centre of mass on hinge axis
in every section), the values of d; are 0-0107 and 0-0395 for fabric and aluminium respectively.

The situations of some representative inertia points are indicated in Fig. 3. Points marked
F, A, refer respectively to the fabric and the aluminium covering. The intercept OV of the
stablhtv boundary on the axis of d, is about 0-79 and is well beyond the limits of the diagram.
Uniform static balance would thus be effective in preventmg flutter of the aluminium- covered
aileron at all practical flying heights.

3. Aileron-spring-tab and Servo-rudder Diagrams.—A simple discussion of these two types of
binary flutter on the basis of classical derivative theory and without the use of non-dimensional
coefficients is given in section 10 of A.R.C. 5668, The theory is similar to that for torsional-
aileron flutter, except that ¢ barred * dynamical coefficients are introduced in order to eliminate
the elastic cross-stiffness. The barred coefficients, in general, depend upon two positive geo-
metrical constants # and N subject to the restriction N > #. With the normal type of servo-
rudder » = 0. The dynamical coefficients appropriate to standard air density (flight at sea-level)
are as defined in Tables 2 and 3. For flight at other heights the inertial and elastic coefficients
require to be multiplied by the factor po/p.

* OV is given by (10) with the positive sign for the radical.
5



~TABLE 2
Unbarred Dynamical Coefficients

Tab or Servo Hinge Moments 7 | Aileron or Rudder Hinge Moments H
Coefficient | Significance | Equivalent | Coefficient | Significance | Equivalént
D, Inertia Ay P Inertia b
" E, —T . NG E, —Hyg eV
F2 Zfﬁ— Tﬁ e iﬁ +f2V2 F3 hf;—— ]7/5 +f3V2
p Inertia P G Inertia s
Jo =T . 7V Js —Hg .. 4
K, te—Te .. | fe + RV K, he — Hg .. | he + B V?
TABLE 3
Barred Dynamical Coefficients
New Value in Terms of New Value in Terms of
Coefficient Original Coefficient Coefficient Original Coefficient
Zfa @;N? +- 2pN + g5 E dN + p(n +N)  + g
& eN® + (7o + e)N + 75 % &N + jgm + N + j,
]é JaN? 4 (By + fo)N + g ];J. JaN A ko - f3N - kg
73 dpN + p(N -+ #) +-g5 8 dn® + 2pn + g
J2 eN + N + egn + 7, g eh® + (Jo + e)n + 75
}iz SN A+ RN A fon + Fg Eg fa#? + (kg + fo)n + ks
% 1gN2 - 28N - e hg 0
tg 0 %g tﬁnz + Zliﬂ% —I— h§

Other symbols required are:
=@V + 1 Y =RV R
B = TJofs + Coba; Q =+ /(p* — 4&7kif) ;
o = (8Js — &Js) — Dk 4 f3) ;
9’1 =doJs  Gsfa) — P(Ja + &) ;
= 48,7, — (7, + &)° = (N — n)* {desjs — (7. + )7}
It is assumed that the test conic appropriate to the barred coefficients is elliptic (A > 0). The
common intersections of the ellipse, the frequency line, and the divergence hyperbolic XY ==/,%;,
are given by*
25Xy = p — 2 Xy = B + 2
26,Y, = p - Q: 2%,Yy=f — 2.
From numerical examples it appears that in normal practical cases the points M, N will be real,

and that the stiffness point Z(/,, £;) will lie above the frequency line M N and to the right of N
as shown in Fig. 4. Flutter will then certainly be prevented if X .. , the maximum abscissa of

* See equations (142a) and (142b) of R. & M. 1155.



the ellipse, does not exceed f.. The equation* giving X, is similar to (8), but contains some
additional terms: thus

(X,]ﬁ, d) XZPZA — ‘?X{Zezﬁpz + (j -+ 63) (&g — Bd,) P — 262;13 20(}
-+ 4k2f332{73 ]., -+ 33) ?d -+ 52P2}
- (0(52 + 5d2)

—0. .. .. : R 47
Hence the values of $ and d, for which Xm“ = fz are given by

SEnbid) =0, .. . e o8

which represents a conic section in the (5, ds) plane. The equation to the curve can be expressed
in a form similar to (5), but the general expressions for the coefficients are complicated and will -

be omitted. In numerical cases the conic, which is found to be hyperbolic, can be constructed
directly from (12) and (13).

It will now be shown that the upper branch B, of the hyperbola can be taken as the stability
boundary. The proof is similar to that given for flexural-aileron flutter. In Fig. 4, let N;N be
the chord through N parallel to OY. Thent

DB = o) _ (5 1 0) Gu+ ) B+ Zlots — 24,

where B and ¢, are positive quantities. Hence NV, lies below or above N according as

W(p,ds) = (B + 2) (7. + &) p + Zs(aé, — 2dy) <Oor> 0.
But when N, coincides with IV, the tangent at N is vertical, so that X,,,, = Xy < fo. It follows
that the straight line W = 0 in the (p, d,) plane necessarily lies wholly between the branches
of the hyperbola (13). Moreover, all points helow the line yield test conics for which N, lies
below N. But with such conics (e.g., curve No. 2 of Fig. 4) flutter is prevented absolutely even
when X, > f,, provided Z lies above M N and to the right of N, as is assumed. Hence the
- region of the mass-balancing diagram which is below B, can be included as safe.

Fig. 5 indicates the type of mass-balancing diagram to be expected. The gradient of the
steeper asymptote will usually be slightly greater than unity and the centre C will be close to
the origin. Thus the stability boundary B, will be approximately represented by the straight
line of unit gradient through the origin. In practlce the constants # and IV in Table 3 are small,
so that both $ and 4, will not differ greatly from g, (namely the true moment of inertia of the
tab or servo). Hence any inertia point will lie close to the stability boundary.

Suppose Jo(Po, dy) in Fig. 5 to correspond to any datum inertial condition and to p = po- Then
if a mass m is added to the flap (tab or servo) at distance 4 forward of the flap hinge axis, and if
D denotes the distance separating the two hinge axes of the system, the changes of the true
inertias are

0dy = mai?; 8p = — mi(D — 2); 0gs = m(D — A)%.
Hence by Table 3 ‘

8p = mf{in — (D — A)}{AN — (D — 1)},

8dy = m{AN — (D — A)}?.

The changes will certainly be beneficial provided the displacement of ], is towards the right
and has a gradient less than unity. These conditions require, first, that 64 > 0, or

{An +1) — D}{A(N +1) — D} > 0.

* See equation (152) of R. & M. 1155. T See equation (150) of R. & M. 1155.




Hence m must lie outside the two limiting positions defined by 2 = D/(n + 1) and 2 = D/(N + 1).
The second requirement is 64 > dd,, or

{An+1) —D}{AN+1) — D} —{A(N+1) — DP> 0.
MAN +1) — D} (n — N) > 0.

When as normally N > #, the condition becomes
AN+ 1)—D <0.

Hence, finally # must be placed at the right of the limiting position 42 = D/(N + 1). This
generahzes recommendation (C) given in section 16 of A.R.C. 5668, which was restricted to the

special type of spring tab for which # = 0. The conclusion reached is independent of the flying
height.

Numerical Example—The following values for the barred coefficients relate to binary servo-
rudder on a particular full-scale -aircraft, and are calculated from data glven in section 17 of
A.R.C. 5668. The gearing constants are assumed to be # — 0 and N = 2-73.

Thus

6y = 1-17, ' fo=0-344, 7, = 0-868, = 0-0756 .
g = 1-045, fo = 0-312, 7s = 0-800, 73 = 0-072.
These yield
f = 0-35007, Q2 =0-1843, o = 0-038095 — 0-3877p ,
Xy =0-1036, Xy =0-3340,
Y, = 0-2277, Yy = 0-07062 .

The point Z (0-344, 0-072) thus lies close above, and to the right of, NV (0-334, 0-0706).
Equation (18) reduces to
0-032295% — 0-06671pd, - 0-03397d,? + 0:01478p — 0-014564, + 0-0013194 = 0 .

which represents a flat hyperbola (Fig. 8). The centre is at p, = 0-518, d, = 0-723, and the
gradients of the two asymptotes are 1-10 and 0-865. The stability boundary (upper branch)
1s practically indistinguishable from the steeper asymptote, and agrees closely with the linear

stability boundary obtained by another method in section 17 of A.R.C. 5668 and shown in Fig. 17
of that report.

The two inertia points J,, J,” marked in Fig. 6 are both appropriate to a dynamically balanced
servo-flap and to flight at sea level. They correspond to the following inertia values taken from
Table B of section 17 of A.R.C. 5668 :—

(/o) Balancing arm 4 = 6 in., d, = 7-667, f = 7-047.
(Jo') Balancing arm 4 = 10-2in., d, = 7-488, p = 6-525.
The critical length of arm in the case taken is
DJ(N +1) =9-26in. |
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