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SUMMARY

The problem considered in this note is that of finding the camber
and twist for a swept wing of specified slender planform which will produce
the same chordwise 1lift distribution at each spanwise station as in two-
dimensional flow past a flat plate, in conjunction wath a uniform dastribution
of chord loading. Lanearised invis¢ad potential flow theory is used and the
results are valid only if A? |1 - Me | << 1. The slope of the wing 13
obtained in closed form as a function of two rectangular co~ordinates for
wings wath straight swept leading and trailing edges and streamwise taps.
Numerical results are gaven for the chordwise and spanwise variations of the
slope of the wang surface measured in the chordwise (that 1s, the streamwise)
direation, at several stations, and chordwise wing sections are drawn,for
two particular planforms., These sections are found to have continuous
tangents and not more than three discontinuities of curvature. Spanwise
distrzbutions of cauber and local incidence are gaven for the two wings.
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1 Introduction

In connection with the design of a model for wind tumnel tests, the
problem was posed of determining the shape of a wing of given planform
necessary to produce a uniform dastiribution of chord loading®, across the
span, together with a chordwise 1lift distribution equal to that occurring
in the two-dimensional flow round a flat plate. A uniform distribution of
chord loading was assumed in order to produce results for the slope (or
downwash) in a closed form. This leads to unrealistic values of the
surface slope close to the wing tip, but was thought to be a worthwhile
first step in spite of this. The wing planforms considered are restricted
to straight swept leading and trailing edges with straight streamwise tips
but are otherwise general. The calculation is made under the assum.tion%
of inviscid potential flow at small incidence and the condition A | 1-M ‘ <<,
which may be interpreted as a restriction to small aspect ratio at any Mach
nurber or %o sonle veleocity at any aspect ratio.

Under these conditions the problem has already been reduced*2 to the
evaluation of an integral for the downwash. This leads to elementary, though
camplicated, functions; the numerical calculation of these presents no
diffaculty in pranciple but 1s involved in practice. Accordingly numerical
results were cbtained for two planforms only, one tapered and one untapered,
of the same aspect ratio and leading edge sweep (Fige1). The values of B/Cp
were found for the wing sections at five sparwise stations with some
intermediate points on the leading and trailing edges. From these, five
chordwise secblons were drawn, Curves were also cbtained for the spanwise
variation of the local incidence and camber**,

2 Evaluation of the surface slope integral

The function to be evaluated i1s

W 1 vy dx!' dy!
B o= -7 = -z [J[ 3(X'J)'(‘;j')—2' (1)
%

where B = B(x,y) 18 the required surface slope, w the perturbation velocity
measured upwards normal to the wing an a flow of undasturbed velocity V, S* is
that part of the wing lying forward of the point (x,y) and £(x',y') is the
non-dimensional load distribution. This relation may be found in reference 2,

%, (¥)
* Chord loading = &(x,y) dx, a function of y only.
%, (¥)

*% The local incidence is defuned as the angle of inclination of the chord
al any spanwise station to the undisturbed flow. The chord at any
station is defined as the line joining the leading and trailing edges,
The camber is defined as the maximum ordinate of the wing aebove its
chord at the given station expressed as a percentage of the length
of the chord.



The load distribubion essumed 1is

& ¢
&(x,7) = ~5= \/1;;‘5 (2)

where ¢ 18 the local chord, A the centre-line chord, 60 a dimensicnless

constant and £ a damensionless co-cordinate varying from O along the leading
edge to 1 along the trailing edge, defaned in (3), This gives the same
chordwise 1lif+t dastribution at cach spanwise station as in two-dimensional
flow past a flat plate and a wniform 4axstribution of chord loading. A
dimensionless spanwise co~ordinate 7 is alsc introduced:

It

b

Smeemmm -

cE = x-X, X - y/K& , &1 =

(3)

1

cigt x! - X,

I
‘<—

i
i

x' - y'/K,, sn'

The lanes along which &€ is constant will be said to be in the sweepwise
direction, as the lines of constant x and y or m are called spanwise and
chordwise respectively. Substituting from (2) and (3) n (1) produces

1 ~ F __E' d’n' (}+)
(n=m)®

The 1ift coefficient is given by

3 1
c g | 1 c £ sT® b )
0 © an' =
- 285 /- - S 1+ A
-1
so that
1 + A
60 = - GL (5)

where S is the wing area and A the taper ratio.

The part 5* of the wing area S which lies forward of the pavotal
point (x,y) 1s divided, for purposes of integration,into strips in the direc-
tion of constant & (1.e. sweepwise) az shown in ¥ig.2. 1If ihe pivotal point
(x,y) is upstream of the tip leading edge (1.2, Kg x < s}, all such strips
end on the line x' = x, at the point where

-l -



K, K,{(x - c_E'")
¥yt = m's = _+_K(x-cof§‘) = iKZE?-bKt(?—E')

Otherwise, 1f the pivotal point is downstream of the tip leading edge
(i.e. K% > s), those strips for which A K, c_ E' < K,x — s end at the

wing tip where m' = + 1, and the remainder on the line x' = x, Hence
equation (4) becomes:

e o
l;.'ms@ / /‘I-—f‘[/ an! : dn! ] .
5+ 5 13
Jy n=m)" f (n=n') _
e 7o
- gt i t 1
+/ lg.‘gm[/ _(__<1’rl')2+f .(__@Ilﬁ;.s_z.}dgf (6)
- {n-m M=
EJ‘ ~T} Q
where n 5(K,E' + Kt(1 ~E)) = X, Ke’(x - ¢, E')
and 2z K{’, o €1 - Q for Kex €8
° Kx-s for Kx > s

as explained above. The second limt of integration, &',2, is given by

cEzz[x for x € ¢,

c, for x > ¢4

Q

since the second integral must be taken over all strips lying forward of
the pivotal point i.e., over all x' =c¢_ &' < x if the pivotal point is
upstream of the entire wake or x' = e, E g c, otherwise,

Performing the integration with respect to m' and taking the Cauchy
prancipal value at m' = m produces:
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1
Since K K, co(‘i -A) = (Kt - Ka)s
ch -y sz + ¥y
where e;,1 = Kaco('l—'fl('l"?\)) and az = K300(1+'ﬂ(1"'7\))

The standard integrals involved are:

/J 1‘;'-:‘21_'! gt = E'('i-&:,-'-)- + tan™ \/-{%—é,— + const,
e s
.[ \/ie’?%ﬂ @&l = - J%ﬂ log Ja(i"g') + J(1”a)§'-'- l- tan™! \/‘Iﬁ,f (a<1)

<

., (g .t BT
Jﬂ;ltan']\/aa']igﬁ; —tan-l\/-égr (a>1)




Now a, < 1 for all points of the wing, but a, > 1 for points of the

right (leftg-—ha.nd half-wing downstream of the extended trailing edge of the
left (right)-hand half-wing.

The lines a, = 1, Kax =8 and X = S, divide the wing into a number of
regions in each of which f is given by a different expression. B(x,y) is
continuous over the entire wing with the exception of {he centre-line and
wing tips. At the vertex it has a singularity like Z~Z elsewhere on the
centre-line like log Z and at the tips like z=1, It is differentiable over
the entire wing exocept for y = 0, +8 and possibly a, = 1, K.sx =8, X = C_.

Hence the chordwise wing sections have continuous tengents eand up to three
points of dascontinulty in curvature.

The division of the wing into regions takes a different form for a
wing of a different shape. Half-wings representative of the two cases
possible with swept back leading and trailing edges are shown in figure 3.
(Region B may not occur in some cases of the first type). The values teken
by the parameters in the various regions are

Region A B C D E ®
Eﬂ ] 0] >0 >0 >0 0
52 <1 <1 <1 <1 1 1
a, <1 >1 <1 >1 >1 >1

The values of B for the right-hand half-wing for the wvarioua regions are
obtained from equation (7) in the form below, using equation (5) and
ks = (1 + ) Aco.

/Region A:
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It is of interest to compare the result for region F when M = 1 end A tends
to infinity with that for an infinite sheared wing. In region F, for
A=1,

™ kD
2'2K ( \/1“2}{ E.+A»n)"41«:a 28 42

Thus 1n this case GL = 2'JtK6 B . For an infinite sheared wing

OL = 27 cos A a, so that the results agree in the limit of a slender wing, for
which A>™/2, since in this case the surface slope is the incidence (B=a).

3 Mumerical results for two planforms

The planforms considered are determined by the following parameters
and illustrated in Fig.1.
(s) Tapered wing K, = 0.7175 A = 2,677 M

£
(b) Untapered wing K& 0.7175 A

0, 3100

1. 000

i}
U}
il

2,677 A

Both wings are of the type shown in Fig.3(b) so that regions 4, B, E
and F occur, The values of /GL for the points of five spanwise sta‘t:Lons at
N = 0.2, 04, 0.574, 0.74 and 0.9 and at some additional leading and trailing
edge points were calculated for each, These are shown in Figs.4 and 5.

The values of B/GL for flat plates of the same planforms as cobtained by

l's*Ia.n,g;Zl.er‘I are shown for comparison.

Fig.6 gives graphs of the ordinates at these stations under the
assumption of no dihedral on the quarter-chord line, The function

g
- f —B—(%::’-)ia‘gi (P in radians),
L

0.25

evaluated numerically, is plotted against E., With the scalea chosen the
graphs also portray the wing profiles for GL = 2.

The local incidcnce is plotted against the spanwise co-ordinste in
Fig.7. This provides a picture of the twist of the wing. The camber is
plotted inFig,8 against the spanwise coordinate, For spanwise stations
outboard of the point at which the line Kyx = s meets the trailing edge
(see Flg.,’;(b)), the chordwise section tends to become S-shaped owing to the
rapid increase in the surface slope downstream of this line, This configura-~
tion is analogous to that of a wang with flap and so, for these sections,
the fore part of the wing, ahead of K,g,x = 8, has been treated separately from
the af't part for the caleculetion Of camber and twist. The local incidence
in the two parts has been te;.ken as the incidence of the lines Joining the
point of inflexion to the leading and trailing edges. The canber has been
taken as the maximum height of the fore (aft) part of the wing above the
line joining the point of inflexion to the leading (trailing) edge as a

- 13 =



percentage of the length of this line. Thus in figures 7 and 8 separate
curves are shown for the fore and af't parts of the wing for m > 0.417 on the
tapered wang and m > O.464 on the untapered wing., The analogy to the wing and
flap is not exact since there is no kink in the wing surface corresponding to
the hinge of a flap, but only the line of points of inflexion of the wing
sections,

4 Discussion

A slender wing with straight swept leading and trailing edges having a
two-dimensicnal chordwise load dastribution and a uniform distribution of
chord loading has the following features:

(2) The suwrface slope has no finite discontinuity although its derivatives
have. Thus all the wing sections are smooth but may have discontinuities in
curvature,

(b) The surface slope tends to infinity as the centre-line is approached,
since here the lines of constant loading, and so the bound vortices,are
kanked.

(¢) The slope rises sharply downstream of the tip leading edge as would be
expected since the flat plate solution produces no load in this region.

(d) Starting from the leading edge, the slope decreases along the forward
part of a chordwise section.

(e) Along the leading edge, towards the tip, the behaviour of the slope
depends on the taper, inereasing rapidly for a highly tapered wing but
decreasing for the constant chord wing chosen. This result and that in (d)
may be mode plausible by comparing the load distribution chosen wiih that for
e flat delta wing., The latter is (R.T. Jonesj)

so that, using equatrion (2):

¢ \/(x + xe)gxt - Xx)

This expression increases with x along a chordwise scction and increases or
decreases along the leading edge as xc increases or decreases,

(f) The modifications in the chordwise sections produced by substituting
the two-damensional for the flat plate loading are small in the region
upstream of the tip leading edge and considerable downstream of it.



List of Symbols

A aspect ratio
B, 2, parameters ocourring in equation (7)
c local chord
c, centre-line chord
OL 11ft coefficient
KB cotongent of the leading edge sweep
Kt cotangent of the trailing edge sweep
Kt K@
X cotangent of the local sweep ( = )
Ko E+ K (1-8)

¢ = &(x,y) non-dimensional load dastribution

g Senn—span

S Wing area

Vv undisturbed velocity

w perturbation velocity normal to wing .neasured upwards
X,y co~ordinates in plane of wing, X measured streamwlse and

¥ to starboard

B slope of wing in streamwise direction
K ~-K
t 4 s
A taper ratio (} =1 = e )
t e o

g = %-(x - y/KE) non-dimensional sweepwise co-ordinate

n = y/s non-dimensional spanwise co-ordinate
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FIG.l. PLANFORMS FOR NUMERICAL CALCULATION.

FIG. 2. RANGES OF INTEGRATION.
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WING OCCURRING FOR SWEPT

LEADING AND TRAILING EDGES.

E HALF-

FIG. 3(a&b) THE
3



0 0-2 0-4 06 08 1-0
—— %

TAPERED WING.

N

8660
S0l
-

0 02 0-4 06 0.8 1-0
——

UNTAPERED WING.

FIG. 4 CHORDWISE VARIATION of lc. FoRr
THREE STATIONS ON TWO WINGS WITH
DISCONTINUITIES OF GRADIENT RINGED.



40

£:0
g
G
fL 30
g:o-m\ /
\ [~
=00 S — Sy FLAT PLATE
_____________ — T TVALUE
§=10
ol —~—
0
o) 02 Q-4 (o83 -8 1-0
_-.‘IL
TAPERED WING
40
o '%-.:0 %:!-0
g
CL
} 30 /

0-67
?:
g:& /
20 ‘?‘0'0\ ~ FLAT PLATE VALUE /|, /033

= _*' _\& ______ I _-7_—_
§ 0
|0
0
0 02 04 0-6 o8 -0
=T

UNTAPERED WING.

FIG. 5. SWEEPWISE VARIATION OF ﬁ/cL FOR
€ — CONSTANT



333

Ny
[elale)
b
-

M= 074

NNz 0-9
TAPERED WING.

7
/1

0-9

UNTAPERED WING:

FIG. 6. CHORDWISE WING SECTIONS FOR THE
WINGS AND STATIONS OF FIG. 4.



30

|
o

— o2

20 AN @'8"%

h y / O\
UNTAPERED
\ >‘é—/ WING
: /

| / FOREPART

TAPERED W‘NG\J:D/

1/

10

0

o 0-2 0-4 06 08 M+ |0

FIG. 7 SPANWISE LOCAL INCIDENCE
DISTRIBUTION.

? 50
100 A Zmax
cCL

-5

FIG. 8. SPANWISE CAMBER DISTRIBUTION.






© Crown copyright 1958

Published by
HEr MAJESTY'S STATIONBRY OFFICE

To be purchased from
York House, Kingsway, London w.c 2
423 Oxford Street, London w.1
13a Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol 1
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast
or through any bookseller

PRINTED IN GREAT BRITAIN

C.P. No. 385

(18,755)
A.R.C. Technical Report

5.0. Code No. 23-9010-85

C.P. No. 385



