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This report gives a method of calculating the conditions under which a cascade of unstaUed blades will 
flutter in their bending mode. The blades are assumed to be flat plates and the flow is assumed to be two- 
dimensional. It is found that, when there is deflection of the steady flow through the cascade, bending flutter 
can occur in which there is a phase difference between the motion of one blade and its neighbours. The flutter 
boundaries for a range of cascades have been calculated on a digital computer and are presented. For turbine 
cascades these boundaries are not far from typical operating conditions in gas turbines and this may be why 
blades in the low pressure end of steam turbines have been found to require lacing wires. Comparisons are 
made with earlier theories due to Sohngen and Shioiri. 

1. Introduction. 

In  the development of axial-flow compressors and turbines, blade vibration has been one of the 

most difficult problems encountered.  Due to the large mass of the blades compared with the mass 

of the gas in their immediate vicinity, aerodynamic coupling between the various modes of vibration 

of each blade is not significant, and each blade can be considered as though it vibrated in a single 

degree of f reedom which may be either bending or torsion. This  report  is concerned with calculating 

the conditions under  which self-excited bending vibration of the blades can occur. Th e  blades will 

be considered to be unstalled, since an analytic solution of the stalled flow does riot appear to be 

feasible at the present time. T h e  theory may therefore be expected to be more applicable to turbine 

blades, which seldom run stalled, than to compressor blades, which are often stalled at off-design 

conditions and for which stall flutter is likely to be the more serious limitation. 

The re  is a considerable amount  of experimental evidence that bending flutter of unstalled cascade 

blades can occur. Shannon 1 has reported a pure bending vibration in a compressor cascade which 

gave large stresses at incidences below the stalling incidence, but  this case may have been a 

compressibility effect. 
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Bellenot and d'Epinay ~ have reported bending flutter over a range of incidence in which the 

blades would not be expected to be stalled. Shioiri 7 has made the most complete investigation of 

unstalled bending flutter, using a cascade in which the first and last of a group of blades which 

could vibrate were mechanically%oupled together, so as to simulate the effect of an infinite cascade. 

Unstalled bending flutter has also been observed by Leclerc s and by Skarecky 5. In all cases the 

flutter occurs with a phase difference between one blade and the next, and Bellenot and d'Epinay 2 

report that if the blades are connected together with a .wire, so that all blades must vibrate in phase, 
then the flutter does not occur. 

In a large proportion of the theoretical work done on the vibration of unstalled cascade blades 

it has been assumed that the mean deflection of the air flowing through the cascade is small. These 

calculations show that bending vibration is always damped (see, for instance, Ref. 11) although 

torsional flutter can occur ~. However, Molyneux 1° has shown that three-dimensional effects can 

give rise to bending flutter in a helicopter rotor under zero deflection conditions. In order to account 

for bending flutter in two-dimensional flow it is necessary to allow for the steady deflection. The first 

theory to do this was given by Bellenot and d'Epinay 2, and they gave the following qualitative physical 
explanation of the effect. 

Referring to Fig. 1, suppose that the blade numbered 0 can vibrate, but all the others are fixed. 
Then if blade 0 was removed, owing to the steady deflection through the cascade there will be a 
velocity gradient in the space between blades 1 and - 1. The velocity will be high near the convex 

surface of blade - 1 and low near the concave surface of blade 1. Therefore, when blade 0 is displaced 
upwards due to its vibration it moves into a region of lower velocity and would therefore be expected 
to produce less lift. Conversely, when it is displaced downwards the lift would be increased. 

If the flow were steady this would be equivalent to an increase in the spring force acting on the blade. 
But in fact the flow is not steady, and the circulation round the blade can only change slowly by 

means of vorticity shed from the trailing edge. Therefore, when the blade is in its mean position 
and is moving upwards it still retains some of its extra lift generated when it was displaced 

downwards. This force will therefore do work on the vibration and the system will tend to be 
unstable. 

This explanation is of course highly oversimplified, but it does show that the essential ingredients 
of any theory are mean deflection of the flow, relative movement of the blades, and phase lag due to 

the rate at which circulation can be shed from the trailing edge. Bellenot and d'Epinay ~ considered 

that the effect of the neighbouring blades was equivalent to a rotation of the blade under considera- 

tion, and they then used ordinary single aerofoil theory to give results which agreed quite well with 
their experiments. 

This type of approach has been improved by Shioiri G who assumed that all the blades vibrated 
and all the blades except the blade under consideration could be represented by point vortices, and 
then considered their effects on the centre blade. This produced results in good agreement with his 
experiments. A different type of theory has been given by Sohngen ~, using the approximation that the 
vorticity on the blades can be spread out in a direction along the cascade so as to give a smooth 
continuous function for the vorticity variation in this direction. This theory is accurate when the 
spacing of the blades is small and the phase difference between one blade and the next is also small. 
A theory 9 has been given by the author which uses the concept of replacing the cascade by an 
actuator disc. This theory should hold when the phase angle between adjacent blades and the 

frequency of vibration are both small, but it has been found that certain terms were omitted in the 
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original analysis which are important in the application of that theory to the case when there is 

finite deflection in the cascade, akhough the other cases treated are unaffected. This theory will be 

corrected in this report, and it is then found that the actuator-disc theory reduces to a special case 

of Sohngen's theory 3. 

The assumptions made in the above theories appear to be very restrictive, and it was therefore 

thought to be worthwhile to extend a previous analysis 11 for the zero-deflection flow to the case 

with flnke deflection of the flow. The assumptions made in the present report are as follows: 

(a) The system considered is twoLdimensional, so that the bending modes of actual blades are 

represented by a translational motion of the two-dimensional aerofoils. Only translational 

motion perpendicular to the chord line has been considered. 

(b) The fluid has been assumed to be incompressible and inviscid. 

(c) It is assumed that the blades do not stall, so that the flow always follows the blade surface. 

(d) Effects due to blade camber and thickness are neglected, so that the blades are assumed to 

be flat plates. 

(e) The amplitude of vibration is assumed to be small, so that the theory becomes linear, and 
any two types of vibration can be superposed to give a third type of vibration. 

(f) It is assumed that all blades vibrate wkh the same amplitude and with a constant phase 

angle between one blade and the next. This involves no loss of generality, since any required 

motion of the blades can be obtained by superposing solutions of the type considered. 

If all the blades are mechanically identical, then the flutter modes are of the type considered. 

(g) The positioning of the vorticky in the wakes of the blades will not be quite correct, since the 

wakes will be assumed to lie in straight lines in line with the blades and to be convected 

downstream at the mean flow velocity, the effect of deviation being neglected in this respect. 

The error may be expected to be small unless the blades are very widely spaced. 

2. General Theory. 

2.1. Summary of Method of Calculation. 

Since the calculation is rather lengthy, the overall method to be used will first be summarised. 

It is supposed that the blades are vibrating with given amplitude and phase relationships and the 

object is to calculate the aerodynamic forces acting on the blades. Since the blades are fiat plates, 
both the blades and their wakes may be replaced by vortex sheets. The strength of the vorticity 

on the blades has two components, a steady component ~, and a fluctuating component 7. ~' is assumed 

to be small but ~ is not small. ~ will induce steady velocities over the plane and y will induce 

fluctuating velocities. But when the blades vibrate they carry their circulation with them. There are 
therefore further induced velocities to be considered due to the movement of the ~ vorticity which 

are of first order. The velocities induced by the movement of the 7 vorticity are of second order and 

therefore negligible. ~ and 7 must be arranged so that the correct upwash velocities are induced at 
the blades. When ~ and ~, have been found the forces on the blades can be calculated, but this requires 
a knowledge of the velocities induced parallel to the chord, so that the velocities induced both 
parallel and perpendicular to the chord are required. Finally it can be determined whether the 

forces are such as to give aerodynamic damping or excitation (flutter). The first step is therefore 
to obtain expressions for the induced velocities. The notation used is illustrated in Fig. 2. 
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2.2. Veloc i t i e s  I n & t c e d  by  a R o w  o f  U n s t e a d y  Vor t ices .  

Consider the row of vortices with the spacing, stagger angle and phasing of the cascade as shown 
in Fig. 3. One vortex of strength P , S  '°~ at (Xm, Ym) induces at a point (% 0) velocities given by 

zleiw~ __ P m  Yr, z ei,.g , 
2~r (7 - x,,) 2 + Ym 2 

velO, t __ P m  (7  - x ~ )  d~,~" 
2rr. (7  - x , , )  ~ + Y . )  

If  the centre vortex at (x, O) has strength F 0 then the strength of a vortex on the ruth blade or in 
its wake is given by 

~ m  ei°A = ~oei(OA+mfl) 

since on the ruth blade everything will be advanced in phase by an angle mfi. The  position of this 
vortex is given by 

x m = x + m s s i n ~ ,  

y ~  = mscos ~. 

The  velocities induced by the complete row of vortices are therefore given by 

Po + oo e imdms  cos ~: 
u - -  2 ~  E m= - co (~) -- x - -  m s  sin ~:)~ + ( m s  cos ~:)2' 

P0 + * d m # ( ~  - x - -  m s  sin ~) 
v -  2~r .~=Z__ co 0 7 - x - m s s i n  ~) 2 + (ms cos ~) ~" 

These expressions may be written: 

u - -  U - , ( 1 )  
c 

= - v - , , ( 2 )  
c 

where U ( z )  and V ( z )  are functions 

and 

of z = ( 7 -  x ) / c  given by 

1 c {e=~.f(x)  + dgf(2)}, 
u(~) = U~ 

V ( z )  = 1 c .~ 
4--£i s {e-*~f(x)  - d{f(2)}' 

• c 

X = - -  z z - e  - i ~ ,  
s 

(3) 

(4) 

(5) 

and 

2 = i z  c e q ,  (complex conjugate of X) 
s 

+ co eirafl 

f ix) = Z m = - ~ x + m  

This  series can be summed by standard methods• The  result for 0 < fl < 2~r is 

. f ( x )  = rrd('~-P)X c ° s e c  rrx " 

(6) 

(7) 

(8) 



However, when/5 = 0 then the summation gives 

f ( x )  = wcotwz.  (9) 

This differs from the result of putting 3 = 0 in equation (8). However, it is found that the effect 

on the U ( z )  and V ( z )  functions of using equation (8) with fi = 0 instead of equation (9) is to add 

constant terms (independent of z) to these functions. This is equivalent to superposing a constant 

velocity over the whole field. Since it will be found that it is o n ~  the difference between the velocity 

induced at any point and the velocity induced far upstream which is of significance, this constant has 

no effect, and equation (8) will be used for the fi = 0 case as well as for 0 <  ,B < 27r. 

2.3. Ve loc i t y  I n d u c e d  by  D i s p l a c e m e n t  o f  a R o w  o f  S t e a d y  Vor t ices .  

Consider a row of vortices with the spacing and stagger angle of the cascade in question, and each 
with a steady circulation F. The ruth vortex is displaced upwards by a small distance h,~, as shown 

in Fig. 4, so that its co-ordinates are given by 

x,,~ = x + m s  sin ~, 

Y m  = hm + m s  c ° s  ~ . 

If  h 0 is the displacement of the reference blade, then the velocities induced at the point (~, ho) on the 
reference blade or in its wake are then given by 

and 

F (y . , - ho )  ' F  ~ - 1  1 } 
2~ (7.- xm) 2 + (Ym- ho) 2 = ~ 1 (7 - xm) + i (y .~  - ho) + (~ - xm)  - i ( y  m - ho) ' 

2~- (n - xm) ~ + ( Y m -  ho) ~ 4zr (7  - %~) + i ( y ~ , . -  ho) + ( 7 -  xm) - i(y. -ho) " 

Since the displacements are small these terms can be expanded by Taylor 's  theorem. For instance 

1 1 

(7  - x ~ )  + i ( y , ,  - ho) - x - m s  sin ~ + ims  cos ~ + i (h m - ho) 

1 i (h. , -  ho) 
~7 - x - mssin ~ + i m s c o s ~  ( ~ - x - r n s s i n ~ + i m s c o s ~ )  2 

The first term gives the steady component of the induced velocity, and has already been considered, 

since it is a special case of the previous section. The second term gives the first-order fluctuating 
component due to the displacement. These velocities are 

zte io~t = P ( h m - h ° )  I 1 
4zr ( ( ~  - x - m s  sin ~ + ires cos ~)2 

1 ) 
+ (~1 - x - m s  sin ~ -  ires cos ~)z 

ve~O, _ F ( h m - h o )  { 1 l } 
- -  . 

4rd  (7  - x - m s  sin ~ + i m s  cos ~)~ (~1 - x - m s  sin ~ - ims  cos se) ~ 

Due to the phase relationship assumed for the cascade 

h m = hoeimfl. 



Also it will be convenient to work in terms of the velocity of the reference blade, qe iot, instead of 
its displacement h 0. Then 

d 
qei~O~ = ~ (ho) = icoh o = iAUho/c 

where A is the frequency parameter (A = coc/U) and U is the mainstream velocity. This gives 

(hm_ho) = qc (ei,,~/~ - 1)d~ t 

Summing the result for all the vortices, the expressions for the induced velocities may be written 
as follows: 

u = ~fc M - , (10) 

v = U c  - , ( 1 1 )  

where M(z) and N(z) are functions given by 

M(z) = - ~  (e-~'~g(x) + e~'igg(~)}, (12) 

N(z) ~- - ~  {e-2i~g(x) -- e~iCg(~)}, (13) 

where X is given by equation (5) and g(x) is given by 

+ oo e i m f l -  1 
g(x)= (14) 

This series can be summed, either by differentiating equations (7) and (8) with respect to X, or 
by contour integration methods. The result is 

g(x) = ~2cosec~rrX { ( 1 - f i )  e-i~x + f i e  '(2"-/~)x- 1}. (15) 

This result holds for the range 0 ~< fl ~< 27r, and it will be noted that it gives g = 0 when fl = 0 
or 27r, which is obviously correct since there is then no relative displacement of the blades. 

These equations give the required results for the induced velocities. 

2.4. Calculation of Steady Vorticity. 

The steady flow through the cascade consists of a uniform velocity U parallel to the blades 
together with the velocities induced by the steady vorticity on the blades. The net result is shown 
in Fig. 2, where the components of the velocity far upstream are shown as U 1 and rU, and similarly 
Ua and raU far downstream. By continuity 

U l c o s ~ -  r U s i n ~  = U2cos ~ -  *2Usin~ = Ucos~ 
therefore 

U 1 = U(1 + . t a n ~ ) .  
and 

U 2 = U ( l + . 2 t a n ~ ) .  



T h e  air inlet angle relative to the normal to the cascade is then given by 

tan~ 1 = (Uls in  ~+ ~-Ucos ~)/Ucos ~, 
o r  

tan~ 1 = tan~ + , s e c  2~. (16) 
Similarly 

tan~ 2 = tan ~ + ~-2sec~. (17) 

It  will be convenient to use T rather than a 1 as a measure of the incidence of the steady flow. 

Also, since the eventual object is to calculate the incidence at which flutter will occur, T will be 

regarded as an unknown variable. 

N ow  consider the velocities induced by the steady vorticity ~. Th e  steady velocities at (~7, 0) are 

. = u + +  dx, (18)  
0 

v = {V0(*? - x) + k~} ~ dx,  (19) 
0 

where Uo(z) and Vo(z ) are the functions given by equations (3) and (4) when/3 is put  equal to zero. 

These equations satisfy the conditions u = U and v = 0 when  ~ = 0. T h e  constants k~ and k o 

must be added to the Uo(z) and Vo(z) fnnctions to allow for the indeterminate constant in these 

functions which corresponds to a uniform velocity over the whole field. V(z)  behaves like 1/z when 

z is small, so that it is the principal value of the integral in equation (19) which is required. 

Applying these equations far upstream gives 

U ( l + r t a n ~ )  = U +  {U0( -  ~ ) + k, ,}~dx,  (20) 
0 

. U  = {Vo(-  co) + h~} ~dx.  (21) 
0 

Eliminating k,, and k v from equations (18), (19), (20) and (21), 

u = U ( l + z t a n ~ : )  + {Uo(~/-x) - U o ( -  ov)}~dx , (22) 
0 

f° = (23) 
0 

Now on the blades the induced upwash velocity must be zero. So putt ing v = 0 in equation (23) 

f ° ( V o ( V - x  - V o ( - O z ) } ~ d x  = - z U  for 0 < < c. ~7 
0 

This  is an integral equation which determines ~. Since ~ is proportional to ~" it is convenient to write 

= - *U~o (24) 

where ~o is the solution of the integral equation 

f C{Vo(~7-x ) - Vo( -Oo) )~odx  = 1 for 0 < < c. (25) ~7 
0 

This  equation has to be solved subject to the Joukowski condition at the trailing edge, which means 

that ~0 must  be finite when x = 0. 
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where 

Once ~o has been found, the chordwise velocities along the blades are given by equation (22) as 

[ ; 1 u = U + T U  t a n ~ -  {Uo(V-x ) -  U o ( - O o ) } ~ o d x  . (26) 
0 

Since .r is being regarded as an unknown variable, it is convenient to write this as 

u = U + zUuo ,  (27) 

u o = t a n ~ -  {Uo(~/-x ) - Uo(-  oo)} ~odx. (28) 
0 

In this report the downstream deviation effects will be neglected. The magnitude of the effect 

may be calculated by applying equation (23) far downstream where v = r~U, giving 

2-2 = 1 - {Vo( + ~ )  - Vo(-  Go)} ~o dx .  (29) 
~" 0 

~2 may then be obtained from equation (17). 

2.5. Free and Bound Vortici ty .  

In the zero-mean-deflection calculation it has been found convenient to divide the unsteady 
vorticity into two components, a bound vorticity and a free vorticity. The free vorticity is always 
being washed downstream at the mainstream velocity U, and the bound vorticity is zero in the wake. 
This division is necessary in order to handle a singularity which otherwise occurs at the trailing 
edge. A similar division will be made in the present calculation, but the free vorticity will not be a 
true free vorticity, since it will be defined on the basis that it is always being washed downstream at 
the velocity U, and not at the steady chordwise velocity given by equation (26). The relationship 
between ~, (the bound vorticity) and e (the free vorticity) will then be independent of T. In the wake 
it will be assumed that the term proportional to ~- in equation (26) is negligible, so that e is here 
assumed to be a true free vorticity and V is assumed to be zero. 

The relationship between e and 7 is then exactly the same as in the zero-deflection calculation, 
but the derivation will be briefly repeated for the sake of completeness. 

Consider an element of bound vorticity, 7 dx e iot, at the point (x, 0) on the reference blade. During 
a small time interval St the strength of this element of bound vorticity changes by an amount 

y dx ei°~ioJ S t .  

This is equal in magnitude and opposite in sign to the free vorticity created in the time interval St. 
Also during this time interval the free vorticity is assumed to move downstream a distance USt. 
Hence the strength of the sheet of free vorticity at a point just behind the element of bound vorticity 
at (x, 0) is given by 

y dx ei~i~o St i~o 
U S t  - U y dx e i~t . 

Since the free vorficity is being continually washed downstream at a velocity U, the free vorticity 
at a point (xl, O) farther downstream must be given by an expression of the form 

6 e  i~°t = c o n s t a n t  e i~° ( t - x l  IU) . 



Determining the constant from the previous considerations, writing ;~ = coc/U, and measuring 

distances in units of chordal length so that c = 1, gives 

e = - iAd:t(~-x@ dx .  (30) 

The total free vorticity at (x~, 0) is obtained by summing up the contributions from all the 

elements of bound vorticity from x = 0 to x = x 1. This gives 

e = - i;~ da(~-'~l) 7 dx .  , (31) 
0 

If  this expression is multiplied by ei°~':~ ~or, differentiated with respect to xl, and then written with x 

as the independent variable, the following differential relationship is obtained: 

de 
+ ih(7 + e) = 0. (32) 

2.6. Velocity Induced by Vorticity on the Blade and in its Wake.  

The velocities induced at a point 07, 0) by an element of bound vorticity 7 dx e i°'t at (x, 0) on the 

reference blade and corresponding elements on the other blades are given by 

u(~) = 7(x) dx U ( ~ - x ) ,  (33) 

~(~) = ~(~) d~ V ( ~ -  x). (34) 

Associated with this bound vorticity is the free vorticity given by equation (30), which induces 

velocities given by 

F u(~) = e(xl) U('q - xl)  d x l ,  (35) 
x 

F ~(~) = ~(~1) v ( ~  - x~) dx~, (36) 
x 

where the total effect is obtained by integrating over all the elements of free vorticity from x to 

infinity. Special consideration of the case 19 = 0 is required since for this case U(z) and V(z )  do not 

tend to zero as z -+ - ov and the above integrals do not converge but oscillate. To resolve this it is 

necessary to note that, assuming the system was started from rest, the total circulation due to each 

element of bound vorticity and its associated free vorticity is zero, so that 

F 7 d x  + e(xl) dx 1 = O. 
x 

If  this equation is multiplied by the constant U ( -  oo) and subtracted from the sum of equations 

(33) and (35) there results 

F -(7) = {8(~-~)  - v ( -  o~))Td~ + ~(xl)W(~ -~1) - 8 ( -  ~)}d~l, 
x 

and similarly, 

v(~) = { v ( ~ c ~ ) _  v ( -oo )}~d ,  + ~ ( ~ l ) { v ( ~ - ~ ) -  v ( -  ~o)}d~. 
gc 

These integrals will now always converge at th e top limit. 
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Substituting for e from equation (30) and replacing x 1 by z 1 = 7 / -  x 1 gives 

.(~) = u ( ~ - x )  - u ( -  oo) + iz ei~=+++l~{U(zl) - u ( -  5~)}&1 ~ & ,  
,J ~]--X . 

[ f-+ ] v(~) = v ( ~ - x ) -  v ( - o o ) + i a  ei~x-',+°~>{v¢~)- v ( -o~ )}&~  ? & .  
t/--X 

These equations can be written 

u(~) = dO7-  x)y(x)  dx ,  (37) 

~(~) = K ( ~ -  ~ ) r ¢ )  & ,  (38) 
where 

J(z)  = U(z)  - U ( -  oo) + i~te -iaz e iaq{U(z l )  - U ( -  oo)}dz l ,  (39) 
z 

K ¢ )  = v(~) - v ( -  oo) + ize-~° ei,~°~{r(<) - v ( -  oo)}&;. (4o) 

Integrating equations (37) and (38) to give the velocities induced by all the elements of bound 
vorticity along the blade chords gives 

u(v ) = Y(, - x)y(x) dx,  (41) 
0 

v(~) = K ( , / -  x)y(x) dx.  (42) 
0 

Since K ( z )  is infinite when z = 0 it is the principal value of this last integral which is required. 

In the numerical evaluation of the K ( z )  function two difficulties arise. One is the infinite limit 
on the integral and the other is the singularity in V(z)  which behaves like 1/2rrz when z is small. 
It is shown in Ref. 11 that the K ( z )  function is given by 

K(z)  = y ( z )  ~_ d~e_ia a I f :  1 {e{Aal.~7(Zl) - 2~1 } d~l_ 1 log [zf du +(aq-db) x 

00 Exp { - (2rrr + 5) (a + ib) - ia} co Exp { - (2~rr- 5) (a - ib) - ia}-] 
x ,.=0 ~1 (2~rr + fi) (a + ib) + i;~ + ½(a - ib) , ' = 1  y' ~ ~ b )  T iX .J . (43) 

(It should be noted in comparing this with equations A8 and A13 of Ref. 11 that the K function is 
not quite the same, in that the sign of its argument has been altered in order to make the notation 
more consistent. This  means that the signs of z and z 1 must  be changed in these equations of 

Ref. 11.) 
In the numerical evaluation of the Y(z) function only the difficulty in connection with the infinite 

limit on the integral arises. This  is dealt with in an exactly similar way to give 

a(z) = u ¢ )  + ia~-i~, e+:~+-u(,++.) az+_ - 

o+ - +0 Exp { - (2rrr - I ~) (a - ib) - iA}'] x E x p { - ( 2 r r r + [ J ) ( a + i b )  ia} i ( a - i b )  ~ j (44) 
,,=o (27rr+l~)(a+ib) + iZ + 2 , ,=~ ~ r - ~ - - 7 ~ )  7 ~ X  " 

The integrals occurring in equations (43) and (44) can be evaluated by numerical quadrature; 
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2.7. Calculation of  Unsteady Vorticity. 

In order to obtain the total unsteady induced velocities, it is necessary to add to equations (41) 
and (42) the velocities induced by movement of the steady vorticity given by equations (10) and (11). 
This gives 

f M ( ~ -  ~) ~(x) dx, (45) u = o J ( ~ -  x)~(~) dx + ~ o 

fl q fl N ( ~  - x) ~(x) dx .  (46) v = o K ( n -  ~)~,(x) d .  + ~ o 

But on the blades the induced velocity v must match the blade velocity q. Hence, using equation 
(24), 

f f K ( ~ -  ~)~(~) d~ = q + q.  N ( ~ -  ~) ~o(X) & 
0 0 

for 
0 < ~ 7 < 1 .  

This is an integral equation for the unknown bound vorticity, y. y has two components, one  
independent of r and one proportional to r, and can therefore be written as 

y = qy~ + qry~, (47) 

where y~ and y~ are solutions of the integral equations 

fl K(~=x)[yv r,]dx = [1, fl N(~-X)~o(x)dx I (48) 

for 
0 < ~ 7 < 1 .  

These equations have to be solved subject to the Joukowski condition at the trailing edge, which 
means that y~ and y~ must be finite when x = 1. 

Putting equations (24) and (47) into equation (45) gi~;es for the induced velocity parallel to the 
blade chord 

f f u = q J( - x ) y a ( x ) d x  + qr J ( ~ 7 - x ) y , ( x ) d x  - qr  M ( , - X ) ~ o ( x ) d x .  (49) 
0 0 0 

It is convenient to write this as 

where 

and 

u = qu~ + q , u ,  (50) 

f u~ = J ( ~ -  x)y~(.) dx, (51) 
0 

fl fl u, = J('q - x)y~(x) dx - M ( ~  - X)~o(X ) dx .  (52) 
0 0 

2.8. Calculation of  Blade Force. 

Equations (27) and (50) give the steady and unsteady components of the chordwise velocity 
induced at the reference blade by the vorticity on the other blades. At points just above and bel0Cv 
the reference blade, denoted by suffices + and - respectively, the steady components are given by 

Uo+ = U + r U u  o -  ½~, (53) 
and 

Uo_ = U + "~Uuo + ½-~. (54) 
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Similarly the unsteady components are given by 

u+ = quq + qru~ - ½(y + e), 
and 

u _  = quq + qru~ + ½(y + e). 

The  complete velocities just above the reference blade are therefore given by 

(55) 

(56) 

/it = l/Oq- + U+ ei~°l , (57) 

v = qe i°~t . (58) 

The pressure may now be calculated from the unsteady Bernoulli equation 

P-- + ~-u ~ + ½v ~ + = f ( t )  p " - ~ [  , 

where rI) is the velocity'potential and F ( t )  is an arbitrary function of time only. • is given by 

(59) 

~q)/Ox = u .  

Therefore 

C~ = u d x t  . 
o 

Therefore 

0 

Using equation (57) for a point just above the reference blade 

~ 0  + _ i~od,o t u+ d x  1 . (60) 
~t o 

Putting equations (57), (58) and (60) in equation (59), and neglecting terms of second order in 

u and q, gives 

P+ - ! u  ~ + Uo+U+e i°)t + icod ~t f ~  u+ d x  - F ( t )  2 O+ 
P o 

There is an exactly similar equation for the pressure at a point just below the reference blade. 
Subtracting these gives the pressure difference across the blade, and the unsteady component of 

this is 

{ ; I P -  - P+ - Uo_U - Uo.U+ + leo (u_  ± u+) d x  1 e i°'t . 
p o 

Substituting from equations (53), (54), (55) and (56) gives 

{ ; } P - - P + -  ( U + r U u o ) ( y + e ) + ( q u q + q r u , ) ~  + i~o  ( y + e ) d x l  d ~t. 
p o 

This may be simplified using equation (32) to give 

P -  - P+ - { U 7  + r U u o ( 7  + e) + ( % +  r u , ) q ~ } e  i°~t. (61) 
P 

e appears in this expression because it is not a true free vorticity. If true bound and free vorticifie..s ' 
were used, only the true bound vorticity would appear in the expression for the pressure difference. 
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The fluctuating component of the upward force on the blade per unit length is then given by 

Fei°'~ = (1)- -P+) dx. 
0 

Using equation (61) this gives 

? F = - p { U 7  + , U u o ( y + e )  + ( u ¢ + , u , ) q g } d x .  (62) 
0 

. ~ has been expressed non-dimensionally by equation (24) and y by equation (47). There is an 
exactly similar form for e, 

e = qQ + qrG, (63) 

where, from equation (31) 

f~ i  e ia(x Xl) [eq, G] = - ia - [r~, Y,] dx. (64) 

Putting equations (24), (47) and (63) into equation (62) then gives 

F 1 
CF - ~rpUcq -- -~r o [ - y q  + r { - y * -  u°(Yq+eq) + U~°} + r 2 { -  u°(Y"+e') + u'~°}]dx" (65) 

2.9. Matrix Form of the Equations. 

The various integrals and integral equations which have been derived will have to be solved by 
numerical means. It is therefore convenient to put Jthe equations into matrix form. First, a 

transformation to new independent variables, 0 and ¢, is made as in the usual thin-aerofoiI theory for 

single aerofoils. 
x = ½(1-cos0),  

= ½ 0 - c o s ¢ ) .  

For example, equation (25), the integral equation for the steady vorticity, gives 

f " {Vo(½COS 0-½cos¢)  - Vo(- oo)} ~o½sin OdO = 1. (66) 
0 

All the vorticities will be specified at (n + 1) points given by 

0 = wl/n 

where l is an integer taking values from 0 to n. The values when l = n, at the trailing edge, will, 
however, be irrelevant since in equation (66) ~0 is multiplied by sin 0 which is zero. The same 
argument does not apply at the leading edge, since the vorticities become infinite there, although 
products such as ~o sin 0 remain finite. 

The n values of ~0 can therefore be found to satisfy equation (64) at n points only, and these will 
be chosen to be given by 

¢ =  (2m + 1)/2n 

where m is an integer taking values from 0 to (n - 1). These points have values of ~ midway between 
the values of 0 at which the vorticities have been specified. 
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It has previously been shown 11 that integrals of the type in equation (66) may be evaluated by the 

trapezoidal rule, except for a case when a logarithmic singularity occurs which requires special 
consideration. Then equation (66) may be written as a matrix equation, 

A0Z = D, (67) 

where the matrices are defined in the table of matrices: 

This gives the matrix of steady vorticity elements as 

Z = Ao-ID.  (68) 

Similarly equation (28) gives 

170 = tan ~ D -  BoZ.  (69) 

Equation (43) shows that the K function has a logarithmic singularity which means that equations 
(48) require special treatment. It is shown in Ref. 11 that these equations may be written 

AP~ = D, (70) 
and 

= 9 z ,  (71) 

where A is the matrix given in the table of matrices. 
Equation (51) gives 

Y~ = BV~. (72) 
Equation (52) gives 

Y,  = BF,  - P Z .  (73) 

Equation (64) is of a different type, since x 1 is the top limit of the integral. It has been shown by 
Watson 12 that this may be written 

E~ = HF~, (74) 

E, = H P , ,  (75) 

where H is the matrix given in the table. 
Equation (65) gives 

rrCF = - D*P~ + r { -  D~P~ - Yo~(Pq+E~) + Y ~ Z }  + r2{ - Yo~(P,+E~) + Y~*Z} (76) 

where the notation * indicates a transposed matrix. 
Eliminating the unknown matrices Z, Yq, F, ,  Ea, E,,  Yo, Y~ and Y, gives 

7r CF = - D*A-1D + r [D*{( ao*)-iBo * - I t an  ~}{H + I}A-~D + D*{(A*) - IB  * - A -~ Q}A0-~D] + 

+ r~[D*{(Ao*)-*Bo * - I tan  ~}{H + I }A  -~ QAo-*3 + D*(Ao*) - I {BA- tQ  - P}Ao-tD]. (77) 

This is the required expression for the blade force. A special property which is of interest concerns lhe 
term D*(Ao*)-~PAo-~D. The real part of the function M(z)  is an odd function of z. The real part of 
the matrix P is therefore an anti-symmetric matrix. Also the matrices A 0 and D are real so that Ao- tD 

is also real. Hence the real part of the term D*(Ao*)-IPAo-ID is equal to minus its transpose, and 
since it is just a single number it must be zero. It will be found that the flutter characteristics of a 
cascade are controlled only by the real part of C~,. Hence in calculations which are purely concerned 
with flutter the D*(Ao*)-IPAo-ID term can be omitted completely and the matrix P is not required. 
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3. Convergence. 

This calculation has been programmed for E D S A C  II, the electronic computer  at the Cambridge 
University Mathematical Laboratory. With n = 6 the machine takes about  55 sec to calculate C F 
for given values of s/c, ~, fl and A and for a few values of %. 

The  accuracy of the mathematical process can be assessed by doing calculations with increasing 
values of n and examining how the results tend to a limit. Some examples of this are given in Table  1. 
In most cases the convergence is very rapid, and n = 6 can be relied on for accurate results, but  the 
convergence for cascades with small spacing and high stagger deteriorates. The  results for the 
cascade with s/c = 0.5 and ~ = 75 ° show appreciable errors up to n = 10, which is the highest 
value of n which the present programme can handle. 

4. Comparison with Previous Theoretical Results. 

A comparison will now be made between the present theory and two other previous theories, 
those due to Sohngen a and Shioiri 6. 

Sohngen's  theory makes two assumptions additional to those made in the present theory. These 

are firstly that the spacing to chord ratio (sic) of the blades is small and secondly that the phase angle 

(fl) between adjacent blades is small. (The second assumption is not specifically stated by Sohngen, 

but  is taken to be implied by the first assumption.) This  enables a row of vortices to be replaced by a 

continuous vortex sheet, so that the vorticity on the blades is effectively spread out in the direction 

along the cascade. Transferred into the notation of the present report Sohngen's  result is 

s i 
CF = - -  I(B~0 + (2rsec~)  - ~  rrc _ ~ A b 0  ) (Bbl i A b 0 + ( 2 r s e c ~ )  2 ( B b ~ _ ~ A b ~ ) ]  (78) 

where 
- 1  

Ab° -- 12Ncos  ~ {A~12c~2 sin 2~ + 

+ A~2 [2~ ~ + 12c~8cos f + 24~2cos2~: + 24~cos2~cos~]  - 

_ A4(~ + 2 cos ~) [24 cos ~ + 24c~ cos ~ ~ + 8~ ~ cos ~ + ~]} ,  

1 
Ab 1 = 2-N {~a sin ~ + k ~ ( ~  cos ~ -  2 sin 2 ~) + 

+ )t,?(,, + 2 cos ~) (2,~ cos 2~ + ~ cos ~)}, 
1 

Abz = ~ {e~ sin 2 s e + A~%,(cr + 2 cos ~) (or sin 2 ~: - cos ~: cos 2~)}, 

- 1  
B~° - 4Ncos  ~: {2c~z(e + 2 cos ~)~ - 8c, sin ~ cos ~:(a + 2 cos ~))t~ + 

+ a , ? ( ~  + 8 ~  cos ~ + 24,~ cos~ # + 32,~ cos~ ~ + 16 cos z ~:)}, 

) B ~  = ~ aacos~ + ( a+2cos~ )~Zs in~  + A ~ a c o s ~ ( a z + 4 e c o s ~ + 4 c o s 2 ~ )  , 

1 
B ~  = 4 N  ~ cos ~, (79) 

and A~ = -[fi--~[ A, 

= I/~[ c/s, (8o) 

N = cr~ + ,~(cr+2cos~:) ~'. 
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Sohngen also gives expressions for the force in the chordwise direction and the moment about the 
leading edge both for this case of vibration perpendicular to the chord, and also for vibration parallel 

to the chord and for torsional vibration about the leading edge. 
In Ref. 9 a theory was given in which the cascade is replaced by an actuator disc. The original 

analysis has been found to be incorrect and a corrected analysis is given in the Appendix to this 
report. The actuator-disc theory assumes that fi and ;~ are both small. These assumptions can be fed 
into Sohngen's analysis, by assuming that ~ and ;t (or ;t~) are both small and of the same order of 
magnitude in equations (79). It is then found that this result is identical with the corrected actuator- 
disc analysis. The actuator-disc analysis is therefore a special case of Sohngen's theory. The actuator- 
disc analysis, however, remains of interest because it does not need to assume anything about the 
spacing or profile shape of the blades except that they must give constant air outlet angle and 
zero stagnation-pressure loss in quasi-steady flow. 

Table 1 gives in the rows marked 'analytic' results from the actuator-disc theory for comparison 
with the results from the programme in four cases. At s/c = 0.25 the agreement is extremely close. 
At s/c = 0.5 the agreement is not quite so good. This is due to the fact that in the actuator-disc 
analysis and in Sohngen's theory all deviation effects are neglected, whereas in the programme these 
effects are partially taken into account. At zero deflection the programme gives the correct answer, 
whereas the actuator-disc calculation shows a small error. At finite deflection both solutians will 
be slightly in error, but the programme should be more accurate. 

Figs. 5 and 6 show some further comparisons with Sohngen's theory. For small values of fi there 
is seen to be close agreement, but as f~ increases the solutions diverge. This is the behaviour that 

would be expected from the assumption of small fi in Sohngen's theory. 
The other theory with which comparison will be made is that due to Shioiri% The most important 

assumption made in this theory, in addition to those made in the present report, is that in calculating 
the force on any blade, all the other blades are replaced by point vortices. There are also approxima- 
tions in calculating the blade force, so that the expression for C F is linear in ~-, instead of being 

quadratic as in equation (77). This theory would therefore be expected to be best at high values of 
s/c. The comparison with Shioiri's calculations is shown in Figs. 7 and 8. Since Shioiri's assumptions 
are rather drastic, close agreement would not be expected, but the curves do show very similar 
trends. 

These comparisons are also valuable in providing evidence that the programme is free from error, 
although it must be agreed that some of the terms in equation (77) do not receive a rigorous test 
in these comparisons. These checks are of course in addition to the usual checks on all the individual 
parts of the programme. 

5. Flutter. 

Up to this point it has been supposed that the blades are vibrating in a given manner and the 
aerodynamic forces on the blades have been calculated. This aerodynamic force must now be equated 
to the mechanical forces, in order that the conditions for self-excited vibration can be determined. 
It will be assumed that all the blades are identical and that there is no mechanical coupling through 
their roots. The motion of the blades which has been assumed in the calculations then corresponds 
to a normal mode of the system. Then the equation of motion for unit length of blade is 

I z ~ (ho d~t) + t~COo (hoe i°'~) + t~COo~(hod~' ) = Fd~l,  
7r at 
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where 

and 

/* = mass per unit length of blade, 

aJ o = natural frequency of blade in a vacuum, 

8 = logarithmic decrement due to mechanical damping. 

Writing the aerodynamic force F in terms of the force coefficient C F and simplifying gives 

t z ( - J + i c % * o 3 + ~ o 0  ~) =~rpUcioJC F. 

For steady vibration both the real and imaginary parts of this equation must be satisfied. The real 
part gives 

a -  Oo'. _ J(c ) (81)  
c °  ~ " 

The imaginary part gives 

Equation (81) determines the frequency at which flutter can occur. In practice the quantity 
(iz/~pc ~) is large, so that (~o02-~o ~) is small and co is very nearly equal to oJ 0 . 

Equation (82) relates the mechanical and aerodynamic damping, and is the condition for the 
vibration to be just seK-excited. In all that follows the mechanical damping will be neglected, so that 
the condition for marginal flutter is 

~ ' ( C ~ )  = 0. (83) 

If the real part of C~. is positive there is a component of the aerodynamic force in phase with the 

blade velocity and the vibration will build up. Conversely if the real part of CF is negative there is 
aerodynamic damping. 

If  a given cascade is considered with given values offi and A, and a 1 (or z) is regarded as a variable, 
then equations (77) and (83) give a quadratic equation for z. This may have two roots giving two 
values of c h for which flutter is marginal. These values of ~1 are plotted against fl for two cascades 
on Fig. 9. The marginal values of c¢1 form loops, and inside these loops the real part of C~ is positive 
and flutter can occur. 

Now if there is a large number of blades in the cascade, flutter can occur at any value of the phase 
angle ft. Taking as an example the cascade with ~ = 15 ° on Fig. 9 this means that flutter will occur 
at any value of % between points A and B, and also between points C and D. These are the critical 
values of ~1 and the programme has been arranged to find them. It operates by hunting for maxima 
and minima in the graphs of -r against ft. It will be seen that there are also non-significant maxima 
and minima at points E and F which may be found by the programme. These non-significant roots 
disappear at higher values of h and ~. The zero stagger (~ = 0) case is peculiar since there are only 
two significant roots at A' and C' (Fig. 9) with two non-significant roots at E' and G'. 

The results for the critical values of % are shown in Figs. 10 to 13. These figures show frequency 
parameter, A, plotted against deflection, which is here taken as ~ - ~, deviation being neglected. 
The results are shown for compressor and turbine cascades separately, and for space/chord ratios 
of 1.0 and 0.5. Flutter is predicted if the operating point is below the line drawn, that is if the 
frequency parameter is less than a critical value or if the flow velocity is greater than a critical value. 
The curves for compressor cascades (Figs. 12 and 13) are seen t o t u r n  downwards for high 
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deflections. The curves for turbine cascades also turn downwards but only at very high deflections 

which are of no practical interest and therefore not shown on Figs. 10 and 11. (~ = 0 is an exception 

to this statement.) 

The corresponding critical phase angles are shown in Figs. 14 and 15. A further interesting result 

is that if/3 = 0 then no flutter can be found, so that the flutter would be stopped by connecting the 

tips of blades together thus making them all move in phase. 

Sohngen 3 has shown that for zero stagger cascades his theory gives a very simple result. This is 

that the critical value of ;t is given by 

Z = ~tan%,  (84) 
and the corresponding phase angle is given by 

,, = 1/314s = 2 .  (85 )  

Equation (84) is compared with the results from the programme on Fig. 16, and it is seen that agreement 

with the sic = 0-5 calculation is very good. The critical phase angles (very nearly independent of A 

from the programme) are as follows: 

s/c ~/2~ (Sohngen) ~/2~ (Programme) 

1"0 0.318 0.173 

0.5 0.159 0-123 

6. Comparison with Experimental Results. 
In this section the present theory will be compared with the results of two experimental 

investigations by Shioiri 7 and Leclerc 8. 

Shioiri's experiment was done in a cascade with seven blades free to vibrate, the first and last of 
these blades being mechanically coupled so as to simulate an infinite cascade. Flutter was observed 
with ]?/2~ = 1/6 for the compressor cascades and with .B/2~ = 5/6 for the turbine cascades. These 

values of/3 have therefore been used in the theoretical calculations. The comparisons are shown in 

Figs. 17 and 18. The agreement between theory and experiment for the turbine cascades is quite 

good, but for the compressor cascades the theoretical flutter velocity considerably exceeds the 

experimental flutter velocity. On the whole the general tendencies of the theory are confirmed by the 

experiment. Shioiri shows somewhat better agreement between his own theory and his experiments. 

It is possible that, in neglecting some of the terms arising from the steady vorticity distribution on 

the blades, Shioiri's theory makes some allowance for the camber of the aerofoils. 

The other set of experiments with which comparison will be made is that due to Leclerc s. The 

damping in a cascade of zero cambered blades was measured and was found to go to' zero for two 

arrangements of turbine cascades. The results are as follows: 

The agreement 

s/c 0"587 

45 ° 

Incidence 16.7 ° 

Critical ~ by expt. 0. 091 

Critical ;~ by theory 0. 080 

is good. 

17.7 ° 

O. 094 

O. 085 
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7. Conclusions. 

The main conclusion of this report is that unstalled bending flutter of compressor and turbine 
blades is predicted if the gas flow velocity exceeds a certain critical value. Current gas turbines are 
usually fairJy close to this limit, but axial compressors are usually well clear of the critical velocity, 
and stalled flutter is likely to be a much more serious limitation. The blading at the low-pressure 
end of steam turbines usually works in a flow velocity well in excess of the critical value calculated 
here, and this could explain the need for lacing wires in these turbines. Any such device which makes 

all the blades more in phase stops this type of flutter. 
The theory presented here shows substantial agreement with previous theories due to Sohngen 3 

and Shioiri 6, particularly in those regions where good agreement would be expected. It is believed, 

however, that the present theory is much more accurate than any of the previous theories, although 

there are still idealizations of a number of effects which are likely to have considerable influence in 

actual machines. The most important of these effects neglected in the theory appear to be: 

(a) Mechanical damping. 

(b) Mistuning of the blades in any row. 

(c) Effect of blade camber. 

(d) Compressibility. 

(e) Three-dimensional flow effects. 

(f) Torsional motion in the fundamental bending mode. 

The effects (a) and (b) in this list will always have the result of raising the flutter velocity and are 

therefore favourable. The remaining effects may be favourable or unfavourable. 
In spite of these approximations, it is suggested that Figs. 10, 11, 12 and 13 be used as a design 

rule for turbo-machine blading, the flow angles being taken at the tips of the blades. It will probably 
be necessary to use an empirical factor on the critical flow velocity in order to allow- for the various 
unknowns, and such a factor can only be determined on the basis of practical experience. If in any 
design the critical flow velocity was found to be exceeded, then it would be necessary to increase 
the chord of the blades, fit lacing wires, or connect the tips of the blades together through shrouds. 

Further theoretical work to clear up the effect of at least some of the unknowns is desirable. 
In particular it should not be too difficult to modify the present programme to allow for the effects 
of blade camber and the presence of some torsional motion in the fundamental bending mode of the 
blade. Shioiri 7 has included this latter effect in his work and has shown that it is important. 
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N O T A T I O N  

Some of the notation and axes used are shown on Fig. 2. 

Unsteady aerodynamic force on blade 

Functions giving induced velocities, including wake effects 

Functions for velocities induced by displacement of steady vorticity 

See equation (80) 

Functions for velocities induced by unsteady vorticity 

Mainstream velocity 

Functions U(z) and V(z) when fi = 0 

= (c l~ )cos  

= (c/s) sin 

Chord (this is put equal to unity) 

Function given by equation (7) 

Function given by equation (14) 

Displacement of ruth blade 

= ~ / ( -  1). Indicates component leading 90 ° in phase 

Integers 

Order of approximation 

Static pressure 

Translational velocity of blade due to its vibration 

Integer 

Cascade spacing 

Time 

Induced velocities 

Steady component of u {see equation (27)) 

Unsteady component of u independent of ~ {see equation (50)} 

Unsteady component of u proportional to T {see equation (50)} 

Rectangular co-ordinates 

= (~-~) 

Air inlet angle 

Air outlet angle 
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NOTATION--cont inued  

Phase angle between adjacent blades 

Bound vorticity 

Component of ~, independent of 

Component of ~ proportional to 

Logarithmic decrement due to mechanical damping 

Pseudo free vorticity 

Component of e independent of ~- 

Component of e proportional to ~- 

Steady vorticity 

Co-ordinate for induced velocity 

Variable defined by x = 1(1 - cos 0) 

5oc/U, frequency parameter 

Mass per unit length of blade 

Stagger angle 

Gas density 

See equation (80) 

Variable used to specify incidence of steady flow 

Variable used to specify deviation 

Variable defined by ~ = ½(1- cos~) 

Variable defined by equation (5) 

Angular frequency of vibration 

Strength of ruth vortex in row 

Velocity potential 

Suffices + and - refer to points just above and below the surface of the blade respectively. 

Z 

Z' 

Indicates summation 

Indicates summation in which the nth term is halved. 
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Table of Matrices 

In  all cases the  e l emen t  given is in the  l th c o l u m n  and m t h  r o w  (0 ~< l ~< n -  1, 0 ~< m ~< n -  1). 

Also 
rrl ~r(2m + 1)t 

,~ = ½- COS--- COS 

Matr ix  Orde r  E l emen t  

Z 

Pq 

P,  

E~ 

E,  

D 

I 

Ao 

Bo 

A 

B 

zo 

z~ 

z~ 

H 

P 

9 

n x l  

n x 1  

n x 1  

n x 1  

n x 1  

n x ]  

n x /1 

n x n  

i , l x l ' t  

n x n  

(Tr/2n) [o(~rm/n) sin (~rm/n) 

(=/2n)./q(~rm/n) sin (rrm/n) 

(~/2n)y~(Trrn/n) sin (~rmln) 

(1r/2n)%(Trm/n) sin (~rm/n) 

(Trl2n)e~(~rm/n) sin (rrm/n) 

Uni t  mat r ix  

F i r s t  e l emen t  halved 

Vo(~) - Vo(- ~o) 

~o (~-co~- ~ c o ~ ) _  ~o/-~/ 

K(z) + ihe-iaz I l  loge2 

½ ~l 
n x n J cos 

Iz 

n x 1 Uo(~m/n) 

n x 1 u~(rrm/n) 

n x 1 u~(1rm/n) 

n x n  --~ . 

n X n  

n X n  

__~cosT) 

n - 1  1 77rm 
+ 2 ~ - s i n  - -  

~,=I ie n 

~(~co~  1 ~m, ~ c ° s T }  

N(z) 

1 E' 1 ~rr(2m + 1) 
+ - - cos 

"/T ~,= i r 2 n  

c o ~ l ~  

x [~x~{~ ~m ~cos n _ co~)/] ~,n~m,~ 

~,,l 1 I] cos • log [z 
n 2rr 

22 



No. Author(~ 

1 J .F .  Shannon . . . .  

2 C. Bellenot and J. L. d'Epinay 

3 H. Sohngen . . . . . .  

4 D.S .  Whitehead . . . .  

5 R. Skarecky . . . . . .  

6 J. Shioiri . . . . . .  

7 J. Shioiri . . . . . .  

8 J. Leclerc . . . . . .  

9 D.S.  Whitehead . . . .  

10 W . G .  Molyneux . . . .  

11 D.S .  Whitehead . . . .  

12 E.J .  Watson . . . . . .  

R E F E R E N C E S  

Title, etc. 

Vibration problems in gas turbines, centrifugal and axial compressors. 

A.R.C.R. & M. 2226. March, 1945. 

Self-induced vibrations of turbomachine blades. 
Brown Boveri Review, Vol. 37, p. 368. 1950. 

Luftkrafte an einem schwingenden schaufelkranz kleiner teilung. 

Z.A.M.P., Vol. 4, p. 267. 1953. 

The aerodynamics of axial compressor and turbine blade vibration. 

Cambridge University Ph.D. Thesis. 1957. 

Samobuzene kmitani lopatek v lopatkovych mrizich. 

Proudeni v Lopatkovych Strojich, p. 259. 1958. 

Non-stall normal mode flutter in annular cascade. Part I. Theoretical 
study. 

Trans. Jap. Soc. Aero. Eng., Vol. 1, p. 26. 1958. 

Non-stall normal mode flutter in annular cascade. Part II. Experi- 
mental study. 

Trans. Jap. Soc. Aero. Eng., Vol. 1, p. 36. 1958. 

Amortissement aerodynamique des vibrations de flexion dans une 
grille a basse vitesse. 

La Rdcherche Aeronautique, No. 71, p. 59. 1959. 

The vibration of cascade blades treated by actuator disc methods. 

Proc. L Mech. E., Vol. 173, p. 555. 1959. 

An approximate theoretical approach for the determination of 
oscillatory aerodynamic coefficients for a helicopter rotor in 
forward flight. 

Aero. Quart., Vol. XIII ,  pp. 235-254. August, 1962. 

Force and moment coefficients for vibrating aerofoils in cascade. 

A.R.C.R. & M. 3254. February, 1960. 

Formulae for the computation of the functions employed for 
calculating the velocity distribution about a given aerofoil. 

A.R.C.R. & M. 2176. May, 1945. 

23 



APPENDIX 

Correction to Actuator-Disc Analysis 
Introduction. 

In a previous paper 9 a theory was given which should give the forces on vibrating blades with 

finite deflection if the frequency parameter and the phase angle between adjacent blades are both 

small. This theory was found to be in disagreement with the theory given in the present paper, and 

further investigation has shown that the actuator-disc theory requires correction in this case. 
In the actuator-disc theory the flow fields upstream and downstream of the cascade are 

considered, and the scale of these effects is very much larger than the chord or spacing of the blades. 
On this scale the cascade is therefore replaced by an actuator disc. These two flow fields are then 
matched across the actuator disc, which behaves like the cascade with steady flow through it. 

It is the set of equations relating to the cascade which has been found to require correction. 
The notation used in this Appendix is the same as in the original paper and is not quite the same 

as in the main body of the present report. In particular the axes are chosen normal to and along the 
cascade direction, instead of being aligned with the blade chords. The notation is illustrated in 
Fig. 19. 

Cascade Considerations. 

Figl 19 shows the cascade of blades POQ in their equilibrium position, and also in a position 
P 'O'Q'  where they have been displaced due to the vibration. There are N / 2  blades between P and O, 

and N / 2  blades between O and Q. N is large enough so that local effects of individual blades are 
negligible, but the phase angle is small enough so that the phase angle between the vibration of the 
blade at P and the vibration of the blade at Q is small. The displacements of the blades at O, P and 
Q are respectively, 

hoe~O,t, hoei(Oz+Nflt2), hoe~(O~t-N~/~). 

The direction of the displacements is specified by the angle O. Then the small angle ¢ between 
the line P'Q'  and PQ is given by 

ho ei(~°t+Np/2) sin 0 - hoei(~°t-NP/~) sin 0 
tan ¢ = Ns + hoei(°'t+lvfll z) cos 0 - hoei(~°t-N~l z) cos O" 

Since h 0 is small compared with s and the phase angle Nfi is also small this gives to first order, 

¢ = ihofisin Oei°)t/s. 

is the angle through which the cascade has turned due to its vibration. 
Since 

qei~ = iodToei*o~ , 
• then 

d? = qfl sin Oei°@os. (A1) 

q~ is of the same order of magnitude as q, since/3 and oJ are both small but of the same order of 
magnitude. 

The velocity of the air upstream of the blades relative to the blades is given by 

url = U + (Uol + q sin O)e i~°t, (A2) 

Vrl = V1 + (%1 - q cos 0)e ~'~ , (A3) 

24 



and similarly downstream the relative velocities are 

u,~ = U + (u0~ + q sin 0)d ~' , (A4) 

%~ = V2 + (v02-qcos 0)d ~'. (A5) 

By continuity, the relative velocity normal to the cascade is conserved. Hence 

url cos ¢ + %, sin ¢ = u,. 2 cos ~ + %~ sin ~. 

Substituting from equations (A1) to (AS) gives for the first-order terms 

(u01-u02) + (V1-  V=) sin Oqfl/oos = 0. (A6) 

This may be compared with equation (10) of Ref. 9, which gave simply u0t = u02. The extra term 
is due to the inclination, ¢, of the cascade, which was previously neglected. 

Although the blades are displaced due to the vibration they do not twist. Since deviation effects 

are being neglected, the relative air outlet angle is constant and is assumed to be the same as the 

angle at which the blades vibrate, 0. This gives 

%.Ju~2 = tan 0. 

Substituting from equations (A4) and (A5), and noting that for the steady flow Ve = U t a n  O, 
gives 

(Vo~- e cos 0) = (u0, + q sin 0) tan 0. (A7) 
This equation is unmodified. 

The equation giving the vorticity, ~0~, also does not require any modification. Putting the 

stagnation pressure loss terms in equation (14) of Ref. 9 equal to zero, putting ~ol (the upstream 

vorticity) equal to zero and evaluating some simple derivatives gives 

U~oz _ i(va ~ _ %2) + ( V I -  V2) cos 0 i3q.  (AS) 
O9 mS 

This equation can also be derived by considering the circulation round a control surface which 
encloses the blades between P and Q (Fig. 19). The rate of change of this circulation must equal the 
rate at which vorticity leaves the control surface. In evaluating this last rate it is necessary to include 
the rate at which bound vorticity is carried into or out of the control surface by movement of the 

blades. 
It is now necessary to calculate the force acting on each blade, and it will be convenient to start 

from axes perpendicular and parallel to the displaced cascade. These axes are turned through an 
angle ¢ from the original axes. The air velocities relative to the blades in these directions are 

Url '  = g~'l COS ¢ + V~, 1 s i n  ¢ = u,l ' ,  (A9) 

%1' = - u,.lsin¢ + %1cos¢, (A10) 

%( = -u,.2sin ¢ + %~cos¢. (All) 

Let the forces exerted by the air on each blade per unit length be X'  and Y '  in these directions. 

These are the average forces for the N blades between P' and Q'. Then 

N X '  = (p l -p2)P 'Q ' .  

25 

(90633) C 



Since the flow is quasi-steady with no losses the pressure difference across the cascade is given by 

giving 

PA + ½U~I,~ + ½V~,~ = P2 + ½U,¢~ + ½V,(~, 
P p 

' 2  ( P l - P 2 )  = ½p(v,.~'2-v,.1 ) .  

Also the length P'Q' is given by 

P'Q'  = N s  + hod(°'t+N~ !2) cos 0 - hoei(~t-iv/~I~) cos O, 

This gives 
= N s  + i h o N  p cos 0d ~t . 

X '  = ½p(v,.( 2 - v~l '~) (s + iho5 cos 0). 

The force Y' is given by 

(A12) 

This gives 

U I * ' V  t I ~. " n l [ " ~ l  • N Y '  P , l (  ~ 1 - % 2 ) r t 2  

Y ' = pu, l '  ( v,. ( - % ( )  ( s + iho5 cos 0). 

The force in the direction of the vibration is then 

(A13) 

- X ' s i n ( 0 - ¢ )  + Y ' c o s ( 0 - ¢ ) .  

The first-order component of this is Fe  i''t. Using equations (A]) to (A6) and (A9) to (A13) it is 
found after some reduction that F is given by 

F 
- -  = ( V l v o l -  V2vo~ ) sin 0 + (Vluo2 - V#~ol ) cos 0 + 
ps 

+ U(vol - Vo0 cos 0 - U(uol-  Uo~ ) cos~0 cosec 0. (A14) 

(A6), (A7), (A8) and (A14) are the equations required. It may be seen that for the zero-mean- 

deflection case when V 1 = V 2 they give the same results as the corresponding equations in the 
original paper. It is therefore only the finite deflection case which requires correction. 

A c t u a t o r - D i s c  Considerations.  

These considerations do not require modification. Equations (3) and (4) of the original report 9 
with the upstream vorticity put equal to zero give 

U¢o~/~o 
Uo~ + iVo~ = _ 1 + (V~/V~) + i(U/V~)' (A15) 

and 
%1 + ivol  = 0, (A16) 

where V s is the speed of propagation of the disturbance along the cascade and is assumed to be 
positive. V 8 is related to/3 as follows, 

V~ cos 
U - Ufi" (A17) 

The results that follow therefore only hold when/? is negative. 
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E l i m i n a t i o n .  

Using equations (A6), (A7), (A8), (A14), 

~o~ may be eliminated. The  result is 

F 
C/~,-  

7rpcq U sec 0 

(A15) and (A16) the unknowns Uol, Vol, uo2, sos and 

3 
= - -  sec 0 [re{ - X~(1 + t2) ~} -- 

7re 

- i ,~  {x3t3(1 + t~)~ - 2x(1 - t~)} + 

~- ~-{- x3(1 + t~) ~ - 2x2t(1 + t ~) - 4x(1 - t~)}.- 

- i . r {x3 t (1  + te) ~ - 2xetZ(1 + t2)} + 

+ { -  2x2(1 + t e) + 4 x t  - 4}  - 

- i{--: 2x2t(1 + t ~) - 2x(1 L t2)}] {4 + x2(1 + t2)=} -1 , (A18) 
where 

x = c / v ~  = - v ~ / ~ , ,  = - ~ c c o s  0 / s~ ,  

t = t an0 ,  

r = (tan a 1 -  tan 0) cos ~ 0. 

If  fi is positive, then the cascade must be drawn upside down. This changes the sign of V s,  6, 

x, t and ~-. I t  will be seen that the same effect can be obtained in equation (A18) by changing the 

sign of i, so that C F is replaced by its complex conjugate. 
It appears from equation (A18) that it is always possible to find values of x which make the real 

part of C F positive for any value of ~- (except zero). The  corrected actuator-disc theory therefore 
predicts that when the frequency parameter is small bending flutter will always occur unless the 

deflection is zero. 
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T A B L E  1 

Tests on Convergence and Comparison with Actuator Disc Theory 

s/c 

0.25 0 1.10-5 2.10-.~ 

0"5 0 1"10 .5 1"10 .5 

0-25 30 1.10-,~ 2.10-5 

0"5 30 1"10 -5 1"10 -5 

0.5 0 0.123 0.500 

6 
7 

Analytic 

4 
6 

Analytic 

5 
6 

Analytic 

5 
6 

Analytic 

.(c~) J(cF) 

o~1= 0 

--0.15722 
- 0 . 1 5 7 2 2  
--0-15719 

--0-31338 
--0-31338 
- 0 . 3 1 4 3 8  

- 0 . 5 6 1 1 7  
- 0 . 5 6 1 1 7  
-0 .56115  

- 1.10774 
- 1 . 1 0 7 7 0  
- 1.12230 

- 0 . 5 7 7 7 9  
- 0 - 5 7 7 8 0  

0.01235 
0.01235 
0.01235 

0.02453 
0-02453 
0.02470 

0.13281 
0.13282 
0.13281 

0.27467 
0.27472 
0.26562 

0.09130 
0.09130 

.(c~) J(c~) 

0.76507 
0-76507 
0-76520 

1.48575 
1.48574 
1.53040 

0.13341 
0.13341 
0-13347 

0.25368 
0.25362 
0.26693 

0.02479 
0.02479 
0.02470 

0.07568 
0-07568 
0.04940 

-0 .29801  
- 0 . 2 9 8 0 1  
- 0 . 2 9 8 0 2  

- 0 . 5 9 7 9 6  
- 0 . 5 9 7 9 9  
- 0 . 5 9 6 0 4  

O. 31957 
0.31959 

.(c~) J(cF) 

cq = - 45° 

- 1. 23472 
- 1. 23472 
- 1- 23480 

--2.41395 
--2.41395 
--2.46960 

- 1.35721 
-- 1.35721 
- 1.35721 

- 0 . 2 5 0 0 0  
- 0 . 2 4 9 9 9  

=i = 45° 

- 2 . 6 8 7 8 9  
-2 -68785  
- 2 . 7 1 4 4 2  

- 1.00089 
- 1.00090 

0.02474 
0.02475 
0.02470 

0.06832 
0.06832 
0.04940 

0.20265 
0.20266 
0.20262 

0.44252 
0.44270 
0.40524 

O. 10654 
O. 1065~ 
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T A B L E  1--continued 

s/c 

0-5 

1.0 

0"5 

1.0 

60 

60 

75 

75 

0.889 0.500 

0.779 0.500 

0.940 0.200 

0.800 0.200 

6 
7 
8 
9 

10 

6 
7 
8 
9 

10 

6 
7 
8 
9 

10 

~(cp) g(cF) 

o~1 = 60  ° 

- 0 . 4 0 0 8 7  
- 0 . 4 0 0 8 5  
- 0 . 4 0 0 6 8  
- 0 . 4 0 0 7 0  
- 0 . 4 0 0 7 2  

0.18581 
0.18524 
0.18520 
0.18526 
0.18525 

~(c~,,) J(c~) 

~1 57"640° 

0-00000 
0.00126 
0.00100 
0.00122 
0.00101 

- 0 . 3 1 1 0 2  
- 0 . 2 9 8 1 6  
- 0 . 3 0 4 1 2  
- 0 . 3 0 0 7 8  
- 0 . 3 0 2 4 3  

~l = 60° ~1 = - 54"412° 

- 0 . 5 1 2 6 5  0'28602 0"00001 -0"23575 
-0"51265 0"28602 -0"00024  -0"23582  

~1 = 75° ~1 = 0 

- 0 . 2 3 8 9 8  
-0 -23613  
- 0 . 2 3 2 4 7  
- 0 . 2 3 4 6 2  
- 0 . 2 3 4 6 6  

0.23587 
0.23178 
0.23626 
0.23530 
0.23446 

0.00140 
-0 .01061  
-0 .00371  
- 0 . 0 0 9 0 8  
- 0 . 0 0 4 9 3  

~x 1 = 75 ° ~x 1 = 0 

0.42595 
0.42595 
0.42595 
0.42595 
0.42595 

- 0 . 2 6 9 2 6  
- 0 . 2 6 9 2 5  
- 0 . 2 6 9 2 5  
- 0 . 2 6 9 2 5  
- 0 . 2 6 9 2 5  

0.05770 
0.05761 
0.05754 
0.05749 
0.05746 

0.04741 
- 0 . 0 7 8 8 1  

0-08233 
0.01364 
0.01282 

O- 22070 
O" 22212 
O" 22218 
O. 22208 
O" 22208 
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