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Long-period lateral oscillations of an aeroplane under automatic control on Northerly headings are shown 
to be due to high speed in a region of large magnetic-dip angle accompanied by strong monitoring of the gyro- 
magnetic compass and autopilot. Aerodynamic characteristics are not important, and speed is the predominant 
aircraft parameter. An approximate analysis assuming that the motion consists of co-ordinated turns is found 
reliable for many purposes. 

The requirement of weak monitoring for ensuring stability conflicts with the need for strong monitoring 
to restrict datum errors caused by random precession torques on the azimuth gyro and by drifts in the autopilot. 
Modifications to the compass precession signal may stabilize the motion, but usually at the expense of a 
deterioration in datum errors, or with insufficient reduction in oscillation amplitude on account of thresholds 
of rate gyros. 

Of the five modifications studied two seem marginally acceptable, but the best way of preventing 
Northerly-heading oscillations is to employ a good azimuth gyro so that a weak monitor is feasible, or 
alternatively to monitor the gyro from a sensor that is little affected by aircraft banked turns. The latter requires 
very good stabilization of the sensor if it is a magnetic detector. 
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1. Introduction. 

It has long been known that a magnetic compass loses accuracy when in a vehicle subjected to 
rolling disturbances and heading Northwards in the Northern hemisphere. When a pilot tries to 
fly on a constant Northerly heading using a magnetic compass as a datum, he is very likely to induce 
an aircraft lateral oscillation. Similar results are obtained with a gyro-magnetic compass but not to 
such a marked degree. 

3 
(88992) a 2 



When (about 1942) the first British 'Distant Reading Compass' was coupled to the Mk. 8 
Automatic Pilot in order to provide a heading monitor, undamped oscillations of the order of 
2 ° amplitude with a period of about 2 minutes were observed on Northerly headings. The input 
signals to the autopilot were however bang-bang, and a reasonable performance was obtained by 
introducing a dead zone. On the basis of an extremely simplified equation of motion, Sudworth 
predicted that for this particular type of compass/autopilot system there would always be a critical 
speed above which instability would obtain on a Northerly heading. The critical speed was inversely 
proportional to the tangent of the magnetic-dip angle, and could be made higher by reducing the 
strength of the monitor signal to either the compass or autopilot gyro. T h e  monitors, however, 
would in practice have to be strong enough to restrain the effects of random torques within prescribed 
limits. 

It was interesting to find some years later (about 1949) that a U:S. Navy aircraft fitted with the 
Pioneer-Bendix PB10 (A10) autopilot performed in very oscillatory fashion when flying North, 

even though in this system the magnetic detector was mounted on a vertical gyro. 
Instances of long-period oscillations with amplitudes of a few degrees on Northerly headings 

have been increasing in recent years, presumably owing to higher aircraft speeds in relation to gyro 

quality. The investigations described in this report were intended to give a fuller understanding of 

the oscillatory behaviour, and to seek a method of improving a given system without changing any 

major elements such as gyros. 

The initial part of the report introduces approximate equations in anticipation of a justification 

which appears later. Section 4, which is without reservation labelled Full Theory, gives die equations 

of motion for the aircraft, autopilot and compass, in a form which is thought amply adequate for 

analysing the dynamics of the complete system when the centre of interest is the susceptibility to 
oscillate at periods longer than one minute. Stability boundaries based on the full equations are 

compared with approximate boundaries. Section 5 extends the application of the full equations to 
analogue-computer response investigations, and some comparison is again made with approximate 
answers. Section 6 discusses the merits of five proposed modifications to the compass system. 

2. Northerly-Turning Error. 

There does not seem to be a standard definition of Northerly-turning error, and in this report it 
will be taken as the error introduced into a gyro-magnetic compass when movements of the aircraft 
(considered as a rigid body) cause the magnetic detector to tilt from the horizontal plane. There are 
two aspects to be considered. In the first place we are interested in the magnitude of thecompass 
error during and immediately after a turning manoeuvre in which the aircraft heading passes 
through or approaches North. In the second place we are concerned with what happens when a 
pilot (human or automatic) tries to fly the aircraft on a constant heading which is not greatly 
different from North. With idealised linear systems the second aspect would raise the question of 

whether the aircraft motion is stable or not, or in other words a question of 'Northerly-heading 
instability' rather than 'Northerly-turning error'. With practical systems, however, we are likely 

to encounter cases where the motion is stable for large amplitudes but unstable for small ones, and 
where therefore there will be a residual oscillation whose amplitude and period are important. 

The phrase Northerly-turning error was evidently coined North of the equator, since exactly 
equivalent effects are produced ir/the Southern hemisphere on Southerly headings. 



3. Northerly-Heading Instability. 

3.1. Basic Cause. 

It is convenient to define the heading of the aeroplane (56), the deviation of the azimuth gyro (56~), 

and the azimuth error of the magnetic detector (¢,~,), relative to magnetic North (see Fig. 1). Since 

the gyro and detector are mounted on the aeroplane, only the relative deviations are in effect available, 

and it can be shown that the signal obtainable as a measure of the discrepancy between the gyro 

and the detector is equal to H cos ¢ sec ( ¢ -  56~) sin (56,- ¢~), where H is the horizontal intensity of 
the earth's magnetic field. Fig. 2 illustrates one way of procuring this signal by compounding two 
orthogonal signals from the detector with sine and cosine signals from the gyro. 

For proportional control the azimuth gyro will be precessed according to the equation 

dt - KoH cos ¢ sec ( ¢ -  56m) sin (56o- ¢.m), 

where K 0 is a constant; and if all the angles involved are small, the equation becomes approximately 

@ = - ¢¢, (1) 

where the time constant T c is equal to 1/KoH. 

I f  the magnetic detector is tilted at an angle Cm to the horizontal plane, the explicit relation between 
56~n and ¢~ is 

tan 56m = ( 1 - c o s  era) sin56 cos ¢ + tan 3 sin ¢~ cos ¢ 
cos ~ ¢ + cos Cm sin2 ¢ ,-  tan 8 sin Cm sin ¢ ' 

• where 8 represents the angle of magnetic dip. For small tilts this equation becomes approximately 

Cm tan 3 cos ¢ 
tan 56~ = 1 - Cm tan 8 sin 56" (2) 

At high latitudes 56~ will be larger because tan 8 is large, and larger false precession signals will 
thus be produced, although some alleviation will obtain because the precession rate is also 
dependent on the value of H. 

Admiralty charts (1955)are available which show on a world map, values of vertical, horizontal, 
North, and East magnetic intensities, also the angle of dip. T w o  of these are reproduced at the 
end of this report: Fig. 32 gives the angle of dip, and Fig. 33 gives the horizontal magnetic intensity. 
Appendix V gives a table of a few extracted values pertaining to the Greenwich meridian. 

Thomas 1 has plotted values of 56,~ against ¢ for constant values of Cm and 3, using equation (2). 
When Cm t an8  < 1, CmiS zero at 56 = +90  ° , and has turning values at 56 = ¢1 and 180 ° - S b l ,  
where sin 561 = Cm tan 8. These turning values are equal to +¢x.  On the other hand, when 
¢~ tan S > 1 there are discontinuities (era = + 180°) at ¢ = 90 °, and there are no turning points. 
These mathematical discontinuities do not represent discontinuities in the real system. When 
Cretan 8 = 1, the approximate formula is substantially in error near 56 = 90 °, predicting a 
discontinuity of 56m = + 90° at ¢ = 90 ° instead of the correct + 180 °. Green and Glenny 2 have also 
given curves relating 56~, and 56, presumably derived from the accurate formula. 



When ¢ = 0 and Cm is only a few degrees, equation (2) may be further approximated as 

Cm = Cm tan 3, (3) 

and (except in Section 6.4.1) this equation has been used in the present investigation, since the 

autopilot should restrict the aircraft deviations from straight and level flight to sufficiently small 

values. 

The tilt of the detector from the horizontal plane will vary according to the aircraft motion and to 

the way in which the detector is attached to the aircraft. Thus, if the detector is mounted rigidly to 

the aircraft the tilt ¢,,~ will be the same as the aircraft bank angle ¢. If the detector is mounted on a 

vertical gyro, Cm will be equal to the vertical-gyro tilt. If the detector is pendulously mounted--and 

this is common current practice, as for example in the G4B compass--the tilt ¢~ will be determined 

by the direction of the apparent gravity. However, in the latter case, analogue-computer investigations 

(described in detail later in this report) have shown that because the oscillations produced by 

Northerly-turning errors have periods that are much longer than those due to 'normal' aircraft 

aerodynamics, it is usually reasonable to assume that the aircraft is always performing true-banked 

• turns with zero side force. With this assumption the tilt errors of a pendulous detector are the same 

as those of a rigidly mounted detector, and we can put ¢~ = ¢. For small bank angles we can 

also write 

g~ = V ~ ,  

i.e. 
d.d, 

¢-- (4) 

where V is the true airspeed, g the acceleration due to gravity, and T a constant having the 

dimensions of time: 
V 

r = - - .  (5 )  
g 

For small deviations from a North heading and for small tilts of the detector, equation (1)becomes 

d~ T tan 3 d~ 
Tc dt ~- - ¢o, (6) 

and this must be examined in conjunction with another equation defining the changes in aircraft 

heading ~b imposed by the pilot. 
It should be noted that equations (1) and (6) do not include the effect of any torques other than 

the monitoring torque, so that gyro drift is not included. A steady drift rate d o would result in a 

constant error equal to Ted ~. This is important and must be taken into account when assessingthe 

influence of a change in T o on Northerly-heading instability. However, gyro drift has no effect on 

the stability of a linear system and is therefore ignored in the analysis that follows. 

Pilot's action must depend on the compass indication @-¢c),  which will be denoted by 4~i. In 
order to simplify the analysis, consider an autopilot which causes the aircraft to turn at a rate 

proportional to the compass signal, so that 

r~, de _ ¢i = ¢o - ¢ (7) 
dt 
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where T~ is the compass-monitoring time constant for the autopilot. The  aircraft will turn to 
reduce the heading error from North. It  is difficult to deal with the human pilot, but  it is reasonable 
to assume that he acts substantially according to equation (7). 

Suppose the aircraft heading is ~b 0 and that the pilot starts to take action. Initially ~b o = 0, so that 

dt T~" 

At this moment  we have from equation (6) 

d~e T tan 3 ~b 0 

dt To T~ 
and hence 

d ~ i -  ¢° [ - T t a n 3  1] 
dt % T o " 

If  the quantity in brackets is positive we have the unwelcome consequence that, although the pilot 

has imposed a turn of the correct sense so as to reduce the heading error, the indicated error ~b~ is 

increasing. It has been suggested that the condition for stable control is that T tan 3 must be less 

than To, but  this is too stringent. I f  the time constant T a is sufficiently great the motion will be 
stable even if T tan 3 > T o. 

Differentiating equation (7) we have 

d¢,i _ r e r ~  d24' 
T° dt d#  

-• d~h° 
=To - T ,  dt.  

Using equation (6), we write this as 

(T  o -  T tan 3) d~b -2/+ G, 
and hence from equation (7) as 

(T~+  T o -  T t a n  3) de  k7+¢, 
so that finally 

d2~ 
ToT~--)-- ~ ,+ ( Ta + T c - Ttan 8) -~  + ~b = 0 . d ~ b  (8) 

The  true condition for stability is that (T~ + To) must be greater than T tan S. If  the damping is 

small the motion will be oscillatory vdth a period of 2~r~/( T,  To) approximately. 

If  we take T = 30 sec (i.e. V = 30 x 32.2 = 966 ft/sec or 573 kt) and tan S = 3 (i.e. a latitude 

of about  58°), the motion is stable provided (T ,  + To) is greater than 90 sec. Typical current values 

for Tc~ and T o would  be 25 and 30 sec respectively, which give an unstable condition. For these 
values the period would be about 557rsec, or just  under 3 minutes. 

I t  should be emphasized that the values deduced above are not accurate for autopilots utilising 
aileron steering as discussed in this report. Nevertheless, the simpler analysis leading to equation (8) 
does illustrate the basic instability caused by Northerly-turning error and identifies the important  
parameters. 



3.2. Aileron-Steering Autopilot. 
An aileron-steering autopilot by definition applies aileron as a function of aircraft deviation in 

yaw as well as in roll. Thus an idealised linear system would produce 

= F(~ + c¢), 

where ~ is aileron deflection, ¢ is roll deviation, ¢ is yaw deviation, and F, c are constants. F is the 
main gearing or gain, and c is sometimes called the crossfeed ratio. 

In practice the aircraft deviations are usually measured by gyros, and, unless these are the basic 

instruments used by the pilot or navigator, additional monitoring loops must be provided. In this 
report two varieties of aileron-steering autopilot are considered: 

Type 1 employs an aileron equation 

= F ¢ + e , / ; + ~ ( ¢ - ¢ c )  , (9) 

corresponding to a rate-rate system where the rate of roll ¢ and rate of yaw q~ are measured by rate 
gyros and the compass signal (~b-¢c) provides the monitoring. 

Type 2 has an aileron equation 

~: = F [ (¢-  e) + c(¢-¢c)],  (10) 

corresponding to a system making direct use of the compass signal and a signal ( ¢ -  e) from a bank- 

angle sensor which is in error by e. In this report we consider a vertical gyro monitored in 

conventional manner from a pendulum mounted on the roll gimbal or equivalent. For linear erection 
the precession equation is 

T,~ = C - e + % ,  (11) 

where T 1 is the erection time constant, and % is the deviation of the pendulum due to the action of 

aerodynamic side force (see Section 4.1). Since at this stage we are assuming that the aircraft is 

performing true-banked turns, % = 0, and the gyro tends to precess towards the condition e = 4;, 

although this is never achieved because the bank angle is continuously changing. 

In practice the pendulum monitor may operate in bang-bang fashion according to the equation 

= C¢ sgn (q~- e), 

where the function sgn(x) has the value + 1 or - 1 according as x is positive or negative. A system 
incorporating this form of vertical-gyro monitor has not been analysed, but response records were 
obtained, and these are mentioned later. 

Automatic-rudder-control equations are not introduced here: it is merely assumed that the 
rudder movements are such as to maintain turns co-ordination. Any oscillations whose periods are 
less than about 10 seconds are ignored, and we can further approximate by putting the right-hand 
side of equations (9) and (10) equal to zero. 

Sections 3.2.1 and 3.2.2 will pursue the approximate analysis relevant to the two types of autopilot 
and according to the above assumptions. An analysis based on full equations representing aircraft 
dynamics and complete autopilot will follow in Section 4. 

3.2.1. Approximate stability boundary for Type 1 autopilot.--As already mentioned, in 
the approximate treatment equation (9) is replaced by 

[ 1  1 + c + ( ¢ - ¢ o )  = 0 .  C 



This may be compared with the even simpler equation (7), which could have been written 

1 
+ ~ (¢-¢~) = o. 

Combining equations (4), (6) and (12), we obtain a third-order equation instead of second order, 
and the analysis is simplified if we choose a special unit of time t 1 equal to V/gc, that is Tic. We 

thus write 
T~ = Tc/t  1, 

T~ = To/t~, 

D = t l D ,  

where D - d/dt. Equations (4), (6), (12) then become respectively 

¢ = ode,  

TcD¢c = c tan 3 De - Ce, 

.£  
~¢ + c~¢ + ~-~ (¢-¢o) = 0, 

and (4a) and (12a) combine to give 
1 

~ ¢  + pC + ~ (¢-¢~) = o. 

Eliminating ~b~ from equations (13) and (6a), we obtain the third-order equation 

J3D3¢ + J~D~, ~" + J1D¢ + J o ¢  = 0,  

where 
]3=  ~a~c, 

(4a) 

(6a) 

(12a) 

(13) 

(14) 

T o +  T ~ -  ctan 3, 

Jo= l .  
According to the Routh-Hurwitz criteria the motion corresponding to equation (14) is stable 
provided the four coefficients are positive and also J~J1 > JaJo • The latter condition is 

T a ( l +  T c ) ( T a +  T c - c t a n 8 )  > T~Tc ,  

i.e. 

T a +  T ~ - c t a n 3  > To . (15) 
l+Tc  

This form suggests the construction of the diagram in Fig. 3, where the curve represents the 
function T~/(1 + Tc). It should be noted that since T~, T c and c are always positive, the condition 
that the four coefficients be positive is satisfied if (15) is satisfied, and the latter is therefore in 

practice the sole stability criterion. 
In this non-dimensional type of diagram one curve is sufficient to determine whether a system is 

stable for any combination of the four parameters--aircraft speed V, crossfeed ratio c, and the two 
time constants T c, T a . It is not possible to have a unique scale marked along the boundary curve 

in order to indicatethe period of oscillation P, but in any specific case the period is 

P = 2~rv/{T~(t 1+ T~)}. (16) 



As an example of the use of Fig. 3 consider as before V = 966 ft/sec so that T = 30. T~ = T o = 30 

correspond to iF, = T o = 1. A typical value for c is unity, and therefore with tan 8 = 3 we locate a 

point (1, - 1) on the diagram. This point is not merely below the stability boundary but  below the 

horizontal axis. For "Y~ = 1 stability would be achieved if T~ > 2.5, i.e. T~ > 2.5 T = 75 sec. 

The  sum of the monitoring time constants (T** + T,) would therefore have to exceed 105 seconds--a 

more stringent requirement than that obtained in the simple analysis of Section 3.1. In terms of 

Fig. 3 the simple analysis predicted that the horizontal axis itself would be the stability boundary, 

but a Type 1 aileron-steering autopilot requires the additional margin represented by the curve 

To/(1 + To). Since current practice is to have Tc in the range 1 to 2, a rough condition for stability 
is that 

c T a + c f ? ~ - c t a n 3  > ~- or ~, 
i.e. (taking the lower figure) ( 1) 

T ~ +  T~ > T t a n S + ~ c  c . 

The  effect of varying aircraft speed is represented completely by changes in T, since T = V/g. 

3.2.2. Approximate stability boundary for Type 2 autopilot.--Equation (10) is replaced by 

¢ - e + c(¢-¢~)  = 0, (17) 
where 

T #  = ¢ - (18) 
Again choosing a special time unit  tl equal to T/c, we write modified forms of equations (4), (6), 
and (18): 

¢ = (4a) 

T~D~b c = c tan 8/~¢ - ~o, (6a) 

T~De = ¢ - e, (lSa) 

where '~  = To~t1, T1 = T1/tl, D =tlD. We may eliminate ¢ and e from equations (17), (¢a), 
(18a) to obtain 

T~D~¢ + (1 + T1D ) ( ¢ -  ¢o) = 0, 

and eliminate ¢c from this equation and (6a) to get 

J3D3¢ + J~D~¢ + J~D¢ + J0¢ = 0, (19) 
where 

J3= TIT  
J2 = T I ( I +  Tc) -7 T1 c tan 3,  

J1 = "TI+ Te - c t a n S ,  

J o = l .  

The motion is stable provided the four J ' s  are positive, and in addition J2J1 > JaJo, 
i.e. 

g (20) 1 +  T o - c t a n S  > T ~ + E  

where 
E = T 1 -  c tan 3. (21) 

Stability boundaries based on (20) are shown in Fig. 4, and it is seen that a fixed point (i.e. fixed 
:Y, and c tan 3) can be in a stable region for a particular value of E but in an unstable region if E 
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becomes less positive as a result of a reduction in T 1 . An increase in the strength of the vertical-gyro 
pendulum monitor is thus always destabilising. For an unmonitored gyro (i.e. T 1 = oo) the whole of 
the positive quadrant is the stable region, and the condition for stability is simply T~ > (c tan 3 - 1). 

The period of oscillation for any point on the stability boundary is 

[ T 1 T c T  )]~t~ (22) 
P =  2~r c(T l + T ~ - T t a n 3  

The effect of changing c is not directly indicated by Fig. 4, but it can be shown that an increase 
in c is stabilizing provided E < 0, but destabilizing if E > 0. This is clearly seen in Fig. 8 where 
stability boundaries have been drawn in the To, c plane and for particular values of tan 3, T, T 1. 
The condition E = 0 corresponds to T 1 = T tan 3, which is 81 seconds in this example. 

The boundary for a system with an unmonitored vertical gyro is given by 

1 + "T c - c t a n 3  = 0, 

and is the horizontal axis in Fig. 4, but a rectangular hyperbola 

1 + c  I - ~ - t a n 3 1  = 0  

in Fig. 8. 

4. Ful l  Theory. 

A more accurate representation of the dynamic system consisting of the aeroplane, autopilot, and 
compass, is obtained by combining the equation of motio, of the aeroplane (assumed to be a rigid 
body), the autopilot control equations (with its servo-systems assumed to have no imperfections), 

together with the equations for the compass. 

4.1. Aircraf t  Equations. 

The equations of lateral motion of the aeroplane for small disturbances from straight and level 

flight are 
m(~) + Vr) = mg(~ + h Y ,  (23) 

A~b = AL, (24) 

C~ = AN, (25) 

where m is the aircraft mass, v is the increment of velocity along the y axis (i.e. the sideslip velocity), 
V is the steady datum speed of the aeroplane in undisturbed flight, r is the angular velocity ~ about 
the z aMs (yaw), g is the acceleration due to gravity, q~ is the bank-angle disturbance, A y is the 
increment of aerodynamic force along the y axis, A and C are the aircraft moments of inertia about 
the x and z axes respectively, p is the angular velocity ~ about the x axis (roll), AL and AN are the 
increments of aerodynamic rolling and yawing moments. Products of inertia have been neglected. 
For small increments v, ~, p, r, etc. it is usual to expand A Y,  AL,  A N ,  in terms of derivatives: 

8Y 
A y = E ~ v = Y~,v + . . . , 

' A L  = L ~ v  + . . . .  

A N  = N v v  + . . . .  

where Yv is written for 8 Y/3v ,  and so on. 
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The derivatives are constants for a particular aeroplane at a particular flight condition and are 
quoted in non-dimensional form as outlined in Appendix I. Including only the derivatives that are 
usually significant we write 

A Y  = Y~v + Y ~ ,  (26) 

AL = L~v + L~p + L~r + L~ ,  (27) 

AN = Nvv + N~p + N,,r + N ~  + N ~ ,  (28) 

where ~: and ~ are the increments of aileron and rudder displacements. 

It should be noted that a pendulous element whose pivots are fixed parallel to the x axis of the 
aeroplane (i.e. a transverse pendulum) will hang at an angle (~ + %) to the vertical, where % is the 
angle between the pendulum and the aeroplane's longitudinal plane of symmetry, and is given 
approximately by 

A y  
% -  mg' (29) 

if the natural frequency of the pendulum is high compared with the frequency of the measured 
quantity. 

4.2. Autopilot Equations. 

It is convenient to consider first the aileron equations for both the Type 1 andType  2 autopilots, 
and then the corresponding rudder equations. 

Aileron equations.--Type 1 autopilot has been assumed to have a rate-rate servo-system with 
input signals provided by roll and yaw rate gyros. It should not be assumed that these signals are 
perfect, and instead of equation (9) we should write 

= F p .  + or,, + , ( 3 o )  

where Pa and r, represent real gyro signals. We are not concerned in this investigation with relatively 
high-frequency phenomena, so there is little point in including the dynamic characteristics of either 
the rate gyros or the servo-system, l~ut we have examined the effects of thresholds in the gyro signals. 

Type 2 autopilot makes use of position gyros, and beyond taking account of their monitoring 
systems--which has been done in equation (10)--there seems no need to investigate any further 
practical complications. Dynamic effects of gimbal-ring inertia are significant only at high frequency, 

and random wander has no influence on stability, although it does cause steady-state errors and in 
this respect is roughly equivalent to rate-gyro threshold. 

Rudder equations.--When heading is controlled by the aileron channel of an autopilot the function 
of the rudder channel is to ensure adequate damping of the 'yaw' short-period oscillation and also 
to suppress aerodynamic side force A y. To this end the basic rudder equation is usually 

= Hlr + H~f(%), (31) 

but the precise form depends on the design of the servo-system and whether an autostabilizer mode 
has to be provided. Sometimes the rudder action will be made a function of rate of roll and of 
aileron movement in addition to the terms of equation (31) in order to improve control co-ordination 
during transitions between straight and turning flight, but such a rudder equation has not been 
used in this investigation. 

12 



In a Type 1 autopilot a rate-rate version of equation (31) would be used, and a signal representing 

~: would be obtained either from an angular accelerometer or by differentiating a rate-gyro signal. 
In the latter case a passive network might be employed, and the rudder equation would probably be 

~_ H~D 
1 + %D *'~ +/ /2%' (32) 

where the network time constant % is small compared with the yaw oscillation period. 
In a Type 2 autopilot whose rudder channel must also operate in an autostabilizer mode, the 

equation might be 

HI"qD f = I+%Dr~+H~ %dt, (33) 

where % is the time constant of a fiker or 'washout' network designed to minimise opposition to 

pilot control during manoeuvres. 
It is reasonable to assume that the passive networks just mentioned have negligible influence on 

the long-period motions resulting from tilt errors of the compass magnetic detector. The same 
rudder equation has therefore been used in this investigation for both Type 1 and Type 2 autopilots, 

and has the form 
= HF~ + H2%. (34) 

4.3. Compass Equations. 
The azimuth-gyro precession equation (1) is always valid when the pick-off, amplifiers, and 

torque motor are operating inside their linear range, but equation (3) must be applied with 
6m = ¢ + % in order to allow for the transverse pendulosity of the magnetic detector, and the 

simpler equation (6) should not be used. Remembering also that equation (4) is replaced by 

equation (14), which may be written as 

~) (14a) ¢+%= 
g 

we derive the replacement for equation (6): 

To6 c = tan8 T 6 +  _~b c. (35) 

By combining this equation with the autopilot equations (34), (30) or (10), and with the aircraft 
equations (23), (24), (25), we can examine the dynamic behaviour of the complete system. 

In a real system the linear equation (35) will not apply when it demands a larger precession rate 
than is possible in the equipment, and in the response investigations of Sections 5 and 6 we have 
assumed that the precession rate stays at the maximum value in these circumstances. 

It may be convenient to use a normalised form of the equations, which corresponds to the 
non-dimensional form of the aerodynamic data, and details are given in Appendices I and II, while 
the numerical data employed in ~his investigation are given in Appendix III. 

4.4. Stability Boundary. 
It has already been shown that appro~mate equations result in fairly simple stability criteria 

which were illustrated in Figs. 3 and 4. The analysis is much more tedious for the fuller equations 
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described in Sections 4.1, 4.2, 4.3, but it is reasonably accurate to seek neutral stability conditions 
by means of an analogue computer. The ringed points marked in Figs. 5 and 8 correspond to neutral 

stability for a Type 1 autopilot in aeroplane A and for a Type 2 autopilot in aeroplane B respectively, 
while the full lines give the neutral stability conditions predicted by the approximate equations. For 

the purpose of this stability work only, the full equations (34) and (30) have been assumed to have 
rate-gyro terms with zero thresholds and (35) to have no limitation on available precession rate. 

Fig. 5 refers to tan 3 = 3, c = 1, and T = 27. The approximate theory demands that in order that 
the system should be stable ( T a + Tc) should be greater than the value of tic tan 3 + tl Te/(t 1 + To) , in 

this case 81 + 27 Tc/(27 + To) and varying from 81 sec to 108 sec as T c increases from zero to infinity. 
It is seen that according to the full equations neutral stability is obtained along a curve roughly 

parallel to the approximate stabilit)~ boundary and below it by about 3 or 4 seconds. This corresponds 

to a discrepancy of about 5% in (Ta+ To). The degree of precision achievable on the analogue 
computer may be assessed from Fig. 6, which shows the actual records obtained for To, T~ values 

corresponding to the points X, Y, Z on Fig. 5. T h e  first record is damped, the second very slightly 

divergent and the third decidedly divergent. The periods of oscillation measured from analogue- 

computer records are 325 sec, 370 sec, 269 see, whereas the approximate equation (16) predicts 
331 sec, 379 sec, 276 sec respectively, which are in good agreement. 

Since the approximate theory is adequate for most purposes for predicting the inherent stability 
of the system, diagrams showing directly the effects of variations in speed or some other parameter 
may be derived from the stability criterion (15). Fig. 7 for instance gives the stability boundaries 
for each of the values V/c = 700, 800, 900, 1,000 ft/sec when tan 3 = 3. 

Turning now to the Type 2 autopilot and Fig. 8 we again find good agreement between full and 
approximate equations. The values tan 3 = 3 and T = 27 have been used once more, together with 
the three values T 1 = 33, 66, 81 see and also T 1 = c~ which represents an unmonitored vertical 
gyro. The largest discrepancy in the value of T~ to give zero damping is only 5 sec. The periods of 
oscillation are also given reasonably well by the approximate formula (22), as marked along the 
curves. 

Fig. 9 gives the approximate-theory stability boundaries for each of the speeds V = 800, 1000, 
1200, 1400 ft/sec when tan 3 = 3 and T 1 = 33 sec. 

5. Response Investigation Including Non-Linearities. 

In this investigation we have examined the significan.ce of limiting the azimuth-gyro precession 

rate, of rate-gyro thresholds in a Type 1 autopilot, and of bang-bang erection of the vertical gyro 

in a Type 2 autopilot. It is considered unnecessary to include limiting of the rate-gyro signals 
since the gyros are designed to cope with aircraft short-period response where the angular velocities 
are very much higher than those occurring in the long-period Northerly-heading oscillations. 

5.1. Limiting of Azimuth-Gyro Precession Rate. 

The amplifier and torque motor for precessing the azimuth gyro are often designed to have 
maximum outputs two or three times as much as should be required for preventing the worst 
expected gyro wander rate. The safety factor depends on the consistency of gyro behaviour and on 
whether steps are taken to compute and allow for errors due to the earth's rotation and to the 
curved path of the aeroplane around the earth. The  actual limiting value also depends on the 
intrinsic quality of the gyro. 
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For a gyro designed to have a wander rate up to 1/4 deg/min,, but  whose in-service apparent 
drift may be 1/2 deg/min, or even 1 deg/min, owing to deterioration and to the omission Of computed 

corrections, the limiting precession rate is likely to be two or three degrees per minute. In this 

investigation a value of 2.5 deg/min has been used in most cases. 
I t  would be expected that limiting of the precession rate should convert the divergent oscillatory 

response of a basically unstable system into a steady oscillation whose amplitude is determined by the 

saturation level. Figs. 10, 11, 12 illustrate this effect. Some records were obtained by applying the 

full equations, and others from the approximate equations of Section 3.2 with limiting introduced. 

The  agreement between the full and approximate theory is very good in all cases. 

I t  would be useful if the amplitude of oscillation could be predicted. Examination of the records 

in Fig. 10 reveals that the yaw amplitudes are approximately halved each time the limiting 

precession rate is halved, whereas the period is almost unaltered at about 316 see. I f  we assumed the 

waveform to be triangular we would calculate the amplitudes to be 3.3 °, 1.65 °, 0. 825 ° for precession 

rates of 2.5 deg/min, 1.25 deg/min, 0. 625 deg/min respectively. These are not seriously different 

from the record values of 3.16 °, 1.67 °, 0. 925 ° respectively. However, in order to do this calculation 

we must know the period. A rough estimate might be obtained from the approximate equations (14) 

or (19), or even from equations (16) or (22) if the system when linear is not far from the neutral 

stability condition. 
The  factors of the stability cubic 

2~ a + L~2̀  ~ + LI~ + Lo, 

obtained from the differential equation (14) by putting L i = J i / J a ,  may usually be obtained to any 

degree of accuracy by the following iterative process. Guess a i and then calculate c i = L o / a i ,  

d i  = Q / a i ,  b i = ( L  1 - Q ) / a i ,  e i = L 2 - b i - a i ,  T i = l + ( d  i - b i ) / a  i ,  from which the next guess 
ai+ 1 = a i + eJ  T~ is obtained. The  factors of the cubic will after some iteration be represented 

approximately by (2`+ ai)(2`2+bia+Q ), as the test quantity e i tends to zero. The first value a 1 is 

taken as a 1 = L 2 - b o , where c o = L o / L  ~, b o = ( L 1 - C o ) / L ~ .  

As an example, consider the system whose behaviour is shown in Fig. 10. We use equation (14) 

and parameter values T =  27, c = 1, t a n 8  = 3, T ~ =  25, T c = 30, so that T a = 0.9259, 

T o = 1.1111. The  stability cubic is 

A 3 + 1.9), 2 - 0. 9362;~ + 0. 972, 

and the coefficient of 2̀ 3 is equal to (l+l/Pc) that is ( I + T / c T , ) .  We calculate c o = 0.5116, 

b0 = - 0.7620 to get a 1 = 2.6620. The  first iteration then yields c 1 = 0.3651, d 1 = 0.1372, 

b 1 = - 0.4888, el = - 0.2732, /11 = 1.2352, and hence a 2 = 2.4408. The  second iteration gives 

c a = 0.3982, d2 = 0.1631, b2 = - 0 . 5 4 6 7 ,  e~ = 0.0059, T2 = 1.2908, and the next trial value 

would be aa = 2.4454. 
The  factors ( ~ t + a l ) ( 2 ` 2 + b l 2 t + C l )  will often be good approximations, and in the example the 

quadratic factor (;~2 + b,Z + cl) is (A 2 - 0.48882, + 0. 3651) = (2,- 0.2444 + 0.5526/), which corre- 

sponds to a period of 2~r/0" 5526 expressed in units of t 1 = 27 sec, that is a period of 307 sec. This  

agrees well with the analogue-computer result of 316 sec. The  formula (16) however gives 237 sec, 

which is a poor estimate because the system is nowhere near the neutral stability condition. Applying 

the first routine to the cases of Fig. 11 we obtain approximate factors (2  ̀+ 2.02) (A s - 0" 29~ + 0. 321), 
(~ + 1.63) (2`2_ 0. 1382` + 0. 298), (2  ̀+ 2.04) (2`2- 0. 1252` + 0. 238) for the second, third, and fourth 

cases respectively and the periods calculated from these factors are 310, 313, 351 sec. Triangular 
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waveforms at these periods would have amplitudes of 3 .2  °, 3.3 °, 3 .6  ° respectively. T h e  periods 

measured from the records are 316, 315 and 368 see respectively, and the measured amplitudes 
are 3-1 ° , 2.85 °, 3.1 ° . 

T h e  iterative chain will not converge unless the coefficient L 2 is sufficiently pivotaP. Thus ,  if 

c tan 3 is large L I is more likely to be pivotal, and then the approximate factors would be 

( ;~+L2A+L1)  (A+L0/L1). For  example, if c t an  3 is 12 and T~ = 0.9259, To = 1-1111 as above, 
the cubic is 

;~3 + 1.9;t~ _ 9.6841~ + 0 .972,  

and has factors ( ; ~ + 2 . 0 0 2 5 A - 9 . 4 7 8 7 )  (A-0 .1025) ,  or ( ; t - 2 . 2 3 6 2 )  (A+4.2388)  (;~- 0.1025). 

In  this case the linear system has an inherent  divergent exponential mode, rather than a divergent 

oscillation, and the period of a limit cycle is not directly predictable. 

Passing to the Type  2 autopilot and Fig. 12, we again find that halving the limiting precession 

roughly halves the amplitude without  altering the period. Thus  for c = 1, T 1 = 33, amplitudes 

of 3 .8  ° and 1.98 ° are obtained at a period of 290 see; and for c = 1, T 1 = oo, the amplitudes are 

2.3 °, 1 .2  ° and the period is 273 sec. Amplitudes calculated for triangular waveforms and these 

periods would be 3 .0  ° and 1.5 °, and 2.8 °, 1.4 ° respectively. Th~se values are about 20% in error. 

I t  is easier to consider T 1 = oo because the stability cubic corresponding to equation (19) 

degenerates into a quadratic 
A 2 + L1A + Lo, 

where 
1 + T c - c tan 3 

i 1 = 

1 
L0  ~ ~ .  

rc 

Substituting the values for Fig. 12 (c = 1) we have T c = 25/27 = 0. 9259, c tan 3 = 3, and hence 

L 1 = - 1. 074, L 0 = 1.08. T h e  quadratic has factors ( ) t - 0 . 5 3 7  + 0.8898i) ,  corresponding to a 

divergent oscillation of period 191 sec, as compared with the limit-cycle period of 273 sec. This  

approximation is therefore not a good basis for predicting either the period or amplitude of the limit 

cycle. As for the T y p e  1 autopilot, a large value of c tan 3 would result in the linear system having 
a divergent exponential mode. 

We may summarise the results obtained in this section as follows: 

For  the range of values considered for the T y p e  1 autopilot the period is always about 5 min and 

the amplitude of oscillation is determined almost completely by the value of the limiting precession 

rate of the compass gyro. For  the Typ e  2 autopilot the amplitude is proportional to the limiting 

precession rate but  is also sensitive to changes in the time constant T 1 of the vertical-gyro pendulum 

monitor.  A reduction in T 1 makes the amplitude greater. T h e  typical period for a T y p e  2 autopitot 
seems to be about 4 to 4½ min. 

5.2. Thresholds of Autopilot Rate Gyros. 

Fig. 13 shows the effect on aircraft response of thresholds in the roll and yaw rate gyros of a 

Type  1 autopilot. T h e  records are for East/West flight and were obtained by putt ing tan 3 = 0. 

I t  is seen that a yaw-gyro threshold induces a residual oscillation whose amplitude and frequency 

are modified by changes in roll-gyro threshold. An increase in the latter reduces the amplitude and 
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increases the frequency. For equal thresholds of 1 deg/min on the two gyros the residual oscillation 

has an amplitude of 0.25 ° and a period of 80 sec and for thresholds of 2 deg/min these quantities 
become 0.55 ° and 90 sec. 

Fig. 14 shows that when tan S is gradually, changed from zero to 3 (which may be interpreted as 

changing the heading from East/West to North),  there is a continuous transition both in amplitude 

and period f rom 0.25 ° and 80 sec to 3-3 ° and 320 sec when the gyro thresholds are + 1 deg/min. 

I t  is remarkable that when tan S = 3 the 3.3 ° amplitude oscillation caused by the magnetic-detector 

tilt errors is completely predominant  and there is no trace of any superimposed oscillation having a 

period of 80 sec. When tan S = 2 the gyro thresholds reduce the amplitude slightly, but  below 

tan S m 1.51 the linear system is stable and the thresholds cause a residual oscillation which would 
not otherwise be there. 

5.3. Bang-Bang Erection of Vertical Gyro. 

A vertical gyro is often monitored from a simple mercury switch, and the precession equation is 
then 

e," = C¢ sgn ( 4 -  e), 

as mentioned in Section 3.2; unless there is also a dead space so that k = 0 when ]¢ - e[ is less than a 

prescribed amount.  A typical value for the constant precession rate is C¢ = 2.5 deg/min, and a 
dead space of about + 1/8 ° is likely. 

Response records were taken for these values, but  the effect of a dead space of this magnitude was 

found to be negligible, and therefore only records of systems with pure bang-bang erection are 
shown (Figs. 15 and 16). 

The  first diagram shows that as tan 3 is reduced there is a change from a limit cycle to a damped 

motion whether  the vertical gyro is u n m o n i t o r e d o r  bang-bang monitored, but  in the latter case a 

limit cycle is present down to a lower value of tan 5. Compare, for instance, the records for tan g = 1. 

All the records in Fig. 15 are for a crossfeed ratio of 2, and Fig. 16 gives results for c - 4  and 

c = 1 when tan ~ is zero or three. Comparing the records for tan ~ = 3, c = 1, 2, 4 in Figs. 15 and 16, 

and also c = 4, T 1 = 33, oo in Fig. 12, we see that the amplitude and period of the limit cycle 

are not much affected by the changes in parameters or even the changes from bang-bang to linear 

to no erection. This  is presumably because the system is well and truly unstable. When,  however, 

tan S is reduced and the system with unmoni tored  vertical gyro is only just  stable or unstable, the 

effects of parameter changes become noticeable. Similarly, when we compare linear erection with 

T 1 = 33 and no erection ( T  1 = oo) for c = 1, we can see in Fig. 8 that the behaviour of a system 

with T~ = 30 is much more sensitive to changes in T 1 than the corresponding system with c -- 4. 

The  appreciable difference between the third and fourth rows in Fig. 12 is therefore not surprising. 

6. Stabilizing Schemes. 

A study was made of the possibility of improving the behaviour of the system by simple 

modification. I t  is clear that the most direct and fundamental  cure is either to design an azimuth 

gyro which requires only a low monitor strength, or to eliminate the tilt error of the monitor  datum. 

However,  this investigation was started on the assumption that equipment  of a certain calibre already 

existed, and hence there was a severe limitation to the kinds of modification that could be proposed. 
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In all the schemes discussed below there is liable to be a deterioration in accuracy owing to the 
effect of the modification on the azimuth-gyro monitor when the latter is opposing random 

precession torques. There is then a conflict between this factor and the degree of improvement" to 

the stability or amplitude of the unwanted oscillation. 
Examination of the stabilizing schemes has been mainly done in relation to a Type 1 autopilot, 

because there is little difference essentially between the results obtained with the two autopilots, 

and because the Type 1 has the added complication of rate-gyro thresholds. 

6.1. Dead Zone. 

Sometimes it is possible to reduce the amplitude of a limit-cycle oscillation by introducing a 

dead zone on one of the signals. In the autopilot/compass system the reasonable place to introduce 

a dead zone seems to be where the compass signal is fed into the autopilot. This would reduce the 

accuracy of the autopilot datum heading but would not impair the compass heading information fed 

to navigation systems. 

Response records showed that although some improvement is possible the stability of the system 

becomes very dependent on the size of any disturbance. Following a disturbance larger than a certain 

value the motion is oscillatory and rapidly divergent. Since the critical value of disturbance was 

small (e.g. 0.5 ° in yaw), the dead-zone modification was not considered further. 

6.2. Augmented Feedback. 

It  was proposed that the azimuth-gyro precession signal be supplemented by an amount  

proportional to the compass output signal @-~bc). The precession equation (1) is then replaced by 

T -d{ = + (36) 

and the approximate equation of motion for a Type 1 autopilot is 

JaO3~ b + J2DZ4 j + J~O4J + Jo$ ~ O, (37) 
where 

J 3 =  T.T~,  

= T o ( l +  

"11 = T~ + Tc - c tan 3 + K1T~, 

J 0 = l .  

The destabilizing negative term in J1 can therefofe be annulled by having K 1 = c tan 3 /T ,  = Ttan 8//1,, 
but a lower value is sufficient to make the motion stable. For example, when T = % = T~ = 30, 

c = 1, and tan 3 = 3, exact cancellation is obtained with K 1 = 3, and the motion is neutrally 

stable with K 1 = 1-3. 
Steady-state errors due to constant drift in the autopilot and compass systems may be determined 

from the relations 
T J ~  = c ( 4 , - ~  ) 

where d~ and d e represent the drift in the autopilot and compass respectively. The autopilot must fly 

the aeroplane off course by an amount 

- = (38) 
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in order to maintain a steady state wi th  ~ = p = r = O, and the az imuth  gyro must  stay o f fda tum 

by an amount  

in order to maintain zero 'precession rate ~ .  For  T, = T** = 30 and c = 1 the compass error is 

3 0 ( d c + K f l ~  ). We have already established that  K 1 is of the order of 2 or 3 in order to produce 

stability, and if we fur ther  assume that the autopilot drift level is liable to be several t imes higher 

than the compass drift, we see that  the compass error may well be ten times as large as the design 

value. T h e  autopilot error (38) is often un impor tan t  since the aircraft heading can be corrected by 

the pilot through the autopilot  turn  inceptor 4. 

Response records were  taken (see Fig. 17) to examine whether  a low value of K 1 might  produce a 

useful reduction of limit-cycle amplitude, and also to see the effect of autopilot gyro threshold. 

When  K 1 = 1 the ampli tude is about  2 .7  ° whether  there are thresholds or not, and with  thresholds 

present  even the 's table '  values K 1 = 2 and 3 give ampli tudes of 2 ° and 1.5 ° respectively. 

T h e  results indicate that  it is not possible to find a value of K 1 which would be acceptable both  

for good response and small da tum errors in the presence of drift. 

6.3. Rate-Gyro  Feedback. 

Since an approximate  theory assuming co-ordinated turns seems reliable, and the false signal 

f rom the magnetic detector is thereby proport ional  to bank angle or rate of turn,  it was suggested 

by R.A.E. that  an opposing signal f rom a yaw rate gyro would stabilize the system provided the 

quality of the signal were good enough. T h e  compass precession equation would be 

T~c  = Cm - ¢c - K t  Try,  (39) 

where  r b represents the signal supplied by a rate gyro which is not necessarily the same as the 

autopilot yaw rate gyro. 

Since ~b m = r T tan 3 approximately,  the value of K b corresponding to exact cancellation would  

be tan 3. T h e  coefficients of the stability cubic for a T y p e  1 autopilot are 

g a =  T~,T~, 

J~ = ~o(1+ L ) ,  

J1 = T~ + L + c ( G - t a n  ~), 

J 0 = l ,  

if it is assumed for the m om en t  that r b = r. Neutra l  stability is obtained with  

cLl+r +ST~ , 

which, for example, h a s a v a l u e o f l . 5 w h e n  Ta = Tc = T, t a n 3  = 3, c = 1. 

Steady-state errors due to drifts d~ and d~ in compass and autopilot respectively, and to a threshold 

d b in the extra stabilizing rate gyro, are determined by  the relations 

T~d,~ = c (¢-¢c) ,  

Tcdc = G -  G T d b .  

T h e  compass e r ro r  is thus ( Ted c + K t Tdb). 
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It  seems reasonable to assume that since the r~ signal is merely required for stabilizing a long- 

period oscillation, the rate gyro need not cope with large rates of yaw and could be designed to have 

a fairly low threshold. I f  the value of d e includes the apparent drift due to earth's rotation and to 

curved flight path it is practicable to design a rate gyro with d~ smaller than d c . I f  d~ = dc/3, 

T, = T, and Kv = 3, the compass error is then double the design value. Th e  deterioration in 

steady-state error caused by the rate-gyro stabilizing scheme seemed moderate enough to justify 

a theoretical investigation into the dynamic behaviour when rate-gyro thresholds and limiting of 

the compass-gyro precession were inc luded .  

A very limited and inconclusive flight investigation was also made in which the stabilizing rate 

gyro was an improvised modification of a standard autopilot rate gyro. Th e  sensitivity was increased 

appreciably and the maximum measurable rate correspondingly reduced; laboratory tests indicated 

an extremely low threshold, but  the value in flight is not known. Flight records showed that one of 

the disadvantages of feeding a yaw rate-gyro signal into the compass-precession amplifier is that the 

aircraft yaw oscillation produces enough 'noise' to cause the amplifier output  to saturate positively 

and negatively in almost bang-bang fashion. It  seemed possible that there was still enough rate-gyro 

influence at long periods to improve the compass oscillation as intended, but  there was insufficient 

evidence and fur ther  flight tests could not be made. Filtering of the rate-gyro signal is an obvious 

possibility, and the efficiency of a one-stage filter was examined during the theoretical investigation. 

Fig. 18 illustrates the aircraft response in yaw (¢), and also the compass-precession rate (6c), for 

K b = 2.2,  3.3, 5.5 with and without  rate-gyro thresholds included. Th e  threshold on the stabilizing 

gyro was taken as + 0-25 deg /min- -a  quarter of the autopilot gyro thresholds. Th e  influence of 

thresholds is quite marked when K~ = 2-2, forcing an amplitude of 1.13 °. When K~ = 3.3 the 

amplitude is 0.43 ° and K b = 5.5 produces an amplitude of 0.21 ° which is practically identical 

with the best performance available from autopilot gyros with ± 1 deg/min thresholds even when 

there is no Northerly-heading compass error (see last record of first column in Fig. 14). 

Fig. 19 shows the effect of a filter with transfer function 1/(1 + ~-D) when the time constant , is 

varied, and K~ kept constant at 3.3. The re  is a continuous degradation in performance of the 

stabilizing signal, and the amplitude in yaw increases f rom 0 .4  ° at ~ = 0 no (i.e. filter) to 1.43 ° 

at 7 = 10 sec. Fig. 20 shows the corresponding short-period transient response to an arbitrary 

triangular side-gust pulse of duration 0 .6  sec. I t  would appear that a time constant of at least 5 sec 

is required in order to reduce substantially the number  of times that the compass precession rate 

reaches its limiting value. It  was not thought  worthwhile  to simulate typical gusty weather, since 

there is little doubt  over the order of magnitude of filter t ime constant required. Th e  amplitudes i n  

Fig. 19 are 1.43 °, 0-74 °, 0.5 ° for T = 10, 5, 2.5 sec respectively. 

Fig. 21 compares (on a different scale) the results for T c = 30 sec with the corresponding ones 

for T c = 60 sec. The  amplitudes in degrees for ~- = 10, 5, 2.5 and 0 sec are as follows: 

Filter time constant, -r 

10 5 2.5 0 

T e = 30 1.59 0.74 0.54 0.37 

T c = 60 0.9 0.4 0.28 0-19 
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The values obtained for T,  = 30 should agree with those quoted for Fig. 19. The small discrepancies 
arose because the records were obtained on different occasions on different computers, and it is 
difficult to set the non-linear units to exactly the same characteristics. This is relevant in this 
particular investigation, for the amplitude is determined by the non-linearities. 

The benefit to be obtained from a rate-gyro stabilizing signal thus depends very much on the 

precise magnitudes of the thresholds of all the rate gyros and on the combination of K b and filter 
time constant that can be used. 

6.4. Ampli f ier  Modifications. 

It was suggested by A. & A.E.E. that a simple circuit modification within the precessionamplifier 
would improve the dynamic performance. The modification may be loosely called an integrator 
and theoretically the result is to introduce an additional factor 1/(1 + ~-sD) in the transfer function 

of the amplifier, at least within the linear range. The proposed value of the time constant "r a was 
about 50 sec. 

The analysis of Appendix IV shows that an unstable system with T a + T~ < T tan S cannot be 

made stable by any choice of "rs, and that the modification will impose stability on an unstable 

system with Ta + T e > T tan S only if T c < T tan S. The chance of being able to obtain a basically 
stable system is therefore small. However, it is difficult to predict the limit-cycle amplitudes of 
non-linear systems, and therefore analogue-computer results were obtained. Fig. 22 shows that the 
limit-cycle amplitude for typical parameter values is increased and the period lengthened. 

The Sperry Gyroscope Co. proposed a somewhat similar scheme, introducing a factor 
(1 +72D)/(1 +-tad ) in the amplifier transfer function. The values of -r~ and 7~ were 150 sec and 
300 sec respectively and were to be used in conjunction with T, = 60 sec. 

Appendix IV shows that various combinations of -r~ and -r a values can stabilize a linear system. 
The general shape of the stability boundary is illustrated in Fig. 23, and specific examples given 
in Fig. 24 for three combinations of time constants: 

(a) (b) (c) 

Tc(sec i 30 30 60 

Ta(sec ) 25 50 25 

Fig. 25 gives response records obtained for (a), and (c) with and without autopilot gyro thresholds 

taken into account. For (a), values of ~'2 and 73 represented by the point Q in Fig. 24 were taken 

in order to have a basically stable system. Gyro thresholds as usual produce a residual oscillation, and 

its amplitude is 0.19 °. The representative point P was also considered because Sperry had suggested 

72 = 150, 78 = 300. It is seen that with these values it is essential to have T c larger than 30 sec in 
order to make the amplitude small. 

Fig. 26 illustrates the performance of various other combinations of 7~ and ~-a in conjunction with 
combinations (a), (b), or (c). The first two pairs of records refer to the point R in Fig. 24, which 
indicates that time constants (a) should produce an unstable linear system, and (b) a stable one. 

The records bear this out. Rate-gyro thresholds of + 1 deg/min, as noticed earlier, exert little 
influence on the large amplitude of a basically unstable system. In case (b), however, the linear 
system is only just stable and gyro thresholds tip the balance so that the amplitude grows to a 
steady value (not shown). 
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The  third and fourth pair of records refer to the point S in Fig. 24, so that t ime constants (b) 

would be expected to give an unstable linear system, and (c) a stable one. This  again is confirmed 

by the records, and the contrast between the steady amplitudes and periods in the presence of rate- 

gyro thresholds is pronounced:  3.1 ° at a period of 369 sec and 0 .26 ° at a period of 105 sec. 

The  final pair of records refers to the point T in Fig. 24. Th e  motion is neutrally stable when 

linear, and has an amplitude of 2- 33 ° in yaw- at a period of 268 sec in the presence of gyro thresholds. 

All the response records taken indicate that an approximate stability boundary based on the theory 

given in Appendix IV is a reliable guide to choosing good combinations of time constants T~, Tc~, 
r= and r a . Provided the linear system is reasonably stable the amplitude forced by autopilot rate-gyro 

thresholds will be of the same order of magnitude as that obtained on an East/West heading. 

In practice difficulty m i g h t b e  encountered in realising very large time constants r 2 and r a with 

consistency and reliability if large capacitances are required. High aircraft speeds demand large 

time constants, as suggested by Fig. 27 where stability boundaries are given for V = 870, 1305, 

1740 ft/sec or M = 0.9,  1.35, 1.8 above the tropopause. If  the combination r= = 100, r a = 500 is 

taken as reasonable for the lowest speed, the curves suggest empirically that r ,  must  be increased 

linearly with V and r a roughly with V ~ in order to continue enforcing stability at the higher speeds. 

Fig. 28 depicts approximate stability boundaries for a Ty p e  2 autopilot with crossfeed ratios 

of 1 and 4, T 1 = 33 sec, and for T~ = 30 sec, V = 870 ft/sec, tan ~ = 3. The re  is little difference 

between these boundaries and the one marked (a) in Fig. 24 for the Ty p e  1 autopilot. Th e  vertical 

asymptotes are in fact identical. The  combination r~ = 100, r a = 500 is thus indicated as a 

stabilizing one for both types of autopilot in these conditions. 

The  response records given in Figs. 29 and 30 show that the combination r 2 = 100, r a = 500 

does give a stable motion when the vertical gyro is unmonitored,  when it has linear erection with 

T 1 = 33, and also when it has bang-bang erection with C~ = 2.5 deg/min. 

6.4.1. Turn errors.--In turning flight the azimuth gyro will be precessed away f rom its 

datum because of detector tilt errors. In addition, unless the gyro is on a stabilized platform, the 

compass indication will have an error because the gimbal rings do not remain orthogonal when the 

aeroplane is banked 1. However,  any gimballing error is removed as soon as the bank angle returns to 

zero, whereas the precessional error can only be reduced gradually through the action of the monitor. 

For  slow turns the precessional error is much larger than the gimballing error. 

In a steady turn with zero side force the detector tilt is equal to the bank angle. Within the linear 

range the azimuth gyro will be precessed at a rate 

= _ f ,  

where Tcf = cos ~b sec (~b-~b~)sin (~bc-~)~), and the detector error ~b m is given by the accurate 

formula stated in Section 3.1. As already explained the precession rate cannot exceed some limiting 

value in the region of 3 deg/min. 

If  gimballing errors are neglected the turn error is computed merely by step-by-step integration 

of the above ~p~ equation, and this has been done for one of the cases considered by Stevenson and 

Lewis 7. I t  was assumed that the aeroplane acquires a bank angle of 10 ° and a rate of turn of 1 deg/sec 

instantaneously at t = 0, ~b = 90 ° and that bank angle and rate of turn revert instantaneously to 

zero when ~b reaches 240 °. T h e  result is shown as curve (a) in Fig. 31. Almost from the first instant 
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the precession signal is large enough to demand the limiting precession rate, which was taken to be 

3 deg/min. The decay of the error to zero following the end of the turn is determined by the time 

constant To, in this case 60 sec. Almost identical curves would be obtained for any combination of 

bank angle and dip angle demanding the limiting precession rate for most of the turning time. 

Curve (b) shows the variation in the error when the Sperry modification is introduced into the 

amplifier. The precession rate is now 

l + ' r u D f  
~c - 1 + "r3D 

within the linear region. In the specific scheme described in Ref. 7 an additional limiter was 

introduced on the signal f before it passed through the filter producing the transfer function 

(1 + ~2D)/(1 + TAD), and the limiting value was 3 deg/min. 

Curve (c) shows what happens if this limiter is omitted, and it is seen that the action of the limiter 

is to prevent the demand for the maximum precession rate. Again, many combinations of bank angle 

an.d dip angle will result in almost identical curves. 

For cases (b) and (c) the decay of the error following the end of the turn is determined by the 

time constant T c and by the filter modification. It can be shown that the filter modifies the response 

to a step input to be approximately the same as would be obtained in an unmodified system having a 
time constant of about 1.6 To. 

The magnitude of the turn error, and the time taken after the end of a turn for the error to become 
small, are additional factors to be weighed when a stabilizing scheme is assessed. 

The additional limiter proposed by Sperry was not included in the stability investigation described 

in this report. It has been shown that the Sperry transfer-function modification can always ensure 

stable motion and any limit cycle has a small amplitude. In these circumstances the additional 
limiter would have little effect. 

7. Discussion. 

The theoretical investigation reveals one major cause of oscillatory behaviour on Northerly 

headings. If the magnetic detector is susceptible to error when tilted roll-wise from the horizontal, 

a linear system is unstable if the azimuth gyro is monitored too strongly by the detector, or if the 

autopilot includes a monitor that is too strong, or if the two monitors are too strong a combination. 

The critical values are determined by aircraft speed and by the sensitivity of the detector to tilting 

in roll. This sensitivity is approximately proportional to the tangent of the magnetic-dip angle 

and thus varies with latitude, and also depends on aircraft heading, being a maximum on magnetic 
North and zero on East/West. 

It is worth mentioning that the detector will likewise have a maximum sensitivity to pitch-wise 

tilt on East/West headings and zero on North. However, there is no direct closed dynamic loop 

whereby the compass errors react through the pilot on the aircraft motion. If the aeroplane oscillates 

in pitch there will be oscillatory compass errors, but the treatment for this is to improve the basic 
control system in pitch. 

A real system may be unstable at small amplitudes within a linear region, but the oscillation will 
grow until it settles down at some particular amplitude which is determined largely by non-linearities 

such as a limitation of the available precession torque on the azimuth gyro. There can therefore be 
two approaches to the problem of improving the performance. One is to try and make the system 
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stable within the linear region; the other is to accept the basic instability but attempt to reduce the 

amplitude of the limit-cycle oscillation. The second method seems potentially risky in that the system 

is at the mercy of the non-linearities, and these may vary significantly in different equipments in 
different aeroplanes. For this reason the investigation was concentrated on the first method. 

There are, however, properties such as rate-gyro thresholds which make the system non-linear 

at very small amplitudes, so that there is still a residual oscillation even though the system is stable 
in the linear region. Final judgment  must therefore be made on the basis of dynamic response, 
although an analysis of linear-system stability is immensely useful. 

To illustrate the order of magnitude of  time constants involved, the approximate conditions for 
stability on a Nogth heading are repeated here: 

Type 1 autopilot 

T a +  T o - c t a n  ~ > . . . .  

Type 2 autopilot 

L 
1 + • "  

(15) 

The time constants T,, '  Te, T 1 are expressed as fractions T , ,  etc. of a special time unit t t = Tic 
(i.e. T~ = T,/tl) , where T is an aircraft characteristic time equal to V/g, the speed divided by 

gravitational acceleration. This quantity T is a predominant parameter. The azimuth gyro is moni- 

tored through a time constant T c which has a typical value of 30 sec. Type 1 autopilot uses roll 
and yaw rate gyros with compass monitoring through a time constant T~ having a typical value of 
25 sec. Type 2 autopilot makes direct use of the azimuth gyro and of a vertical gyro monitored from 

a pendulum through a time constant T 1 having a typical value of 25 sec. The crossfeed ratio c 
defines the relative strength of yaw and roll signals in the autopilot aileron channel and has a typical 
value of 1 for a Type 1 autopilot but may be as much as 4 for a Type 2. 

For a speed of M = 0.9 at high altitude, V = 870 ft/sec and the characteristic time T is 27 sec. 
We thus have T~, = 25/27, T o = 30/27, 21 = 25/27 as typical values, and expressions (15) and (20) 
predict that a stable system is not obtained unless tan ~ is quite small. Stability can be ensured by 
weakening the magnetic monitoring, that is by increasing the time constant T o. Fig. 5 shows that 

for tan S = 3, which is appropriate for a latitude of about 58 °, T o would have to be greater than 

about 75 sec with a Type 1 autopilot having c = 1. This represents precessing the azimuth gyro at 
0 .8 deg/min per degree. Fig. 8 shows that for a Type 2 autopilot having c = 2, T o would have to 

be greater than about 110 seconds (equivalent to 0.545 deg/min per degree). Improvements can 
also be effected by increasing T,  or T1. 

An increase in T c would reduce the accuracy with which the compass is tied to the magnetic 

datum. An increase in T 1 would reduce the accuracy with which the vertical gyro is held to the 

pendulum datum. An increase in T,  would reduce the accuracy with which a Type 1 autopilot 

flies the aircraft on a selected compass heading. Since the selected compass heading can usually be 

readjusted, the latter discrepancy may not be important, whereas the azimuth and vertical gyros 

are basic sources of information in the aircraft and must achieve a prescribed performance. 

The  attractive way of preventing Northerly-heading oscillations is to employ an azimuth gyro so 

good that small datum errors are achieved even with a monitor time constant sufficiently large to 
ensure stability. In this way an all-round improvement in compass accuracy should resul t - -not  
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merely on Northerly headings. The other fundamental cure is to monitor the gyro from a sensor 

(magnetic or otherwise) that is unaffected or less affected by aircraft tilt. In the past the magnetic 
detector has been installed far out in a wing in order to minimise magnetic interference from the 
aeroplane structure or contents, and this has made it too difficult to stabilize the detector except 

by making it pendulous. The investigation has shown that this crude form of stabilization has 

negligible influence on Northerly-heading instability. The degree of stabilization required has not 

been studied, but it is clear that any scheme using a vertical gyro with pendulum monitoring will 

not be effective unless the pendulum-monitor time constant is large. 

Another method of improving Northerly-heading performance is to modify the compass 

precession signal. Five types of modification have been examined and two of them may be 

acceptable, namely the R.A.E. and Sperry schemes described in Sections 6.3 and 6.4. 

The R.A.E. proposal is to add.a yaw rate-gyro component to the compass precession signal 

with the intention of cancelling the false signal introduced by the magnetic detector when the 

aeroplane is tilted in roll. Exact cancellation is theoretically achieved if the azimuth gyro is precessed 

at an additional rate equal to T tan 3/To, on the assumption that the long-period aeroplane motion 

consists of turns with zero side force. The ideal cancelling signal is proportional to bank angle, but 

this is not available without a first-class roll datum since a vertical gyro with pendulum monitor 

would substantially follow the apparent gravity vector unless the monitor strength were very low. 

Complications arise in the practical realisation of the R.A.E. scheme on account of rate-gyro 

thresholds and also the necessity to filter out rate-of-yaw contributions due to the aircraft 

short-period yawing oscillation. However, it seems possible to effect a considerable improvement 

with a rate gyro whose threshold is about 0.25 deg/min,,and whose signal passes through a one-stage 

filter with a time constant of about 5 seconds. 
The Sperry proposal is to introduce a passive network in the precession amplifier, so that the 

precession signal is subject to a transfer function (1 + ,.,D)/(1 + ,3D), and at the same time modifying 
the precession time constant T c if necessary. Increasing this time constant results in proportionally 

larger steady-state errors due to drift. 
It is shown that values of ~-~ = 150, "3 = 300 sec as originally suggested are satisfactory at a 

speed of 870 ft/sec provided T c is about 60 seconds: this implies doubling the steady-state error as 
compared with Tc = 30 sec. It seems, however, that the combination *2 = 100, ~-a = 500 see is 

satisfactory when T c = 30 sec. With higher aircraft speeds the values of ,~ and *a become larger 

(see Fig. 27), and practical difficulties might arise in getting these time constants. 

Another factor is the influence of the Sperry transfer function on the decay of a turn error, but it 

has been shown that an additional limiter in the amplifier (as also proposed by the firm) in fact 

ensures smaller errors than obtained in the standard system during a turn° The error developed in 

the standard system, however, decays more rapidly after the turn is ended, and after a certain time 

the modified system is holding on larger errors. 

8. Conclusions. 

(a) If a gyro-magnetic compass provides the heading reference for the autopilot, the motion of 

the aeroplane will be basically unstable unless certain monitor time constants are large enough in 

relation to an aircraft characteristic time equal to the speed divided by gravitational acceleration. 

Since the available compass-gyro precession torque is limited the aeroplane will settle down to a 
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constant amplitude oscillation. The larger the magnetic-dip angle and the nearer the heading is to 
magnetic North then the larger the time constants must be in order to produce a stable system. 

(b) Monitors are introduced for restricting steady-state errors to small values. The direct way  of 
stabilizing the system by having larger time constants may therefore be unacceptable, since the 
steady-state errors would be proportionally increased. This approach, however, would be 
satisfactory if large time constants.were permissible on account of the high quality of the equipment. 
Having a very good azimuth gyro is in principle the simplest way of ensuring stability and small 
errors. 

(c) A given unstable standard system can theoretically be made stable in several ways by modifying 
the precession torque either by introducing an extra signal or a passive network. Some modifications 

increase the steady-state errors by large factors and this precludes their use, but two schemes were 
found which might be acceptable. 
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LIST OF SYMBOLS 

Moment of inertia about x axis 

Wing span 

Moment of inertia about z axis 

Lift coefficient 

Crossfeed ratio of autopilot aileron channel (see Section 3.2) 

= d/dt I differential operators 
= tlD J 

Drift in autopilot aileron channel 

Threshold of stabilizing rate gyro 

Drift in azimuth-gyro system 

= T 1 - c tan 8 

Autopilot aileron gearing 

Acceleration due to gravity 

Horizontal intensity of earth's magnetic field 

Autopilot rudder gearing (yaw rate) 

Autopilot rudder gearing (side force) 

Ratio of stability-equation coefficients, J1/J3 

Aircraft inertia coefficient (roll) 

Aircraft inertia coefficient (yaw) 

Coefficients in stability equation 

= ctan 8 

Strength of stabilizing signal (Smith scheme) 

Strength of stabilizing signal (R.A.E. scheme) 

= ½cr 

Aerodynamic roiling moment 

Rolling-moment derivatives, OL/Op, etc. 

= - t ~ U i ~ , ,  - t , ~ l d i ~ ,  

Non-dimensional derivatives 

= - t ~ l i ~ ,  l , . l i~  

Mach number 
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LIST OF SyMBOLS--continued 

Aircraft mass 

Aerodynamic yawing moment 

Yawing-moment derivatives, ON/Op, etc. 

= ~nv/io, ~n,/ i~,  - ~ n d i  o 

Non-dimensional derivatives 

= - n , ~ / g ~ ,  - n , / i o  

Period of oscillation 

Aircraft angular velocity about x axis (roll) 

Roll rate-gyro signal 

Aircraft angular velocity about z axis (yaw) 

Yaw rate-gyro signal 

Stabilizing rate-gyro signal 

Wing area 

Aeroplane characteristic time, V/g 

Pendulum-monitor time constant for vertical gyro (see Section 3.2) 

Compass-monitor time constant for autopilot (see Section 3.1) 

Magnetic-monitor time constant for compass gyro (see Section 3.1) 

Special unit of time, V/gc 

Unit of aerodynamic time, m/pSV 

True airspeed in undisturbed flight 

Increment of velocity along y axis 

Aerodynamic force along y axis 

Side-force derivatives, 0 Y/Ov, etc. 

Non-dimensional derivatives 

Angle between pendulum and x, z plane (see Section 3.2) 

Magnetic-dip angle 

Vertical-gyro error (see Section 3.2) 

Increment of rudder deflection 

Aircraft relative density, 2m/pSb 
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P 

,7- 

"/'2, 7"3 

Overscript 

L I S T  OF S Y M B O L S - - c o n t i n u e d  

Increment  of aileron deflection 

Air density 

Filter t ime constant (see Section 6.3) 

Autopilot rudder-channel  time constant (see Section 4.2) 

T ime  constants (see Section 6.4) 

Aircraft bank angle 

Roll-wise tilt of magnetic detector 

Aircraft heading relative to magnetic Nor th  

Azimuth-gyro heading relative to magnetic Nor th  

Compass indication, (~b-~c) 

Magnetic-detector  error 

A bar placed over a symbol denotes that t ime is being expressed in units of magnitude t 1. Thus  

T =  Ti t  1, D = t lD.  
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APPENDIX I 

Non-Dimensional Aerodynamic Derivatives 

The following relations exist between derivatives measured in ordinary units and denoted by 
capital letters and their non-dimensional counterparts defined by Bryant and Gates 5 in R. & M. 1801 
and denoted by small letters. These are also listed in the R.Ae.S. Data Sheets G 

Y~ 2L~ 2N~ 

Y~ blv bno 
- pSV ,  

L ,  _ L,. _ U~ _ N~ _ kpSVb~,  
l ,  l~ n D n,. 

L~ N N~ ~pSWb, 
l~ ng ng 

Y~ = p S V  2, 
Y~ 

where S is the wing area, V is the steady speed in undisturbed flight, b is the wing span, and p is 
the air density. 
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A P P E N D I X  II  

Normalised Equations of  Mot ion  

The lateral equations of motion in normalised (often called non-dimensional) form may be 

written as 
A 

( D + y - ~ ) ~ - k  4 + ~ - y g ~  = 0, 

se~ + (3  + zl)P - I~ + ~ed: = 0, 

where 

- J v e  + ,~lP + ( 3 + n . ) ~ - ~ d  + ~ d  = 0, 

:fv = - Yv, 

k = ½CL = 2 m g / p S V  2, 

n v ng  - - r i g  ~ ' 

l 1 12 1 
- ~ ~, i ~ '  

n I n 2 1 

- -  n2. ) - -  n r i e ' 

i_~ io 4 

A C mb ~' 

= ~D, 

= v / V ,  

and 

= 

2m/pSb ,  the relative-density parameter, 

= m / p S V ,  a quantity having the dimensions of time. 

It is convenient to regard the variables ~, p, ~ as the values of v, p, r expressed in a special system 

of units in which the unit  of speed is V, the unit  of time is ~, and the Unit of mass is m. In these 

units time is measured in airsec. 
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The autopilot equations (30), (34), and the compass equation (35) expressed in these units become 

where 

A A ^ 

~ = f I i D r  ~ + H , ,%,  

y ~  + y ~  

(30a) 

(34a) 

= H i t  , 

and 

where 

/ ~  = H2~ , 

ToD¢o = tan 8 ~P~ + ¢~, 

~'o = r~ /~ ,  ~ = r / ~ .  

(35a) 

The vertical-gyro monitor equation (11), which is required with the alternative aileron equation (10), 
becomes 

~i/)e -- ¢ - e + %, (l la) 
where 

~1 = Td~. 
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A P P E N D I X  I i i  

Numerical Data 

(in notation of Appendices I and II)  

Aeroplane A 

Altitude (ft) 

E.A.S. (kt) 

V (ft/sec) 

M 

CL 

/z2 

(sec) 

40,000 

256 

870 

0.9 

0.113 

26.4 

1.51 

Zl 

n l  

n 2 

~/'~ 

y~ 

Y~ 

k 

io 

F 

T (sec) 

2.5 

0. 365 

5.84 

32-24 

0 

0.237 

6.72 

0 

3.74 

0.148 

0- 052 

0.0565 

0.228 

O. 104 

O. 662 

2.14 

1.0 

27 

Aeroplane B 

40,000 

256 

870 

0.9 

O. 242 

165 

3.31 

2.43 

0.587 

247.5 

197 

- 0 - 0 7  

0.8 

44.14 

- 1 . 2 4  

28.9 

O. 386 

O- 0625 

0.121 

0.4 

O. 092 

O. 302 

2-19 

1.0 

27 

(88992) 
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A P P E N D I X  IV 

Approximate Theory of Sperry and A, & A.E.E. 
Modified Systems with Type 1 Autopilot 

1. Sperry System. 

The  Sperry precession equation for the azimuth gyro is (within the linear range) 

1 + %D 
T~D¢~. - ( T tan 3 D 0 -  ¢~), (40) 

1 + %D 

if we take the unmodified equation to be (6). When r,, = 0 equation (40)is valid for the A. & A.E.E. 

modified system. 

Choosing a time unit t x = T/c as in Section 3.2, we can write (40) as 

T .DG - 

where 

"P2 

Combining this equation with the 

where 
& =  

= 

1 + %D (c tan 3 /9~/J - ¢c) 
l + r - ~  • 

= 

(40a) 

& = l .  

= r a = oo, there is a reversion to the third-order  equation (14). 

%/tl, Ca = ra/tl" 

aircraft autopilot equation (13), we obtain a four th-order  equation 

+ YaDa~ b + J2D~¢ + J~Dv 9 + Y0¢ = 0, (41) 

T,y~% , 

To + + To%) 

T**(1 + T~+%) + T~% - %ctan  8, 

Tc,+ To+ e2-ctan3, 

If  r,, = % = 0, o r i f %  

One immediate conclusion from the form of these coefficients is that if the standard system has 

T,, + T~ < c tan 3, then Y~ will remain negative (and the modified system will be unstable) if % = 0. 

This  is so for the A. & A.E.E. modification. 

The  Sperry modification has % 4= 0 and it is therefore possible to choose a value to make J1 

and J~ positive, and it should be noted that increasing % tends to reduce J2 unless *a is suitably 

chosen. I f  all five coefficients are positive, the remaining Routh-Hurwi tz  criterion for stability is that 

h I0 

where h = Ji/Ja. S{nce the J coefficients are rather complicated functions of the t ime constants this 

stability condition is mainly useful for testing particular numerical values. In order to carry out a 

more general analysis the locus of zero oscillatory damping may be plotted in the %, r a plane for 

fixed values of the other quantities. It  is convenient to use fi = ~2 as a parameter, where ~ is the 

angular frequency of the oscillation expressed in terms of the t ime unit t , .  If  co is the equivalent 

value in rad/sec, ~ = tle6. The  symbol K, introduced in the followihg algebra, represents c tan 3. 
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An oscillation of frequency N and with zero damping will result when 

where 

1 - P l f l  + P2fl ~ 

[ 

_ e0-o e-o# / 

P1 = "T~(ZK-+ 2 -  T~) - K ( K -  :F~), 

P2 = T~( T~ + K :F~) , 

Qo = L ( K-  To), ] 

Q1 T~ T~(~r~ T~ + K -  2 T~) ,. 

92 L2L 2, 

Ro= T~, } 
R1 = Ta T ~ ( K +  2 -  L ) ,  

R2 = TcTd. 

(42) 

(4s) 

(44) 

(45) 

The stability boundary may be plotted by substituting a succession of positive values of /3 in 
equations (42). For the orders of magnitude considered, the relevant part of the boundary is in the 
positive quadrant and is asymptotic to the two straight lines 

% = K -  To, (46) 

' i i t 

/3aQo'% = P o ' %  + ( P I ' Q o ' - P o ' Q I ' i / R 1  ' + Po Qo//31R1 , (47) 
where 

Po' = 1 - P l f i l  + P~/312 , 

P I '  = P1 - 2P~/31, . . 

Qo' = Q o -  Q l f i l -  Q2/31 ~ , 

QI '  = Q1 + 2Q2/31, 

R 1' = R 1 - 2R2/3a , 

and fil is the smaller root of , . . . . .  
R 0 - R1/3 + R2/32 = 0. (48) 

Fig. 21 shows the general shape of the stability boundary. The  minimum occurs for a frequency 
corresponding to/3 =/32, a root of the equation 

P2R2/34 - 2P1R2/3 a + (3R2 + P 1 R  ~ -  ROB2)~32 - 2R1/3 + R o = O. (49) 

For the kind of values considered in this investigation/31 is small, so that the/3a and/34 terms in 
equation (49) may be neglected with little loss of accuracy. In fact tolerably correct estimates of/31 
and/32 may be obtained if/32 terms are neglected, and equations (48) and (49) then give 

/31 ~ R o / R 1 ,  192 "~ 0"5/31. (50) 
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It is unwise to use this approximation except for determining roughly the range of values of/3 to be 

st~bstituted in equations (42). Thus  the values of/~2 given by (50) for the curves (a), (b) and (c) in 

Fig. 25 are 0. 133, 0-0858, 0. 133 respectively and these correspond to periods of 466,580 and 466 sec, 
whereas the correct values are about 455, 475, 400 sec respectively. 

2. A. & A.E.E. System. 

The equation of motion for the A. & A.E.E. system can be deduced from equation (41) by putting 
I 

% = 0. The  coefficients are therefore 

Ja = T~ T~%, 

Ja = Ta To(1 + %), 

J2 = T ,(1 + + Poe , 

J1 = T ~ +  T c - c t a n S ,  

J 0 = l .  

I t  is seen at once that if the unmodified system has T~ + Te < c tan 3 it is unstable and no value 

of *a can make it stable since J1 remains negative. I f  the unmodified system is unstable with 

2T + "T~. > c tan 8, it may be possible to find a value of % to impose stability. All the coefficients 

are positive so that the condition for stability is 

h & 
4 > 7 , 

where h = 4 / J a .  This condition is the same as 

F1 
Fa~%(1+%) + % ( F ~ -  T ~ ) q - ( F ~ - F ~ )  < 0 '  (51) 

where the F ' s  are the coefficients for the unmodified system, that is F a = T~Tc, F~ = "£~(1 + T~.), 

F 1 = ./1. The  first and third terms of (51) are positive, and the modified system can therefore be 
stable only if the second term, which is equal to 

tan  a -  

T a + T~.- c t a n 3 '  

is negative, that is if "£~ > c tan 8. This represents a severe limitation. 
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A P P E N D I X  V 

Constants of Earth's Magnetic Field at Greenwich Meridian 

(From Admiralty Charts, 1955) 

Latitude 
(deg N) 

0 

10 

20 

30 

40 

50 

60 

70 

Dip angle, 8 
(deg) 

- 2 2 . 5  
J 

+ 0 . 1  

+23.0  

+41.8  

+55.7  

+65.6  

+72.6  

+77-6 

tan 

-0 -414  

+ 0. 002 

+ 0- 425 

+ 0. 894 

+ 1-47 

+2.20 

+3.19 

+4.55 

Horizontal field 
(c.g.s. units) 

0.287 

0" 320 

0. 323 

0" 293 

0.245 

0-194 

0.146 

0.110 

Vertical field 
(c.g.s. units) 

-0 .115  

+0"008 

+0.136 

+0.264 

+O.36O 

+ 0.428 

+ 0.470 

+ 0.50O 

The above values were obtained from the charts by visual interpolation and the accuracy of the last place of 
decimals is not guaranteed. 
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