R. & M. No. 2545 (5472) A.R.C. Technical Report



LONDON: HIS MAJESTY'S STATIONERY OFFICE

1951

FOUR SHILLINGS NET

### Notes on the Lift and Profile Drag Effects of Split and Slotted Flaps

By

#### A. D. Young, B.A. and P. A. HUFTON, M.Sc.

Communicated by the Principal Director of Scientific Research (Air), Ministry of Supply

Reports and Memoranda No. 2545\*

September, 1941

Summary.—The existing data have been analysed and a method has been derived for predicting the lift and profile-drag increments of split and slotted flaps. It is suggested that the probable order of error involved in the method is within the accuracy required for most practical purposes.

It is found that the profile-drag increments of split flaps on wing-body combinations is somewhat lower than on wings alone, whilst the converse is true for slotted flaps. It is suggested that this may be due to wing-body-flap interference effects. Nevertheless, the available data from which these results are derived are scanty and most are comparatively unreliable; further systematic tests are needed before definite conclusions can be drawn.

1. *Introduction*.—Flaps play an essential part in the take-off and landing of modern aeroplanes; for estimating the performance of an aeroplane it is therefore desirable that a satisfactory method of predicting the effect of the flaps on lift and drag should be available.

The effect of a flap on lift is best represented by the increment in the lift coefficient caused by the flap at some moderate angle of incidence. It is found, fortunately enough, that such increments, unlike increments in maximum lift, are relatively independent of test conditions such as Reynolds number and wind-tunnel turbulence, and they vary only slightly with the incidence chosen. In this note (following Lyon and Pindar<sup>40</sup> (1940)) the incidence chosen is 10 deg. above the no-lift angle, this being in the range of incidences usual at take-off. If the increment in the lift coefficient at a fixed incidence due to a flap is known the change in incidence at a fixed lift coefficient due to the flap can be easily estimated if required, given the lift-curve slope of the wing.

The effect of a flap on profile drag is similarly best represented by the increment in the profile drag coefficient at some moderate angle of incidence As with the lift increment the profile drag increment has been found to be fairly independent of test conditions, and, whilst it varies rather more than the lift increment with incidence, its variation over the range of incidences usual during the take-off run is generally small. The incidence chosen in this note is 6 deg. above the no-lift angle. Given the profile drag increment the induced drag of the flapped wing is required to complete any drag estimate. This can be obtained from the data and charts of Hollingdale<sup>42</sup> (1936), Pearson and Anderson<sup>43</sup> (1939) and Young<sup>45</sup> (1942).

<sup>\*</sup> R.A.E. Report B.A. 1707-received 1st December, 1941.

For this report the available evidence, derived from both wind-tunnel and flight tests, has been analysed to provide as far as possible a satisfactory method of predicting the lift and profile drag increments, as defined above, for split and slotted flaps. It is perhaps as well to state at this stage that much of the evidence examined is such that the probable order of error of the profile-drag data derived is large, and where this is the case some indication is made in the Tables. All data have as far as possible been converted to an aspect ratio of 6 and, except where otherwise stated, results quoted in this report all refer to that aspect ratio. The lift increment at another aspect ratio can be calculated on the assumption that it is proportional to the slope of the lift incidence curve, which is given theoretically as proportional to A/(2 + A). The effect of change of aspect ratio on profile drag increment can be neglected.

2. Lift Increment.—2.1. General.—The basis of the analysis of the lift increment data is the assumption, for which there is some theoretical justification, that for full-span flaps

where  $\Delta C_L'$  is the lift increment expressed in terms of the wing area including any extension due to the operation of the flap,  $\lambda_1 (c_f/c')$  is a function of the ratio of the flap chord  $(c_f)$  to the extended chord\* (c'), and  $\lambda_2(\beta)$  is a function of the flap angle  $(\beta)$ . The relation between  $\Delta C_L'$  and  $\Delta C_L$ , the lift increment in terms of the unextended area, is given by

where  $C_{L_0}$  is the lift coefficient of the unflapped wing at the chosen incidence. Where there is no extension of chord, as with split flaps, the two increments are identical.

For part-span flaps it is assumed that

where  $\lambda_3(b_f/b)$  is a function of the ratio of the flap span  $(b_f/b)$  to the wing span (b). The relation between  $\Delta C_L'$  and  $\Delta C_L$  is now

$$\Delta C_L' = \Delta C_L \frac{S}{S'} - C_{L_0} \left( 1 - \frac{S}{S'} \right), \quad \dots \quad (4)$$

where S' is the area of the wing, including any extension due to the flap, and S is the unextended area of the wing.

The procedure has been to analyse the available full-span flap data in order to establish the functions  $\lambda_1 (c_f/c')$  and  $\lambda_2(\beta)$  and then to establish the function  $\lambda_3 (b_f/b)$  from part-span flap data, taking careful note of any possible differences due to interference effects which might arise between flaps on wing-body combinations and flaps on wings alone.

## 2.2. Full-span Flaps.—Glauert<sup>44</sup> (1927) has demonstrated that theoretically

where a is a function only of the aspect ratio of the wing and is equal to  $2\pi$  for two-dimensional flow,  $\lambda_1 (c_f/c')$  is the function shown in Fig. 1. Tables 1 and 2 summarise the experimental data for the full-span split and slotted flaps that have been analysed The measured values of  $\Delta C_{L'}$ have been divided by the corresponding values of  $\lambda_1 (c_f/c')$  and plotted against the flap angle  $\beta$ , and it was found that for given wing thickness ratios (t/c) the resulting points approximated fairly closely to well-defined functions of  $\beta$ . These curves of  $\lambda_2(\beta)$  for t/c = 0.12, 0.21 and 0.30for split flaps are shown in Fig. 2, the corresponding curves for slotted flaps are shown in Fig. 3 (a) and (b). It was found desirable to distinguish between the N.A.C.A. types of slotted flap and the Handley Page type of slotted flap. In the former the flaps are arranged to follow, as far as

<sup>\*</sup> See Lyon and Pindar<sup>40</sup> (1940) for definition of extended chord.

possible, paths which give the optimum lift increment at any given flap angle, in the latter the flap is rotated about a fixed hinge position. As might be expected, the differences between the lift increments of the two types of slotted flap are particularly marked at the smaller flap angles.

The values of  $\lambda_1$  and  $\lambda_2$  are given in Tables 1 and 2 as are also the estimated values of  $\Delta C_{L'}$  given by the product of  $\lambda_1$  and  $\lambda_2$ . The general agreement between the measured and estimated values of  $\Delta C_{L'}$  is a justification of the basic assumption embodied in equation (1), and it follows that the curves of Figs. 1 to 3 provide a fairly reliable method of predicting the lift increments of full-span split and slotted flaps.

2.3. Part-span Flaps.—The part-span flap data that have been analysed are summarised in Tables 3 and 4. One can derive theoretically the ratio of the lift increment of a part-span flap to that of a full-span flap on wings of various taper ratios (see Hollingdale<sup>42</sup> (1936)), the resulting curves are shown in Fig. 4. An examination of the data suggests that these theoretical curves fit with reasonable accuracy the experimental variation of lift increment with flap span for both flaps on wings alone and flaps on wing-body combinations. The curves have accordingly been taken to define the function  $\lambda_3$  ( $b_f/b$ ). The values of  $\lambda_1$ ,  $\lambda_2$  and  $\lambda_3$  are given in Table 3 and 4, as are also the estimated values of  $\Delta C_L'$  ( $= \lambda_1, \lambda_2, \lambda_3$ ) which can be compared with the measured values. For flaps with cut-out the value of  $\lambda_3$  has been taken as the difference between the value corresponding to the overall flap span and the value corresponding to the cut-out.\* Bearing in mind the order of accuracy of the experimental results the agreement between the measured and estimated values of  $\Delta C_L'$  is generally very satisfactory. There appears to be no consistent difference between the results for flaps on wing-body combinations and flaps on wings alone, although for the former results the scatter between the experimental and estimated values is somewhat larger than for the latter results. There is, for example, some evidence that at least for split flaps on mid and high wings the presence of a small cut-out can be ignored and  $\lambda_3$  can be estimated on the basis of the overall flap span; further evidence on this point is desirable.

3. Profile-drag Increments.—3.1. The analysis of the profile-drag increment data has been developed on much the same lines as that described above for the lift increment data. Thus, for full-span flaps it has been assumed that the drag increment can be expressed in the form

and for part-span flaps

No account has been taken of any extension in chord in this analysis since it has been found that the profile-drag increment is not affected by chord extension in the direct way that the lift increment is affected.

The procedure, as before, has been to analyse the full-span flap data in order to establish the functions  $D_1$  and  $D_2$ , and then to establish the function  $D_3$  from part-span data.

3.2. Full-span Flaps.—There is no satisfactory theoretical approach to the prediction of the profile drag increments of flaps to provide a start to the analysis as is the case with the lift increments, hence both functions  $D_1(c_j/c)$  and  $D_2(\beta)$  are derived empirically from the available data. The functions obtained for split flaps are shown in Fig. 5a and b and those obtained for slotted flaps are shown in Fig. 6a and b. The values of  $D_1$  and  $D_2$  corresponding to the experimental data analysed are given in Tables 1 and 2, as are also the corresponding estimated values of  $\Delta C_{D_0}$ . It must be emphasised that the order of accuracy of the experimental results is frequently very low. The general agreement between the experimental and estimated values of  $\Delta C_{D_0}$  is a justification of the assumption embodied in equation (6).

(93079)

<sup>\*</sup> Where a flap is not continued across the body the resulting gap in the flap is considered a cut out.

3.3. Part-Span Flaps.—It can be expected that the profile-drag increment of a part-span flap will be roughly proportional to the ratio of flapped wing area to total wing area, and an examination of the available data of part-span flaps on wings alone, admittedly sparse and of poor accuracy, supports this view. In Fig. 7 curves are shown for various wing tapers giving this ratio for varying flap span, and these curves have accordingly been assumed to define the function of  $D_3$  ( $b_f/b$ ). The values of the functions  $D_1$ ,  $D_2$  and  $D_3$  corresponding to the data analysed are given in Tables 3 and 4.

The product  $D_1D_2D_3$  was found to be in general somewhat pessimistic in predicting  $\triangle C_{D_0}$ for split flaps on wing-body combinations and somewhat optimistic for slotted flaps on wingbody combinations. This is illustrated in Fig. 8a and 8b where the values of  $\Delta C_{D_0}/D_1 D_3$  are plotted against flap angle for the split and slotted flaps. The full curve in each case is the curve for  $D_2(\beta)$  already derived for flaps on wings alone, and it will be seen that in the case of the split flaps the points plotted lie in the main below the full curve and for the slotted flaps the points lie mainly above the full curve. It is dangerous to draw hard and fast conclusions from such little data, particularly in view of the poor accuracy of much of it, nevertheless it is reasonable to suppose that the profile drag increment due to a flap is modified to some extent by the presence of the fuselage, and hence there exists a wing-body-flap interference effect. It is obvious that such an interference effect will be a complicated function of the geometry of the aircraft, and much more data of a systematic nature is required before it can be properly understood. The evidence that we have suggests that with split flaps the interference effect is generally favourable, that is, the profile drag increment of the flap on a wing alone is greater than on a wing-body combination. This is possibly associated with some cleaning up of the flow at the wing-body junction caused by the flap, and, as might be expected, this effect diminishes in importance as the flap span is increased. On the other hand, with slotted flaps the evidence suggests that the interference effect is generally unfavourable. This may be due to the fact that with the operation of slotted flaps a definite break is caused at the wing-body junction and, in addition, it is frequently impossible to bring the flaps well up to the body. Further, a factor which cannot be left out of account is the possibility that either through inaccuracy in manufacture or distortion under load the slot shape may not conform to the design shape; the performance of a slotted flap can be seriously affected by quite small deviations of the slot shape from the optimum.

In Fig. 8a and 8b the dotted lines have been drawn as better mean curves for the plotted points than the full curves. The dotted line in Fig. 8a defines the curve  $0.85D_2(\beta)$  for split flaps, whilst that of Fig. 8b defines the curve  $1.4D_2(\beta)$  for slotted flaps. It is suggested therefore, that in the absence of further evidence, the profile drag increments on wing-body combinations of split flaps be obtained by means of the formula

and the profile-drag increments of slotted flaps be obtained by means of

Values of  $\Delta C_{D_0}$  estimated according to these formulae are given in Tables 3 and 4 where they may be compared with the measured values. The need for further tests to provide systematic data particularly for slotted flaps cannot be too strongly emphasised. Nevertheless, it is believed that the above formulae should provide a basis of prediction with a probable error of  $\pm 20$  per cent. This order of accuracy is probably within the order of accuracy of most of the experimental data analysed, and should be good enough for most cases where estimates of flap drag are required. REFERENCES

| No. | Author                   |      |     |     | Title, etc.                                                                                                                                          |
|-----|--------------------------|------|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Wenzinger                | •••  | ••  | ••  | Wind Tunnel Investigation of Ordinary and Split Flaps on Airfoils of Different Profile. N.A.C.A. T.R. No. 554. (1936.)                               |
| 2   | Wenzinger                | ••   | ••  | ••  | Wind Tunnel Measurements of Air Loads on Split Flaps. N.A.C.A. T.N. No. 498. (1934.)                                                                 |
| 3   | Wenzinger                | ••   | ••• |     | The Effect of Full Span and Partial Span Split Flaps on the Aero-<br>dynamic Characteristics of a Tapered Wing. N.A.C.A. T.N.<br>No. 505. (1934).    |
| 4   | Wenzinger and Harris     | ••   | ••• | ••  | Wind Tunnel Investigation of N.A.C.A. 23012, 23021 and 23030<br>Airfoils with Various Sizes of Split Flaps. N.A.C.A. T.R. No. 668.<br>(1939.)        |
| 5   | Abbott and Greenberg     | • '• | ••  | ••• | Tests in the Variable Density Wind Tunnel of the N.A.C.A. 23012<br>Airfoil with Plain and Split Flaps. N.A.C.A. T.R. No. 661. (1939.)                |
| 6   | Jones, Bell and Smyth    | ••   | ••• | ••• | Tests on Aerofoil Flaps in the Compressed Air Tunnel. R. & M. No. 1636. (1934.)                                                                      |
| 7   | Williams, Brown and Smy  | th   | ••• | ••• | Tests of Aerofoils R.A.F. 69 and R.A.F. 89 with and without Split<br>Flaps in the Compressed Air Tunnel. R. & M. No. 1717. (1936.)                   |
| 8   | Clark and Kirkby         | •••  | ••• | ••  | Wind Tunnel Tests of the Characteristics of Wing Flaps and their<br>Wakes. R. & M. 1698. (1936.)                                                     |
| 9   | Weick and Harris         | ••   |     | ••• | The Aerodynamic Characteristics of a Model Wing having a Split<br>Flap Deflected Downwards and Moved to the Rear. N.A.C.A.<br>T.N. No. 222. (1932.)  |
| 10  | Wenzinger and Gauvain    | •••  |     |     | Wind Tunnel Investigation of an N.A.C.A. 23012 Airfoil with a Slotted Flap and Three Types of Auxiliary Flap. N.A.C.A. T.R. No. 679. (1939.)         |
| 11  | Harris                   | •••  |     | ••• | Wind Tunnel Investigation of an N.A.C.A. 23012 Airfoil with Two<br>Arrangements of a Wide Chord Slotted Flap. N.A.C.A. T.N. No.<br>715. (1939.)      |
| 12  | Wenzinger and Harris     | ••   | ••  | ••  | Wind Tunnel Investigation of an N.A.C.A. 23021 Airfoil with Various Arrangements of Slotted Flaps. N.A.C.A. T.R. No. 677. (1939.)                    |
| 13  | F. Duschik               |      | ••• | ••  | Wind Tunnel Investigation of an N.A.C.A. 23021 Airfoil with Two<br>Arrangements of a 40 per cent. chord Slotted Flap. N.A.C.A.<br>T.N. No. 728.      |
| 14  | Harris and Recant        | •••  | ••  | ••  | Wind Tunnel Investigation of Three Airfoils Equipped with 40 per<br>cent. Double Flaps. N.A.C.A. Advance Report. A.R.C. 4834.<br>(1940.)             |
| 15  | Williams, Bell and Smyth | ••   | ••  |     | Tests on a Handley Page Aerofoil with 20 per cent. Slotted Flaps<br>in the Compressed Air Tunnel. A.R.C. 3674. (1938.)                               |
| 16  | Lees                     | •••  | ••• | ••• | Tests on Aerofoil with 30 per cent. Handley Page Slotted Flap.<br>Addendum to R.A.E. Report No. B.A. 1233. A.R.C. 2082.<br>(1936.)                   |
| 17  | <del>-</del>             | •••  | ••• | ••• | Wind Tunnel Tests of a Handley Page 15 per cent. Slotted Flap.<br>A.R.C. 3605. (1938.)                                                               |
| 18  | Williams and Brown       |      |     |     | Experiments on an N.A.C.A. 23021 Aerofoil with 15 per cent. Handley<br>Page Slotted Flap in the Compressed Air Tunnel. R. & M. 2305.<br>(Oct. 1939). |
| 19  | Wenzinger and Harris     | •••  | ••• | ••  | Wind Tunnel Investigation of an N.A.C.A. 23012 Airfoil with<br>Various Arrangements of Slotted Flaps. N.A.C.A. T.R. 664.<br>(1939)                   |
| 20  | Wenzinger                | •••  | ••  |     | The Effect of Partial Span Split Flaps on the Aerodynamic Charac-<br>teristics of a Clark Y Wing. N.A.C.A. T.N. No. 472. (1933.)                     |
|     |                          |      |     |     | 5                                                                                                                                                    |

(9307**9**)

A\* 2

i

REFERENCES—contd.

| No. |                  |        | Aut     | hor. |     |     | Title.                                                                                                                                                                                                        |
|-----|------------------|--------|---------|------|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21  | Wenzinger .      |        | •• 、    | •••  | ••  | ••  | The Effects of Full Span and Partial Span Split Flaps on the Aero-<br>dynamic Characteristics of a Tapered Wing. N.A.C.A. T.N.<br>No. 505. (1934.)                                                            |
| 22  | Wenzinger .      | •      | ••      | •••  | ••  | ••  | Wind Tunnel Investigation of Tapered Wings with Ordinary Ailerons<br>and Partial Span Split Flaps. N.A.C.A. T.R. 611. (1937.)                                                                                 |
| 23  | Bottle, Callen a | and K  | Kirkby  | ••   | ••  | ••  | The Effect of Central Cutaway on the Trim of a Low Wing Monoplane.<br>R. & M. No. 1701. (1935.)                                                                                                               |
| 24  | Sherman .        |        | ••      | ••   | ••  | ••  | Interference of Wing and Fuselage from Tests of 18 Combinations in<br>the N.A.C.A. Variable Density Tunnel. Combinations with Split<br>Flaps. N.A.C.A. T.N. No. 640. (1938.)                                  |
| 25  | House and Wa     | llace  |         |      |     | ••• | Wind Tunnel Investigation of Effect of Interference on Lateral<br>Stability Characteristics of Four N.A.C.A. 23012 Wings on an<br>Elliptical and a Circular Fuselage and Vertical Fins. N.A.C.A.<br>T.R. 705. |
| 26  | Batson .         | •      | ••      | ••   | ••  | ••  | Measurements of Forces and Moments on a "Puss Moth" Model.<br>R. & M. No. 1631. (1934.)                                                                                                                       |
| 27  | Serby and Huf    | ton    | ••      | ••   | ••  | ••• | Full Scale Tests of Landing Flaps on a Percival "Gull." R. & M. No. 1697. (1935.)                                                                                                                             |
| 28  | Serby and Sho    | ne     | ••      | •••  | ••  | ••• | Full Scale Tests of Landing Flaps on a Miles "Hawk Major." A.R.C. 1807. (1935.)                                                                                                                               |
| 29  | Francis .        | •      | ••      |      | ••• | ••• | Full Scale Tests of the Effect of Flaps on Lateral Stability and<br>Control. Part I—Tests of Falcon with Standard Wing Plan<br>Form. R. & M. 1691. (1936.)                                                    |
| 30  | Francis .        | •      | ••      |      | ••  | ••• | Full Scale Tests of the Effect of Flaps on Lateral Stability and<br>Control. Part 2—Tests of Falcon with High Taper Wing.<br>R. & M. 1691. (1937.)                                                            |
| 31  | Serby, Francis   | and I  | Forteso | cue  | ••  | ••  | Full Scale Tests of the Airspeed Envoy Type A.S.6 G. R. & M. 1816.<br>(1937.)                                                                                                                                 |
| 32  | Wallace .        | •      | ••      | ••   | ••  | ••  | Investigation of Full Scale Split Trailing Edge Wing Flaps with<br>Various Chords and Hinge Locations. N.A.C.A. T.R. 539.<br>(1935.)                                                                          |
| 33  | Wallace .        | •      | ••      | ••   | ••  | ••  | The Effect of Split Trailing Edge Wing Flaps on the Aerodynamic<br>Characteristics of a Parasol Monoplane. N.A.C.A. T.N. 475.<br>(1933.)                                                                      |
| 34  | House .          | •      | ••      | •••  | ••• | ••• | The Effects of Partial Span Slotted Flaps on the Aerodynamic<br>Characteristics of a Rectangular and a Tapered N.A.C.A. 23012<br>Wing. N.A.C.A. T.N. 719. (1939.)                                             |
| 35  | Ellis and Morg   | gan    | ••      | ••   | ••  | ••  | Wind Tunnel Tests on Slotted Flaps on a Low Wing Monoplane :<br>Flap Angle 0° to 90°. R. & M. No. 1735. (1936.)                                                                                               |
| 36  | Davies, Adams    | son a  | nd Bro  | wn   | • • |     | Wind Tunnel Tests on the Bristol B.1/39. A.R.C. 4797. (1940.)                                                                                                                                                 |
| 37  | Davies, Adams    | son a  | nd Sed  | don  | ••  | ••• | Wind Tunnel Tests on the Supermarine S.24/37. R. & M. 2451.<br>(1941.)                                                                                                                                        |
| 38  | Woodward Nu      | itt an | d Huft  | on   |     |     | Full Scale Tests of the Hendy Heok. R. & M. No. 1719. (1936.)                                                                                                                                                 |
| 39  | Francis .        | •••    | ••      | ••   | ••  | ••• | Full Scale Tests of Slotted Flaps and Ailerons on a Courier. R. & M. 1819. (1937.)                                                                                                                            |
| 40  | Lyon and Pine    | lar    | ••      | •••  | ••  | ••• | A Comparison between Different Types of Slotted Flaps. A.R.C. 4635. (1940.)                                                                                                                                   |
| 41  | Young .          |        | ••      | ••   | ••  | ••• | A Further Comparison of High Lift Devices. A.R.C. 5089. (1941.)                                                                                                                                               |
| 42  | Hollingdale .    |        | •••     | ••   | ••  | ••• | Aerodynamic Characteristics of Tapered Wings with Flaps and Slots.<br>R. & M. No. 1774. (1936.)                                                                                                               |
| 43  | Pearson and A    | nder   | son     | •••  | ••• | ••  | Calculation of the Aerodynamic Characteristics of Tapered Wings<br>with Partial Span Flaps. N.A.C.A. T.R. No. 665. (1939.)                                                                                    |
| 44  | H. Glauert .     |        | •••     | •••  | ••  | ••  | Theoretical Relationships for an Aerofoil with a Hinged Flap.<br>R. & M. No. 1095. (1927.)                                                                                                                    |
| 45  | Young            | •••    | •••     | •••  | • • | ••• | The Induced Drag of Flapped Elliptic Wings with Cut-out and with<br>Flaps that Extend the Local Chord. R. & M. 2544. (1942.)                                                                                  |

t

# TABLE 1Full-span Split Flaps

| · | Def         |         | Wing          |       | Fla                 | ıps                                                                                                                          | Meas                                                                                                                                               | ured                                                                                                                                                      | . (Ct)                                                                                                                              |                                                                                                     | Estimated                                                                                                                                          | - (0)                                                                                                                                            |                                                                                                                                      | Estimated                                                                                              |                                                  |
|---|-------------|---------|---------------|-------|---------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|   | Kei.<br>No. | Section | $\frac{t}{c}$ | Taper | · c <sub>f</sub> /c | β,<br>deg.                                                                                                                   | $\begin{vmatrix} \Delta C_L \\ (\alpha - \alpha_0 = 10^\circ) \end{vmatrix}$                                                                       | $\begin{array}{c} \Delta \ C_{D0} \\ (\alpha - \alpha_0 = 6^\circ) \end{array}$                                                                           | $\begin{vmatrix} \lambda_1 \left( \frac{j}{c} \right) \\ \text{(Fig. 1)} \end{vmatrix}$                                             | $\lambda_2 (\beta)$<br>(Fig. 2)                                                                     | $ \begin{array}{c} \Delta \ C_L \\ = \ \lambda_1 \ \lambda_2 \end{array} $                                                                         | $ \begin{array}{c} D_1 \begin{pmatrix} j \\ c \end{pmatrix} \\ (\text{Fig. } 5a) \end{array} $                                                   | $\begin{array}{c} D_2 \left(\beta\right) \\ (\text{Fig. 5b}) \end{array}$                                                            | $ \begin{array}{c} \Delta C_{D0} \\ = D_1 D_2 \end{array} $                                            | Remarks                                          |
|   | 1           | 23012   | 0.12          | 1:1   | 0.2                 | 15<br>30<br>45<br>60<br>75                                                                                                   | $\begin{array}{c} 0.33 \\ 0.68 \\ 0.86 \\ 0.92 \\ 0.93 \end{array}$                                                                                | $\begin{array}{c} 0.032 \\ 0.079 \\ 0.132 \\ 0.178 \\ 0.210 \end{array}$                                                                                  | $\begin{array}{c} 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \end{array}$                                                 | $ \begin{array}{c} 0.65 \\ 1.07 \\ 1.35 \\ 1.55 \\ 1.66 \end{array} $                               | $\begin{array}{c} 0.36 \\ 0.59 \\ 0.74 \\ 0.85 \\ 0.91 \end{array}$                                                                                | $   \begin{array}{r}     1 \cdot 00 \\     1 \cdot 00 \\     1 \cdot 00 \\     1 \cdot 00 \\     1 \cdot 00   \end{array} $                      | $\begin{array}{c} 0 \cdot 025 \\ 0 \cdot 067 \\ 0 \cdot 117 \\ 0 \cdot 167 \\ 0 \cdot 212 \end{array}$                               | $\begin{array}{c} 0.025 \\ 0.067 \\ 0.117 \\ 0.167 \\ 0.212 \end{array}$                               | Accuracy of pro-<br>file drag data<br>very poor. |
|   |             | 23021   | 0.21          | 1:1   | 0.2                 | 15<br>30<br>45<br>60<br>75                                                                                                   | $\begin{array}{c} 0 \cdot 40 \\ 0 \cdot 73 \\ 0 \cdot 98 \\ 1 \cdot 05 \\ 1 \cdot 13 \end{array}$                                                  | $ \begin{array}{r}             0.041 \\             0.096 \\             0.122 \\             0.161  \end{array} $                                        | $ \begin{array}{c} 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ \end{array} $                                            | $ \begin{array}{c} 0.84 \\ 1.44 \\ 1.83 \\ 2.11 \\ 2.27^5 \end{array} $                             | $ \begin{array}{c} 0.46 \\ 0.79 \\ 1.01 \\ 1.16 \\ 1.25 \end{array} $                                                                              | $   \begin{array}{r}     1 \cdot 00 \\     1 \cdot 00 \\   \end{array} $ | 0.016<br>0.050<br>0.100<br>0.151<br>0.197                                                                                            | $\begin{array}{c} 0 \cdot 016 \\ 0 \cdot 050 \\ 0 \cdot 100 \\ 0 \cdot 151 \\ 0 \cdot 197 \end{array}$ | Accuracy of pro-<br>file drag data<br>very poor. |
| 7 | 2           | CY      | 0.12          | 1:1   | 0·15<br>0·25        | $     \begin{array}{r}       15 \\       30 \\       45 \\       60 \\       15 \\       30 \\       45 \\     \end{array} $ | $\begin{array}{c} 0\cdot 26^5 \\ 0\cdot 49^5 \\ 0\cdot 63^5 \\ 0\cdot 71^5 \\ 0\cdot 32 \\ 0\cdot 61 \\ 0\cdot 78 \end{array}$                     | $\begin{array}{c} 0\cdot 027 \\ 0\cdot 047 \\ 0\cdot 095 \\ 0\cdot 127 \\ 0\cdot 028 \\ 0\cdot 073 \\ 0\cdot 158 \end{array}$                             | $\begin{array}{c} 0 \cdot 482 \\ 0 \cdot 482 \\ 0 \cdot 482 \\ 0 \cdot 482 \\ 0 \cdot 60 \\ 0 \cdot 60 \\ 0 \cdot 60 \end{array}$   | $\begin{array}{c} 0.65 \\ 1.07 \\ 1.35 \\ 1.55 \\ 0.65 \\ 1.07 \\ 1.35 \end{array}$                 | $\begin{array}{c} 0.31 \\ 0.52 \\ 0.65 \\ 0.75 \\ 0.39 \\ 0.64 \\ 0.81 \end{array}$                                                                | 0.7 0.7 0.7 0.7 1.34 1.34 1.34                                                                                                                   | $\begin{array}{c} 0 \cdot 025 \\ 0 \cdot 067 \\ 0 \cdot 117 \\ 0 \cdot 167 \\ 0 \cdot 025 \\ 0 \cdot 067 \\ 0 \cdot 117 \end{array}$ | $\begin{array}{c} 0.018\\ 0.047\\ 0.082\\ 0.110\\ 0.034\\ 0.090\\ 0.157\end{array}$                    | Accuracy of pro-<br>file drag data<br>very poor. |
|   | 3           | CY      | 0.12          | 5:1   | 0·15<br>0·25        | $     15 \\     30 \\     45 \\     60 \\     75 \\     15 \\     30 \\     45 \\     60   $                                 | $\begin{array}{c} 0\cdot 28^5 \\ 0\cdot 50 \\ 0\cdot 67 \\ 0\cdot 76 \\ 0\cdot 82 \\ 0\cdot 36 \\ 0\cdot 66 \\ 0\cdot 85 \\ 0\cdot 94 \end{array}$ | $\begin{array}{c} 0\cdot 007 \\ 0\cdot 057 \\ 0\cdot 079 \\ 0\cdot 098 \\ 0\cdot 108 \\ 0\cdot 046 \\ 0\cdot 085 \\ 0\cdot 113 \\ 0\cdot 164 \end{array}$ | $\begin{array}{c} 0.482 \\ 0.482 \\ 0.482 \\ 0.482 \\ 0.482 \\ 0.482 \\ 0.60 \\ 0.60 \\ 0.60 \\ 0.60 \end{array}$                   | $\begin{array}{c} 0.65 \\ 1.07 \\ 1.35 \\ 1.55 \\ 1.66 \\ 0.65 \\ 1.07 \\ 1.35 \\ 1.55 \end{array}$ | $\begin{array}{c} 0\cdot 31 \\ 0\cdot 51^5 \\ 0\cdot 65 \\ 0\cdot 75 \\ 0\cdot 80 \\ 0\cdot 39 \\ 0\cdot 64 \\ 0\cdot 81 \\ 0\cdot 93 \end{array}$ | $\begin{array}{c} 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \end{array}$                              | $\begin{array}{c} 0.025\\ 0.067\\ 0.117\\ 0.167\\ 0.212\\ 0.025\\ 0.067\\ 0.117\\ 0.167\\ \end{array}$                               | $\begin{array}{c} 0.018\\ 0.047\\ 0.082\\ 0.117\\ 0.148\\ 0.029\\ 0.077\\ 0.135\\ 0.192\\ \end{array}$ | Accuracy of pro-<br>file drag data<br>very poor. |
|   | 4           | 23012   | 0.12          | 1:1   | 0.10                | 15<br>30<br>45<br>60<br>75<br>90                                                                                             | $\begin{array}{c} 0.29 \\ 0.47 \\ 0.58 \\ 0.69 \\ 0.72 \\ 0.72 \end{array}$                                                                        | $\begin{array}{c} 0 \cdot 010 \\ 0 \cdot 031 \\ 0 \cdot 054 \\ 0 \cdot 074 \\ 0 \cdot 096 \\ 0 \cdot 106 \end{array}$                                     | $\begin{array}{c} 0\cdot 395\\ 0\cdot 395\end{array}$ | $ \begin{array}{r} 0.65\\ 1.07\\ 1.35\\ 1.55\\ 1.66\\ 1.68 \end{array} $                            | $\begin{array}{c} 0.26 \\ 0.42 \\ 0.53 \\ 0.61 \\ 0.66 \\ 0.66 \end{array}$                                                                        | $\begin{array}{c} 0 \cdot 43 \\ 0 \cdot 43 \end{array}$                    | $\begin{array}{c} 0.025\\ 0.067\\ 0.117\\ 0.167\\ 0.212\\ 0.234\end{array}$                                                          | $\begin{array}{c} 0.011 \\ 0.029 \\ 0.050 \\ 0.072 \\ 0.091 \\ 0.100 \end{array}$                      | · · ·                                            |

#### TABLE 1 (contd.)

·

|   |             |         | Wing          |       | Fla                             | ıps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Meas                                                                                                                                                                                                                                        | sured                                                                                                                                                                                                                                                                                                                               | . (Ct)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                     | Estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $D(c_{\rm f})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Estimated                                                                                                                                                                                                                         |         |
|---|-------------|---------|---------------|-------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|   | Ref.<br>No. | Section | $\frac{t}{c}$ | Taper | c <sub>s</sub> /c               | β,<br>deg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\boxed{\begin{array}{c} \Delta C_{L} \\ (\alpha - \alpha_{0} = 10^{\circ}) \end{array}}$                                                                                                                                                   | $ \begin{array}{c} \Delta \ C_{D0} \\ (\alpha - \alpha_0 = 6^\circ) \end{array} $                                                                                                                                                                                                                                                   | $\lambda_1\left(\frac{1}{c}\right)$ (Fig. 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\lambda_2 (\beta)$<br>(Fig. 2)                                                                                                                                                                                                     | $ \begin{vmatrix} \Delta C_{L} \\ = \lambda_{1} \lambda_{2} \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} D_1 \left( \begin{array}{c} 2\\ c \end{array} \right) \\ (\text{Fig. 5}a) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $D_2(\beta)$<br>(Fig. 5b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \overset{\Delta C_{D0}}{=} D_1 D_2 $                                                                                                                                                                                            | Remarks |
| Ø | 4           | 23012   | 0.12          | 1:1   | 0·2<br>0·3<br>0·4<br>0·1<br>0·2 | $\begin{array}{c} 10\\ 20\\ 30\\ 45\\ 60\\ 75\\ 15\\ 30\\ 45\\ 60\\ 75\\ 15\\ 30\\ 45\\ 60\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 15\\ 30\\ 45\\ 60\\ 75\\ 90\\ 75\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80$ | $\begin{array}{c} 0.23 \\ 0.44 \\ 0.60 \\ 0.74 \\ 0.98 \\ 0.99 \\ 0.48 \\ 0.76 \\ 0.97 \\ 1.12 \\ 1.14 \\ 0.52 \\ 0.87 \\ 1.11 \\ 1.23 \\ 0.33 \\ 0.51 \\ 0.74 \\ 0.82 \\ 0.89 \\ 0.97 \\ 0.49 \\ 0.79 \\ 1.04 \\ 1.19 \\ 1.29 \end{array}$ | $\begin{array}{c} 0.012\\ 0.035\\ 0.066\\ 0.119\\ 0.166\\ 0.205\\ 0.041\\ 0.114\\ 0.194\\ 0.280\\ 0.342\\ 0.059\\ 0.156\\ 0.279\\ 0.399\\ 0.059\\ 0.156\\ 0.279\\ 0.399\\ 0.007\\ 0.018\\ 0.039\\ 0.007\\ 0.018\\ 0.039\\ 0.007\\ 0.018\\ 0.039\\ 0.060\\ 0.079\\ 0.091\\ 0.017\\ 0.055\\ 0.104\\ 0.154\\ 0.199\\ 0.022\end{array}$ | $\begin{array}{c} 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.65\\ 0.65\\ 0.65\\ 0.65\\ 0.65\\ 0.74\\ 0.74\\ 0.74\\ 0.74\\ 0.395\\ 0.395\\ 0.395\\ 0.395\\ 0.395\\ 0.395\\ 0.395\\ 0.395\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.5$ | $\begin{array}{c} 0.45\\ 0.76\\ 1.07\\ 1.35\\ 1.55\\ 1.66\\ 0.65\\ 1.07\\ 1.35\\ 1.55\\ 1.66\\ 0.65\\ 1.07\\ 1.35\\ 1.55\\ 1.55\\ 1.55\\ 0.84\\ 1.44\\ 1.83\\ 2.11\\ 2.27^5\\ 2.33\\ 0.84\\ 1.44\\ 1.83\\ 2.11\\ 2.27^5\end{array}$ | $\begin{array}{c} 0.25\\ 0.42\\ 0.59\\ 0.74\\ 0.85\\ 0.91\\ 0.42\\ 0.70\\ 0.88\\ 1.01\\ 1.08\\ 0.79\\ 1.00\\ 1.15\\ 0.33\\ 0.57\\ 0.72\\ 0.83\\ 0.90\\ 0.92\\ 0.46\\ 0.79\\ 1.01\\ 1.16\\ 1.25\\ 1.25\\ 0.21\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\$ | $\begin{array}{c} 1\cdot 00\\ 1\cdot 64\\ 2\cdot 17\\ 0\cdot 43\\ 0\cdot 43\\ 0\cdot 43\\ 0\cdot 43\\ 0\cdot 43\\ 0\cdot 43\\ 1\cdot 00\\ 1\cdot 0\\ 1$ | 0.014<br>0.038<br>0.067<br>0.117<br>0.167<br>0.212<br>0.025<br>0.067<br>0.117<br>0.167<br>0.212<br>0.025<br>0.067<br>0.117<br>0.167<br>0.167<br>0.016<br>0.050<br>0.100<br>0.151<br>0.197<br>0.223<br>0.016<br>0.050<br>0.100<br>0.151<br>0.023<br>0.025<br>0.025<br>0.067<br>0.117<br>0.025<br>0.025<br>0.067<br>0.117<br>0.0212<br>0.025<br>0.067<br>0.117<br>0.025<br>0.067<br>0.117<br>0.025<br>0.067<br>0.117<br>0.025<br>0.067<br>0.117<br>0.025<br>0.067<br>0.016<br>0.050<br>0.100<br>0.151<br>0.023<br>0.016<br>0.0200<br>0.023<br>0.016<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.000000<br>0.00000000000000000000000000000000000 | 0.014<br>0.038<br>0.067<br>0.117<br>0.167<br>0.212<br>0.041<br>0.192<br>0.274<br>0.349<br>0.054<br>0.146<br>0.255<br>0.363<br>0.007<br>$0.021^5$<br>0.043<br>0.065<br>0.085<br>0.096<br>0.016<br>0.050<br>0.100<br>0.151<br>0.922 |         |
|   |             |         |               |       | 0·3                             | 90<br>15<br>30<br>45<br>60<br>75<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c} 1 \cdot 31 \\ 0 \cdot 66 \\ 1 \cdot 01 \\ 1 \cdot 30 \\ 1 \cdot 49 \\ 1 \cdot 58 \\ 0 \cdot 74 \end{array} $                                                                                                             | $\begin{array}{c} 0\cdot 233 \\ 0\cdot 028 \\ 0\cdot 089 \\ 0\cdot 162 \\ 0\cdot 232 \\ 0\cdot 324 \\ 0\cdot 041 \end{array}$                                                                                                                                                                                                       | $\begin{array}{c} 0.55\\ 0.65\\ 0.65\\ 0.65\\ 0.65\\ 0.65\\ 0.65\\ 0.74\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2 \cdot 33 \\ 0 \cdot 84 \\ 1 \cdot 44 \\ 1 \cdot 83 \\ 2 \cdot 11 \\ 2 \cdot 27^{5} \\ 0 \cdot 84$                                                                                                                                | $ \begin{array}{c} 1 \cdot 28 \\ 0 \cdot 55 \\ 0 \cdot 94 \\ 1 \cdot 19 \\ 1 \cdot 39 \\ 1 \cdot 48 \\ 0 \cdot 62 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1 \cdot 00$<br>$1 \cdot 59$<br>$1 \cdot 59$<br>$1 \cdot 59$<br>$1 \cdot 59$<br>$1 \cdot 59$<br>$1 \cdot 59$<br>$2 \cdot 09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.223<br>0.016<br>0.050<br>0.100<br>0.151<br>0.197<br>0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0\cdot 223 \\ 0\cdot 025^5 \\ 0\cdot 080 \\ 0\cdot 159 \\ 0\cdot 240 \\ 0\cdot 314 \\ 0\cdot 033^5 \end{array}$                                                                                                 |         |
|   |             |         |               |       | ~ *                             | 30<br>45<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1 \cdot 18 \\ 1 \cdot 49 \\ 1 \cdot 69$                                                                                                                                                                                                    | $0.117 \\ 0.233 \\ 0.360$                                                                                                                                                                                                                                                                                                           | 0·74<br>0·74<br>0·74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1 \cdot 44 \\ 1 \cdot 88 \\ 2 \cdot 11$                                                                                                                                                                                            | $1 \cdot 07 \\ 1 \cdot 35 \\ 1 \cdot 56$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.09 \\ 2.09 \\ 2.09 \\ 2.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.050 \\ 0.100 \\ 0.151$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.105 \\ 0.209 \\ 0.316$                                                                                                                                                                                                         |         |

TABLE 1 (contd.)

|             |         | Wing          |       | Fla               | ps                                                                     | Meas                                                                                                                                                                        | ured                                                                                                                                                           | $\binom{C_f}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) <i>(R</i> )                                                                                           | Estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $D\left( \stackrel{c_{f}}{\longrightarrow} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D. (R)                                                                                                                                                               | Estimated                                                                                      |         |
|-------------|---------|---------------|-------|-------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------|
| Ref.<br>No. | Section | $\frac{t}{c}$ | Taper | c <sub>f</sub> /c | β,<br>deg.                                                             | $\begin{array}{c} \Delta C_{\rm L} \\ (\alpha - \alpha_0 = 10^{\circ}) \end{array}$                                                                                         | $\begin{array}{c} \Delta \ C_{D0} \\ (\alpha_0 - \alpha = 6^\circ) \end{array}$                                                                                | $\left \begin{array}{c} \lambda_1 \left(\frac{-}{c}\right) \\ \text{(Fig. 1)} \end{array}\right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Fig. 2) $^{\lambda_2}(Fig. 2)$                                                                         | $ \begin{array}{c} \Delta \ C_L \\ = \lambda_1 \ \lambda_2 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\left( \frac{1}{c} \right)$ (Fig. 5 <i>a</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} D_2 (p) \\ (Fig. 5b) \end{array}$                                                                                                                  | $\begin{vmatrix} \Delta C_{D_0} \\ = D_1 D_2 \end{vmatrix}$                                    | Remarks |
| 4           | 23030   | 0.30          | 1:1   | 0.1               | 15<br>30                                                               | $\begin{array}{c} 0.35\\ 0.65\end{array}$                                                                                                                                   | $\begin{array}{c} 0\cdot 007 \\ 0\cdot 011 \end{array}$                                                                                                        | $0.395 \\ 0.395$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c}1\cdot00\\1\cdot74\end{array}$                                                         | $\begin{array}{c} 0\cdot 39^5 \\ 0\cdot 69 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c c} 0\cdot 43\\ 0\cdot 43\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.011 \\ 0.037 \\ 0.037$                                                                                                                                            | $0.005 \\ 0.016 \\ 0.022$                                                                      |         |
|             | -       |               |       |                   | 45<br>60<br>75                                                         | $     \begin{array}{r}       0 \cdot 89 \\       1 \cdot 07 \\       1 \cdot 12     \end{array} $                                                                           | $ \begin{array}{c} 0.027 \\ 0.046 \\ 0.063 \end{array} $                                                                                                       | $ \begin{array}{c c} 0.395 \\ 0.395 \\ 0.395 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c c} 2 \cdot 27^{\circ} \\ 2 \cdot 63 \\ 2 \cdot 84 \end{array} $                       | $0.40 \\ 1.04 \\ 1.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c c} 0.43 \\ 0.43 \\ 0.43 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.075 \\ 0.122 \\ 0.166$                                                                                                                                            | $ \begin{array}{c} 0.032 \\ 0.052 \\ 0.071 \end{array} $                                       |         |
|             |         |               |       | $0\cdot 2$        | 90<br>105<br>15<br>30<br>45                                            | $ \begin{array}{c} 1 \cdot 15 \\ 1 \cdot 14 \\ 0 \cdot 52 \\ 0 \cdot 93 \\ 1 \cdot 27 \end{array} $                                                                         | $ \begin{array}{c} 0.071 \\ 0.079 \\ 0.010 \\ 0.034 \\ 0.078 \end{array} $                                                                                     | $\begin{array}{c} 0.395 \\ 0.395 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c c} 2 \cdot 91 \\ 2 \cdot 85 \\ 1 \cdot 00 \\ 1 \cdot 74 \\ 2 \cdot 27^5 \end{array} $ | $ \begin{array}{c} 1 \cdot 15 \\ 1 \cdot 13 \\ 0 \cdot 55 \\ 0 \cdot 96 \\ 1 \cdot 25 \\ 1 \cdot $ | $ \begin{array}{c c} 0.43 \\ 0.43 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\$ | $\begin{array}{c} 0.200 \\ 0.198 \\ 0.011 \\ 0.037 \\ 0.075 \\ 0.102 \end{array}$                                                                                    | $\begin{array}{c} 0.086\\ 0.085\\ 0.011\\ 0.037\\ 0.075\\ 0.120\\ \end{array}$                 |         |
|             |         |               |       | 0.3               | $ \begin{array}{c c} 60 \\ 75 \\ 90 \\ 15 \\ 30 \\ 45 \\ \end{array} $ | $ \begin{array}{c c} 1 \cdot 47 \\ 1 \cdot 57 \\ 1 \cdot 62 \\ 9 \cdot 66 \\ 1 \cdot 14 \\ 1 \cdot 49 \\ \end{array} $                                                      | $ \begin{array}{c} 0.120\\ 0.164\\ 0.200\\ 0.016\\ 0.066\\ 0.132 \end{array} $                                                                                 | $ \begin{array}{c c} 0.55 \\ 0.55 \\ 0.55 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                  | $ \begin{array}{c c} 1 \cdot 45 \\ 1 \cdot 56 \\ 1 \cdot 60 \\ 0 \cdot 65 \\ 1 \cdot 14 \\ 1 \cdot 48 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c c} 1 \cdot 00 \\ 1 \cdot 00 \\ 1 \cdot 72 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} 0.122 \\ 0.166 \\ 0.200 \\ 0.011 \\ 0.037 \\ 0.075 \end{array} $                                                                                  | $ \begin{array}{c c} 0.122\\ 0.166\\ 0.200\\ 0.019\\ 0.064\\ 0.130 \end{array} $               |         |
|             |         |               |       | 0.4               | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                 | $ \begin{array}{c} 1 & 43 \\ 1 & 71 \\ 1 & 85 \\ 1 & 89 \\ 0 & 77 \\ 1 & 31 \\ 1 & 70 \\ 1 & 93 \\ 2 & 10 \end{array} $                                                     | $\begin{array}{c} 0 & 102 \\ 0 \cdot 208 \\ 0 \cdot 294 \\ 0 \cdot 379 \\ 0 \cdot 028 \\ 0 \cdot 102 \\ 0 \cdot 191 \\ 0 \cdot 285 \\ 0 \cdot 422 \end{array}$ | $ \begin{array}{c cccc} 0.65 \\ 0.65 \\ 0.65 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.74 \\ 0.7$  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                  | $ \begin{array}{c} 1.71\\ 1.85\\ 1.89\\ 0.74\\ 1.29\\ 1.68\\ 1.95\\ 2.10 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0 \cdot 122 \\ 0 \cdot 166 \\ 0 \cdot 200 \\ 0 \cdot 011 \\ 0 \cdot 037 \\ 0 \cdot 075 \\ 0 \cdot 122 \\ 0 \cdot 166 \end{array}$                  | $\begin{array}{c} 0.210\\ 0.286\\ 0.344\\ 0.027\\ 0.090\\ 0.183\\ 0.298\\ 0.405\\ \end{array}$ |         |
| 5           | 23012   | 0.12          | 1:1   | 0.2               | 5<br>10<br>15<br>20<br>30<br>45<br>60<br>75<br>90                      | $\begin{array}{c} 0 \cdot 14 \\ 0 \cdot 25^5 \\ 0 \cdot 36 \\ 0 \cdot 45 \\ 0 \cdot 64^5 \\ 0 \cdot 81 \\ 0 \cdot 91 \\ 0 \cdot 91 \\ 0 \cdot 91 \\ 0 \cdot 91 \end{array}$ | $\begin{array}{c} 0 \cdot 003 \\ 0 \cdot 010 \\ 0 \cdot 019 \\ 0 \cdot 034 \\ 0 \cdot 066 \\ 0 115 \\ 0 \cdot 159 \\ 0 \cdot 197 \\ 0 \cdot 223 \end{array}$   | $\begin{array}{c} 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.25\\ 0.45\\ 0.65\\ 0.76\\ 1.07\\ 1.35\\ 1.55\\ 1.66\\ 1.68\\ \end{array}$           | $\begin{array}{c} 0.14 \\ 0.25 \\ 0.36 \\ 0.42 \\ 0.59 \\ 0.74 \\ 0.85 \\ 0.91 \\ 0.92 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} 1 \cdot 00 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c} 0 \cdot 006 \\ 0 \cdot 014 \\ 0 \cdot 025 \\ 0 \cdot 038 \\ 0 \cdot 067 \\ 0 \cdot 117 \\ 0 \cdot 167 \\ 0 \cdot 212 \\ 0 \cdot 234 \end{array} $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                          |         |

.

| D-f    |                  | Wing           |              | Fla                                                   | aps                                                                                                                                                                                                                            | Meas                                                                                                                               | sured                                                                                                                               | (C)                                                                                                                    |                                                                                                                                      | Estimated                                                                                                               | D (°)                                                                                                                                                                                                                       |                                                                                                                                                                                                                                | Estimated                                                                                                                                                                                            |                                             |
|--------|------------------|----------------|--------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| No.    | Section          | $\frac{t}{c}$  | Taper        | с <sub>f</sub> /с                                     | $\begin{vmatrix} \beta \\ \text{deg.} \end{vmatrix}$                                                                                                                                                                           | $\begin{vmatrix} \Delta C_L \\ (\alpha - \alpha_0 = 10^\circ) \end{vmatrix}$                                                       | $\begin{vmatrix} \Delta C_{D0} \\ (\alpha - \alpha_0 = 6^\circ) \end{vmatrix}$                                                      | $ \begin{array}{c} \lambda_1 \left( \frac{1}{c'} \right) \\ \text{(Fig. 1)} \end{array} $                              | (Fig. 2) $\lambda_2 (\beta)$                                                                                                         | $\begin{vmatrix} \Delta C_{L} \\ = \lambda_{1} \lambda_{2} \end{vmatrix}$                                               | $\begin{vmatrix} D_1 \begin{pmatrix} - \\ c \end{pmatrix} \\ (\text{Fig. } 5a) \end{vmatrix}$                                                                                                                               | $D_2 (\beta)$<br>(Fig. 5b)                                                                                                                                                                                                     | $ \overset{\Delta C_{D0}}{=} D_1 D_2 $                                                                                                                                                               | Remarks                                     |
| 6<br>6 | RAF 48<br>CY     | $0.15 \\ 0.12$ | $1:1 \\ 1:1$ | $\begin{array}{c} 0 \cdot 1 \\ 0 \cdot 1 \end{array}$ | 90<br>90                                                                                                                                                                                                                       | $\begin{array}{c} 0\cdot 64 \\ 0\cdot 78 \end{array}$                                                                              |                                                                                                                                     | $0.395 \\ 0.395$                                                                                                       | $1.87 \\ 1.68$                                                                                                                       | $\begin{array}{c c} 0.74\\ 0.66\end{array}$                                                                             | $\begin{array}{c} 0\cdot 43 \\ 0\cdot 43 \end{array}$                                                                                                                                                                       | $0.230 \\ 0.234$                                                                                                                                                                                                               | $\begin{array}{c} 0\cdot 099\\ 0\cdot 100\end{array}$                                                                                                                                                |                                             |
| 7      | raf 69<br>raf 89 | $0.21 \\ 0.25$ | 1:1<br>1:1   | $0.15 \\ 0.15$                                        | 90<br>90                                                                                                                                                                                                                       | $0.885 \\ 1.025$                                                                                                                   | $0.150 \\ 0.137$                                                                                                                    | $0.482 \\ 0.482$                                                                                                       | $2 \cdot 33$<br>$2 \cdot 60$                                                                                                         | $\begin{array}{c}1\cdot12\\1\cdot25\end{array}$                                                                         | $\begin{array}{c} 0\cdot 70 \\ 0\cdot 70 \end{array}$                                                                                                                                                                       | $0.223 \\ 0.215$                                                                                                                                                                                                               | $ \begin{array}{r} 0.156\\ 0.150 \end{array} $                                                                                                                                                       |                                             |
| 8      | raf 44           | 0.15           | 1:1          | $\begin{array}{c} 0 \cdot 1 \\ 0 \cdot 2 \end{array}$ | 67<br>97<br>67<br>97                                                                                                                                                                                                           | $ \begin{array}{c} 0.77 \\ 0.74 \\ 0.98 \\ 0.90 \end{array} $                                                                      | $ \begin{array}{c} 0.087 \\ 0.110 \\ 0.179 \\ 0.227 \end{array} $                                                                   | $\begin{array}{c} 0.395 \\ 0.395 \\ 0.55 \\ 0.55 \\ 0.55 \end{array}$                                                  | $     \begin{array}{r}       1 \cdot 82 \\       1 \cdot 90 \\       1 \cdot 02 \\       1 \cdot 90     \end{array} $                | $ \begin{array}{c} 0.72 \\ 0.75 \\ 1.00 \\ 1.05 \end{array} $                                                           | $ \begin{array}{c} 0.43 \\ 0.43 \\ 1.00 \\ 1.00 \end{array} $                                                                                                                                                               | $\begin{array}{c} 0\cdot 183 \\ 0\cdot 228 \\ 0\cdot 183 \\ 0\cdot 228 \end{array}$                                                                                                                                            | $ \begin{array}{c} 0.079 \\ 0.098 \\ 0.183 \\ 0.228 \end{array} $                                                                                                                                    |                                             |
| 9      | СҮ               | 0.12           | 1:1          | 0.2                                                   | $     \begin{array}{r}       15 \\       30 \\       45 \\       60 \\       75 \\       15 \\       30 \\       45 \\       60 \\       15 \\       30 \\       45 \\       60 \\       45 \\       60 \\       \end{array} $ | $\begin{array}{c} 0.34\\ 0.58\\ 0.77^{5}\\ 0.83\\ 0.87^{5}\\ 0.41\\ 0.69\\ 0.87\\ 0.96\\ 0.45\\ 0.77\\ -0.96\\ 1.02\\ \end{array}$ | $\begin{array}{c} 0.028\\ 0.069\\ 0.117\\ 0.171\\ 0.199\\ 0.033\\ 0.115\\ 0.185\\ 0.266\\ 0.043\\ 0.126\\ 0.227\\ 0.334\end{array}$ | $\begin{array}{c} 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.65\\ 0.65\\ 0.65\\ 0.65\\ 0.74\\ 0.74\\ 0.74\\ 0.74\end{array}$ | $\begin{array}{c} 0.65\\ 1.07\\ 1.35\\ 1.55\\ 1.66\\ 0.65\\ 1.07\\ 1.35\\ 1.55\\ 0.65\\ 1.07\\ 1.35\\ 1.55\\ 1.55\\ 1.55\end{array}$ | $\begin{array}{c} 0.36\\ 0.59\\ 0.74\\ 0.85\\ 0.91\\ 0.42\\ 0.69\\ 0.88\\ 1.01\\ 0.48\\ 0.79\\ 1.00\\ 1.14 \end{array}$ | $\begin{array}{c} 1\cdot 00\\ 1\cdot 00\\ 1\cdot 00\\ 1\cdot 00\\ 1\cdot 00\\ 1\cdot 64\\ 1\cdot 64\\ 1\cdot 64\\ 1\cdot 64\\ 1\cdot 64\\ 2\cdot 17\\ 2\cdot 17\\ 2\cdot 17\\ 2\cdot 17\\ 2\cdot 17\\ 2\cdot 17\end{array}$ | $\begin{array}{c} 0 \cdot 025 \\ 0 \cdot 067 \\ 0 \cdot 117 \\ 0 \cdot 167 \\ 0 \cdot 212 \\ 0 \cdot 025 \\ 0 \cdot 067 \\ 0 \cdot 117 \\ 0 \cdot 167 \\ 0 \cdot 025 \\ 0 \cdot 067 \\ 0 \cdot 117 \\ 0 \cdot 167 \end{array}$ | $\begin{array}{c} 0\cdot 025\\ 0\cdot 067\\ 0\cdot 117\\ 0\cdot 167\\ 0\cdot 212\\ 0\cdot 041\\ 0\cdot 110\\ 0\cdot 192\\ 0\cdot 274\\ 0\cdot 054\\ 0\cdot 145\\ 0\cdot 254\\ 0\cdot 362\end{array}$ | Accuracy of pro-<br>file drag data<br>poor. |

TABLE 1 (contd.)

TABLE 2AFull-span Slotted Flaps, NACA Type.(Optimum flap path)

|             |         | Wing          |       |                   | Flaps                                                                                                                                                              |                                                                                                               | M                                                                                                                 | leasured                                                                                                                                         |                                                                                                                                                                    | , (c <sub>t</sub> )                                                                                                       |                                                                                                                                                                              | Estimated                                                                                                       | D (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      | Estimated                                                                                                                                                          |         |
|-------------|---------|---------------|-------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Ref.<br>No. | Section | $\frac{t}{c}$ | Taper | c <sub>f</sub> /c | c <sub>f</sub> /c'                                                                                                                                                 | $\beta$ deg.                                                                                                  | $\begin{vmatrix} \Delta C_L \\ (\alpha - \alpha_0 = 10^\circ) \end{vmatrix}$                                      | $\Delta C_{L}'$                                                                                                                                  | $\begin{vmatrix} \Delta C_{D0} \\ (\alpha - \alpha_0 = 6^\circ) \end{vmatrix}$                                                                                     | $\begin{vmatrix} \lambda_1 \begin{pmatrix} \neg \\ c' \end{pmatrix} \\ \text{(Fig. 1)} \end{vmatrix}$                     | Fig. 3                                                                                                                                                                       | $ \begin{array}{c} \Delta \ C_{\mathcal{L}}' \\ = \lambda_1 \ \lambda_2 \end{array} $                           | $\begin{array}{c} D_1\left(\frac{1}{c}\right)\\ \text{Fig. 6}(a) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} D_2 \left( \beta \right) \\ \text{Fig. 6}(b) \end{array}$                                                                                          | $ \begin{vmatrix} \Delta C_{p_0} \\ = D_1 D_2 \end{vmatrix} $                                                                                                      | Remarks |
| 10          | 23012   | 0.12          | 1:1   | 0·10<br>0·257     | $\begin{array}{c} 0 \cdot 098 \\ 0 \cdot 097 \\ 0 \cdot 097 \\ 0 \cdot 252 \\ 0 \cdot 246 \\ 0 \cdot 243 \\ 0 \cdot 240 \\ 0 \cdot 236 \\ 0 \cdot 236 \end{array}$ | $\begin{array}{c} 20 \\ 40 \\ 50 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \end{array}$                             | $\begin{array}{c} 0.42 \\ 0.66 \\ 0.75 \\ 0.40 \\ 0.73 \\ 1.02 \\ 1.17 \\ 1.16 \\ 1.16 \end{array}$               | $\begin{array}{c} 0\cdot 40 \\ 0\cdot 62 \\ 0\cdot 71 \\ 0\cdot 38 \\ 0\cdot 67 \\ 0\cdot 93 \\ 1\cdot 04 \\ 1\cdot 00 \\ 1\cdot 00 \end{array}$ | $\begin{array}{c} 0 \cdot 004 \\ 0 \cdot 018 \\ 0 \cdot 024 \\ 0 \cdot 003 \\ 0 \cdot 007 \\ 0 \cdot 021 \\ 0 \cdot 053 \\ 0 \cdot 079 \\ 0 \cdot 103 \end{array}$ | $\begin{array}{c} 0.39\\ 0.38^{5}\\ 0.38^{5}\\ 0.60\\ 0.60\\ 0.59^{5}\\ 0.59\\ 0.58^{5}\\ 0.58^{5}\\ 0.58^{5}\end{array}$ | $ \begin{array}{c} 1 \cdot 15 \\ 1 \cdot 70 \\ 1 \cdot 78 \\ 0 \cdot 66 \\ 1 \cdot 15 \\ 1 \cdot 50 \\ 1 \cdot 70 \\ 1 \cdot 78 \\ 1 \cdot 78 \\ 1 \cdot 76 \\ \end{array} $ | $\begin{array}{c} 0.45\\ 0.65\\ 0.69\\ 0.40\\ 0.69\\ 0.90\\ 1.01\\ 1.04\\ 1.03\\ \end{array}$                   | $0.45 \\ 0.45 \\ 0.45 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ 1.41 \\ $ | $\begin{array}{c} 0 \cdot 007 \\ 0 \cdot 039 \\ 0 \cdot 059 \\ 0 \cdot 003^5 \\ 0 \cdot 007 \\ 0 \cdot 020 \\ 0 \cdot 039 \\ 0 \cdot 059 \\ 0 \cdot 075 \end{array}$ | $\begin{array}{c} 0.003 \\ 0.018 \\ 0.026^5 \\ 0.003^5 \\ 0.010 \\ 0.028 \\ 0.055 \\ 0.083 \\ 0.106 \end{array}$                                                   |         |
| 11          | 23012   | 0.12          | 1:1   | 0.400             | $\begin{array}{c} 0.381 \\ 0.370 \\ 0.364 \\ 0.357 \\ 0.357 \end{array}$                                                                                           | 10<br>20<br>30<br>40<br>50                                                                                    | $ \begin{array}{c} 0.53 \\ 0.99 \\ 1.38 \\ 1.28^{5} \\ 1.34 \end{array} $                                         | 0.47<br>0.86<br>1.19<br>1.07<br>1.12                                                                                                             | $\begin{array}{c} 0.006 \\ 0.013 \\ 0.022 \\ 0.115 \\ 0.191 \end{array}$                                                                                           | $\begin{array}{c} 0 \cdot 72^{5} \\ 0 \cdot 71 \\ 0 \cdot 71 \\ 0 \cdot 70 \\ 0 \cdot 70 \end{array}$                     | $ \begin{array}{r} 0.66\\ 1.15\\ 1.50\\ 1.70\\ 1.78 \end{array} $                                                                                                            | $ \begin{array}{r} 0.48 \\ 0.82 \\ 1.06 \\ 1.19 \\ 1.25 \end{array} $                                           | $   \begin{array}{r}     3 \cdot 18 \\     3 \cdot 18 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0 \cdot 002^{5} \\ 0 \cdot 007 \\ 0 \cdot 020 \\ 0 \cdot 039 \\ 0 \cdot 059 \end{array}$                                                           | $ \begin{array}{c} 0.008 \\ 0.022 \\ 0.064 \\ 0.124 \\ 0.185 \end{array} $                                                                                         |         |
| 12          | 23021   | 0.21          | 1:1   | 0.257             | $\begin{array}{c} 0 \cdot 252 \\ 0 \cdot 246 \\ 0 \cdot 243 \\ 0 \cdot 237 \\ 0 \cdot 236 \\ 0 \cdot 236 \end{array}$                                              | $     \begin{array}{r}       10 \\       20 \\       30 \\       40 \\       50 \\       60     \end{array} $ | $\begin{array}{c} 0 \cdot 44 \\ 0 \cdot 83 \\ 0 \cdot 98 \\ 1 \cdot 13 \\ 1 \cdot 19 \\ 1 \cdot 26^5 \end{array}$ | $\begin{array}{c} 0 \cdot 41^5 \\ 0 \cdot 76^5 \\ 0 \cdot 89 \\ 0 \cdot 99 \\ 1 \cdot 04 \\ 1 \cdot 10 \end{array}$                              | $\begin{array}{c} 0 \cdot 008 \\ 0 \cdot 014 \\ 0 \cdot 035 \\ 0 \cdot 066 \\ 0 \cdot 101 \\ 0 \cdot 119 \end{array}$                                              | $\begin{array}{c} 0 \cdot 60 \\ 0 \cdot 60 \\ 0 \cdot 59^5 \\ 0 \cdot 58^5 \\ 0 \cdot 58^5 \\ 0 \cdot 58^5 \end{array}$   | $\begin{array}{c} 0 \cdot 66 \\ 1 \cdot 15 \\ 1 \cdot 41 \\ 1 \cdot 55 \\ 1 \cdot 63 \\ 1 \cdot 67^5 \end{array}$                                                            | $\begin{array}{c} 0 \cdot 40 \\ 0 \cdot 69 \\ 0 \cdot 84 \\ 0 \cdot 91 \\ 0 \cdot 95 \\ 0 \cdot 98 \end{array}$ | $     \begin{array}{r}       1 \cdot 41 \\       1 \cdot 41   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0 \cdot 003^5 \\ 0 \cdot 011 \\ 0 \cdot 024 \\ 0 \cdot 040 \\ 0 \cdot 054 \\ 0 \cdot 069 \end{array}$                                              | $\begin{array}{c} 0.005\\ 0.015\\ 0.034\\ 0.056\\ 0.076\\ 0.097 \end{array}$                                                                                       |         |
| 13          | 23021   | 0.21          | 1:1   | 0.400             | $\begin{array}{c} 0.388\\ 0.373\\ 0.370\\ 0.363\\ 0.363\\ \end{array}$                                                                                             | $     \begin{array}{r}       10 \\       20 \\       30 \\       40 \\       50     \end{array} $             | $ \begin{array}{c} 0.54 \\ 0.92 \\ 0.97 \\ 1.14 \\ 1.28 \end{array} $                                             | $0.50^{5}$<br>0.81<br>0.83<br>0.97<br>1.09                                                                                                       | $ \begin{array}{c} 0.008 \\ 0.023 \\ 0.082 \\ 0.110 \\ - \\ \end{array} $                                                                                          | $ \begin{array}{c} 0.73 \\ 0.72 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \end{array} $                                             | $ \begin{array}{r} 0.66\\ 1.15\\ 1.41\\ 1:55\\ 1.63 \end{array} $                                                                                                            | $ \begin{array}{c} 0.48 \\ 0.83 \\ 1.00 \\ 1.10 \\ 1.15 \end{array} $                                           | $ \begin{array}{r} 2 \cdot 70 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0 \cdot 003^{5} \\ 0 \cdot 011 \\ 0 \cdot 024 \\ 0 \cdot 040 \\ 0 \cdot 054 \end{array}$                                                           | $\begin{array}{c} 0.009 \\ 0.030 \\ 0.065 \\ 0.108 \\ 0.146 \end{array}$                                                                                           |         |
| 14          | 23030   | 0.30          | 1:1   | 0.257             | $\begin{array}{c} 0\cdot 242\\ 0\cdot 239\\ 0\cdot 236\\ 0\cdot 232\\ 0\cdot 229\\ 0\cdot 388\\ 0\cdot 374\\ 0\cdot 370\\ 0\cdot 354\end{array}$                   | $20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 10 \\ 20 \\ 30 \\ 40$                                                          | $\begin{array}{c} 0.87\\ 1.07\\ 1.10^{5}\\ 1.17\\ 1.20\\ 0.61\\ 1.02\\ 1.17\\ 1.18\\ \end{array}$                 | $\begin{array}{c} 0.78 \\ 0.94^{5} \\ 0.95^{5} \\ 0.98 \\ 0.99 \\ 0.57 \\ 0.90^{5} \\ 1.02 \\ 0.96 \end{array}$                                  | $\begin{array}{c} 0 \cdot 014 \\ 0 \cdot 041 \\ 0 \cdot 062 \\ 0 \cdot 074 \\ 0 \cdot 094 \\ 0 \cdot 016 \\ 0 \cdot 028 \\ 0 \cdot 062 \\ 0 \cdot 104 \end{array}$ | $\begin{array}{c} 0.59^{5} \\ 0.59 \\ 0.58 \\ 0.58 \\ 0.58 \\ 0.73 \\ 0.72 \\ 0.71 \\ 0.70 \end{array}$                   | $ \begin{array}{c} 1 \cdot 30 \\ 1 \cdot 52 \\ 1 \cdot 63 \\ 1 \cdot 68 \\ 1 \cdot 69 \\ 0 \cdot 80 \\ 1 \cdot 30 \\ 1 \cdot 52 \\ 1 \cdot 63 \\ \end{array} $               | $\begin{array}{c} 0.77 \\ 0.90 \\ 0.95 \\ 0.97 \\ 0.98 \\ 0.58 \\ 0.94 \\ 1.08 \\ 1.14 \end{array}$             | $ \begin{array}{c} 1 \cdot 41 \\ 2 \cdot 70 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.011\\ 0.026\\ 0.047\\ 0.069\\ 0.089\\ 0.003^5\\ 0.011\\ 0.026\\ 0.047\\ \end{array}$                                                             | $\begin{array}{c} 0 \cdot 015 \\ 0 \cdot 037 \\ 0 \cdot 066 \\ 0 \cdot 097 \\ 0 \cdot 125 \\ 0 \cdot 009 \\ 0 \cdot 030 \\ 0 \cdot 070 \\ 0 \cdot 127 \end{array}$ |         |

| -          |             |         | Wing          |       |       | Flaps                                                                                                                 |                                                                                                               | N                                                                                 | leasured                                                                                                    |                                                                                                                       | . (c <sub>r</sub> )                                                                                                          |                                                                                                                                              | Estimated                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       | Estimated                                                                                                               |         |
|------------|-------------|---------|---------------|-------|-------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------|
|            | Ref.<br>No. | Section | $\frac{t}{c}$ | Taper | C /c  | C <sub>f</sub> /c'                                                                                                    | β<br>deg.                                                                                                     | $\begin{array}{c} \Delta C_{L} \\ (\alpha - \alpha_{0} = 10^{\circ}) \end{array}$ | $\Delta C_{L}'$                                                                                             | $\begin{vmatrix} \Delta C_{D0} \\ (\alpha - \alpha_0 = 6^\circ) \\ \vdots \end{vmatrix}$                              | $ \begin{array}{c} \lambda_1 \left( \frac{-}{c'} \right) \\ \text{(Fig. 1)} \end{array} $                                    | λ2 (p)<br>Fig. 3                                                                                                                             | $ \begin{array}{c} \Delta C_{L}' \\ = \lambda_{1} \lambda_{2} \end{array} $     | $\begin{bmatrix} D(\frac{1}{c}) \\ \text{Fig. 6}(a) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $D_2(\beta)$<br>Fig. 6(b)                                                             | $\begin{vmatrix} \Delta C_{\mathcal{D}0} \\ = D_1 D_2 \end{vmatrix}$                                                    | Remarks |
| •          | 8           | raf 44  | 0.15          | 1:1   | 0.2   | 0.194<br>0.190                                                                                                        | 40<br>60                                                                                                      | $\begin{array}{c} 0\cdot 92 \\ 0\cdot 84 \end{array}$                             | 0·87<br>0·76                                                                                                | $0.030 \\ 0.072$                                                                                                      | $0.54 \\ 0.53^{5}$                                                                                                           | $1 \cdot 40$<br>$1 \cdot 58$                                                                                                                 | $0.76 \\ 0.85$                                                                  | $\begin{array}{c}1\cdot00\\1\cdot00\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0·039<br>0·073                                                                        | 0.039<br>0.073                                                                                                          |         |
| ,          | 15          | н.р. 51 | 0.16          | 1:1   | 0.2   | $\begin{array}{c} 0 \cdot 198 \\ 0 \cdot 197 \\ 0 \cdot 195 \\ 0 \cdot 194 \\ 0 \cdot 193 \\ 0 \cdot 191 \end{array}$ | $     \begin{array}{r}       10 \\       20 \\       30 \\       40 \\       50 \\       60     \end{array} $ | $\begin{array}{c} 0.30 \\ 0.54 \\ 0.72 \\ 0.82 \\ 0.84^5 \\ 0.78 \end{array}$     | $\begin{array}{c} 0\cdot 29 \\ 0\cdot 52 \\ 0\cdot 69 \\ 0\cdot 78 \\ 0\cdot 78 \\ 0\cdot 71^5 \end{array}$ | $\begin{array}{c} 0 \cdot 004 \\ 0 \cdot 015 \\ 0 \cdot 030 \\ 0 \cdot 050 \\ 0 \cdot 073 \\ 0 \cdot 099 \end{array}$ | $\begin{array}{c} 0\cdot 54^5 \\ 0\cdot 54^5 \\ 0\cdot 54 \\ 0\cdot 54 \\ 0\cdot 54 \\ 0\cdot 54 \\ 0\cdot 53^5 \end{array}$ | $ \begin{array}{c} 0 \cdot 47 \\ 0 \cdot 87 \\ 1 \cdot 20 \\ 1 \cdot 42 \\ 1 \cdot 57 \\ 1 \cdot 60 \end{array} $                            | $\begin{array}{c} 0.26 \\ 0.47 \\ 0.65 \\ 0.77 \\ 0.85 \\ 0.86 \end{array}$     | $     \begin{array}{r}       1 \cdot 00 \\       1 \cdot 0 \\       1 \cdot 0$ | $\begin{array}{c} 0.003 \\ 0.009 \\ 0.023 \\ 0.039 \\ 0.057 \\ 0.073 \end{array}$     | $\begin{array}{c} 0.003 \\ 0.009 \\ 0.023 \\ 0.039 \\ 0.057 \\ 0.073 \end{array}$                                       |         |
| <b>v</b> - | 16          | н.р. 51 | 0.16          | 1:1   | 0.3   | 0.292                                                                                                                 | 45                                                                                                            | 0.80                                                                              | 0.760                                                                                                       |                                                                                                                       | $0.64^{5}$                                                                                                                   | 1.50                                                                                                                                         | 0.97                                                                            | 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.048                                                                                 | 0.085                                                                                                                   |         |
| -          | 17          | 23021   | 0.21          | 1:1   | 0.15  | $0.147 \\ 0.145$                                                                                                      | 40<br>60                                                                                                      | $0.58^{5}$<br>0.76                                                                | $\begin{array}{c} 0\cdot 55\\ 0\cdot 70\end{array}$                                                         | $0.029 \\ 0.052$                                                                                                      | $\begin{array}{c} 0\cdot 48 \\ 0\cdot 48 \end{array}$                                                                        | $\begin{array}{c}1\cdot 32\\1\cdot 63\end{array}$                                                                                            | $0.63 \\ 0.78$                                                                  | $0.72 \\ 0.72$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.040<br>0.069                                                                        | $0.029 \\ 0.050$                                                                                                        |         |
| -          | 18          | 23021   | 0.21          | 1:1   | 0.15  | $\begin{array}{c} 0.147 \\ 0.146 \\ 0.144 \\ 0.143 \\ 0.142 \end{array}$                                              | 30<br>40<br>60<br>70<br>80                                                                                    | $ \begin{array}{c} 0.55 \\ 0.64 \\ 0.86 \\ 0.88 \\ 0.88 \\ 0.88 \end{array} $     | $ \begin{array}{c} 0.53 \\ 0.60^{5} \\ 0.80 \\ 0.81 \\ 0.79 \end{array} $                                   | $\begin{array}{c} 0.016 \\ 0.026 \\ 0.047 \\ 0.062 \\ 0.071 \end{array}$                                              | $0.48 \\ 0.48 \\ 0.47^{5} \\ 0.47^{5} \\ 0.47^{5} \\ 0.47$                                                                   | $ \begin{array}{r}     1 \cdot 07 \\     1 \cdot 32 \\     1 \cdot 65 \\     1 \cdot 67 \\     1 \cdot 67 \\     1 \cdot 67 \\ \end{array} $ | $ \begin{array}{c} 0.51 \\ 0.63 \\ 0.77 \\ 0.78 \\ 0.74 \end{array} $           | $ \begin{array}{c} 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \\ 0.72 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.024 \\ 0.040 \\ 0.069 \\ 0.084 \\ 0.099 \end{array}$              | $\begin{array}{c} 0 \cdot 017 \\ 0 \cdot 029 \\ 0 \cdot 050 \\ 0 \cdot 060 \\ 0 \cdot 071 \end{array}$                  |         |
| -          | 19          | 23012   | 0.12          | 1:1   | 0.257 | $\begin{array}{c} 0.254 \\ 0.252 \\ 0.249 \\ 0.247 \\ 0.245 \\ 0.242 \end{array}$                                     | 10     20     30     40     50     60                                                                         | $\begin{array}{c} 0.32 \\ 0.59 \\ 0.88 \\ 1.09 \\ 1.01 \\ 0.97^5 \end{array}$     | $ \begin{array}{c} 0.31 \\ 0.57 \\ 0.83^{5} \\ 1.02 \\ 0.92 \\ 0.88 \end{array} $                           | $\begin{array}{c} 0 \cdot 003 \\ 0 \cdot 010 \\ 0 \cdot 019 \\ 0 \cdot 056 \\ 0 \cdot 098 \\ 0 \cdot 114 \end{array}$ | $\begin{array}{c} 0\cdot 61 \\ 0\cdot 60^5 \\ 0\cdot 60 \\ 0\cdot 60 \\ 0\cdot 59^5 \\ 0\cdot 59^5 \end{array}$              | $ \begin{array}{c} 0 \cdot 54 \\ 1 \cdot 00 \\ 1 \cdot 37 \\ 1 \cdot 58 \\ 1 \cdot 61 \\ 1 \cdot 57 \end{array} $                            | $\begin{array}{c} 0.33 \\ 0.60^{5} \\ 0.83 \\ 0.95 \\ 0.96 \\ 0.93 \end{array}$ | $ \begin{array}{c} 1 \cdot 41 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.002^{5} \\ 0.007 \\ 0.020 \\ 0.039 \\ 0.059 \\ 0.075 \end{array}$ | $\begin{array}{c} 0 \cdot 003^5 \\ 0 \cdot 010 \\ 0 \cdot 028 \\ 0 \cdot 055 \\ 0 \cdot 083 \\ 1 \cdot 106 \end{array}$ |         |

TABLE 2B Full-span Slotted Flaps. H.P. Type, Fixed Hinge

## TABLE 3APart-span Split Flaps on Wings Alone

| Pof |         | Wing          | ·          |                                                                             | Flaps             |                      | 4.6-                                                                        | 4.6-                                                                                                          | 2 (Cf)                                                                              | $\lambda_{-}(\beta)$                                                                                                                                                                 | 1 (br)                                                                     | Estimated                                                                           | $D\left(\frac{c_{f}}{c_{f}}\right)$                                                                                                              | $D_2\beta$                                                                                                                           | $\left[ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$             | Estimated $\Delta C_{R_0}$                                                                             | The second se |
|-----|---------|---------------|------------|-----------------------------------------------------------------------------|-------------------|----------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| No. | Section | $\frac{t}{c}$ | Taper      | Span/2b<br>(net)                                                            | c <sub>f</sub>  c | $_{ m deg.}^{m eta}$ | $\left  (\alpha - \alpha_0 = 10^\circ) \right $                             | $(\alpha - \alpha_0 = 6^\circ)$                                                                               | $rac{\lambda_1}{c}$<br>Fig. 1                                                       | Fig. 2                                                                                                                                                                               | $\begin{bmatrix} \lambda_3 \\ \overline{b} \end{bmatrix}$ Fig. 4           | $\begin{vmatrix} \Delta & C_L \\ = \lambda_1 & \lambda_2 & \lambda_3 \end{vmatrix}$ | $D_1\left(\frac{1}{c}\right)$<br>Fig. 6(a)                                                                                                       | Fig. 5(b)                                                                                                                            | <sup>2</sup> <sup>3</sup> (b )<br>Fig. 7                                                       | $D_1 D_2 D_3$                                                                                          | Remarks                                                                                                         |
| 20  | СУ      | 0.12          | 1:1        | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                     | $0\cdot 2$        | 60                   | $\begin{array}{c} 0.22 \\ 0.41 \\ 0.60 \\ 0.78 \\ 0.92 \end{array}$         | $\begin{array}{c} 0\cdot 025^{5} \\ 0\cdot 059 \\ 0\cdot 100^{5} \\ 0\cdot 129^{5} \\ 0\cdot 176 \end{array}$ | $\begin{array}{c} 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \end{array}$ | $   \begin{array}{r}     1 \cdot 55 \\     1 \cdot 55 \\   \end{array} $                   | $\begin{array}{c} 0.23 \\ 0.45 \\ 0.67 \\ 0.86 \\ 1.00 \end{array}$        | $\begin{array}{c} 0.20 \\ 0.38 \\ 0.57 \\ 0.73 \\ 0.85 \end{array}$                 | $   \begin{array}{r}     1 \cdot 00 \\     1 \cdot 00 \\   \end{array} $ | $\begin{array}{c} 0 \cdot 167 \\ 0 \cdot 167 \end{array}$                | $ \begin{array}{c} 0 \cdot 2 \\ 0 \cdot 4 \\ 0 \cdot 6 \\ 0 \cdot 8 \\ 1 \cdot 0 \end{array} $ | $\begin{array}{c} 0 \cdot 033 \\ 0 \cdot 067 \\ 0 \cdot 100 \\ 0 \cdot 134 \\ 0 \cdot 167 \end{array}$ | Accuracy of pro-<br>file drag data<br>very poor.                                                                |
| 21  | CY<br>- | 0.12          | 5.1        | $ \begin{array}{c} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.00 \end{array} $           | 0.15              | 60                   | $\begin{array}{c} 0.20^{5} \\ 0.40 \\ 0.59 \\ 0.71 \\ 0.79 \end{array}$     | $\begin{array}{c} 0 \cdot 033 \\ 0 \cdot 063 \\ 0 \cdot 082 \\ 0 \cdot 090 \\ 0 \cdot 110 \end{array}$        | $ \begin{array}{c} 0.48 \\ 0.48 \\ 0.48 \\ 0.48 \\ 0.48 \\ 0.48 \end{array} $       | $   \begin{array}{r}     1 \cdot 55 \\     1 \cdot 55 \\   \end{array} $                   | $ \begin{array}{c} 0.28 \\ 0.54 \\ 0.74 \\ 0.91 \\ 1.00 \end{array} $      | $\begin{array}{c} 0.21 \\ 0.40 \\ 0.55 \\ 0.68 \\ 0.74 \end{array}$                 | $ \begin{array}{c} 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ \end{array} $                                                                       | $\begin{array}{c} 0 \cdot 167 \\ 0 \cdot 167 \end{array}$                | $\begin{array}{c} 0.31 \\ 0.56 \\ 0.76 \\ 0.91 \\ 1.00 \end{array}$                            | $\begin{array}{c} 0.036 \\ 0.065 \\ 0.089 \\ 0.106 \\ 0.117 \end{array}$                               | Accuracy of pro-<br>file drag data<br>extremely poor                                                            |
| 22  | сч      | 0·12<br>0·12  | 5:3<br>5:1 | $ \begin{array}{c} 0.59 \\ 0.70 \\ 1.00 \\ 0.5 \\ 0.7 \\ 1.00 \end{array} $ | 0.15<br>0.15      | 60<br>60             | $\begin{array}{c} 0.59 \\ 0.67 \\ 0.86 \\ 0.53 \\ 0.68 \\ 0.80 \end{array}$ | $\begin{array}{c} 0.062\\ 0.069\\ 0.104\\ 0.061\\ 0.072\\ 0.085\end{array}$                                   | $\begin{array}{c} 0.48 \\ 0.48 \\ 0.48 \\ 0.48 \\ 0.48 \\ 0.48 \\ 0.48 \end{array}$ | $   \begin{array}{r}     1 \cdot 55 \\     1 \cdot 55 \\   \end{array} $ | $\begin{array}{c} 0.68\\ 0.75^{5}\\ 0.92\\ 0.68\\ 0.81\\ 0.91 \end{array}$ | $ \begin{array}{c} 0.51 \\ 0.56 \\ 0.69 \\ 0.51 \\ 0.60 \\ 0.68 \end{array} $       | $ \begin{array}{c} 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7 \end{array} $                                                                   | $\begin{array}{c} 0 \cdot 167 \\ 0 \cdot 167 \end{array}$ | $\begin{array}{c} 0.65 \\ 0.72 \\ 0.89 \\ 0.69 \\ 0.81 \\ 0.91 \end{array}$                    | $\begin{array}{c} 0.076\\ 0.084\\ 0.104\\ 0.080\\ 0.094\\ 0.106\end{array}$                            | Accuracy of pro-<br>file data ex-<br>tremely poor.                                                              |

#### TABLE 3B

### Part-span Split Flaps on Wing-body Combinations (Model)

| Ref.<br>No. | Section | Wing $\frac{t}{c}$ | Taper | Net<br>Span/b                                                             | $\frac{\text{Cut out}}{b}$                                                                                          | çs<br>c <sub>f</sub> /c                                          | β<br>deg.            | $ \begin{vmatrix} \Delta C_L \\ (\alpha - \alpha_0 \\ = 10^\circ) \end{vmatrix} $           | $ \begin{array}{c} \varDelta \ C_{D0} \\ (\alpha - \alpha_0 \\ = 6^{\circ}) \end{array} $                                              | $\lambda_1 \left( rac{c_f}{c'}  ight)$<br>Fig. 1                                                           | $\lambda_2(eta)$<br>Fig. 2                                                                                                                                                   | $\lambda_3(b_f/b)$<br>Fig. 4                                                        | Estimated<br>$\Delta C_L$<br>$= \lambda_1 \lambda_2 \lambda_3$                                  | $D_1 \begin{pmatrix} c_f \\ c \end{pmatrix}$<br>Fig. 5(a)                                                                                     | $egin{array}{l} D_2(eta)\ { m Fig.}\ {f 5}(b) \end{array}$                                             | D <sub>3</sub> (b <sub>f</sub> /b)<br>Fig. 7                              | Estimated<br>$\mathcal{A} C_{D0}$<br>= 0.85<br>$D_1 D_2 D_3$                                                                  | Remarks                                                 |
|-------------|---------|--------------------|-------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 23          |         | 0.16               | 2:1   | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                    | $0 \\ 0.075 \\ 0.144 \\ 0.217$                                                                                      | 0.15                                                             | 60                   | $ \begin{array}{c} 0.56 \\ 0.52 \\ 0.48 \\ 0.41 \end{array} $                               | $ \begin{array}{c c} 0.078 \\ 0.068 \\ 0.056 \\ 0.047 \end{array} $                                                                    | $0.48 \\ 0.48 \\ 0.48 \\ 0.48 \\ 0.48$                                                                      | $1 \cdot 80$<br>$1 \cdot 80$<br>$1 \cdot 80$<br>$1 \cdot 80$<br>$1 \cdot 80$                                                                                                 | $ \begin{array}{c} 0.70 \\ 0.60 \\ 0.51 \\ 0.43 \end{array} $                       | $ \begin{array}{c} 0.61 \\ 0.52 \\ 0.44 \\ 0.39 \end{array} $                                   | $ \begin{array}{c} 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \\ 0.70 \end{array} $                                                                 | $\begin{array}{c} 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \\ 0.16 \end{array}$                                    | $0.68 \\ 0.60 \\ 0.50 \\ 0.42$                                            | $ \begin{array}{c c} 0.065 \\ 0.058 \\ 0.048 \\ 0.040 \end{array} $                                                           | $ \left. \right\} Low wing, A = 5.92.$                  |
| • 24        | 0012    | 0.12               | 1:1   | $ \begin{array}{c} 0.9\\ 0.8\\ 0.4\\ 0.2\\ 0.9\\ 0.9\\ 1.00 \end{array} $ | $ \begin{array}{c} 0 \cdot 1 \\ 0 \cdot 2 \\ 0 \cdot 1 \\ 0 \cdot 2 \\ 0 \cdot 1 \\ 0 \cdot 1 \\ 0 \\ \end{array} $ | $ \begin{array}{c} 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \end{array} $ | 60<br>60<br>60<br>60 | $\begin{array}{c} 0.84 \\ 0.76 \\ 0.34 \\ 0.28 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.78 \end{array}$ | $\begin{array}{c} 0 \cdot 146 \\ 0 \cdot 131 \\ 0 \cdot 038 \\ 0 \cdot 021^5 \\ 0 \cdot 147 \\ 0 \cdot 149 \\ 0 \cdot 156 \end{array}$ | $\begin{array}{c} 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \end{array}$ | $ \begin{array}{r} 1 \cdot 55 \\ \end{array} $ | $\begin{array}{c} 0.89 \\ 0.77 \\ 0.45 \\ 0.22 \\ 0.89 \\ 0.89 \\ 1.00 \end{array}$ | $\begin{array}{c} 0.76 \\ 0.66 \\ 0.38^{5} \\ 0.19 \\ 0.75^{5} \\ 0.75^{5} \\ 0.85 \end{array}$ | $ \begin{array}{c} 1 \cdot 00 \\ 1 \cdot 00 \end{array} $ | $\begin{array}{c} 0.167\\ 0.167\\ 0.167\\ 0.167\\ 0.167\\ 0.167\\ 0.167\\ 0.167\\ 0.117\\ \end{array}$ | $ \begin{array}{c} 0.9\\ 0.8\\ 0.4\\ 0.2\\ 0.9\\ 0.9\\ 1.00 \end{array} $ | $\begin{array}{c} 0\cdot 128 \\ 0\cdot 114 \\ 0\cdot 056 \\ 0\cdot 029 \\ 0\cdot 128 \\ 0\cdot 128 \\ 0\cdot 143 \end{array}$ | High Wing.<br>Semi-high wing.<br>Mid wing.<br>Low wing. |

TABLE 3B (contd.)

| Ref |        | Wing          |       |                                                       | Fla                                               | ıps                                                        |                      |                                                                                               | Δ C <sub>D0</sub>                                              | (ct)                                                                                | 1 (0)                                | 2 (1. 1.1.)                                 | Estimated                                                                           | $D_1 \left( \frac{c_f}{f} \right)$                    | $D_{2}(\beta)$                                        |                                                  | Estimated                                                                  |                                                                                      |
|-----|--------|---------------|-------|-------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| No. | Secton | $\frac{t}{c}$ | Taper | Net<br>Span/b                                         | $\frac{\text{Cut out}}{b}$                        | c <sub>f</sub> /c                                          | $\beta$ deg.         | $\left  \begin{array}{c} (\alpha - \alpha_0) \\ = 10^{\circ} \end{array} \right $             | $\begin{pmatrix} \alpha - \alpha_0 \\ = 6^\circ \end{pmatrix}$ | $\begin{vmatrix} \lambda_1 \left(\frac{1}{c}\right) \\ \text{Fig. 1} \end{vmatrix}$ | Fig. 2                               | Fig. 4                                      | $\begin{vmatrix} \Delta & C_L \\ = \lambda_1 & \lambda_2 & \lambda_3 \end{vmatrix}$ | Fig.<br>5(a)                                          | Fig.<br>5(b)                                          | $D_{3}(0_{f}/b)$<br>Fig. 7                       | $\begin{vmatrix} \Box & C_{D0} \\ = 0.85 \\ D_1 & D_2 & D_3 \end{vmatrix}$ | Remarks                                                                              |
| 25  | 23012  | 0.12          | 1:1   | $\begin{array}{c} 0.48 \\ 0.48 \\ 0.60 \end{array}$   | $0.12 \\ 0.12$                                    | $\begin{array}{c} 0 \cdot 2 \\ 0 \cdot 2 \\ 0 \end{array}$ | 60<br>60             | $\begin{array}{c} 0.66\\ 0.63\\ 0.63\end{array}$                                              | $0.078 \\ 0.082 \\ 0.082$                                      | $0.55 \\ 0.55 \\ 0.55$                                                              | $1.55 \\ 1.55 \\ 1.55$               | 0.53<br>0.53                                | $0.45^{5}$<br>$0.45^{5}$                                                            | $1.00 \\ 1.00$                                        | $0.167 \\ 0.167$                                      | $\begin{array}{c} 0.48\\ 0.48\\ 0.48\end{array}$ | $0.068 \\ 0.068$                                                           | High wing<br>Mid wing Accuracy                                                       |
|     | 23012  | 0.12          | 3:1   | $0.60 \\ 0.48 \\ 0.48 \\ 0.60$                        | $0 \cdot 12 \\ 0 \cdot 12 \\ 0 \cdot 12 \\ 0$     | $0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2$                          | 60<br>60<br>60<br>60 | $     \begin{array}{c}       0.70 \\       0.64 \\       0.60 \\       0.69     \end{array} $ | $0.080 \\ 0.071 \\ 0.076 \\ 0.087$                             | $0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55$                                              | 1.55<br>1.55<br>1.55<br>1.55<br>1.55 | $0.67 \\ 0.56 \\ 0.56 \\ 0.72$              | $0.57 \\ 0.48 \\ 0.48 \\ 0.62$                                                      | $1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00$                | $0.167 \\ 0.167 \\ 0.167 \\ 0.167 \\ 0.167$           | $0.60 \\ 0.55 \\ 0.55 \\ 0.72$                   | $0.085 \\ 0.079 \\ 0.079 \\ 0.102$                                         | Low wing [ of profile<br>High wing [ drag data<br>Mid wing ] very poor<br>Low wing ] |
| 26  | Thin   |               | 1:1   | $\begin{array}{c} 0\cdot 53 \\ 0\cdot 83 \end{array}$ | $\begin{array}{c} 0\cdot07\\ 0\cdot07\end{array}$ | $\begin{array}{c} 0.083\\ 0.083\end{array}$                | 90<br>90             | $\begin{array}{c} 0\cdot 37 \\ 0\cdot 51 \end{array}$                                         | $\begin{array}{c} 0\cdot 043\\ 0\cdot 012\end{array}$          | 0 · 36<br>0 · 36                                                                    | $1 \cdot 68$<br>$1 \cdot 68$         | $\begin{array}{c} 0.59 \\ 0.86 \end{array}$ | $\begin{array}{c} 0\cdot 36\\ 0\cdot 52\end{array}$                                 | $\begin{array}{c} 0\cdot 35 \\ 0\cdot 35 \end{array}$ | $\begin{array}{c} 0\cdot 234\\ 0\cdot 234\end{array}$ | $\begin{array}{c} 0.53 \\ 0.83 \end{array}$      | $\begin{array}{c} 0\cdot 037\\ 0\cdot 058\end{array}$                      | }High wing.                                                                          |

#### TABLE 3C

Part-span Split Flaps on Wing-body Combinations (Full Scale)

|    |    |        |       |                  |            |       |       |                                               |                                                                 | -                                                      |                                                       |                                                                                         |                                                         |                                                     |                                                                                                   |                                                          | _                                                                               |                                                                        |                                                                                                              |
|----|----|--------|-------|------------------|------------|-------|-------|-----------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 14 | 27 |        | 0.15  | 1.3:1            | 0.405      | 0.08  | 0.2   | 45                                            | 0.405                                                           | 0.03                                                   | 0.55                                                  | 1.55                                                                                    | 0.46                                                    | 0.39                                                | 1.00                                                                                              | 0.13                                                     | 0.43                                                                            | 0.048                                                                  | Low wing A = $6.45$                                                                                          |
|    | 28 | СҮН    | 0.12  | $1 \cdot 56 : 1$ | $0.42^{5}$ | —     | 0.11  | 90                                            | 0.375                                                           | 0.029                                                  | 0.42                                                  | 1.68                                                                                    | 0.50                                                    | 0.35                                                | 0.49                                                                                              | 0.234                                                    | 0.47                                                                            | 0.046                                                                  | Low wing $A = 6.4$                                                                                           |
|    | 29 | -      | 0.16  | 1.8:1            | 0.58       |       | 0.15  | 80                                            | 0.61                                                            | 0.058*                                                 | 0.48                                                  | 1.90                                                                                    | 0.67                                                    | 0.64                                                | 0.70                                                                                              | 0.218                                                    | 0.64                                                                            | 0.083                                                                  | Low wing $A = 6.7$<br>* $\varDelta C_{D0}$ measured at $\alpha - \alpha_0 = 10^{\circ}$                      |
|    | 30 |        | 0.16  | 2.9:1            | 0.58,      | -     | 0.15  | 90                                            | 0.54*                                                           | 0.094*                                                 | 0.48                                                  | 1.95                                                                                    | 0.70                                                    | 0.65                                                | 0.70                                                                                              | 0.230                                                    | 0.69                                                                            | 0.089                                                                  | Low wing $A = 6.7$<br>* $\varDelta C_{D0}$ & $\varDelta C_L$ mea-<br>sured at $\alpha - \alpha_0 = 11^\circ$ |
|    | 31 |        | 0.17  | 2.9:1            | 0.62       | -     | 0.10  | 70                                            | 0.63*                                                           | 0.050*                                                 | 0.40                                                  | 1.90                                                                                    | 0.74                                                    | 0.56                                                | 0.43                                                                                              | 0.187                                                    | 0.73                                                                            | 0.059                                                                  | Low wing. A = $8 \cdot 23$<br>* $\Delta C_{D0}$ measured at $\alpha - \alpha_0 = 7^{\circ}$                  |
|    | 32 | 2212   | 0.12  | 1:1              | 0.825      | 0.09  | 0.10  | $\begin{array}{c} 20 \\ 40 \\ 60 \end{array}$ | $ \begin{array}{c} 0.23 \\ 0.31 \\ 0.51 \end{array} $           | $\begin{array}{c} 0.003 \\ 0.039 \\ 0.060 \end{array}$ | $0.40 \\ 0.40 \\ 0.40 \\ 0.40$                        | $   \begin{array}{r}     0 \cdot 81 \\     1 \cdot 27 \\     1 \cdot 55   \end{array} $ | $0.85 \\ -0.85 \\ 0.85 \\ 0.85$                         | $0.27 \\ 0.43 \\ 0.53$                              | $ \begin{array}{c} 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \end{array} $                                     | $ \begin{array}{c} 0.038 \\ 0.100 \\ 0.167 \end{array} $ | $0.82^{5}$<br>$0.82^{5}$<br>$0.82^{5}$                                          | $\left. \begin{array}{c} 0.012 \\ 0.030 \\ 0.051 \end{array} \right\}$ | High wing. Tests done<br>in full scale tunnel.<br>Accuracy of profile-<br>drag data very poor.               |
|    | 33 | N.22   | 0.125 | 1:1              | 0.9        | 0.10  | 0.2   | 20<br>40<br>59                                | $\begin{array}{c} 0\cdot 30\\ 0\cdot 50\\ 0\cdot 66\end{array}$ | $0.024 \\ 0.080 \\ 0.128$                              | $0.55 \\ 0.55 \\ 0.55 \\ 0.55$                        | $0.81 \\ 1.27 \\ 1.53$                                                                  | $0.89 \\ 0.89 \\ 0.89 \\ 0.89$                          | $0.40 \\ 0.63 \\ 0.75$                              | $     \begin{array}{r}       1 \cdot 00 \\       1 \cdot 00 \\       1 \cdot 00     \end{array} $ | $ \begin{array}{c} 0.039 \\ 0.100 \\ 0.165 \end{array} $ | $\begin{array}{c} 0 \cdot 9 \\ 0 \cdot 9 \\ 0 \cdot 9 \\ 0 \cdot 9 \end{array}$ | $\left. \begin{array}{c} 0.030 \\ 0.077 \\ 0.126 \end{array} \right\}$ | High wing. Tests done<br>in full scale tunnel.<br>Accuracy of profile-<br>drag data very poor.<br>A = 5.45   |
| _  |    | raf 28 | 0.17  | 2:1              | 0.54       | 0.075 | 0.154 | 20<br>40                                      | $0.18^{5}$<br>0.37                                              | $\begin{array}{c} 0\cdot 008\\ 0\cdot 024\end{array}$  | $\begin{array}{c} 0\cdot 49 \\ 0\cdot 49 \end{array}$ | $\begin{array}{c} 0.97 \\ 1.55 \end{array}$                                             | $\begin{array}{c} 0 \cdot 61 \\ 0 \cdot 61 \end{array}$ | $\begin{array}{c} 0\cdot 29\\ 0\cdot 46\end{array}$ | $   \begin{array}{c}     0.72 \\     0.72   \end{array} $                                         | $\begin{array}{c} 0\cdot 03\\ 0\cdot 09\end{array}$      | $\begin{array}{c} 0\cdot 59\\ 0\cdot 59\end{array}$                             | 0.011<br>0.032                                                         | Unpublished.<br>Blenheim, mid wing.<br>A = 6.7:1                                                             |

| Daf | Wing    |                      |       | Flaps                                                              |                                                                                     |                   |                    |                                                                                                             |              |                                                                                                   |                                                                         | , (Cf)                                                                   | λ, (β)                                                                              | 2 (7 17)                                                                                                             | Estimated                                                             | $D_1 c_t   c_t$                                                                         | $D_{2}(\beta)$                                                                                                    | D (1 11)                                                                            | Estimated                                                           | Remarks                                                                  |                                                                          |
|-----|---------|----------------------|-------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------|--------------------|-------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| No. | Section | <i>t</i><br><i>c</i> | Taper | Net<br>Span/b                                                      | $\begin{array}{c} \operatorname{Cut} \\ \operatorname{out} \\ \hline b \end{array}$ | c <sub>f</sub> /c | C <sub>f</sub> /c' | s' s                                                                                                        | $\beta$ deg. | $\begin{vmatrix} \alpha - \alpha_0 \\ = 10^{\circ} \end{vmatrix}$                                 | $\Delta C_{L'}$                                                         | $\begin{array}{c} \alpha - \alpha_0 \\ = 6^{\circ} \end{array}$          | $\begin{array}{c} \Lambda_1\left(\frac{1}{c'}\right)\\ \text{Fig. 1} \end{array}$   | Fig. 3                                                                                                               | Fig. 4                                                                | $\begin{vmatrix} \varDelta & C_L' \\ = \lambda_1 & \lambda_2 & \lambda_3 \end{vmatrix}$ | Fig. 6<br>( <i>a</i> )                                                                                            | Fig. 6<br>(b)                                                                       | Fig. 7                                                              | $ \begin{array}{c} \Sigma C_{D0} \\ = \\ D_1 D_2 D_3 \end{array} $       |                                                                          |
| 34  | 23012   | 0.12                 | 1:1   | $ \begin{array}{c} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \end{array} $   |                                                                                     | 0.256             | 0 • 240            | $ \begin{array}{c} 1 \cdot 01 \\ 1 \cdot 02^{5} \\ 1 \cdot 04 \\ 1 \cdot 05 \\ 1 \cdot 06^{5} \end{array} $ | 40           | $\begin{array}{c} 0 \cdot 23 \\ 0 \cdot 48 \\ 0 \cdot 72 \\ 0 \cdot 93 \\ 1 \cdot 17 \end{array}$ | $ \begin{array}{c c} 0.22 \\ 0.45 \\ 0.66 \\ 0.82 \\ 1.02 \end{array} $ | $\begin{array}{c} 0.012 \\ 0.036 \\ 0.044 \\ 0.050 \\ 0.052 \end{array}$ | $\begin{array}{c} 0.59 \\ 0.59 \\ 0.59 \\ 0.59 \\ 0.59 \\ 0.59 \\ 0.59 \end{array}$ | $ \begin{array}{c} 1 \cdot 70 \\ \end{array} $ | $\begin{array}{c} 0.23 \\ 0.45 \\ 0.67 \\ 0.86 \\ 1.00 \end{array}$   | 0 · 23<br>0 · 45<br>0 · 67<br>0 · 86<br>1 · 00                                          | $ \begin{array}{c} 1 \cdot 40 \\ 1 \cdot 40 \end{array} $ | $\begin{array}{c} 0.39 \\ 0.39 \\ 0.39 \\ 0.39 \\ 0.39 \\ 0.39 \end{array}$         | $ \begin{array}{c} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.00 \end{array} $   | $\begin{array}{c} 0.011 \\ 0.022 \\ 0.033 \\ 0.044 \\ 0.055 \end{array}$ | N.A.C.A. Type.<br>Accuracy of profile-<br>drag data extreme-<br>ly poor. |
|     | 23012   | 0.12                 | 5:1   | $ \begin{array}{c c} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \end{array} $ |                                                                                     | 0 • 256           | 0.240              | $ \begin{array}{c} 1 \cdot 020 \\ 1 \cdot 03^5 \\ 1 \cdot 05 \\ 1 \cdot 06 \\ 1 \cdot 06^5 \end{array} $    | 40           | $\begin{array}{c} 0.28 \\ 0.64 \\ 0.90 \\ 1.09 \\ 1.22 \end{array}$                               | $\begin{array}{c} 0.26 \\ 0.58 \\ 0.80 \\ 0.96 \\ 1.06 \end{array}$     | 0.028 <sup>5</sup><br>0.038 <sup>5</sup><br>0.039<br>0.033<br>0.033      | $ \begin{array}{c} 0.59 \\ 0.59 \\ 0.59 \\ 0.59 \\ 0.59 \\ 0.59 \end{array} $       | $ \begin{array}{c} 1 \cdot 70 \\ \end{array} $ | $ \begin{array}{c} 0.28 \\ 0.54 \\ 0.74 \\ 0.91 \\ 1.00 \end{array} $ | $ \begin{array}{c} 0.28 \\ 0.54 \\ 0.74 \\ 0.91 \\ 1.00 \end{array} $                   | $ \begin{array}{c} 1 \cdot 40 \\ 1 \cdot 40 \end{array} $ | $\begin{array}{c} 0.39 \\ 0.39 \\ 0.39 \\ 0.39 \\ 0.39 \\ 0.39 \\ 0.39 \end{array}$ | $\begin{array}{c} 0.31 \\ 0.58 \\ 0.78 \\ 0.91 \\ 1.00 \end{array}$ | $\begin{array}{c} 0.017 \\ 0.032 \\ 0.043 \\ 0.050 \\ 0.055 \end{array}$ |                                                                          |

.

TABLE 4A

Part-Span Slotted Flaps on Wings Alone

| Ref.<br>No. |                          | Wing          |        |               | Flap                                                          | ps                |                                                                            |                                                                                                           |                                             |                                                                                                       | Δ C το                                                  | . (01)                                                                         | 2 (0)                                                                                | 1 (1 (1)                                                             | Estimated                                      | $D_1/c_f$                                                                                                                                             | $D_{3}(\beta)$                                                                                                    | D (b (b)                                                                 | Estimated                                                                   |                                                                               |                                             |
|-------------|--------------------------|---------------|--------|---------------|---------------------------------------------------------------|-------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------|
|             | Section                  | $\frac{t}{c}$ | Taper  | Net<br>Span/b | $ \begin{vmatrix} Cut \\ out \\ \frac{out}{b} \end{vmatrix} $ | c <sub>f</sub> /c | c <sub>f</sub> /c'                                                         | s'/s                                                                                                      | $\beta$ deg.                                | $\frac{\beta_{\text{eg.}}}{\beta_{\text{eg.}}} = 10^{\circ}$                                          | $\Delta C_{L}'$                                         | $\begin{array}{c} \alpha - \alpha_0 \\ = 6^{\circ} \end{array}$                | $ \begin{array}{c} \lambda_1\left(\frac{j}{c'}\right) \\ \text{Fig. 1} \end{array} $ | Fig. 3                                                               | Fig. 4                                         | $ \begin{vmatrix} \gamma \\ \mathbf{i} \\ \mathbf{k} \end{vmatrix} = \begin{matrix} \Delta & C_L' \\ \lambda_1 & \lambda_2 & \lambda_3 \end{matrix} $ | Fig. 7<br>(a)                                                                                                     | Fig. 7<br>(b)                                                            | Fig. 8                                                                      | $\begin{vmatrix} \Delta & C_{D0} \\ = 1 \cdot 4 \\ D_1 D_2 D_3 \end{vmatrix}$ | Remarks                                     |
| 35          |                          | 0.16          | 2:1    | 0.46          | 0 • 144                                                       | 0.2               | $ \begin{array}{c} 0.196 \\ 0.192 \\ 0.188 \\ 0.184 \\ 0.180 \end{array} $ | $ \begin{array}{c c} 1 \cdot 01 \\ 1 \cdot 02 \\ 1 \cdot 03 \\ 1 \cdot 04^5 \\ 1 \cdot 05^5 \end{array} $ | 20<br>40<br>60<br>75<br>90                  | $\begin{array}{c} 0 \cdot 24 \\ 0 \cdot 44^5 \\ 0 \cdot 44 \\ 0 \cdot 28 \\ 0 \cdot 23^5 \end{array}$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{c} 0.014 \\ 0.037 \\ 0.060 \\ 0.084 \\ 0.095 \end{array}$       | $\begin{array}{c} 0.54 \\ 0.54 \\ 0.53 \\ 0.53 \\ 0.52 \end{array}$                  | $ \begin{array}{c} 0.9 \\ 1.45 \\ 1.60 \\ 1.45 \\ 1.10 \end{array} $ | $0.53 \\ 0.53 \\ 0.53 \\ 0.53 \\ 0.53 \\ 0.53$ | $\begin{array}{c} 0.26 \\ 0.41^{5} \\ 0.45 \\ 0.41 \\ 0.31 \end{array}$                                                                               | $ \begin{array}{c} 1 \cdot 00 \\ 1 \cdot 00 \end{array} $ | $\begin{array}{c} 0.008 \\ 0.040 \\ 0.073 \\ 0.095 \\ 0.110 \end{array}$ | $\begin{array}{c} 0.51 \\ 0.51 \\ 0.51 \\ 0.51 \\ 0.51 \\ 0.51 \end{array}$ | $\begin{array}{c} 0.006 \\ 0.028 \\ 0.052 \\ 0.068 \\ 0.078 \end{array}$      | Low wing. $A = 5.93$<br>H.P. Type.          |
| 36          | N.A.C.A.<br>24<br>Series | 0.16          | 2.51:1 | 0.474         | 0.115                                                         | 0.25              | $0.245 \\ 0.240 \\ 0.237$                                                  | $1.01 \\ 1.02 \\ 1.03$                                                                                    | $\begin{array}{r} 20\\ 40\\ 50 \end{array}$ | $0.53^{5}$<br>$0.84^{5}$<br>$0.84^{5}$                                                                | $0.52 \\ 0.82 \\ 0.80$                                  | $\begin{array}{c} 0{\cdot}003^{5}\\ 0{\cdot}038^{5}\\ 0{\cdot}041 \end{array}$ | $0.60 \\ 0.59 \\ 0.59 \\ 0.59$                                                       | $0.9 \\ 1.45 \\ 1.55$                                                | $0.55 \\ 0.55 \\ 0.55 \\ 0.55$                 | $\begin{array}{c} 0.30 \\ 0.47 \\ 0.50 \end{array}$                                                                                                   | $1 \cdot 36 \\ 1 \cdot 36 \\ 1 \cdot 36 \\ 1 \cdot 36$                                                            | $\begin{array}{c} 0.008 \\ 0.040 \\ 0.057 \end{array}$                   | $0.53 \\ 0.53 \\ 0.53 \\ 0.53$                                              | $ \begin{array}{c} 0.008 \\ 0.040 \\ 0.057 \end{array} $                      | Low wing. $A = 7 \cdot 22$<br>H.P. type.    |
| 37          |                          | 0.16          | 1.76:1 | 0.51          | 0.09                                                          | 0.256             | 0.243                                                                      | 1.03                                                                                                      | 45                                          | 0.68                                                                                                  | 0.64                                                    | 0.030                                                                          | 0.60                                                                                 | 1.50                                                                 | 0.58                                           | 0.52                                                                                                                                                  | 1 • 40                                                                                                            | 0.048                                                                    | 0.55                                                                        | 0.052                                                                         | High wing. A = 7.82<br>(S/24/37) H.P. type. |

TABLE 4B

Part-span Slotted Flaps on Wing-Body Combinations (Model)

16

TABLE 4C

~

| Part-span Slotted Flaps on Wing-body Combi | nations (Full | scale |
|--------------------------------------------|---------------|-------|
|--------------------------------------------|---------------|-------|

. .

| <u> </u> |                          | 0.17 | 3.7:1 | 0.42                                                      | 0.08    | 0.23                                                     | ${ \begin{smallmatrix} 0 & \cdot & 225 \\ 0 & \cdot & 220 \\ 0 & \cdot & 215 \\ \end{smallmatrix} }$ | $\begin{array}{c} 1 \cdot 01 \\ 1 \cdot 02^5 \\ 1 \cdot 04^5 \end{array}$ | 20<br>40<br>60    | $\begin{array}{c} 0\cdot 22 \\ 0\cdot 38^5 \\ 0\cdot 38^5 \end{array}$ | $\begin{array}{c} 0 \cdot 20^{5} \\ 0 \cdot 36 \\ 0 \cdot 34 \end{array}$ | $0.009 \\ 0.034 \\ 0.048$ | $0.57^{5}$<br>0.57<br>0.56                              | $ \begin{array}{c c} 0.87 \\ 1.40 \\ 1.60 \end{array} $ | $0.51 \\ 0.51 \\ 0.51 \\ 0.51$ | $ \begin{array}{c} 0 \cdot 25^{5} \\ 0 \cdot 41 \\ 0 \cdot 46 \end{array} $ | $ \begin{array}{c c} 1 \cdot 21 \\ 1 \cdot 21 \\ 1 \cdot 21 \\ 1 \cdot 21 \end{array} $ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{c} 0.51 \\ 0.51 \\ 0.51 \\ 0.51 \end{array} $ | $ \begin{array}{c} 0.007 \\ 0.036 \\ 0.062 \end{array} $ | Mid wing. A = 6.5<br>H.P. type (Hampden)                                                                                                                                                                                                                       |
|----------|--------------------------|------|-------|-----------------------------------------------------------|---------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38       |                          | 0.15 | 2.5:1 | 0·37<br>0·37                                              | 0.195   | 0.274 $0.204$                                            | 0 · 267<br>0 · 200                                                                                   | $\frac{1 \cdot 02}{1 \cdot 00^5}$                                         | 36<br>14 <u>1</u> | }0.47⁵                                                                 |                                                                           | 0.028*                    | $\begin{array}{c} 0 \cdot 62 \\ 0 \cdot 55 \end{array}$ | 1·35<br>0·70                                            | 0·42<br>0·29                   | 0·35<br>                                                                    | 1.55<br>1.03                                                                            | 0.032<br>0.005                                          | 0·41<br>0·23                                                  | 0.028<br>0.001                                           | $\left. \begin{array}{c} \text{Slotted} \\ \text{Flaps} \\ \text{Slotted} \\ \text{ailerons} \end{array} \right\} \begin{array}{c} \text{Low wing} \\ *\Delta C_{D0} \\ \text{Measured} \\ \text{at } \alpha - \alpha. \\ = 10\frac{1}{2}^{\circ} \end{array}$ |
| 39       | N.A.C.A.<br>22<br>Series | 0.15 | 2.7:1 | $\begin{array}{c} 0 \cdot 275 \\ 0 \cdot 435 \end{array}$ | 0 • 225 | $\begin{array}{c} 0 \cdot 225 \\ 0 \cdot 25 \end{array}$ | 0.216 $0.245$                                                                                        | 1.01<br>1.005                                                             | 40<br>23          | $\begin{array}{c} 0 \cdot 28^5 \\ 0 \cdot 26 \end{array}$              | $\begin{array}{c} 0 \cdot 27^5 \\ 0 \cdot 25 \end{array}$                 | 0.016<br>0.020            | 0.56<br>0.60                                            | $\frac{1\cdot 45}{1\cdot 05}$                           | 0·33<br>0·35                   | 0·27<br>0·22                                                                | 1 · 17<br>1 · 36                                                                        | 0.039<br>0.013                                          | · 0·31<br>0·36                                                | 0.018<br>0.008                                           | Slotted<br>Flaps<br>Slotted<br>ailerons                                                                                                                                                                                                                        |



FIG. 2. Lift Increment for Full-Span Split Flaps.  $(\varDelta C_{L'} = \lambda_1 (c_f/c'). \lambda_2(\beta)).$ 



FIG. 3. Lift Increment for Full-span Slotted Flaps.  $(\Delta C_L' = \lambda_1 (c_l/c'). \lambda_2 (\beta)).$ 











PRINTED

TAIN







FIG. 8. Drag Increment of Part-span Slotted Flaps.

R. & M. No. 2545 (5472) A.R.C. Technical Report



S.O. Code No. 23-2545