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Summary. 

A method, alternative to that in common use at present, of calculating the response quantities in pull-out 
manoeuvres relevant to important cases of loads and stresses in aeroplane structures, is presented. The method, 
based on 'trapezoidal' elevator input, leads to final solutions in the form of closed formulae, which are not 
only convenient from the computational point of view, but which also permit a comprehensive discussion. 
It may be used at every stage of design, including the earliest estimates. An important part in all this work is 
played by 'overshoot factors', and complete charts of these are included. 

The method can be easily extended to cover asymmetrical manoeuvres. 
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Trapezoidal input. Growth of normal acceleration at c.g. for varying time angle, ~i, 
of input application; angular damping index/3 = 0 

Trapezoidal input. Growth of normal acceleration at c.g. for varying time angle, q~l, 
of input application; angular damping index/~ = 0.2 

Trapezoidal input. Growth of normal acceleration at c.g. for varying time angle, 91, 
of input application; angular damping index fl = 0.4 

Overshoot factor, E, of normal acceleration at c.g. for varying~ and cpl; comprehensive 
diagram for a wide range of ~o r Trapezoidal input 

Overshoot factor, E, for varying/~ and qo 1. Large-scale diagram for a small range 
of ~1- Trapezoidal input 
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Growth of incremental tail incidence resulting from step elevator input, for several 

values of modifying factor )t; fi = 0 and 0" 2 

Additional overshoot factor, E', for tail incidence, for varying A and/3 

Time angle v ~ by which peak of tail incidence leads maximum normal acceleration 

at e.g., for varying A and fi 

Growth of incremental tail incidence resulting from trapezoidal elevator input, for 

varying 901;/3 = 0-2; ;~ = 0.5 and 1 

Growth of incremental tail incidence resulting from trapezoidal elevator input, for 

varying 901;/3 = 0; ~t = 1 

Explanatory to determining maximum download on tail 

Graphs of F(90) and F(90),~/901 for determining maximum tail downloads and checking 

series expansions, t3 = 0, ;~ = 0, variable p 

Graphs of F(90) and F(@,J90 1 for determining maximum tail downloads and checking 

series expansions. ~ = 0, A/~/p = 0.5, variable p 

Graphs of F(90) and F(90),~/901 for determining maximum tail downloads and checking 

series expansions./3 = 1, A = 0, variable p 

Graphs of F(90) and F(90),,/901 for determining maximum tail downloads and checking 

series expansions, fl = 1, A/5/P = 0.5, variable p 

Growth of normal acceleration at tail, for varying 5ol; fi = 0 and 0.2, J/~ = 0.08, 

J/a = 2 
Illustration of numerical example (Section 6): variation of tail load, for varying 901 

1. Introduction. 
The problem of determining incremental and maximum loads in symmetric and asymmetric 

manoeuvres has attracted much attention in the past, and has provided the subject for a great 
volume of literaturO, 5 to 15. The method normally used in Britain is that proposed by T. Czaykowski 

(see Ref. 1, where many earlier reports are referred to, and also Ref. 11). 
The method of Ref. 1 consists in assuming the basic 'exponential' law, with one arbitrary parameter 

(k), for the elevator input. The value of the parameter is immaterial for the development of theory 
but has, of course, a great importance for the practical design calculations and requirements. An 

empirical formula for the value of k {see (3.19)}, explained in Ref. 1, was chosen in such a way as to 
obtain the best correlation between the mean elevator rate defined for the exponential input 
{see (3.16)} and that obtained from the experimental input curves for a number of most rapid 
manoeuvres selected from the many collected in U.S.A. up to 1950. The proposal was described in 
Ref. 1 as 'tentative', leaving scope for further tests to provide more information. The present method 

3 
A 2  

(87292) 



assumes an akernative 'trapezoidal' law of elevator input (see Fig. 1), again with one arbitrary 

parameter r: (or, more conveniently, q~: = Jr: see Section 3.1). This assumption leads to simpier 
response equations, in both the aeroplane motion and wing and tail loads, so that many maxima 

(such as peak normal acceleration, peak tail load, etc.) can be expressed by explicit formulae, without 
recourse to graphical or numerical solutions of transcendental equations. As to the choice of the 

parameter ~s:, it is again unimportant for developing the theory (although the effects of its variation 
are interesting). An obvious suggestion, however, is to seek again the best correlation with experi- 
mental results. 

The simple concept of trapezoidal elevator input is, of course, not new. It was used, e.g., by the 
early writers C. D. Perkins 6, 7 and H. A. Pearson s, and more recently by D. R. Puttock :a, :~ (the 
latter applied it to the case of automatic-pilot failure). However, the analysis has never been pursued 

far enough, and it was thought worthwhile to push it much further, so as to obtain both a simpler 
presentation of all the results and a better insight into the underlying response problem. 

An important feature of the analytical treatment adopted here is that maxima of the various 
response quantities are expressed in terms of a few overshoot factors which determine the amount 
by which these maxima exceed the (easily calculable) steady-state asymptotic values. The 
overshoots are of particular importance for tail loads because the latter consist of the negative direct 
contribution of elevator deflection (subject to no overshoot) and a positive contribution due to 
aeroplane response (this being subject to overshoot). A small error in estimating overshoot, from 
whatever source, may thus lead to a significant error in the resultant difference. In addition, we need 
to calculate many different overshoots in various flight conditions and for varying duration of the 

manoeuvre. The trapezoidal approach, owing to some fortunate algebraical relationships, may be 
manipulated into a set of a few basic overshoot factors, which it has been found easy to tabulate and 

chart, so that full charts are, in fact, given in the present report. It has also been possible to expand 
the exact formulae for overshoot factors into rapidly convergent power series leading to very simple 
approximations. 

It will be seen in Sections 3 to 7 that the method proposed leads to peak accelerations at the c.g. 

and tail, and first peak incremental tail upload, which become indistinguishable from those given 
by Ref. 1, if the mean elevator rate is assumed the same in both cases. The peak incremental down- 

load and the second peak incremental upload for rapid manoeuvres, obtained by the method proposed 
under the same assumption, are appreciably larger than those from Ref. 1 so that, at least, they may 
be considered as conservative. Calculating design tail loads in such a way can only be recommended 
when this kind of conservatism is acceptable or desirable and, of course, also in all those instances 
where the trapezoidal type of elevator input adequately represents the actual elevator movement as, 
e.g. in the automatic-pilot run-away case. However, the general value of the method will have to be 
appraised on the basis of possible correlation with results of flight tests, and this would require 
considerable work far beyond the scope of this paper. 

The simplifying assumptions which restrict the field covered by what follows are practically 
the same as those of Ref. 1, Section 3: 

(1) variations of forward speed and gravity component during the disturbance are neglected, 
(2) contribution of the elevator deflection to total lift is neglected, 

(3) the tailplane's own2pitching moment about its reference axis, due to elevator deflection, is 
neglected in the pitching moments' equation of the aeroplane, 

(4) the elastic distortion of the structure is neglected, 



(5) the equations are linearized, so that the usual first-order derivatives, supposed constant 

during the manoeuvre, are exclusively used, with no refinements to account for unsteady 
motion; it may be pointed out, however, that the aerodynamic derivatives are only considered 

constant for each single case (given design, fixed flight conditions), but they may and 
should be treated as variable with flight conditions (Mach number) even for a given design. 

The restrictions (2) and (3) are usually unimportant, but can be easily removed if necessary. The 

restriction (1) is discussed in Section 7.3. The restrictions (4) and (5) are the only important ones, 
and a further development to cover elastic distortion and non-linearities is most desirable. A way is 
already open 16 towards the inclusion of aeroelastic effects, but it is not suggested that this can be 

done in a way comparable to that of the present paper, at least in the near future. It may be necessary 
to employ methods which, while more powerful in the computational sense, will inevitably be less 
efficient in the 'algebraic' sense. But, whatever different research tools may be applied, one point 
should never be forgotten; the value of any more elaborate studies covering elastic distortion will 
not only be greatly diminished but indeed often nullified if a parallel (so much simpler) computation 
is not simultaneously made with an assumedly rigid aeroplane. As often in similar cases, the value 
of numbers lies not in themselves but in comparison. Analogous remarks apply to non-linearities 
in the dynamic system. 

No more explanation is needed here; the final discussion and conclusions are given in Sections 7 
and 8. To achieve a full understanding and acquire a working ability, the reader must, of course, 

plough his way through Sections 2 to 5 giving the full theory, and is advised to go carefully through 

the numerical example of Section 6. It may be mentioned that, to obtain the final simple results, 

a not inconsiderable analytical effort had to be made and, to make the paper more readable, all 

heavy transformations and expansions have been relegated to Appendices. Analytical solutions have 

been obtained by using operational treatment, in the form described in Ref. 3, which contains tables 

of operational formulae directly applicable to response calculations. 

A grateful acknowledgment is due to A. S. Taylor and to T. Czaykowski for many helpful 

suggestions and constructive criticism of the full report; and to Mrs. J. Collingbourne, Miss A. Dyer, 
Miss B. Mills and Miss F. M. Ward who have made all calculations and prepared the illustrations. 
Special mention is due also to D. Foster, a student of Bristol University, who, during his short stay 
as a vacation student at the R.A.E., contributed the laborious part summarized in Appendix IV. 

2. Basic  Equations. 

Assuming no speed variation during the manoeuvres, the differential equations of motion will be 
written (cf. Ref. 2, App. I): 

( D + ~ a ) w  - 0 = 0, (2.1) 

(xD+o,)~ + ( D + , ) ~  = - 8,~, (2.2) 

where r~ = a is the incremental incidence of the main plane, ~ dimensionless rate of pitch, X, ~o, u, 8 
concise moment derivatives, and the elevator deflection ~? is a prescribed function of time. The 
operational solutions of these equations are: 

87 
D ~ + 2 R D  + C '  (2.3) 

a ( D + ½ a ) ~  
~t = - D~ + 2 R D  + C '  (2.4) 



where the denominator is the operational determinant of the system: 

D ~ + 2 R D  + C = ( D + R )  2 + j2 = D 2 + ( ½ a + v + X )  D + (oJ+½av), (2.5) 

R being the dimensionless damping factor and Y the dimensionless frequency of the short-period 
oscillation. In each of the solutions, the function ~7 should be replaced by its operational equivalent, 
and the formulae interpreted as functions of time, e.g. by using tables of Ref. 3. 

The quantities to be investigated will be: 

(i) Coefficient of  normal acceleration at c.g. This varies in proportion to the incremental incidence @: 

a a3 ~7 
n =  ~ ~ - C L D 2 + 2 R D  + C '  (2.6) 

(ii) Effective incremental incidence of  the tail (relevant for the tail load): 

% r r ' = ~  1 - ~  + V + V & d t  ~ + ~ + d ~  

or, eliminating 0 by means of (2.1): 

%rr = ~  1 - ~ +  + 1 + ~  /z 

It is seen that the incremental incidence of the tail does not vary simply in proportion to that of 
the main plane (@), because of the 2nd term in (2.7). It will be convenient to introduce, for abbreviation, 
the constant ('modifying factor for tail incidence'): 

= , ( 2 . 8 )  A de a 

which is usually small because of large values of/~, and then the formula (2.7) may be written 
{introducing (2.3) for @}: 

%r~ = - ~ 1 -  ~ + D ~ + 2 R D  + C 71 (2.9) 

(iii) Coefficient o f  normal acceleration at the tail: 

This again does not vary in proportion to v~, being given by 

I dq a 2 
n~ = n - ~ D O  

g dt C L - ~  

or, eliminating 0, and introducing (2.3) for ~: 

I _ I _ D _ 2 D  ~ 
a~ fx f~a 

nt - C L D 2 + 2 R D  + C ~" (2.10) 

In what follows, we are going to consider only manoeuvres in which the elevator is ultimately 
held fixed at a certain value, negative for pull-out, say ( - ~1I)" The quantities n, c%ff' and n t will then 

6 



all tend to some 'final' (or asymptotic) values, which can be determined by neglecting all terms 
containing the differential operator D, and replacing ~ by ( -  ~/I). We then obtain from (2.6, 9, 10): 

a~ 
nl = nt./ -- CL C ~71, (2.11) 

(2.12) 

and dividing the formulae (2.6, 9, 10) by their respective final values: 

n _ C ~ (2.13) 
n I D ~ + 2 R D +  C~Ti 

%~/ - --~ ( 2 . 1 4 )  
' D 2 + 2 R D +  C ~ f '  ~eff, f 

nt _ t • t ~a . ~7 . (2.15) 
n s D ~ + 2 R D  + C ~1 

The final values given in (2.11, 12) are theoretically reached only after an infinite time but in 
practice after only a few seconds, provided the short-period oscillation is reasonably damped. All 
equations are valid only under the assumption that the speed remains constant, which is the 
essential basis of Gates' manoeuvrability theory 4. In reality, the motion will slowly deviate from the 
above simplified picture, owing to the gradually developing phugoid oscillation but, as known and 
as illustrated in Ref. 2, App. I, the effects during the early part of the motion, particularly as regards 
the important first peaks of all relevant quantities, are negligible. 

It  will be convenient to represent the final values (2.11, 12) in terms of the practical design data. 

We have: 
= /~m~_ t~ S' : ~ H ~ ,  

iB iB 2 S  as '  C = oJ + ½av = ZBt~ ca (2.16) 

hence: 

3 _ a2F (2.17) 
C aHm' 

and thus the final values are obtained in the convenient form: 

a2F (2.18) 
nl = CLH,,~ ~i ,  

, a 2 F (  \ de ~ )  (2.19) 

3. N o r m a l  Acceleration at C.G.  

3.1. S tep  Elevator Input .  

In this simple case, we have ~/ = - ~71 right from the start (Fig. 1), and the operational formula 

(2.13) becomes: 
n _ c ( 3 . 1 )  

- -  _ _  o 

nj D 2 + 2 R D  + C 



The functional solution can be determined at once from Ref. 3 (form. 100): 

where, for abbreviation: 

- - =  1 -(cosg)+/3sing))e-/~ = (p'(9)), say, (3.2) 

q) = J r  (time angle), (3.3) 

R (angular index). (3.4) /3 = ~- damping 

This simple solution is well known (e.g. Ref. 1, 2) and is illustrated by the curves marked 'step input '  

in Figs. 2, 3, 4, for/3 = 0, 0.2, 0.4. The curves start at 0, rise to their first peak values and then 

oscillate, with gradually diminishing amplitude (except for/3 = 0), about the asymptotic value 1. 

The first peak value, which is the absolute maximum, is reached at 9) = rr and is given by 

Z/m ~x 

ny 
- 1 + E o = 1 + e-fl a . (3.5) 

We shall term E o 'overshoot factor' for the case of step input. A few numerical values are given below: 

/3=0 
E o = 1 

0.1 

0.7304 

0.2 

0.5335 

0.3 

0. 3897 

0.4 

O. 2846 

0.5 

O. 2079 

0.6 

0.1518 

0.8 

0.0810 

1.0 

O. 0432 

and it is seen that this factor, while important for small values of/3, becomes practically negligible 
for, say,/3 > 1. 

3.2. Trapezo ida l  E leva tor  Inpu t .  

In this case, ~? varies linearly from 0 to ( - ~ / ) ,  during the time interval rl, and then remains 
constant. During t h e  f i r s t  par t  of the manoeuvre, we have: 

r 1 J 
~7 = - ~t 7, or, in operational form: ~ - - (3.6) 

- 7 ,  % D  9)1D' 

where 9)1 = J%;  the operational formula (2.13) becomes: 

,~ n 1 J C  

n,  9)1 D( D2 + 2 R D  + C) ' 
(3.7) 

and the functional solution will be (see Ref. 3, form. 111): 

,, _ 1 I 25 1-5  ) I 
n, 9), 9)1 9) 1 +/3~ + cosg) 1 +/3 ~sing) e-P~' (9)<9)1). (3.8) 

It  may be noticed that the first derivative of the function 0(9)), which is, of course, the 0'(9)) of (3.2), 

is always positive, therefore the normal acceleration increases throughout the first part of the 
manoeuvre, and its first peak must occur during the second part, 



For this second part, the elevator input may be considered as the sum of two linear inputs o f  
opposite signs, of which the input I (Fig. 1) is proportional to r, and input II  proportional to 
( r - % ) .  The  solution will therefore be: 

n ~(v )  - ¢ ( v -  w )  (~ > w ) ,  (3.9) 
ny cpl 

n e-P~ I 2fi 1- - f i  ~ ] - 1 + ~o 1 1 ~ { c ° s 9 ~  - cos (qo-~l)eP~l } 1 7 f i ~  {sin~o - sin(~-qq)eZ~l} . (3.10) 

This represents an ordinary decaying oscillation, and the first peak will be the absolute maximum. 
The fact that the maximum occurs during this stage makes it possible to determine its position and 
value analytically. The  latter is shown in Appendix I to be: 

e-P(~m-~q)/(  2e-P~°l - ) nmax - -  1 + E = 1 + 1 - -  COS q01 "]- e 2 f l q ~ l  

nl ~1 1 + fi2 , (3.11) 

where qo m is the relevant value of % given by the formula: 

(eP~l - cos ~1) - fi sin ~1 
t an (~m-qq)  = fi(cosqq-eP~l) - sin~l  ( 0 < ~ m - q q < ~ r ) "  (3.12) 

Several examples of the growth of the normal acceleration {according to (3.8) and (3.10)} are given 

in Figs. 2, 3, 4, for fi = 0, 0 .2  and 0.4, and for a few values of ~r  The  first peak is shown in each 

case. The  values of the overshoot factor E are plotted, for a wide range of ~q and several values of fi, 

in Fig. 5. The  initial ordinates of all curves represent the overshoot factor E 0 for the case of step 
input  {Section 3.1, form. (3.5)}. It is seen that ,  for ~o, > 0, the overshoot factor is always smaller 
than E0, but  the curves present some peculiarities. For very small values of fi, e.g./9 = 0.1, there are 
a few consecutive minima and maxima, at qq very nearly 2w, 3~, etc. And, for/9 = 0, E becomes 

exactly 0 at ~1 = 2~r, 4~r, etc., i.e. when the duration of the elevator movement  equals the period of 
the aeroplane oscillations, or a mukiple  of this period. For larger values of fi (above 0-3, say), as 
normally encountered in stable flight, E decreases monotonically as qo 1 increases. 

In rapid manoeuvres, ~1 will be quite small, certainly smaller than 2~r. For practical use, a part of 
Fig. 5 has been shown enlarged in Fig. 6, where ~q varies from 0 to 2~r, and/9 from 0 to 1. For 
fi > 1, the overshoots may be treated as negligible. 

Fig. 7 illustrates the formula (3.12) for the same range of fi and qq as Fig. 5. It  is seen that (q%~ -~q)  
initially decreases from ~r when ~1 increases from 0, and afterwards oscillates about  asymptotic 
values which are always greater than ½~r. 

The  exact formulae.(3.11, !2) are somewhat  complicated. For small ~q, however, they can be 
expanded as power series in qq. Some details of the procedure are given in Appendix I, and the 
final expansions are: 

E =  e-P '~ IX 1 +  fi2 ( 2 ) ~  (1 +fi2)(3 + l l f i 2 ) ( 2 ) 4  (1 +f i2)(9_6f i2+ 241fi4)(2)6 
6 + 360 - 45360 . . .  (3.13) 

qq 3fi_(2) e f i (1- f i  e) ( 2 )  4 f i (3-10f ie+3f i  4) ( 2 )  6 . . . .  (3.14) 
~ ' ~ - ~  = ~ - 2 - +  + 4 ~  + 141~7.s 

These series converge rapidly for a limited range of qq, and the degree of accuracy of (3.13) is shown 

in Fig. 8 for fi = 0 and fi = 0.5. The  curves marked '1st approx. '  have been calculated taking only 

or explicitly: 



two terms of the series, whilst 2nd and 3rd approximations correspond to three and four terms 

respectively. I t  is seen that, for q01 less than 2 (as usual in practice) the 1st approximation gives 
already an excellent accuracy. 

In ReL 1, the elevator was assumed to move according to the exponential formula: 

= - ~ ( 1 - e - ' : 9 ,  (3.15) 

so that the initial rate of elevator movement was "(-h~ll ) and the 'mean rate' was assumed to be 
half that value: 

(3.16) 

In our case of a trapezoidal elevator input {formula (3.6)}, the rate is constant: 

d~ 7i 
- ( 3 . 1 7 )  

d? ~1 

If  we want to make use of the assumptions of Ref. 1 as to the rates of elevator movement, we may 
simply equate (3.16) and (3.17), which gives: 

2 2J  
~1 = ~, and hence 5ol = -k" (3.18) 

Czaykowski 1 assumes, on empirical grounds, that the largest value of k is: 

k = 4 J +  R,  (3.19) 

and thus we get the likely smallest value of ~vl: 

2J  
501 - 4J  + R (3.20) 

As R is usually much smaller than 4J, this value differs very little from 0.5. For such rapid manoeuvres, 

the overshoot is almost exactly the same as for 501 = 0 (step input), cf. Fig. 6 and also, for comparison, 

Fig. 2b of Ref. 1. For some aircraft, the maximum rates of elevator movement may be expected to 

be considerably smaller, and then the alleviation in acceleration peaks will be significant. When 

using the formulae proposed in the present paper, we may Simply assume the anticipated time t 1 

(in seconds), and then determine: 

= Jtl/ , (321) 
where ~ is the unit of aerodynamic time. 

4. Incremental Incidence of the Tail, and Incremental Tail Loads. 

4.1. Step Elevator Input. 

We have again ~7 = - ~/I right from the start, and the operational formula (2.14) becomes: 

CA 
c%fe' C + 7 D 

%~'.I D~ + 2RD + C" 

Its functional equivalent (cf. Ref. 3, form. 100) is: 
t 

-%~--~-~ = 1 - [cos 50 + {/3 - A(1 +/?s)} sin 50] e-P ~ ' (9'(~) + ~(9"(50), 
~ e f £  t , ] 

(4.1) 

(4.2) 

10 



and it is seen that this differs from (3.2) only by one modified coefficient. The  difference is illustrated 

in Fig. 9, where the expression (4.2) has been plotted against % for/3 = 0, 0 .2  and for several 

values of A {including ~ = 0 which corresponds to form. (3.2)}. It is seen that the first peak value, 
which is the absolute maximum, occurs earlier and assumes higher values as A increases. The  effects 
may be quite small for aeroplanes with high wing loading flying at a great height, because/~ is then 
large, and )L small. It may n o t  necessarily be so in all cases, however, so that it is worth while to 
examine the matter in more detail. I f  we denote by q0 m' the value a t  which the first peak occurs, 
and write: 

t 5o,,~ = 7r - ~ ,  (4.3) 

then it is shown in Appendix II that 

X 
tant~ - 1 - / 3 1 '  (4.4) 

and the first peak value is given by: 

P 

( Z O f f  , m 0 ~ x  
= 1 + e - ~ E  ' = 1 + E o E '  , ( 4 . 5 )  

t 

o%ff, f 

where E',  the 'additional overshoot factor for tail incidence', is: 

E '  = e~ ~ ~/(1 - 2/32~ + ;~2(1 +fi2)} (4.6) 

The  formulae (4.6) and (4.4) are illustrated in Figs. 10 and 11 for a range of values of/3 and ;L 

It  is seen that E'  >7 1 (whereas E ~< 1) and may become quite large if both A and/3 are large, but  
this will seldom be the case. 

If  ;~ is small, the formulae can be expanded in power  series and, as shown in Appendix II, we have: 

E '  = 1 + ½(1 +/3~) ~ + ~/3(1 +/3~)~ + ~(1 +/3~)(7/3 ~ -  1)A * + ~ ( 1  +/3~)(17/3 ~ -  7)~ ~ . . . .  (4.7) 

4.2. Trapezoidal Elevator Input. 

Applying the same procedure as in Section 3.2, the operational formula (2.14) becomes, for the 
1st part of the manoeuvre: 

o%f~' C(J + AD) 
c%r~', I 5°1D( D2 + 2RD + C) ' (4.8) 

and the functional solution is: 

~od (I)(9) + ~ ' ( ~ )  
- (0  < q~ < q)l) ,  ( 4 . 9 )  t 

°¢eff, ] 91 

where (I)(~) and ~'(~) are functions defined by (3.8) and (3.2). During the 2nd part of the 
manoeuvre, we shall have: 

~od e(~)  - ~ ( ~ - ~ 1 )  + a{*'(~) - ~ ' ( ~ -  ~)}  
%rf', I ~°I (~o > ~1). (4.10) 

The  explicit equivalents of (4.9) and (4.10) are given in full in Appendix III ,  and the formulae 

illustrated in Fig. 12 for/3 = 0-2, A = 0.5 or 1, and several values of ~o~. Fig. I3 illustrates the 

casefi  = 0 ,2~= 1. 
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The first peak value of (4.10) is again the absolute maximum, and it may be obtained in a way 

similar to that used before (Section 3.2 and Appendix I). The calculation is somewhat involved, 

and some details are given in Appendix III ,  but the final result is surprisingly simple. The maximum 

becomes: 

(~efl I, rn&x - 1 + E E ' ,  ( 4 . 1 1 )  
CXeff', ] 

so that the two previous overshoot factors must simply be multiplied; and tile maximum occurs at 

~o~" = ~o~ - v ~ ( 4 . 1 2 )  

so that the maximum tail incidence leads the maximum normal acceleration by the same 'phase 

angle' v ~, irrespective of the duration of the 1st part of the elevator manoeuvre. 
The overshoot factor for the tail incidence (EE') depends on three parameters/% h and q~l. But, as 

it  is a product of E and E'  (each depending on two parameters only), two figures only, 5 (or 6) and 10, 

are sufficient to determine it in each particular case. 

4.3. Formula for Maximum Incremental Upload. 

Let us consider the more general case of the trapezoidal input, because the step input may be 

regarded simply as a special case, with 91 = 0. 
The incremental load acting on the tail during the pull-out manoeuvre is: 

I 2 t t P = ½pV2S'CL ' = ~pV S (a1%ff +a~)),  (4.13) 

and it reaches its maximum simultaneously with 0~eff' , s o n i c  time after the elevator has been fully 

deflected to its final value ( -  ~t)" We have e therefore: 

elmax 1 -,2--,, , = ~pv o t a l%~r ,m~-  a2@ (4.14) 

or, introducing (4.11) and (2.19): 

On the other hand, the weight of the aircraft in the initial equilibrium conditions (in level flight, 

or at a small inclination to the horizontal) may be considered as equal to the lift: 

W = ½pV2SCL, (4.16) 

and the maximum incremental load factor, from (3.11) and (2.18) is: 

nm~ ~ - CLH~ a ~ l ( l + E ) .  (4.17) 

Combining the last three equations, we obtain the final formula: 

P1max S'al ( de a ) l  + EE' cH~,~ 
V/Znmax = S--a- - 1 - ~ + ~ .  I + E  I ( I + E ) '  

(4.18) 

which is most convenient, as the value of nma x is usually prescribed. The  formula contains only 

This maximum load is denoted by P1 max (and often termed the 'first maximum incremental tail load') 
to make a distinction from the 'second maximum incremental tail load', P2 max, which appears at a later stage 
of the 'standard manoeuvre'--.see Section 7.1 (C). 
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fundamental design data and, in addition, only the two overshoot factors E and E', to be taken from 

Figs. 6 and 10. The second term still represents the effect of elevator deflection', the first one that 

of the aeroplane response. 

In the case of a step input, the formula still applies, with E replaced by E o = e -z~. 
It may be noticed that, if A is small, E'  exceeds 1 only by a very small fraction, hence the fraction 

( I + E E ' ) / ( I + E )  in the first term of (4.18) is very nearly equal to 1, and may often be omitted. 
However, the fraction 1/(1 + E) in the second term may be considerably smaller than 1, and should 
not be omitted generally, as it may contribute significantly to obtaining higher Pm~" 

We may consider the particularly simple special case, when the damping of the short-period oscillation 
is very high, say t3 > 1. In such a case all overshoots may be ignored, and (4.18) becomes: 

Plmax S ' a l (  de a ) c H  m P,  (4.19) 
Wnm~ x ~ ~ 1 -  -~ + ~ l - Wn I' 

but this may be simplified as follows. We have: 

H,~ = Km _ ---,l mq (4.20) 
Cl~ 

where the restoring margin K m is: 

K,,~ = ho - h + V 1 -  ~ , 

and the damping derivative me, supposed to be provided by the tail only, may be written: 

S ~ 
m~(t~il I = - ½ ~ a~. (4.22) 

Substituting into (4.19), we find: 

P1 max 
Wnm~ ~ ~ ( h - h o ) .  (4.23) 

This formula may seem unbelievably simple. As a matter of fact, it follows directly from first 

principles, if we assume that the maximum tail load obtains when the equilibrium conditions in 
the steady circle have been established (thus neglecting overshoots during the transient period). 
The incremental wing load Wnma ~ is applied at the station cho, thus its positive moment about c.g. is 

Wnma x (ch - cho) , while the negative moment of the incremental tail load is P1 ma~ l" Equating the two 
moments, we get (4.23) at once. The formula (4.23) is, of course, not recommended for use in 
detailed calculations. 

By using (4.20 to 22), the full formula (4.18) can be manipulated into: 

Plmax c ~ 1 + EE' EE'  "~ (mq)~,, 1 + EE'  
Wnm~x -- l L(h-ho)  1 + E + H,~ 1 + El  + -- tz  l + E  ' (4.24) 

where the last term contains the (previously neglected) damping derivative (me)~b; this shows 
that the correct value normally exceeds that given by (4.23), the last term being usually very small. 
By elimination of H,~ the formula (4.24) may also be written in the following form: 

P~ ~ x  1 (h - ho) + 1 - + EE'  (mq),~,~, (4.24a) 
Wnma x - -  1 + ~  S a  ~ ~ + ) z ( l+E) '  

which may be often most convenient, as it contains only the very first design data, and overshoot 
factors. 
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4.4. Formulae for Maximum bwremental Download. 

For the first part of the pull-out manoeuvre (~o < ~ ) ,  we must introduce the following expression 

in the formula (4.13) for the incremental tail load: 

(4.25) = _ ~ 1 - -  
% 

and, according to (4.9) and (2.19): 

We have therefore: 

where: 

, a )  • + a , ' ( v )  

% 
(V < e,) .  (4.26) 

P = ½pV2S'a2V~ I~ {cI)(~) + (99 < %),  (4.27) 

p = (4.28) 

a~V 1 - ~ +  

In the early stages of the nmnoeuvre, when ?~ is small and increasing, ~'(~) is small of 2nd order, 
as is easily seen from (3.2); hence (I)(cp) is small of 3rd order. In (4.27), therefore, the last term qo in 
brackets is initially the dominant one, and P is initially negative, its numerical value increasing up 
to a certain maximum. 

It  will be convenient again to relate the download to the maximum normal force Wnmax, i.e. to 
combine (4.27) with (4.16) and (4.17). We may then write: 

- p F(v)  
- (cp < %),  (4.29) 

Wnm~ ~ l(1 + E) ~x 
where 

+ 
F(q~) = q J -  (4.30) 

P 

We have now to determine the maximum download which will be denoted by ( - P)max" Let us observe 

first that, in the case of an instantaneous elevator displacement (step input) the greatest download 

occurs immediately at the start, and its value is given by the simple formula: 

( - P ) m ~  _ cH,~ (~o 1 = 0). (4.31) 
Wnm~ x l(1 + E) 

This becomes obvious when considering the formula (4.18) for maximum upload. The second 
term in (4.18) is due to the elevator deflection alone, the first one to the aeroplane response and to 

the resulting increase of tail incidence. In the case of step input, only the second (negative) term 

applies initially, and this is expressed by (4.31). 
The formula (4.31) gives an exaggerated value (which is still a very useful upper limit) whenever 

the elevator is deflected at a finite rate. To get a clear picture of the alleviation in various cases, the 
reader is referred to Fig. 20, which gives full response curves for the tail load, as calculated for the 
example of Section 6. For each ~l, the curve consists of two parts, the initial one extending from 
(p = 0 to the ' terminal '  point at ~ = ~q. All initial parts are expressed by the same equation (4.29) 
and thus only differ in scale which increases in inverse proportion to ~q. The  true turning points 

would therefore occur for the same value of % which will be denoted by ~*. 
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For small 9)1 (less than 9~), the initial parts of the curves never reach their turning points and, as 
the further parts deflect sharply upwards, the maxima are obtained simply by putting 9 = 9~: 

(-Pma,x) cHin F(91) cHin I di)(91) -]- "~i)'(91) 
Wnm~ ~ - l(1 + E) 91 - -  l(1 + E) 1 - pc& (91 < 9~) • (4.32) 

This formula, involving only a very simple computation, is often all that is required when rapid 

elevator manoeuvres are to be reckoned with.-When 91 + 0, the ratio F(%)/91 -+ 1, and we come 

back to (4.31). The general illustration is given in Fig. 14, where the upper graph shows a typical 

response curve F(9 ) and, for any 5ol less than 9e (such as 91' or 9/'), the maxima of the ratio F(9)/91 
of form. (4.29) are equal to the Slopes of the respective secants (OQ' or OQ"). The values are plotted 

in the lower graph (respective points P', P", etc., up to P* only). The initial ordinate OP 0 (slope of 
the tangent at O) is always equal to 1 and other ordinates represent the alleviation factor. 

For larger 91 (greater than 9~*), the initial parts of the curves in Fig. 20 reach their turning points 
and extend beyond them, up to 501. The maxima of (4.29) become: 

(-P)m~x cHm F(9 ~) 
Wnma x / ( I+E) 91 

(91 > 9~), (4.33) 

where F(9 e) is independent of 91, so that these maxima vary simply in inverse proportion to 91, 
and the remainder of the lower curve in Fig. 14 is a hyperbola. Its ordinates (such as those of points 
P", P"") can be obtained from the upper curve as the slopes of lines (such as OQ", OQ')  joining 
the origin not with the points of the curve but with their projections (Q", Q"", etc.) on the horizontal 
tangent through Q*. The maxima decrease with rising 91, but always remain true downloads, while 
the formula (4.32) would not only underestimate the maxima but sometimes even give results with 
a wrong sign. Because of difference of procedure for small and large 91, the ordinates of the lower 
curve in Fig. 14 are denoted by F(9)m/91 which means either F(91)/91 or F(9*)/91 , as the case may be. 

The formula (4.33) requires a little more work than (4.32), as 9) e and F(9 ~) must be found first. 
The usual procedure will be to compute the entire curve of F(9)--some 6 or 8 points will normally 
suffice to have a fairly accurate plot, and then the procedure is straightforward. 

It may be noticed that, for any %, when 9 exceeds 91, the equation (4.29) for the variation of 
tail load ceases to apply, and this will be given by: 

P F ( 9 - 9 3 - F ( 9 )  
- - -  ( 4 . 3 4 )  Wnm~ x l(1 + E) 91 

This fornmla should be used for computing the second parts of the tail loads curves beyond the 
'terminal' points, as has been done in Fig. 20. The curves invariably deflect sharply upwards at 
these points. 

Note. It is possible to avoid any curve tracing by using approximate formulae for 9 e and F(ge). 
It is a difficult problem to derive such approximations, applicable to all sets of values of the three 

parameters (fl, A, p) involved, but convergent power series were worked out by Mr. D. N. Foster 
during his stay at the R.A.E. as vacation student. The series and a summary of their derivation are 
given in Appendix IV. The work was based on the assumption that ~/p and A/~/p were both small, 
but the series converge well for all values of the parameters which are likely to be encountered in 
practice. This is illustrated in Figs. 15 to 18, where the curves of F(9 ) and F(9)m/91 are traced for a 
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number  of values of fi, A/~/p and p. The exact turning points are shown, as well as approximate 
points (circled) calculated from (IV.6, 8). It is seen that only for quite large values o fp  and Z are the 
errors worth mentioning. 

It is not expected that the series will be widely used, because of their rather complicated coeffi- 
cients, so that the previous method of curve plotting will usually be preferred. The series, however, 
may be utilised for obtaining some very simple and useful rough approximations. Taldng, for 
instance, only the first terms of each series, we obtain: 

/ 2p 2 / 2p , F(~*) 2 (4.35) 
~* ~ 1 + f i 2 '  F(~o*) ~ ~ / 1 + / 9  ~ and 7 -  ~ ~" 

The ratio F(~v*)/cp* is the alleviation factor for ~o i = ~v*. The  exact loci of this factor are shown in 
Figs. 15 to 18, and it is seen that this quantity varies little wi thp ,  and seldom differs much from 2/3, 

the errors being largest for the extreme case of very large fi and very large ;~/~/p. The accuracy of 

the approximations for ~o* and F(~v*) is also tolerable, but  not quite so good for large t9. 

5. Normal  Acceleration at Tail. 

This acceleration may be needed for determining inertial forces of the tail mass which alleviate 
the tail load. Another application may be found in interpreting flight tests, if a recording accelerometer 

is carried in the tail. I t  will be useful therefore to develop, as briefly as possible, formulae for this 

acceleration, the more so as it will be shown that similar methods and expansions apply successfully 
for determining the peaks, as used before for the tait incidence. 

We consider again two cases, viz. step and trapezoidal elevator input. 

(A) Step elevator input. 

Assuming ~ = - */s right from the start, (2.15) becomes: 

C -  - -  C D - 2 C D 2  

nt -- lZ txa (5.1) 
n/ D 2 + 2 R D  + C ' 

and its functional equivalent (Ref. 3, form. 100): 

n ,  _ _ J _ 2J__  

n I [x t za  

[( i l ( I ] = 1 -  l + 2 C _ c o s c p +  fi 1 +  sin v 
t~a / - ~  tzaJ 

It  may be noticed that, in this case, the initial value nt, 0 of the acceleration is not zero, because 
only (I)'(0) = (I)"(0) = 0, while (I)"(0) = 1 + t? ~ 4= 0, and we have {using (2.16)}: 

nt, o _ 2 C  cH,n a~S'~l (5.3) 
nl t ~a - iB l or, using (2.18): n~, o = i ~ S C L ,  

as may also be checked from first principles. Form. (5.2) differs from (3.2) only by modified 

coefficients, but  there are some new parameters involved, in particular/z and a. It might seem that 
(5.2) becomes very nearly identical with (3.2) for very large tz, but  this is not so because C itself 
grows very nearly in proportion to/~ {see (2.16)}, and J in proportion to ~v/C or ~//x. The  quantity 
C/im is, however,  a small fraction usually, so that the difference between (3.2) and (5.2) is not large, 
and some useful expansions in inverse powers of/xa will be found below. The initial value of the 
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acceleration is negative and usually small in comparison with the final positive value. It is also easily 

checked that the acceleration starts increasing immediately and soon becomes positive, to oscillate 

afterwards about its final (asymptotic) value, with gradually decreasing amplitude. An example is 

given in Fig. 19, where the curve marked ~1 = 0 applies in the present case, and may be useflflly 

compared with the corresponding curve in the same figure representing the normal acceleration 

at e.g. for step input. It was assumed fi = 0 or ]3 = 0.2, and J/a = 2, J/lz = 0.08, so that 
2C/f fa = 0.3328, a comparatively large value to get a clear picture. It is seen that the first peak 

value, which is the absolute maximum, assumes higher values than is the case for the e.g. normal 
acceleration. If we denote by q%' the value of qo at which the first peak occurs, and write: 

~ n '  = ~ r - - t 9  n ,  

then it is shown in Appendix V that: 

J(4R-a) 
t an t~  = ffa + 2 C -  R ( 4 R - a ) '  

and the first peak value is given by: 

n¢ m~x _ 1 + e - ~ E 1 ,  
nl 

where El, the 'additional overshoot factor for tail normal acceleration', is: 

E l = e p O ~ J l (  1 2C] 2 2R C (4aR - 1) +..,-(;+y) - I  

(5.4) 

(5.5) 

(5.6) 

(5.7) 

It would be superfluous to cry to illustrate formulae (5.5) and (5.7) for a comprehensive range of 
all parameters involved. It is clear, however, that v~ is positive, i.e. the normal acceleration at the 

tail precedes that at e.g., whenever 4R > a, which is always the case (cL form. (2.5)) if v + X > 0, 

i.e. the total rotary damping of the aeroplane is positive. As to the overshoot factor El, it is shown 
in Appendix V to expand into the following series, in inverse powers of ffa: 

2c c(4R- ay C(4R- a) ' {C -  R(4R- a)} (5.S) 
E l =  1 + - - +  . . . .  , 

ffa 2ff~a 2 fzaa 3 

which usually converges so rapidly that the first two terms are sufficient. 

(B) Trapezoidal  elevator input. 

This case may be treated in a similar way as in Sections 3.2 and 4.2, and some details are given 
briefly in Appendix V. An illustration is given in Fig. 19, with the same values of constants as for 
the step input, and with several values of ~1. It is seen that the acceleration is initially 0, assumes 
small negative values during a short period, and soon becomes positive to oscillate, with gradually 
decreasing amplitude, about the asymptotic value. The first peak value (absolute maximum) can 
be obtained as simply as in Section 4.2, viz.: 

n ~ , ~  _ 1 + E E l ,  (5.9) 
nf 

so that the overshoot factors are simply multiplied; and the maximum occurs at 

q~" = q~m - ff~, ( 5 . 1 0 )  

so that the maximum normal acceleration at the tail leads that at c.g. by the same angle ~ ,  
irrespective of the duration of the first part of the elevator manoeuvre. 
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C o m b i n i n g  (5.9) and (3.11) ,we get: 

hi. m~x 1 + E E  1 
- - -  ( 5 . 1 1 )  

nma x 1 + E ' 

wh ich  shows tha t  nt, raax > n~ax, because E~ is normal ly  greater  than  1 {cf. expansion (5.8)}. 

However ,  nt ' ~ usual ly exceeds nm~ x only slightly. 

6. Numer ica l  Example.  

Let  us consider  the  fo l lowing numerica l  data, agreeing as exactly as possible wi th  those used in 

Ref. 1, so as to have a direct  compar i son  of  our  results wi th  those obta ined  for the  ' equ iva len t '  

exponent ia l  elevator input :  

W =  157501b, V =  600f t / sec ,  S =  350sq .  ft, c = 1 0 . 5 f t ,  

S ' =  5 4 . 1 s q .  ff, I =  2 0 . 1 7 f f ,  i B = 0 .1536,  

height  = 30 ,000f t ,  hence  ~ = 0 .374,  p = 0 .000889  slugs/cu,  ft, 

W e  obta in :  

W W 
- 78,  ~ -  - 2 - 6 2 s e c ,  

t* - pgS l  p g S V  

W 
½pV ~ = 160 lb/sq, ft, C L - ½pV~ S - 0 . 2 8 1 2 ;  

S '  1 S ' I  
- 0 .1545,  - =  1.921,  V -  - 0 . 2 9 6 8 .  

S c Sc  

Let  us assume fur ther  the fol lowing ae rodynamic  data: 

d e  
a = 3 .291,  a 1 = 2 .8 ,  a 2 =  1.75,  ~ - £ = 0 . 5 5 ;  

co = 4 3 . 0 9  (cor responding  to K m - 

and calculate: 

S ' a l =  _ 0-2163,  
( m q ) t a n  ---- 2 8  

d e  
m# = (m~)t~ n do~ - 0 .1190,  X = 

2 R = ½ - a + u + X = 5 ,  R = 2 . 5 ;  

H.~ = .2 Ci f l  
Izac 

gp = 0 .0286  lb/cu,  ft. 

2wiBl 

tzac 
- 0"0990), ( m q ) w i n g + f u s "  = - -  O" 18, 

m~ _ 2 .58 ,  ma(tota 9 = - 0 .3963,  v = iB 

m # = 0 . 7 7 4 5 ,  8 = 68" 65. 
iB 

C = oJ + ½av = 47 .335  (cor responding  to 

- 0 .1088) ;  Y = ~ / ( C - R  ~) = 6 .41 ;  fi = R / J  = 0 .39 ,  e-P" = 0 .2937.  

N o r m a l  acceleration at c.g. 

Assume ~1/ = 1 7 ° =  0 . 2 9 6 6 r a d ,  t hen  f rom (2.18) nf = 5 .036.  Also assume, as in Ref. 1, 

k = 4 J  + R = 28.14,  and hence, f rom (3.20) the  cor respond ing  ~v 1 = 0 .456  tad, fi~o 1 = 0. 1777, 

eP~l = 1. 1944, e-P** = 0. 8372, e-2P*Pl = 0 .7009.  T h e  overshoot  can n o w  be calculated accord ing  
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to Section 3.2. T h e  formula (3.12) yields: tan (~o m - qq) = - 0.2248, hence q),,~ - % = ~r - 0" 2212 = 

2"9204, f i (%~-~q)  = 1" 1390, e-P(~,~-~*) = 0.3201, and finally f rom (3.11), E = 0.2907 {the series 

in (3.13) gives the same value} and n~.~ = 6. 500, as required in Ref. 1. Obviously, any arbi trary 

value of n ~  may be obtained by s imply scaling ~1 up or down in proport ion.  

I f  the elevator were  displaced instantaneously (% = 0), the overshoot  factor would  be 

E 0 = e - P ' =  0.2937, and nm~ x = 6"515, only insignificantly higher value than 6.5.  We may, 

however,  take a numbe r  of greater values of ~1, obtaining the following results: 

T A B L E  1 

71 tan ( ~ m -  91) 

0 0 
0" 456 - 0" 2248 
0"800 -0"3983 
1"200 -0"6162 
1"600 -0"8659 
2"000 - 1"1668 
2"400 - 1"5447 

I 

( P r o  - -  ~°1 

3-1416 
2-9204 
2-7626 
2-5894 
2-4280 
2.2794 
2-1453 

e-,e (~pm-~l ) 

0.2937 
0.3201 
0.3405 
0.3642 
0.3879 
0.4111 
0.4331 

E 

0.2937 
0.2907 
0.2848 
0.2739 
0.2593 
0-2416 
0-2213 

nl l l~X 

6.515 
6.500 
6.470 
6.415 
6.342 
6-253 
6-150 

5.036 

"g I 

0 
0.0711 
0.1248 
0.1872 
0.2496 
0.3120 
0.3744 

OO 

0 
0. 186 
O. 327 
0. 490 
0. 654 
0"817 
0.981 

OO 

T h e  computat ion has been made using the exact formula (3.11), but  the series in (3.13) leads to 

identical results, wi th  only very slight inaccuracies for large 91. I t  is seen that, even in the case of a 

sluggish input  of ~ 1 sec. duration, the m a x i m u m  acceleration only decreases by about 6%. 

Incremental tail hzcidence and tail upload. 

Here  we need the additional parameter  A {form. (2.8)}. 

A = 0-2704, and hence, f rom (4.4) and (4 .6 ) :  tant~ = 0.3023, eBO = 1.1213,  

~ora' = w -  0"2936 = 2"8480 rad, E ' =  1.1213 × 0"9345 = 1"0479. 

This  enables us to calculate m a x i m u m  tail incidence and m a x i m u m  tail upload for any qh, using 

(4.11) and (4.18). We first determine the final values: 

f rom (2.19): %~ ' , t  = 0.2027 rad = 11-62 °, 

f rom (4.19): Ps = 975 - 892 = 83 lb, 

and then (4.11) and (4.18) become, respectively: 

%fe',max = 0"2027 ( I + E E ' ) ,  

Pxmax __ 975 1 + EE'  892 
nma ~ 1 + E 1 + E '  
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which, in conjunction with  Table  1, leads to the following results: 

T A B L E  2 

501 

0 
0.456 
0.800 
1-200 
1.600 
2.000 
2.400 

O0 

1 + E E '  

1.3078 
1.3046 
1-2984 
1.2870 
1.2717 
1.2532 
1.2319 

p 
~eff , m a x  

radians 

0.2653 
0.2646 
0-2634 
0.2609 
0.2580 
0.2541 
0.2498 

0.2027 

P 1  m a x  I b  

n m ~ x  

296 
294 
291 
285 
276 
266 
253 

83 

P1 max lb 
for N = 17 ° 

1928 
1911 
1883 
1828 
1750 
1663 
1556 

418 

P1 max lb 
for nma x = const. = 6"5 

1924 
1911 
1892 
1853 
1794 
1729 
1645 

540 

I t  is seen, as could be expected, that  the m a x i m u m  incremental incidence does not vary much  with 501, 

but  the variation in the m a x i m u m  tail upload is considerable, and the effects of overshoots very 

important .  I t  mus t  be ment ioned that  the values of the ratio P1 max/nmax in the 4th column of 

Table  2 have been calculated f rom (4.18) or (6.2) taking the appropriate  E in each case, so that  nma x 

is somewhat  different for each value of .wl, as in Table  1. T h e  values of P1 m ~  thus correspond strictly 

to the assumed elevator deflection (17°). I f  the elevator angle were adjusted in each case so as to 

obtain constant n~a~ = 6"5 for any 501, then the load P l m ~  would assume somewhat  different 

values, tabulated in the last colunm. T h e  differences are small in this example, except for 501 = oo, 

i.e. for the asymptot ic  value, for which all overshoots are omitted. T h e  present  example is illustrated 

by Fig. 20, where  the t ime histories of tail load per constant nm~ X (6" 5) have been plotted. T h e  positive 

peak values thus correspond to the last column of Table  2. T h e  figure corresponds to Fig. 2h of 

Ref. 1, and a fair agreement  of the peak values is clearly seen. 

Incremental download on tail. 

Here  the additional parameter  p is needed, which is obtained f rom (4.28): 

p = 0.915 

In  the case of step input, we find f rom (4.31), taking nm~ x = 6"5, E = 0"2907: 

( -  P)m~x _ 690 lb ,  ( -  P)max = 4492 lb ,  
lZma X 

this corresponding to the initial ordinate of the curve marked 501 = 0 in Fig. 20. For  this and other 

values of 5ol, full response curves have been produced using equations (4.29) and (4.30) which 

take the form: 

P 
- 690 F(50), F(50) = - 0.09350 + 0.445 + (0 . 919 sin 50 - 0 £ 445 cos50)e -°'ag~. 

nmax 501 

I t  is seen that  for several smaller values of 501, the m a x i m u m  downloads coincide wi th  the ends of 

elevator movement ;  for higher 501 (2 and 2.4)  the m a x i m u m  download occurs before the elevator 

has been fully deflected, and it is a true turning value. T h e  value 501 = 1-6 seems to be the critical 

one coinciding with the true turning point, akhough  the exact m a x i m u m  occurs for ~ ~ 1.497. 
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The maxima are tabulated as follows: 

TABLE 3 

91 

0 
0.456 
0-800 
1-200 
1-600 
2-000 
2.400 

( -- P)max/nmax 
lb 

690 
616 
540 
442 
343 
274 
229 

( -  P)max, lb 
for nma x = const. = 6"5 

4485 
4004 
3510 
2873 
2230 
1781 
1489 

It  is seen from Table 3 and Fig. 20 that the effect of qo 1 on the maximum download is very large 

indeed so that, when the duration of the input varies from 0 to about 1 second, the maximum 

download falls to one third of its initial value. In the given case, maximum incremental downloads 

considerably exceed maximum incremental uploads in rapid manoeuvres, but the position becomes 

reversed for more sluggish manoeuvres. Comparing Fig. 20 with Fig. 2h of Ref. 1, we notice that 

the trends are in good agreement, but  our peak values are comparatively higher (e.g. we obtain 

616 for 9 1 - - 0 . 4 5 6 ,  while in Ref. 1 we find only about 500 for the corresponding value 
[drl/dt ] = 91.4). The differences in peak values are clearly due to the different shapes of the elevator 

time histories assumed for the two methods. The download peak occurs early in the manoeuvre, 
when both elevator deflection and response differ appreciably. In the case of instantaneous elevator 

input both methods obviously give the same value (4.31) due to the full elevator deflection alone. 
In the general case, the total download equals the difference between the force due to elevator 

deflection and that due to aeroplane response. The exponential elevator deflection, and its mean 
rate as assumed in Ref. 1, are given by (3.15, 16), while in the case of trapezoidal input, with the 

same rate during the initial part, we have: 

~t,. = - ½ k ~ / ~  (-r <<. -r 1 = 2 / k ) l .  (6.3) 

J 
I t  is easily seen that ~/~xv has initially greater numerical values than ~a., the ratio falling from 2 to 1 

as r increases up to 0.7968~-1 (when the common value = - 0 .7968@; later the position is 

reversed (e.g., for • = z 1, we have ~/~1. = - ~/, %xv = - 0 .8647@ but, as ~ goes on increasing, 

the ratio tends quickly to 1. For sufficiently rapid manoeuvres (k sufficiently large, ~'1 and ~o 1 

correspondingly small) the peak download resuking from trapezoidal input occurs at ~o = qh( < ~°*), 
where ]%r ] > [%xp [, while the response effects are still small, and thus we may expect the peak 

download to be greater. The differences are negligible for very  small %, but increase for somewhat 

larger ~o 1 (e.g. in our example, our method gives some 20% greater peak value for % = 0.456). 

As q~l is increased still further, the differences soon decrease and even change sign, while being 
very small and tending to 0. There is no point in pursuing the comparison in great detail because 
the assumption of equal mean rates is artificial anyhow. In cases when the trapezoidal input is an 
obviously realistic approximation, e.g. automatic-pilot ' runaway 'is, our formulae for peak download 

are, of course, directly applicable, the elevator rate corresponding tO the maximum servomotor 

rate being the appropriate one. 
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It  may be noticed that the method of this paper is particularly convenient for estimating the 
effects of varying rapidity of manoeuvre on the magnitude of tail loads during the initial stages, 

i.e. for 9 ~< S% (thus, in particular, of maximum downloads), without making new response 
calculations for any new value of the parameter %. Thus  the relevant portions of response curves, 
such as those in Fig. 20, must merely be scaled up or down, in inverse proportion to qo~--see 
form. (4.29) where F(c?) does not depend on ~s r 

Normal  acceleration at tail. 

In the case of step elevator input, we have, from (5.3) to (5.7), initial values: nt, o/n I = - 0.3687, 

nt, o = -  1.857, and, for the first positive maximum: tanv~ = 0.1285, v~ = 0.1276, E 1 = 

1.0511 x 1.3142 = 1.3814, nt, m~.~/nt = 1-4057, nt, m~.~ = 7"079, so that this maximum exceeds 
that of the normal acceleration at c.g. (6. 515), but only by some 9~/o. For trapezoidal elevator input, 
we use (5.9), and the results are tabulated below: 

TABLE 4 

% 

0 
0.456 
0. 800 
1.200 
1- 600 
2-000 
2- 400 

nt, m a x / n /  = 

1 + EE 1 

1.4057 
1-4016 
1.3934 
1.3784 
1-3582 
1.3337 
1.3057 

~t~ 1TI R,X 

7-079 
7.058 
7-017 
6.942 
6-840 
6-717 
6.576 

oo 1 5.036 1 

nt, n1~x/nlnax 

1.0866 
1-0859 
1.0845 
1.0820 
1.0785 
1.0742 
1.0691 

7. Discussion. 

It has been shown that, on the assumption of step or trapezoidal elevator input, the normal 
accelerations at the c.g. and the tail, the incremental up- and downloads on the tail and, in 

particular, the important peak values of all these quantities can be easily determined. All results 
have been presented as simple formulae in  terms of basic design data, so that rough preliminary 
computations can be performed even in the earliest design stage, and repeated more accurately in 

any later stage, as soon as more precise data become available. As the method neglects the variation 
of forward speed, it is applicable for all heights and flight speeds (sub-, trans- and supersonic), 
the effects of compressibility at high Mach numbers being reflected only through appropriate 

numerical values of the few aerodynamic derivatives involved. The important feature is the part 

played by the maximum value n~n,~ X of the normal acceleration at the c.g., which is' normally 
stipulated in the aircraft specification; all other quantities, including in particular tail loads, have been 
related to it. It  is assumed that the pilot will never exceed nm~x, and it would be extravagant to assume 

tail loads in excess of those which accompany this peak acceleration and corresponding main wing 
load. However, the matter requires some additional deliberation. 
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Although the formulae for maximum incremental tail loads are simple enough, two difficulties 

arise. Firstly, several parameters involved vary with flight conditions (weight, c.g. position, height, 
and speed or Mach number) for an existing aeroplane, or for a planned one with assumed main design 

data. I t  appears that the formulae should be applied in a great many different cases (several heights 

combined with several speeds and several c.g. positions), so as to enable us to pick out the highest 

values of the maxima. Secondly, an even more complicated problem arises in the early design 

stage, when the basic data are being discussed and decided. It  may then be required that these 

data should lead to as small tail loads as possible or, if this is impracticable in view of some other 

overriding requirements, the effect of various choices on tail loads should at least be understood and 

taken into account. To clarify both matters, the main formulae will now be examined in detail. 

7.1. An aeroplane with Fixed Basic Design Data. 
(A) Maximum incremental tail upload. 
The formula (4.18), which shows separate effects of tail deflection and response, is not very 

convenient for discussion, because some factors of the first term affect the value of manoeuvre 

margin H m appearing in the second term. We shall therefore use form. (4.24a) which gives a clear 

picture of the effects of basic parameters. 
The  ratios S'/S and c/l are constants independent of flight conditions, but the remaining para- 

meters do vary with them, and it is essential to consider their worst combinations leading to the 

highest Pl~ax.  The  two terms derived from rotary damping m~, namely the last term and that 
containing a/2l~ are normally much smaller than the rest, and their effect is of little importance. 

Roughly, the upload may increase when: 

(i) W rises to its greatest value, 

(ii) h rises to its greatest value (i.e.c.g. in its rearmost position), 
a l (  de) 

(iii) a 1 - ~ rises to its greatest value, 

(iv) h 0 falls to its smallest value, 

(v) E and E'  rise to their greatest values. 

I t  appears therefore that maxima in the case of greatest a.u. weight and rearmost c.g. position 

must be mainly considered*. Further, the values of (al/a) (1 - de/dc 0 and h0, which depend primarily 

on Mach number,  should be known and examined throughout its full range. No general discussion 

is possible here, but  it should be stressed that these quantities may vary considerably as Mach 

number increases to transonic and supersonic values, and this .variation should be carefully taken 

into account. 

e This conclusion is strictly valid only if the weight and/or c.g. position are changed independently of each 
other (e.g., when loads are added without affecting c.g. position, or if some loads are shifted longitudinally). 
It often happens, however, that the two quantities vary simultaneously, for instance when fuel is consumed or 
added, and then the relationship between W and h must be known, and the formula (4.24a) examined taking 
this relationship into account (usually by drawing a graph), so as to find the greatest tail load, which may then 
not correspond to greatest W or greatest h. Strictly, the overshoot factors E, E' may also vary somewhat with 
W and h, and this may also be accounted for in this examination. 
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The effect of overshoot factors E, E' is of particular interest. Of those, E (always between 0 and 1) 
depends on/3 and %, and E' (always greater than 1) on fi and A. If we re-write (4.24a), neglecting 
two small damping terms, in the form: 

S ' a l ( l d e  ) 
PI rna.~: ~ (h - ho) + N a ~ EE' 
Wnm~ x ~ 1 + E ' (7.1) 

it is seen that this does increase with E, other quantities being assumed constant, provided 

s a ~ > (h-h0) 

o r  

a l (  de) E' h o - h + - -  P 1 -  > 0, (7.2) 
a Z 

and (7.2) is always true because the left-hand part becomes equal (to the same degree of approxima- 

tion) to manoeuvre margin H m when E' = 1, and the true E' always exceeds 1. Also, (7.1) obviously 

increases with E'. In many cases, especially if the wing loading is high, and particularly at great 
heights,/z becomes large and )t small, hence E' exceeds 1 only slightly (cf. Fig. 10) and may often 

be replaced by 1. The effect of E, however, is always important. As this rises when ~o 1 (or tl) decreases 

(cf. Fig. 6), the smallest .foreseeable rpl should be considered. The height affects the index fi = R/J 
because, with increasing height, R remains unaltered while J increases roughly in proportion to ~//x 

or in inverse proportion to ~/p. Therefore, with increasing height, fi becomes smaller and E larger, 
so that we might expect more and more dangerous uploads. This, however, seems odd: the higher 
we fly, the less violent manoeuvres are to be expected until, at the ceiling, a pull-out manoeuvre 
should never be performed. The explanation of the matter is simple but leads to important 
conclusions. 

To reach the required n,~,~, the wing must reach an appropriately increased incidence, such as to 
make its lift coefficient equal to 

CL + (ACL)m~= = Cz(l+nm~=). (7.3) 

This value, however, may often be unobtainable, and especially so at great heights, where the 
original C±~ in undisturbed flight is already large, so that (7.3) may exceed the stalling value. In 
practice, the pilot will always avoid stalling and keep his increased C L not higher than some limiting 
value C L (usually less than CL, ~t~, unless momentary increase above that value in rapid manoeuvres 
must be reckoned with), and then nm~ x should satisfy the inequality: 

c ~ - c L  
nm~ ~" CL (7.4) 

This limitation of nm~ x (which, of course, means a proportional limitation of @ may be very 
significant at low speeds and/or great heights, and must never be forgotten. 

Let us apply this to our example of Section 6. The specified nm~ x was 6" 5 and the initial undisturbed 
C L = 0.2812 (a rather high value for the speed of 600 ft/sec, due to the considerable height). 
The value of C L required to reach the specified n ~  would be, according to (7.3): 

0.2812 × 7.5 ~ 2.1 
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which  is obviously unobtainable. We must, therefore, assume a reasonable limiting value, say 

C L = 1.1, and then, from (7.4), reduce our incremental load factor to 

1.1 - 0.2812 
= 2.91,  instead of 6.5 [ nmax = 0" 2812 

The values of Pa rna~ listed in the last column of Table 2 in Section 6, must therefore be considered 
as grossly exaggerated. The remainder of the computation is, however, correct, so that the column 

of the ratio Plmax/~max need not be altered. The  realistic values of P1 m~x will be as given in Table 5 
at the end of the present Section 7.1, and they become very much lower than those previously 

estimated. The limit 2-91 for nmax, however, only applies to the given height and speed, but not to 

lower heights and/or higher speeds. E.g. for the same speed at sea level, C c would be reduced to 

0" 1718, and (7.4) would give nm~ ~ ~ 5"4, still less than 6"5. Even with somewhat smaller values 

of E and E', the final uploads will be much greater than in Table 5, but still less than those in 

Table 2. I f  speeds greater than 600 ft/sec could be reached, the value nma x = 6" 5 might become 

realistic. 

I t  may be stated generally that the value of n ~  should never be assumed arbitrarily prior to 

ascertaining what is the smallest C~ that can be reached in flight. Now, C L may decrease in descent, but 

only very little in ordinary shallow dives. If, however, the aeroplane is expected to perform steep or 

even vertical dives, C L may decrease considerably even down to zero, and in such cases (thusgeneralIy 
.]'or fighters) the full specified nm~.~ should be ta/een, t 

It  must be stressed that the above remarks do not impair in the slightest measure the validity of 

the basic theory and formulae of this report (or of Ref. 1), and the only new conclusion is that 

concerning the limitation of nma ~ according to circumstances. And it may happen in practice that 

the greatest tail load will occur at low or medium rather than at great altitudes. 

(B) Maximum incremental tail dow~zload. 

We have the alternative formulae (4.32) and (4.33) for rapid or slow manoeuvres, respectively. 

These formulae do not include so many parameters, and are easily interpreted. The download may 
increase + when: 

(i) W rises to its greatest value, 

(ii) H ~  increases to its greatest value, which happens for smallest h (c.g. in its foremost position) 
and when the quantity 

is the greatest that can possibly occur, 

(iii) E decreases; this is due to the factor (1 + E )  in the denominator, and the effect is opposite 
to that in the case of upload. It may be noticed, however, that there is some effect of varying 

E and h on the ratio F(%)/5o ~ or F(q~e)/%, which may be studied in Figs. 15 to 18. 

In addition, the previous remarks about the limitation of nm~ ~ apply here just as for the uploads, 

and thus the greatest downloads will normally occur at lower rather than greater heights. 

]- For steep dives, the system of equations (2.1, 2) should, strictly speaking, be replaced by asomewhat 
more complicated one, but the formulae of this paper may still be used, with only trifling errors, provided 
C L is replaced by ~/(CL 2 + CD 2) or, in the limiting case of vertical dives, by Cz~. 

The footnote to Section 7.1 (A) applies here. 
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As to our example of Section 6, we should assume again, for consistency, nma x = 2" 91, and then 
the values of ( -  P ) ~  given in the last column of Table 3 in Section 6 will be much reduced, as 

shown in Table 5 at the end of the present Section 7.1. 

(C) Second maximum incremental tail upload. 

Up to now, we have only considered the first stage of the pull-out manoeuvre, which would 
leave the elevator with a full deflection ~2s, and the aircraft in the steady circling condition, with 
n and P constant at their asymptotic values. However, the manoeuvre is normally completed by 
applying the elevator in the opposite direction, so as to bring the aircraft back to steady level flight. 
Ref. 1 stipulates the following assumptions as to this second stage of the manoeuvre. Prior to the 
reversed elevator movement, the aircraft is supposed to be in a steady circling attitude with 
the normal acceleration nmaxg (thus somewhat greater than the asymptotic value), and with the 
corresponding tail upload. The reversed elevator movement is supposed to be the same as the initial 
one, i.e. with the same mean rate and maximum angle, but with reversed sign. The normal 
acceleration is then reduced to zero at its minimum, and the tail load acquires further increments 
exactly as in the first stage but with reversed sign, and these are added to the steady circling upload. 
There occurs therefore a second maximum incremental upload which is the sum of the steady 
circling one and of one equal to the maximum download of the first stage. 

The expression for the steady incremental upload in circling conditions is obtained simply by 
neglecting overshoot (i.e. putting E = 0) in any of the formulae (4.18, 24, 24a), thus: 

P° (mqLb (7.5) 
W ~  - ~ ( h - h ° ) +  

and, adding to this either of the expressions (4.32, 33), we obtain the 2nd maximum incremental 

upload: 
P'~max c cH m F(9)m 

- -I ( h -  ho) + + 1 ( - - 1  + E) (7.6) 

where F(9)m denotes either F(q%) or F(~*'), depending on whether 9)1 > 9% It is easily checked 
that (7.5) is always somewhat smaller than the 1st maximum; the 2nd maximum (7.6) is, however, 

normally greater than the 1st one. 

(D) Static initial load and total load. 

It must never be forgotten that, up to now, we have only considered incremental tail loads, but 
the static load which is seldom 0 in undisturbed flight must always be taken into account. The total 

loads in the two cases will be: 

Maximum total upload Pto~, 1 m a x  = P1 m~x + P~t, 

Maximum total download (-Ptot)m~x = ( -P )m,~  - P~t, 

(7.7) 

(7.8) 

where Psi is the static tail load (positive when up), and may be simply obtained from trim 
conditions as 

c ( C~o ~ (7.9) P s i =  W~ h - h  o +  C L ] .  
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C~0 was often negative and appreciable in the old days, but it is usually near to 0 for more recent 
aeroplanes. Thus,  Ps~ will normally be positive when h > ho, i.e.c.g, behind the aerodynamic centre 
(and vice versa, which is not a rare case nowadays). It is positive in our example of Section 6, where 

h - h ° =  v a l ( 1 - d e )  - K m = O ' O 1 4 6 ' h e n c e ( a s s u m i n g C ' ~ ° = O )  ~ = 120lb. 

Pst obviously increases with W and h, thus becoming larger when the c.g. moves back; it may also 
vary with h o and C,~ 0 and thus with Mach number.  

Introducing the expressions for maximum incremental loads {(4.24) for the first maximum upload, 

(7.6) for the second maximum upload, (4.32) or (4.33) for the maximum download}, and for the 
static load (7.9), into (7.7) or (7.8), we obtain: 

1st maximum total upload: 

Ptot, l m ~  c [  ( 1 I + EE'~ .C,~ o EE' ~ (m~)~b l + EE' 
Wnm~ x - -l (h-h°)  ~ + ]. + E t + C L n ~  + H,~, 1 + E l  + -; (7.10) , /~ I + E  

2nd maximum total upload: 

E '  71,) Wnma x - -  1 (h -ho)  + 1 + - -  + - -  (m~)~:b. nm~ x CLnm~ x 1 + E 91 I t ~ 

Maximum total download: 

e ( (-"t°*)m~x = - F. H,~ F(9),,  1 h - h o + . (7.12) 

These formulae seem to be most suitable for calculating tail loads. They  should be tabulated for 

several heights through the range of speed, introducing in each case aerodynamic data corresponding 

to relevant Mach numbers, smallest foreseeable 91, and such compatible values of W, h, tz, E, E' as 

lead to greatest values of the loads; nm~ ~ should be either the specified value, or the limiting value 
(7.4) if this is smaller. Finally, graphs of the maximum total tail loads against V for various heights 

will reveal the true greatest maxima, to be used in stress calculations. Many simplifications of this 
rather complicated-looking procedure will undoubtedly be practicable in actual work, but this may 
be best left to practice and experience. 

For our example, the values of incremental and total tail loads (including the 2nd maximum total 
upload), corresponding to the height 30,000 ft, speed 600 ft/sec, nm~ = 2"91, h -  h 0 = 0" 0146, 
and C,, o = O, are listed below: 

TABLE 5 

% 

0 
0.456 
0.8 
1.2 
1.6 
2 
2.4 

oo 

P l  m a x  lb  

861 
856 
847 
829 
803 
774 
736 

242 

(-- P)max lb 

2008 
1793 
1571 
1286 
998 
797 
666 

Ptot, 1 max lb 

1081 
976 
967 
949 
923 
894 
856 

362 

( --  P t o t ) m a x  lb  

1888 
1673 
1451 
1065 
877 
677 
546 

Ptot, 2 max Ib 

2371 
2156 
1934 
1548 
1360 
1160 
1029 

The 2nd maximum total upload is seen to be the greatest in all cases. 
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7.2. An Aeroplane in the Early Stages of Design. 

Fundamentally, the discussion of 7.1 applies here, with various parameters estimated as well as 
possible, but the choice of the ratios S' /S  and l/c is still open. Now, the tail volume ratio F must be 

chosen such that, with the anticipated range of h, the restoring margin (4.21) and manoeuvre margin 
(4.20) assume reasonable positive values in a desired range. The required V can normally be achieved 

by choosing either greater S' /S  and smaller l/c, or vice versa. Greater values of l/c lead to improved 

damping which is desirable in itself, and also to smaller tail loads, because all important terms in 

(7.10) to (7.12) contain the factor c/l. We must not forget, however, that the fuselage bending moments 
will be obtained by multiplying (7.8) and (7.9) by I and, with a fixed V, they will not depend on the 
choice of l/e and S ' /S  (except through overshoot factors). There will usually be some other reasons 

affecting the choice, but its effect on loads should not be overlooked. 

7.3. Ultimate Tail Loads after a Long Time, inch~ding Variation of Speed. 

The variation of forward speed has been consistently neglected up to now, on the assumption 
that the pull-out manoeuvre lasts only a short time (after which the stick is eased), and 
the conditions in Gates' steady circle can be considered as final If, however, the manoeuvre 
lasts sufficiently long then, introducing full linear equations of motion (thus quartic stability 
equation, and phugoid mode), we obtain different asymptotic conditions, with speed decreased, 
incidence and attitude angle increased, and flight angle normally increased. The tail load then 
also tends to a certain asymptotic steady value, and it may be interesting to know whether this can 
exceed the maxima as determined before. The investigation, summarized in Appendix VI, shows 
that this depends on the static margin which, in a sense, then replaces the manoeuvre margin. The 
results may be very different in particular cases but, in manoeuvres involving large normal 
accelerations in early stages, the aeroplane will usually stall before reaching the final asymptotic 
conditions, or the final equilibrium will occur at speed so much reduced as to make the linear theory 
inapplicable. It is highly improbable that the loads at decreased speed exceed those in the high-speed 

manoeuvres. 

7.4. Remarks on Overshoot Factors. 

The overshoot factors have been determined for three incremental response quantities: normal 

acceleration at c.g., tail incidence, and normal acceleration at tail. In the first case, the operational 
formula was a fraction of 2nd order in D, with merely a constant in the numerator, and the maximum 
overshoot was E 0 (at ~ = ~r) in the case of step input, and E (at ~ = %~) for trapezoidal input. 
For tail incidence the operational formula (2.9) was another fraction of 2nd order with the same 
denominator and a numerator linear in D, and the maximum overshoot was EoE' (at ~0 = 7r-u a) for 
step, and EE' (at cp = ~o,,-v ~) for trapezoidal input. Finally, for normal acceleration at tail, the 
operational formula (2.10) was yet another 2nd order fraction, with the same denominator and with 
a fully quadratic numerator; the overshoot was EoE 1 (at ~o = ~r - ~n) for step, and EE: (at ~ = %,~- ~ )  
for trapezoidal input. In both 2nd and 3rd cases, the overshoot factor for trapezoidal input was 
equal to E multiplied by the overshoot factor for step input, and the time angle led %~ by the same 
amount (t~ or v~, respectively) no matter what the duration (%) of the elevator motion. Thus, both 
overshoot factor and time angle have to be determined only for step input, and then those for 
trapezoidal input can be obtained by simple multiplication and addition. The question arises how 
general this is, i.e. whether it applies to any other response quantities. The answer is that it does 
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for all quantkies where operational equivalents are similar 2nd order fractions with an arbitrary 
numerator (order, of course, not exceeding 2), i.e. for all quantities which are linear combinations 
of @, ~ ,and their derivatives (also ~71 if necessary), but excluding their integrals. The proof consists 
in merely observing that, in the case treated in Section 6 and Appendix V, we dealt already with a 
most general type of 2nd order fraction including three independent coefficients in the numerator. 
It is obvious that our theorem holds true for any set of these coefficients. 

8. Conclusions. 

(1) A method of computing basic response quantities (normal acceleration at c.g. and at tail, 
incremental tail loads) in pull-out manoeuvres, based on 'trapezoidal' elevator input, as presented 
in this report, seems to offer the following advantages: 

(i) Simplified analytical approximation to the actual flight manoeuvres; 

(ii) In spite of the somewhat complicated derivation, most of the final results (especially peak 
loads) have been presented in the form of simple explicit formulae; 

(iii) A simple discussion in general terms of the effects of all relevant characteristics on the 
final results is presented in Section 7; the initial 'static' loads are accounted for. 

(2) The method is applicable to all tailed elevator-controlled aeroplanes, of arbitrary design and in 
arbitrary flight conditions, including the full range of speeds well up into supersonic. 

(3) A serious limitation of the load factor//max in cases of flight at high initial CL, arising from 
the collapse of lift in the stalling region, has been discussed, and its inclusion in calculation explained. 

(4) The final formulae include only a few" basic geometrical and aerodynamic data and, in addition, 
a few overshoot factors. The latter have been reduced to three primary types (E, E', El) , of which 
only the first one need be determined for varying duration of the elevator application ~%, while the 
two latter ones always pertain to step input (% = 0) and need only be multiplied by E to account 
for the actual value of qol. The overshoot factors E and E', important for tail loads, have been charted 
in extensive ranges (Figs. 5, 6, 10) which, of course, does not preclude the use of exact formulae. 

(5) The method seems particularly suitable whenever large ranges of flight conditions (height, 
speed, c.g. position) must be reckoned with, because the work then reduces to a simple tabulation 
followed by tracing of a few final curves. 

(6) The method may easily be extended to cover asymmetric (rudder induced) manoeuvres. 

(7) The method may find additional useful applications in interpreting flight tests. 
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a 1 

a2  

A, B 

A1, B1 

A~, B 2 

C 

CL 

eL,  stM1 

C 

D 

E 

Eo 

E t 

E1 

h 

ho 

or 

k 

kB 

l 

mq 

T/l, w 

L I S T  OF SYMBOLS 

OCzlaa ,  lift-curve slope of aeroplane 

OCL'/O~',  lift-curve slope of tailplane 

aCL' /O~,  rate of change of C z '  with elevator deflection 

Auxiliary symbols, see (I.2) 

Auxiliary symbols, see (III.3) 

Auxiliary symbols, see (V.2) 

= co + ½av, free term of stability quadratic, see (2.5) 

Lift coefficient of aeroplane 

Limiting value of Cz ,  see (7.4) 

Stalling value of CL 

Lift coefficient of tailplane 

Reference (mean) chord of wing 

= d/dr ,  differential operator 

Overshoot factor for normal acceleration at e.g., in case of trapezoidal elevator 
input, see (3.11) 

Overshoot factor for normal acceleration at c.g., in case of step elevator 
input, see (3.5) 

Additional overshoot factor for tail incidence, see (4.6) 

Additional overshoot factor for tail normal acceleration, see (5.7) ; in Appen- 
dix VI, constant term of stability quartic 

Function, auxiliary tO determining tail load, see (4.30) 

Manoeuvre margin, stick fixed, see (4.20) and (2.16) 

Distance of c.g. aft of L.E. of wing reference chord, expressed as a fraction 
of this chord 

Distance of aerodynamic centre of wing aft of L.E. of its reference chord, 
expressed as a fraction of this chord 

= kB"/ l  2, inertia coefficient about lateral axis through c.g. 

Dimensionless angular frequency of short-period oscillation, see (2.5) 

= - 3 C m / a C L ,  restoring margin, see (4.21) 

Coefficient in 'exponential' formula of Ref. 1, see (3.15) 

Radius of gyration of aeroplane about lateral axis through c.g. 

Tail arm (reference length for pitching moments) 

Dimensionless rotary damping derivative in pitch 

Part of mq, due to wing and body 

Dimensionless restoring-moment derivative in pitch 
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nmax 

nl, 0 

]v~ max 

P 

P1 lllaX 

P~max 

Ptot 

P 
- -  

R 

S, S' 

t 

tl 

V 

W 

w ,  ~ = w / V  

x ,  y 

O~ 

06 t 

~eff t 

LIST OF S Y M B O L S - - c o n t i n u e d  

rn~ Dimensionless moment derivative in pitch, due to rate of change of w 

m~ Dimensionless moment derivative in pitch, due to elevator deflection 

n Factor of normal acceleration at c.g. (equal to 'load coefficient minus one'), 
dimensionless, s e e  (2.6) 

n t Coefficient of normal acceleration at tail, s e e  (2.10) 

n t = n t ,1 ,  final (or asymptotic) value of n or n t when the elevator is held fixed at 
*1 = - ~1I, s e e  (2.11) 

First peak value of n in pull-out manoeuvre 

Initial value of n t 

First peak value of n t in pull-out manoeuvre 

Incremental tail load in pull-out manoeuvre 

First maximum incremental tail upload 

Second maximum incremental tail upload, s e e  7.1 (C) 

Maximum incremental tail download, s e e  (4.31) 

Total tail load, including steady and incremental loads 

Auxiliary symbol, s e e  (4.28) 

Rate of pitch, in radians per sec, or dimensionless, respectively 

Dimensionless damping factor of short-period oscillation, s ee  (2.5) 

Gross wing area, and tailplane area, respectively 

Time in seconds 

= W / g p S V ,  unit of aerodynamic time, sec 

Value of t at the end of the first part of trapezoidal elevator input, s e e  (3.21) 

True speed of aeroplane in undisturbed flight, supposed constant in ordinary 
pull-out manoeuvres, ft/sec 

= S ' I / S c ,  tail volume ratio 

Weight of aeroplane, lb 

Normal velocity increment, in ft/sec, or dimensionless, respectively 

Auxiliary parameters, s e e  (IV.3) 

Incidence of wing, radians 

Incidence of tailplane, radians 

Effective incidence of tailplane, including effect of rate of pitch and rate of 
change of w, radians 

f i  = R / J ,  angular damping index of short-period oscillation 

3 Concise pitching-moment derivative due to elevator displacement, dimension- 
less 
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c 

qo 

LIST OF S Y M B O L S - - c o n t i n u e d  

Angle of downwash, radians 

Function of qo for determining growth of normal acceleration at c.g. in case of 
trapezoidal elevator input, see (3.8) and (3.9) 

First derivative of O(~o); function for determining growth of normal accelera- 
tion at c.g. in case of step elevator input, see  (3.2) 

Second and third derivatives of (D(@ 

= J r ,  time angle, see  (3.3) 

Value of ~o for which ,~ reaches its first peak, see (3.12) 

Value of ~o for which %re' reaches its first peak in case of step elevator input, 

see  (4.3) 

cp~" Value of qo for which ~c~' reaches its first peak, in case of trapezoidal elevator 

input, see  (4.12) 

q%' Value of go for which n t reaches its first peak, in case of step elevator input, 
see (5.4) 

~ "  Value of qo for which *l: reaches its first peak, in case of trapezoidal elevator 
input, see (5.10) 

~o 1 = J r 1 ,  value of ~ at the end of the first part of trapezoidal elevator input 

q::; Value of ~o for which the tail download reaches its true turning value during 
the first part of trapezoidal elevator input (if existing) 

Angular deflection of elevator, radians 

~?/ Absolute value of ~/ (supposed negative) at which the elevator is finally 
held in trapezoidal (or exponential) pull-out manoeuvre 

u a Phase angle by which maximum tail incidence leads maximum normal 
acceleration at c.g., see  (4.3) and (4.12) 

u% Phase angle by which maximum normal acceleration at tail leads that at 
c.g., see  (5.4) 

A Modifying factor for tail incidence, see (2.8) 

i~ = W / g p S l ,  relative density of aeroplane 

v - m J @ ,  concise pitching-moment derivative expressing the effect of rotary 
damping in pitch, dimensionless 

p Air density, slugs/cu, ft 

~r = t / f ,  aerodynamic time, dimensionless 

.rl = t~/ f ,  value of ~- at the end of the first part of trapezoidal elevator input 

X = - m  J @ ,  concise pitching-moment derivative expressing the additional 
damping due to rate of change of w, dimensionless 

~o - l x m ~ / i B ,  concise restoring-moment derivative in pitch, dimensionless 
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A P P E N D I X  I 

(to Section 3.2) 

Details of Calculating Peaks of Normal Acceleration at C.G., 
Resulting from Trapezoidal Elevator Input 

The equation (3.10), representing the growth of the normal acceleration, can be written in the 

following form, more convenient for differentiation: 

where: 

t l  e - f lq '  
- 1 + {d cos (c~- %) + B sin (c 2 - % ) } ,  (I.1) 

n i ~q(1 + 3 ~) 

A = 2/3(cos ~ , -  eZ~*) - (1 - fie) sin % ' /  

/ 
B (1- /32) (dv '*-cos%)  - 2 f i s in%.J  

( I .2)  

Differentiating (I.1) with respect to % we obtain: 

d-~d(n)-n! e-/~'P %(l+/3e){(B-A/3)cos(q~-%) - (A + B/3) s i n ( ~ - % ) } .  (1.3) 

Equating this to zero, we get the fol lowingsolution for %o determining the positions of all peaks: 

B - A/3 e/3~Pl - cos ~1 - / 3  sin ~01 

t a n ( % " - ~ l )  = )/  + B/3 - ficosg~ 1 -/3e/~, - s i n % '  
(I.4) 

which is identical with (3.12). We then find: 

A + B/~ B - A/3 (I.5) 
c o s ( % ~ - % )  = + ~/,{(d2 + Be ) (1 +/32)} s i n ( % , - % )  -- _+ ~/{(A2 + B2)( 1+fi2)}, 

where the + signs alternate for the consecutive maxima and minima. The first turning value is the 
absolute maximum, for which the upper  signs apply. Substituting (I.5) into (I.1), we obtain: 

nmax -- 1 + e--~¢,, I A2 +-- B2 - 1 + e-~'Pr,,__/e2/~¢1 - 2e&:l cos~l + 1 
n/ ~o1( 1 +fie) ~ /  1 + /3e ~o I ~ /  1 + fi~ , (I.6) 

and this may be conveniently writ ten as (3.11). 
The expansions of our formulae in powers of Pl have been obtained in the following way. 

Expanding the numerator and denominator of (I.4), we obtain: 

tan (%~ - qq) = - ~o~ 
2 

1 +  ~ 1  1 -  [32 fi(l~0/3e) qola 1 - / 3 e + / 3 4  /3(1-/3e+/34) 
12 %e + 360 ~q4 + 2520 ~15"'" 

/32) ~13 1 + fi~qq 1 - / 3 ~  fi(1~4 1 - / 3 2  + fi~ /3(1 - / 3~+f i~ )  
6 ~i2 - -  + 120 q°la + 720 ,%5... 

/3(16-/3 ~) 4 6 + 5/32 5 
/ ~ g 6  ~1 - 

/3(233 - 60-48016fiz + 2/34) q°IG" ""] 

(1.7) 
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I f  % = 0, then  50m - % = ¢r, and for small values of 9~ the angle ( 5 0 m - - 9 1 )  is somewhat  smaller 
than  ~r. By using the known series for tan -1, we obtain: 

[ fi /3(1-fi~) fl(3-I 0/3~ + 3/3 ~) ] 
50m - % = ~r - ½50t - ~ 5ore 720 %~ - 90720 ~16.. .  , (I.8) 

and then:  . . . .  

e-~(~m-~l) = e-P" 1 + 501 + ~ 501 ~ - ~ 5013 

485fi 6 + 152/34 - 96fi 2 -] 
+ 2903040 %6 . . . .  j 

17/34 + 8/33 1 lfi 5 - 8]3 a 
5760 = 5014 + 11520 5015 + 

(I.9) 

Next,  we f ind the expansions: 

and 

1 - 2e-~el cos 501 + e-2~1 
(1 +flz)%2 

7/3 2 - 1  / 3 - 3 / 3  a 31fi * -  16fi 2 + 1  
= 1 -/3501 + - - % ~  + - - - - -  501 3 + 

12 12 360 

9/35 -- 6/38 + /3 127/36 -- 99fi 4 + 29/32 -- 1 
-- 360 5015 + 20160 5016"'" 

5014 - -  

(1.1o) 

1 N//1 - 2 e - ~ l c o s %  + e-2/~1 ~ 4/9 z -  1 2/3 a - / 3  48/34- 28/3 ~ + 3 
1+/3~ = 1 -  501W 24 %~ 48 qc'13 + 5760 501 4 - -  

16/3 5 - 8/3 3 + 3/3 1 9 2 f i  6 - 80 /3  4 + 80 /3  2 - 3 

11520 5015 + 967680 
5o16... (I.11) 

Finally, mul t ip ly ing the series (I.9) and (I.11)¢ and in t roducing into (3.11), 

nmax 1 =  E =  e-d" I1 1+/32 (1+/32)(3+11/32) (1 +/3~) ( 9 -  6/3~ + 241/34) I 
n/ 2 ~  912 + 5760 5°14 - 2903040 916 "'" 

(1.12) 
which  is identical wi th  (3.13). Also, (1.8) is identical wi th  (3.14). 

Formulae  (3.11) and (3.12) are ' i l lustrated in Figs. 5, 6 and 7. Some features of these graphs may 
be discussed briefly: 

(i) Fig. 7 suggests that  (50m - 501) tends to a certain limit when  501 increases indefinitely at constant  13. 
Formula  (I.4) shows that  this is so, and the l imit  is given by: 

1 
tan (50m-- 501) -+ -- -- 

/3 for 501 -+ oo (I.13) 
o r  

50,~ - 5ol -+ ½7r + tan-l/3 

I t  is also easily found  f rom (1.4) tha t  the same value is assumed by (%,~-500 when  501 = ~r or 2~r or 
3~r, etc., so tha t  each curve oscillates, wi th  gradually decreasing ampli tude,  about this asymptot ic  

value. Each curve presents, therefore,  an infinite number  of tu rn ing  values, whose exact positions 
can be found  f rom the equa t ion :  

e - ~ l  = cos 501 - fi sin 91, (I. 14) 

obtained by equat ing the first derivative of (I.4) to zero. Subst i tu t ing (I.14) in (I.4), we obtain: 

tan (50m-- 500 = -- tan ~01, (I. 15) 
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as an alternative condition for turning values. It is easily found that the first turning points (minima) 

of all curves lie on the straight line 9)m - 9)1 = 2~r - 9)i, the second turning points (maxima) on the 

line %~ - 9)x = 3~r - 9)1, and so on, as shown by the broken lines in Fig. 7. 

I t  is also seen that the angle (9)m-91) usually lies between ½7r and 7r, and it can only fall below 

½~r if fl is quite small (strictly if ~ is less than N 0" 274), and even then only for some narrow 

intervals of 9)1. 

(ii) Fig. 5 shows that the curves of overshoot factor E against q% may oscillate if fi is small (the 

exact limit being a little more than 0.2). The positions of the turning values can be determined by 

differentiating (I.6) in conjunction with (I.4). This requires some rather complicated algebra but 

results in a very simple equation: 

cosh/39) 1 - cos 9)1 = 1(1 + 52)9)1 sin 91. (I. 16) 

For any given (sufficiently small) ]3, this equation has a finite number of roots which differ very 

little from 2% 3% 4% etc. 

(iii) The particular case/3 = 0 is of some interest. All results simplify considerably in this case. 

The formulae (3.8) and (3.10) become: 

n _ 9 - s i n g ,  ( 0 < 9  <9)1) 

nl 9)1 ) (1.17) 

n _ 1 + sin (9) - 91) - sin 9) (9) > 9)1) 
n f qOl 

and are illustrated in Fig. 2, for several values of 91- Formula (1.4) becomes: 

tan (9)m - 91) = - tan 9_11 (I. 18) 
2 '  

and it is easily found that the graph of (I. 18) consists of an infinite number of disconnected straight 

segments, viz.: 

%, - 9 ) 1  = ~ - ½ 9 ) 1  

= 2 ~  - ½ 9 ) 1  

= 37r - ½-9)1 
as shown in Fig. 7. 

for 0 < 9)1 < 2rr 

2rr < 9)1 < 4rr 

4rr < 9)1 < 6rr, etc. 

Finally, the overshoot factor E becomes (see 3.11): 

E = 1 V ( 2 -  2 cos 9)1) - I sin I 
9), ½9)1 

or, expanded: 

1 ( 2 ) ~  1 ( 2 )  a 1 ( 2 )  6 
E = 1 - ~ + / 2 6  5040 " ' "  

the latter series being obviously a particular case of (3.13), for ]3 = 0. 

(I.19) 

(i.20) 

(i.21) 

36 



A P P E N D I X  II  

(to Section 4.1) 

Details of Calculating Peaks of Incremental Incidence of the Tail, 
Resulting from Step Elevator Input 

Differentiating (4.2) with respect to % we obtain: 

d ! 

(%~ff  ] 00"(9) + AqY"(~o) = (1 +/~2){sinqv + )t(cos~o-fisin@}e-t~'~. 
dcp \c%f,, I~ 

Equating this to 0, we get the following expression for q~.,,': 

(11.1) 

tan ~m' - 
1 - 5~' 

(II.2) 

which is equivalent to (4.3) and (4.4). 
From (II.2) we obtain: 

1 - fiA = -  {~ cos~. , '  V - 25~ + A~(1 +5~-)} ' 

and, substituting this into (4.2): 

• t sin ~o~ = 
v'{1 - 25a + ~2(1 +/?~)} 

(11.3) 

C~cff  t, lng~x __ 
1 + e-P~-*' ~/{1 - 2ilk + a2(1 +fi2)}, 

° ~ e f f ' ,  ] . 

which is equivalent to (4.5) and (4.6). 

The  expansions in powers of )~ have been obtained as follows. From (4.4) we get: 

(11.4) 

t a n e  = Z + fiA~+f2Z~+fi~A~+fi*Z5 . . . .  (I1.5) 

{ ( (i 6, = A + S a ~ +  5 2 _  a 3 + ( 5 3 _ 5 ) ~ +  5~_252+s_ 

3fi,)L , ( 6  3 - /73 4 (16J " e P ' =  l + f i A + ~  + fla- ~fi) )ta+ [~19 - ~fi~) A' + fi~- ~fia+ ~fi) As... (H.7) 

• We have also: 

~/{1 - 2flA + A2( l+f iz )}  = 1 - flA + ½A z + ½~A 3 + 12 

and, multiplying (II.7) by (II.8), we obtain (4.7). 

(II.8) 
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A P P E N D I X  I I I  

(to Section 4.2) 

Details of CalcuIathzg Peaks of Incremental Incidence of the Tail, 
Resulting from Trapezoidal Elevator Input 

The  explicit equivalent of (4.9) is: 

"'" 1I ( " )  I(" ) , , -  qo-  /32 ;~ + /3~ ;~ cos 50-  
%~r ,i 501 1 + 1 + 

and (4.10) therefore becomes: 

where:  

, e-fl~p c % ~  - -  1 + 

°~cff',  / 501 

1 - / 3  2 sin qo I e-/~e ] ) 1 +/32 + 5,~/ 

(0 < 50 < %) (III .1) 

{Alcos(qo-%) + Bl sin (50 - %)} (50 > %),  

0 } A I =  (1+/3~ - \ 1+  /32 + /3A) sin%' 

(1 -/3' 
B I =  \1 +/? .  +/3~) (e~'ex - cos501)-  (1 2/3 ;~) sin501 

÷ /32 

(ni.2) 

(III .3) 

The  turning values of % . /  occur at a certain 50 = %,~" which may be obtained by equating the 
derivative of (III .2) to 0, and the condit ion for %.." is found, similarly as in Appendix I, in the form: 

B~ - A~fl e/3q'l - cos50 1 - {/3 - ;~(1 +/3~)}sin50 1 (I l l .4)  
t a n ( 5 0 m "  - -  501) - -  1 1 + B1/3 - {/3 - 2~(1 + / 3 2 ) } ( c o s 5 0 1 - - e f l ¢ 1 )  - -  sin91" 

Comparing now the formulae (3.12) and (4.4) with  (III.4), we find easily that  the following relation- 
ship is identically satisfied: 

tan (50,(' - 501) = tan{(%,,-  501) - if}, (III.5) 

and this is the proof of (4.12). Proceeding further  as in Appendix I, we substi tute (III .4) into 
(III .2) and obtain the first turning value (absolute maximum) of the latter in the form: 

%*~c%f/.'~'l~i - 1 + --N/e-501 "~ /A~I + +/3~ B12 - 1 + --e-"501 "~ N/ (e~/t~x-2d~1 c°s50x +1 1){1+ fi2- 2fib + h2(1 +/3~)} 

e-,~('P,,~-~e9 . / 1  - 2e-/~* cog 501 + e - 2 ~  
= 1 +  5°1 N 1 +/3 ~ e~" ~/{1 - 2/35 ÷ h2(1 +/3z)} = 1 + EE', 

(III.6) 
and thus the formula (4.11) has also been proved. 
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A P P E N D I X  IV 

(to Section 4.4) 

Details of Deriving Approximate Formulae for Maximum Download 
on the Tail (as Worked Out by D. N. Foster) 

T o  determine 9e, the value of qo for which the function F(9), as given by (4.30), attains its t rue 

turning value, the first derivative F ' (9)  must be equated to 0. We obtain from (4.30): 

p F ' ( , )  = p - - ( i v . a )  

or, substituting for ¢9'(9 ) from (3.2), and a corresponding expression for q)"(@: 

pF'(qo) = p - 1 + [cos~ + {fi - A(1 +52)}sin~o] e -,~° . (IV.2) 

Making the expression (IV.2) equal to 0 results in a transcendental equation which cannot be 

solved in a closed form. However,  the expression can be expanded into a power series in % and 

then solved by expanding ~o into a power series in terms of some of the known parameters (/5, A, p, 
or sorne suitable combinations of these parameters which may be treated as small enough to ensure 

convergence). Many alternative possibilities having been tried, the most promising one seemed to 

be to treat the.parameters ~¢/p and A/~/p as small t (of the same order), while not making any assump- 

tions as to/5. I t  was found convenient, for simplifying further  algebraic work, to introduce auxiliary 

parameters x and y, defined by: /1 +/52} 
y = z / - g  b -  

so that , (IV.3) 

a 2xy 

/ 2p 
2x = 1 +/32 

p = 2x2(1 +]32) 

and treat x and y as small quantities of the same order. Th e  formula (IV.2) then becomes: 

2x2(1 +/~2)F'(~v) = 2x2(1 +132) - 1 + [cos qo + {fi - 2(1 +/52)xy}sin ~o] e-/~' (IV.4) 

or, expanding in powers of % and simplifying: 

~o ~ qo ~ 94 
2x2F'(qo) = 2x ~ - 2xyc¢ + (4fixy- 1)~- + {fi - (3fi 2 -  1)xy} T - {8/3(1 -~2)xy + (3fl 2 -  1)} 24 

@ ~o 6 
- {2p(1 -/32) + (1 - 10fi z + 5fi4)xy} ~ + {4p(3 - 10/32 + 3fi~)xy - (1 - 10fi ~ + 5fi~)} 720" " ' ' 

(IV.5) 

f rom which expansion it is seen that F'(~o) tends to 1 when ~ -+ 0, as it should do. Equating (IV.5) 

to 0, assuming a solution for c2e as a power series in x and y with indeterminate coefficients, and 

J- The choice cannot be justified in a strictly mathematical way. The parameter %@ may reach values as high 
as 1 (e.g., p = 0-915 in the example of Section 6, so that ~/p = 0.957); 2t is usually quite a small fraction 
(0-2704 in our example, but often much smaller for highly loaded modern aeroplanes at great height). The 
only justification of our choice, for the time being, is that the series seem to converge well. 
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then working out the coefficients in turn so as to make the coefficients of consecutive powers and 
products of powers of x and y in the full expression (IV.5) equal to zero, the following solution has 
been obtained: 

93~= 2x[1+ (~,8x- y) + (11~;~3x2+½y~)+ (2/7-43'82+135 27xa- .Sxy ~ + 

( ,82+9x2y2+~,SxY - ) ] 769/74 + 786/72 + 81x4 4 a 1 
+ 1080 12 ~3,4 .. .  

( IV.6)  

and this has been verified by direct substitution, the coefficients of all terms up to 6th order having 
become 0. 

The remaining step was to obtain an analogous expansion for F(93"), the turning value itself. 
Integrating (IV.5) gives: 

93a 934 { 
2x~F(qo) = 2x293 - xy93 2 + ( 4 f i x y - 1 ) ~ - +  {,8 - (38 2 -  1)xy} ~ - 88(1-,82)xy 

936 
- {28(1-82) + (I - 1082 + 58~)xy} 376 + 

939 
+ {4,8(3 - 10,82 + 3,84)xy - (1 - 10,82 + 5fi4)} 5040" ' "  

i 935 + ( 3 8 2 - 1 )  120 

(IV.7) 

the constant being = 0, as F(0) = 0. Finally, substituting (IV.6) into (IV.7), and simplifying, the 

result has been obtained: 

(11,8 2 + 3x2 /4382 + 27,8xa - 2fixy2_ ya) + 
30 

( 30] 7698 4 + 786fi z + 81 xa 9 x~y 2 + 4fixy a + 
+ 2520 12 8Y . . . .  (IV'8) 

The solutions (IV.6) and (IV.8) can be rewritten by using (IV.3) in terms of the original parameters 
p and ). It will suffice to write only a few initial terms of both series: 

~*= d 2 ,  [ ( ~ d  2s, /1+,8.~ 111~2+3 1+,8 2A21 
1 ~  1 +  lq_fi 2 ;~ / - ~ - 1 +  3 6 ( l + f i 2 ) p + ~ }  

2d 2P [ (~d 2s' 3a. I1+8'~ 
Fma'== F(93~) = 3 ,  1 ~  1 +  1 +82 2 N / ~ ]  + 

+ 60(1+82) p + ~ + . . . .  

+ . .  ] 
(IV.9) 

The very rough approximations (4.35) are obtained by keeping only the first terms in each of the 
series (IV.9). 
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A P P E N D I X  V 

(to Section 5) 

Details of Calculating Normal Acceleration at Tail, Especially its Peaks, 

Resulting from Step or Trapezoidal Elevator Input 

(A) Step elevator input. 

The equation (5.2) may be written: 

n t = 1 - (A2 cos ~o + B 2 sin ~o)e -/~* , (V. 1) 
n; 

where: 

2C B ~ = f i  1 +  Ae = 1 + / , a  

The  condition for peaks of n t becomes: 

Bz - A213 J(4R - a) 
t an%j  - A~ + B2fi - tza + 2C - R ( 4 R - a )  

c ( 4 n  - a) 

tzaJ 
(V.2) 

(v.3) 

which, for the first peaks, is identical with (5.4) and (5.5). The absolute maximum is: 

n"m" l + e - " 4  1 A''-FB'9" d l (  2CI' (2R C ) ( ?  ) I  
ns N~ 1 +  5 2 - 1 +  e-#*,~' l + ya l - -  ~ - + ~  - 1  , (V.4) 

which is identical with (5.6) and (5.7). 
The  expansion of E 1 into a power series is obtained as follows. From (5.5) we find: 

J ( 4 R - a )  J ( 4 R - a ) { 2 C -  R ( 4 R - a ) }  J ( 4 R - a ) { 2 C -  n ( 4 R - a ) p  + (v.5) /za /x~a 2 /*aaa 

+ 

t a n  v~,~ - -  

h e n c e :  

t g ~ =  
J ( 4 R - a )  J ( 4 R - a ) { 2 C -  R ( 4 R - a ) }  

_ - -  -[- 
~a ~ a  2 

J(4R - a){2C - R(4R - a)} ~ - ½Ja(4R - a) a 
+ ~aaa 

R ( 4 R - a )  aR=(4R-a)  2 - 2 R C ( 4 R - a )  
+ 

ya t*~a ~ 

and 

e~O= = 1 + 

2R(4R - a){2C - R(4R - a)}{C - R(4R - a)} - -}R(4R - a)a(2c - 3R 2) 
+ /,3aa 

Similarly, expanding the square root in (5.7), we obtain: 

d {  I 2 C -  R ( 4 R - a )  1J2(4R-a)2 1 + 4 C -  2R(4R-a)t *a + 4C ~ - / z~a2aC(4R-a) _ 1 + t xa + i,2a 2 

J~(4R - a)2{C - ½R(4R - a)} 
/,8aa " . .  

and, multiplying (V.7) by (V.8), we get finally (5.8). 
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(B) Trapezoidal elevator input. 

For the 1st part of the manoeuvre, from (2.15) and (3.6): 
° 

nt /z 
n] 501D( D ~ + 2RD + C) ' 

and the functional solution (Ref. 3, form. 1 1 1) becomes: 

During the 2nd part of the manoeuvre, we have: 

lit --  1 I0 (50)  --  (~ (50 - -501) -  J{(~ '(50)  -- (~'(50--50i)} -- 
n /  501 

o r  

where 

cos50- ( 2c 

(V.9) 

e-1t~,o 
"~ - 1 + - - -  (& cos (50-  501) + B~ cos  (50 -  501)}, 
iz/ qol 

2C _1-/~2~ (e/~l_ cos% ) ( J +  
B 3 = ( ~ - R +  1 +fi2 ] - l ~ f i~ )  

The first (positive) peak is obtained for 50 = 50~", where: 

B3 A s / ~  
tan (%/' - 501) = A3 + B~fi 

- - - - +  sin50 e-P . (V.IO) 

~.d~{q,"(50) -,v'(50-%)} (V.11) 

(V.12) 

(V.13) 

(V.14) 

sin 501, } 

sin 501- 

_ j 1  + / ~  2tiC 1 (1 + ~ ) ( e P ~ a - c ° s % ) ( / ? +  sin 501 

J 1+fi2 2flCl(eos50 1-  (1 2C ' ( f l+  /z /xa / eB*l) - + ~ - )  sin50 1 

and it may be noticed that this becomes identical with (1.4) when terms containing /x in the 
denominator are omitted, and identical with (V.3) when 501 -+ 0. It is also easily found, comparing 
(V.14) with (I.4) and (5.5), that 

tan (50n" - 501) = tan{(%n- 501) - ~n}, (V.15) 

which is the proof of (5.10). Proceeding further as in Appendix III, we substitute (V.14) into (V.12), 
and obtain: 

e-8~"__ /432_+ B_ 7 I I l l ' m a x  1 + - -  - - - -  X - = 1 +  e , ~  e2~*l-2e~*lcos501+l 
nl 501 N/  l+ f i~  501 N/  l + f i e  

e-~(%~-'pl) [ 1  - 2e-~'1 cos50 1 + e-2del 
= 1 +  

501 1 +/~2 X , /  

× d % J l ( l + ~ ) 2 - ( 7 + ~ ) ( 4 ~ R a - 1 ) I = I + E E 1 ,  (V.16) 

and thus the formula (5.9) has also been proved. 
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A P P E N D I X  VI 

(to Section 7.3) 

Effects of Varying Forward Speed on Tail Load 

I f  the elevator is kept deflected for a long time, it will not be permissible to assume the forward 
speed as constant, and the equations of motion {(2.1), (2.2)} will have to be replaced by a more 
complicated system of the fourth order which can be found, for instance, in Ref. 2 {equations 
(I.16)}. The  complete solutions for the variables/~, z~, ~ may be found as shown in Ref. 2, and hence 
the formulae for tail incidence and tail load may also be determined. These solutions contain, in 
addition to short-period terms, also phugoid oscillatory terms, and are rather complicated. The  only 
interesting point, however, is their asymptotic behaviour after a very long time (assuming that 

= const. = - ~71), and this can be determined quite easily, as shown in Ref. 17, equations (3.3). 

We have: 

C L Z w ~ f  gt~eo s = CJ-.~'u~7]] ^ 
U~s - 2E 1 , 2E I , q~ = 0, (VI.1) 

where 

= - ½(a  + c . )  - I 

J z u = - C L (neglecting compressibility effects), 
(vi.2) 

and El, the constant term of the stability quartic, is given by: 

E1 - i Bfz 41c CL=aK~ ' (VI.3) 

K s being the static margin. It  may be noticed that the asymptotic value of the normal-acceleration 
factor n will be 0 because, in this case: 

2 
n = - - -  (zua + z ~ ) ,  (VI.4) 

CL 

and hence, substituting (VI.1), we obtain has = 0. This  means that the asymptotic conditions 
represent a new steady rectilinear flight, at a higher incidence and lower speed. 

Taking into account the expression for S from (2.16), the formulae (VI.2) become: 

a2Vvl (VI.5) 
Uas = 2 C n K  n 

~ - a ~ V * ? 1  (VI.6) 

The incremental tail incidence in asymptotic conditions will be @as (1 -de /da ) ,  and hence the 

incremental tail load in these conditions, from (4.13) and (VI.6): 

a l F  1 - 2 - £  
= v (1 + - , (VI.7) 

the factor (1 +~as) e being introduced to account for the reduction of speed. Strictly speaking, this 
factor should be neglected if we were to follow rigidly the linear theory. If, however, the elevator 
deflection ~71 is considerable (as it must  be to produce large nm~x), then ~as may assume large negative 
values, and it would be unreasonable to neglect this alleviation. 
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The first maximum tail upload is, according to (4.15): 

P~a. . :  = ½-pVeS' a~I/ ~ + ~-~ 1 + E E '  
" a H . ~  - 1 , 

(VI.8) 

and it is seen that formulae (VI.7) and (VI.8) are very similar. The presence of the factor (1 +/~as) 2 

and absence of a/2/x and E E '  in (VI.7) all contribute to make Pas smaller than/'1 max, but a considerable 
difference may result from the manoeuvre margin H m being replaced by the static margin K,~. 

The latter can assume widely different values in various flight conditions. If K~ > H m, as it should 
be in most cases, then /)as will certainly be considerably smaller than Plmax" However, a great 
caution is advisabie when using the formula (VI.7) even if I(~ > H,,,, and more so if K,, < H , ,  
because the entire linear theory may very often break down. To show this, we notice, from (2.18) 
and (4.17): 

a~V~:(1 + E) a~V~7/(1 + E) (VI.9) 
@max - C L H  m ' n~ax - aH,~ ' 

and therefore (VI.5) and (VI.6) may be written: 

nm~ ~ H,~ (VI.10) A - -  

ua~ 2 ( I + E )  K n ' 

^ U~ma x H,~ (VI.11) 
W a s  - -  I+EK  

If nma ~ has usual large values, and if K,~ is not many times greater than H~, the formula (VI.10) will 
give absurdly large negative values for/tas, often numerically greater than 1. This means that the 
linear theory (based on the assumption that a and ~ are both small fractions) breaks down before the 
asymptotic conditions are reached, or that the asymptotic conditions do not exist. This is also seen 
from (VI.11) which shows that the incremental incidence ~as may become very large. Obviously, if 
the elevator deflection is sufficient to produce large nma x in the early stage of the pull-out manoeuvre, 
and if the elevator is kept so deflected for a long time, then either the aeroplane will stall or, at least, 
will reach a new equilibrium at a very large Cj. and greatly reduced speed. In neither case will the 
above formulae for asymptotic conditions apply, and the correct procedure will be to try to find the 
speed, incidence and tail load from static-equilibrium conditions, taking into account true (not 
linearised) polar and trim curves. It is highly improbable that such a procedure could lead to 
greater tail loads than those obtaining in high-speed manoeuvres. 

It is clear from the above discussion that the formulae for asymptotic conditions can only be applied 
for sufficiently small elevator deflections, and even so only if the static margin K~ is positive and not 
too small. Should K~ become 0 or negative, the aeroplane would be statically unstable and a steady 
elevator deflection would lead to divergence, and could not be maintained for any length of time. 
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