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Summary. 

An analysis is given of the deformation under normal loading of a plate tapered symmetrically in planform 
with edges either clamped or simply-supported. The thickness may be constant or may vary along the plate 
as a power of the width. Numerical results are given for plates of constant and linearly varying thickness 
under uniformly distributed load. 

1. Introduction. 

~Ii-approximate analysis is given in this report of the small-deflection deformation under normal 

loading of a thin elastic plate tapered symmetrically in planform with edges either clamped or 

simply-supported. The thickness of the plate may be constant or may vary in the direction of taper 

as any power of the width. 

The analysis is applicable to loadings under which the deflected shape across the plate normal to 

the direction of taper may be represented adequately anywhere along the plate in terms of a few 

known functions. The deflection of the plate can then be expressed in terms of the sum of the 

products of each of these functions with unknown functions representing the deflected shape in the 

direction of taper. Linear homogeneous differential equations are derived for these functions using 

the Rayleigh-Ritz method 2 and closed-form solutions are obtained. Similar solutions for rectangular 

plates of constant thickness have previously been obtained by Kantorovich 1. The amount of 

computation increases rapidly with the number of functions used, and in the applications given here 

two functions only are used to represent the deflected shape across the plate. 

If  the shape of the load distribution across the plate does not vary and if the load intensity varies 
as a power of the width, it is shown that for a long plate (length/maximum width greater than about 2) 

an 'optimum' thickness variation can be derived in which the stress distribution on the surface does 
not vary along the plate except near the ends. 

Williams 8 has examined the local bending behaviour of the corners of plates and has shown that 
infinite stresses are produced in theory at obtuse corners joining simply-supported edges. The 

~" Replaces R.A.E. Report No. Structures 273--A.R.C. 23,975. 



present analysis is therefore not valid in the immediate vicinity of such corners. A similar singularity 
at corners joining simply-supported and clamped edges only occurs when the included angle 
exceeds 129 ° , which is larger than would be met in this context. 

The general analysis is illustrated by application to a plate under uniformly distributed loading 
with the same boundary conditions along opposite edges. All such combinations are considered in 
turn. The deflected shape across the plate is here represented by the deflected shape across a 
parallel infinite strip under the same loading and boundary conditions, together with a second 
polynomial of higher power. It is shown that in this example an analysis using the first function 
alone, which could easily be performed on a desk calculating machine, will often give adequate 
results even for the maximum stress in the plate. Curves showing the variation with the plate geometry 
of the maximum deflection and the maximum value of the yon Mises stress away from the corners 
are given both for a plate of constant thickness and for a linear thickness variation, the latter being 
the 'optimum' thickness variation for this loading. 

2. Analysis. 

2.1. Basic Theory. 

2.1.1. Some general results.--The strain energy of bending U of a thin plate in the x, y 
plane undergoing a small lateral deflection w(x, y) is given by the expression 2 

i I(Ww)  - 2(i- F ( U = ~ f f D [_~x ~ ~y~ \ ~ - ~ ]  ] l dxdy'. 

The increment of the strain energy due to an infinitesimal arbitrary variation ~w of the deflection 
is thus 

Moreover, provided the total work done on the edges of the plate by the variation 8w is zero, and 
provided the flexural rigidity D is a function of x only, the following expression can be obtained 
by integrating equation (1) twice by parts. 

8U = ~w DV4w + dx (V~w) + ~ \Sx ~ + v ~y~]j dxdy. (2) 

The line integrals around the edges of the plate which arise in the process of integrating by parts 
correspond to work done by forces or moments acting on the edges and here vanish due tO the 
restrictions imposed on 8w. 

The work done on the plate due to the variation ~w of the displacement is given by 

(3) 

where q(x, y) is the distributed load. 
Now, by the principle of virtual displacements, the total work done by the infinitesimal variation 

of the displacements is equal to the change in the strain energy, so that 

8T = 8U. 
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Hence equating expressions (2) and (3), we obtain 

dD 0 (Ww)+ + v - q(x, y) dxdy  = 0. (4) ~w DV4w + 2 ~ ~x ~ \ Ox ~ Oy ~] 

If the variation ~w were completely arbitrary within the plate," equation (4) would yield the exact 
equation for the bending of the plate. In the present problem however an approximate solution is 
found by considering only a restricted variation of w. 

2.1.2. Application to tapered plates.--The axes and notation used here are shown in 
Fig. 1. The plate is symmetrically positioned relative to the x axis, the parallel ends being defined 
by the lines x = 0 and x = a. It is convenient to express the problem in terms of the following 

non-dimensional symbols 
W .7_,0 x y ,  = - ,  X =  l + p - ,  y = 2  

a a 

a Y b2 I ,  /~ = ~ .  
0 = ~ ,  p - h i  

The symbols bl and b2 represent the widths of the plate at x = 0 and x = a respectively (b I > b~). 
The co-ordinate X represents in non-dimensional form the distance along the plate measured from 

the point at which the sides would meet if produced. 
The analysis given here is immediately applicable when the shape of the load distribution across 

the plate does not vary along the plate. More complicated problems may be considered by adding 

together a number of such load distributions, which can each be expressed in the form 

q = ~,o4X)~(O) 

where q0 is a constant and the functions a and ]3 express the shape of the load distribution. 
• The most general variation of the flexural rigidity to which this analysis is applicable can be 

expressed in the form 
D = D1X ~ 

where D 1 and r are constants. 
Re-expressing equation (4) in the notation of this section, we obtain 

r (r -1)p  2 [ ~ W  O2W] qoa%~(X)fi(O)] d X d g  O. 
+ X 2 \P2 + 4vv~ = (5) 

7 X  ~ a y2 ] D1X ~ .J 

An approximate solution is obtained to this equation by assuming that W can be expressed in the 
f o r m  

w = (6) 
1 

where the functions ~.(0) are chosen to represent approximately the deflected shape normal to the 
X axis and the functions fj(X) are unspecified. Simultaneous differential equations for these 
functions are obtained by substituting equation (6) in equation (5) and considering in turn the 
following m restricted variations of W. 

3W~ = %a h . (7) 
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The  integration sign with respect to X may then be removed from equation (5) because the variations 
~fs are completely arbitrary within the plate. If  the resulting equations are then divided through 
by the relevant variations 3fi and integrated With respect to O, the following set of equations is 
obtained. 

k=~ (i=4 difl~ ) 12(1 _ v~)cq~a~F~ R 
E E Pski Xi  + PskofT~ = (8) 

7~=1 ,~=1 ~ X ' -~  
where 

f+1_1 q o_   l(bll" ~Fj = 30sdO, R = 1:; 

Psz:o = pa {lsk ~ + 121Ska + 36/~.k2 + 241Sla = 2r(ljr:a + 6lj7~. + 6/Ski ) + 

+ r(r-- 1) (ljk 2 + 2ljkl) } + 4p2/z 2 {2(sj.k2 + 6s~1~1 + 6sjl~o ) -- 

-- 2r(sjza+Zss~o ) + r(r--1)vs~l~o } + 16/~m~k, 

Pskl = P~ { -- 4(ls~,:a + 6I~kz + 6l~a) + 6r( l~  + 2/~va) -- 2r(r -- 1)ls~a} + 

+ 4p~/z~ { _ 4(s~  1 + 2s~o ) + 2rs~o} ' (9) 

p'~ {6(l~,~z + 2l~,a) - 6rlsk 1 + r ( r -  1)l~ko} + 8pzt~ssko, 

and 

Pjk2 = 

Pjka = 

Pjz~¢ = 

ljki = 

- 2p~(2ljla - rljl~o), 

P jl~o 

- 1 0 i ~  -707- dO, 

f 
+l di+2(Dk 
-10i(~j  dOi+2 dO, 

-I-1 1 
f d407 ~ m~l ~ • s ~ dO .  

--1 

(lO) 

2.1.3. Solution of equations.--As equations (8) are of linear and homogeneous form, they 
can be solved by standard methods. In the numerical examples given in this report two unknown 
functions only are considered. For simplicity of presentation the subsequent analysis is therefore 
restricted to assumed deflected shapes of the form 

W = f~(X)01(O ) + f2(X)q)2(O ) . (11) 

The  complementary function of the solution to equations (8) is then found by substituting 

f l =  A X  ~ 

f2 = BX'~ 

and equating the left-hand sides of these equations to zero, giving 

and Ah11()t)+Bhl~(A)=O0} (12) 

Ahl~(h ) + Bh~z(A) = 
where 

hjz~(Y) = y4Pjk<i + 78( - 6Psic4 +Pj'ka) + 7z( 1 lPjk4 - 3PsT~a +Pjl~2) + 

+ y( - 6PjI~4 + 2PsI~a-Pjl,2 +Pjza) + Pjko. (13) 
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Equations (12) are only consistent if the  determinant A(A) of the coefficients of A and B is zero, 

that is 
A(~t) = hll(;~)h22(~ ) -h12(/~)h21(Z ) = 0. 

The complete solution is then given by 

i=8 t f l  = f l ( x )  + Z A i X ~  
i=1 (14) 
i=8 

.f~ F2(X) + E B¢X ai] i=1 ] 

where F 1 and F 2 are the relevant particular integrals and the constants A i and B i are related by the 

expression 

A~ hl~(Ai) h2~(Ai) 

The  eight arbitrary coefficients in the above complete solution can be found from the boundary 

conditions on each of the functions f~ at X = 1 and X = 1 + p. The constants A i and B i and the 

indices )ti are in general complex. 
If  the load intensity at constant 0 along the plate varies as X ~, the particular integrals in expressions 

(14) are given by 
12(1 - v2)l~aR 

F~(X) = -A((4~ r - ~ ) -  (tF~h2~(4- r + v) - ~F2h12(4- r + v)} X 4-r+v 

(15). 
12(1-~)~R { % h ~ # - r + v )  %h~(4-r+v)}X~-~+~J 

F~(x) = A(4- r + v) 

or, if only one function f is used in the analysis, 

12(1 - v2)/z~R WX,_~+~. 
F(X)  - h ( 4 -  r + v) 

2.1.4. Moments and stresses in p Ia te . - -The  bending moments M x and M v and the twisting 

moment  M~j are given by the expressions, 

_ M . =  - D \ ~ x  ~ +Vay~] 

D1X~ [ 2 a2W a=W~ 

M v = - D  \Oy2 + v O x  2] (16) 

DxX ~ / 02W ~9'W] 
- i~ba ~ 41~ ~ + up s OX ~ ] ' 

m~u = D(1 - v) Ox ~y 

D1X~ (1 - v)p ~q4z 
= 2 ~ OXOY" 
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Substitution of the assumed deflected 

~2 W j=2 1 
- - =  E~ OX2 j = 1 

~2 W j'=2 1 

32W ~=2 1 
- - = E X ~  3 y2 ~=1 

dfj and ' d(I)j. 
wheref j '  = ~  (I)j - dO" 

form (11) into the derivatives of W gives 

[~,jx%." - 2o%'xL.' + o(o~/' + 2%')f~], I 

[q~/Xfj' - (O(I)j" + ¢P/)fJ] ' 1 (17) 

,gj"h j 

The value of the von Mises stress at on the surface of the plate, which is here assumed to govern 
the yielding of the plate, is given by 

~/ = V(% 2 + % z -  %% + 3T=U z) 

6 
- tl~X~,,m ~ / (Mx  2 + My2 - M ~ M  u + 3M~u ~) (18) 

where t 1 is the thickness of the plate at X = 1. 

2.1.5. Boundary conditions. 

(i) Boundary conditions at ends . - -The  boundary condition of zero deflection at 
the ends of the plate is satisfied completely by making 

[L.]o~ = [ G - ] o ~  = o. (19) 

The further condition necessary for the virtual displacement 3Wy to do no work on the ends is 
given by 

-1 ~ X  P2 dO = O. (20) ~ X  ~ + 4v~ ~ ~ y2 ] ona 

Substituting equations (17) and (19) in equation (20), we obtain 

3f /P  ~ Z kofk" -- 2 Z,.I = O. 
i k = l  / - / e n d  

The second boundary condition for a clamped end is thus satisfied completely by making 

[L.']ona = [~L.']ona = 0 

and that for a simply-supported end is represented approximately by 

[k=2 2 l j/elf//) ] 0 .  

..o o = 

(ii) Boundary conditions at clamped s ides . - -The deflection functions Oi can be 
chosen to satisfy the boundary conditions along clamped sides completely. If a complete series of 
functions ~j were used and if the ends of the plate were also clamped this method would thus give 
a solution which would converge to the exact solution as the number of functions was increased. 

(iii) Boundary conditions at simply-supported s ides . - -The boundary conditions 
cannot be satisfied purely by appropriate choice of the functions ~j if the sides are simply-supported, 



because the expression for the bending moment  about the sides also involves the unknown functions 
ft" The deflected shape across the plate is here represented approximately by functions which would 
satisfy these boundary conditions completely if the sides were parallel. It can be shown 4 that the 
total work done on the sides of the plate in this deflected shape is zero if the plate thickness is constant 
and the derivation of equations (8) is then strictly valid. Errors introduced by using this derivation 
when the thickness varies should be small compared with those due directly to the moments along 
the sides which would be strictly necessary to maintain this deflected form irrespective of the 
thickness variation. These moments, which are illustrated for a specific example in Fig. 12, are 
usually small but can lead to inaccurate results for large angles O f taper. 

2.2. Some Special Cases. 

2.2.1. Plates of constant thickness.--For a plate of constant thickness 

r = O  

and the coefficients of equation (8) are given by 

Pjko = p~(ljk4 + 12l~1~3 + 361jk~ + 24li7~) + 8P~t~2(sjz~,2 + 6sjkl + 6Sjko) + 16/z4mjz~, 

p kl = - 4p (l , 3 + 61jk  + - 16p   (s kl+ 2S ko), 

Pjk2 = 6p~(ljl~2 + 2Ij1~1) + 8p2t*Zs~t~o, 

Pjk3 = - 4041Jl~,l, 

P k4 = p%ko. 

2.2.2. Optimum thickness variation when load at constant 0 varies as Xv.- -The  particular 
integrals given in equations (15) can be interpreted physically as representing the deflection of a 
semi-infinite tapered strip under the same loading with the relevant boundary conditions along the 
sides. To these are added the complementary functions which here represent the additional deflection 
necessary to make the strip satisfy the boundary conditions at the ends of the plate. Thus  in a 
relatively long plate the influence of these complementary functions is only significant near the 
ends and elsewhere the plate behaves as a semi-infinite tapered strip. Now by substituting the 
particular integrals, equations (15), in equations (17) it is seen that for such a strip the second 
derivatives of W with respect to X and Y vary as X 2+v-r. Substituting these successively into 
equations (16) and (18), the yon Mises stress ~1 is seen to vary as X 2+v-zm. Hence the optimum 
thickness variation of the semi-infinite strip in which the surface stresses at all chordwise sections 

are the same is given by 
3 ( . + 2 ) .  r = ~  

Thus  for a relatively long plate this represents a near opt imum thickf~ess variation. 

3. Application to Plates under Uniformly Distributed Loading. 

3.1. Specific Examples Chosen. 

The preceding analysis has been computed for plates under uniform loading with opposite pairs 
of edges either" clamped or simply-supported. The plate thickness is either constant or linearly 
proportional to the width, the latter being the optimum thickness variation for long plates in the 

sense described in Section 2.2.2. 
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The  functions chosen to describe the deflected shape across the plate are given in Section 3.2 

together with the constants and equations derived using them. In each case the first function chosen 

is the deflected shape across an infinitely long strip of constant thickness under  uniform loading 

with the relevant boundary conditions. In long plates the influence of the second function is only 

significant near the ends and the computation of the two-funct ion analysis becomes impracticable. 

Equations are given therefore both for one-function and for two-function analyses. 

The  figures plotted are listed in Section 3.3 and the results are discussed in Section 3.4. 

3.2. Transverse Deflection Functions and Related Constants. 

3.2.1. Plate with clamped sides.--The transverse deflection functions are chosen as 

(I)1 = 0 4 -  202 + 1, 

( D 2  = 0~(04--202+ 1). 

The  related constants are shown in the following tables: 

i 315/11 i 3465112 i 3465121i 45045/22 i 

0 
1 
2 
3 
4 

+ 256 
- 128 

0 
+ 384 
+ 384 

+ 256 
+ 128 
- 768 
+ 1152 
+ 20352 

+ 256 
- 384 
+ 256 
+ 1920 
+ 1920 

+ 768 
- 384 
- 3584 
+ 17280 
+ 151680 

105sn i 

-- 256 
+ 384 
+ 384 

315s~2 i 

0 
- 384 
-k, 3456 

315S2i i 

0 
+ 384 
+ 384 

3465s2~ 

-- 768 
+ 1152 
+ 20352 

5mll 35mi~ 35m21 315rtz2~ 

128 128 128 3456 

15q) 1 105q52 

16 16 

Substituting in equations (8), the following equations are obtained for f l  and f2. 

(i) Plate of constant thickness. 

(a) Single-function analysis. 

4"9 ~3~,,,- X4f,,,,) 3(5p4+72p2tx2+336t~4)f+ 1202(p~+4/~z)(Xf'-X~f") + 2p (~.,t 7 t = 28.665/~3RX 4 

where a dash denotes differentiation with respect to X and v = 0- 3. 



(b) T w o - f u n c t i o n  analysis. 

33(5p4 + 72p2/~ 2 + 336/x4)f1 + 132p3(p 3 + 4~ 2) ( X f l '  - X2 f l  ") + 

+ 22p4(2Xaf~" + X*f~ "") + 3(25p* + 264p3/z 2 + 528/~*)f 3 + 

+ 12p2(7p 2 + 44tz2)Xfz '  _ 2p4(12X2f3" + 9Y~¢ ,,, - ~  .l~ -- X*f~"") = 315" 315/zaRX 4, 

39(65p4 + 616p2t* 2 + 528t**)A - 156p3(3p 2 + 44t~3)xf~ ' - 2p4(156x2f~" - 

- 78x~f~ ' ' -  13x4f~"") + (1725p4 -4-18408pz/x 3 q- 61776~*)f~ + 

+ 4p2(51 p2 + 156~a)xf~. ' - 4p3(5 lp2 + 156t,3)x2f2" + 6p*(2xaf3 " + x , f 2  " ") 

= 585. 585/zaRX *. 

(ii) Plate with thickness proportional to width. 

(a) S ingle- funct ion  analysis. 

(210 '  + 244.8p3/x 2 + 1008~*)f - 12p3(p 3 + 8t~3)Xf ' + 6p2(3p 2 - 8lx2)X2f " + 

+ 204(8Xaf " + X 4 f  ' ' )  = 28. 665/~8RX. 

(b) T w o - f u n c t i o n  analysis. 

11(21p4 + 244.8p3/x 3 + 1008/~4)f 1 - 132p~(p ~ + 8lx2)Xf~ + 66p~(302 _ 8lz2)X3f~,, + 

+ 22p*(8Xaf~"+X4f~ ' ' )  + (177p4+ 1584p3/23 + 1584tz*)f2 + 528p31x2Xf2 ' - 

- 2p*( lSXy2"  - 4XZf2 ' ' -  X4f2 ' ' )  = 3 1 5 . 3 1 5 / ~ R X ,  

13(117p* + 105603/~ 2 + 1584/~4)f~ - 312p3(3p 3 + 22/~2)Xf~ ' + 2604(21X~fl" + 

+ 12Xaf~" + X' f1  " )  q- (1827p 4 + 18782.4p3/,  3 + 61776fz*)f~ - 1202(3 lp  3 + 104/22)Xf3 ' _ 

2p3(57p 3 + 312/z2)X3fz" + 6p*(8X~f3 '' + X~f3"')  = 585- 585/z~RX. 

3.2.2. Plate with s imply-supporteds ides . - -The  t ransverse  deflection funct ions  are chosen  as 

q ~ l =  0 ' - 6 0 3 + 5 ,  

(I) 2 = 0~(50 * -  1403+9) .  

T h e  related constants  are s h o w n  in the  fo l lowing tables:  

i 315~  t [ 3465~2 i 3465~t i 45045~2~ 

0 
1 

2 
3 
4 

+ 7936 
-- 3968 
- -  2688 
+ 3840 
+ 3840 

+ 18176 
+ 6272 
- -  75648 
- -  15360 
+ 1136640 

+ 18176 
- -  24448 
- 14208 
+ 30720 
+ 30720 

+ 105728 
- 51840 
- 706944 
+ 456960 
+ 12552960 

+ 
+ 

35slli 

2176 
1024 
1024 

315s12i 

- 4224 
- 33024 
+ 158976 

315hl i 

- 4224 
+ 5376 
+ 5376 

3465s22i 

- 107904 
- 59904 
+ 1476096 



5m~ 35m~2 35m21 315mz~ 

768 1536 1536 209664 

5Wz 35~F2 

32 64 

Subs t i t u t ing  in equat ions  (8), the  fo l lowing equat ions  are ob ta ined  for  f l  and  f~. 

(i) Plate  o f  constant thickness. 

(a) S ing le - func t ion  analysis.  

3( - 185p 4 - 552p~/~ ~ + 1 0 0 8 ¢ ) f  + 12p2(47p ~ + 156/z2)Xf  ' - 

- 3p2(83p ~ + 2041~2)X~f " + 31p~(2X3f  '' + X 4 f  ' ' )  = 85 "995/zaRX 4 . 

(b) T w o - f u n c t i o n  analysis.  

3 3 ( -  185p 4 -  552p~/~ + 1008/z~)f~ + 132p~(47p2 + 156/~)Xf~ ' - 

- 33p~(83p~+ 204t,~)X2f~ " + 341p*(2Xafl  '' +X4f~"")  _ 6(1055p4 + 

+ 3696p2/z ~ - 1584/~*)f~ + 2402(281p ~ + 11881x~)Xf( - 3p~(493p ~ + 484~)x~f~" - 
- p * ( 9 8 x a f (  " - 7 1 x ~ f ( ' ' )  = 945.945t~aRX ~ , 

78( - 455p4 + 70402t~ ~ + 1584~) f~  + 312p2(13 lp~ + 8 8 ~ ) X f ~  ' - 

- 39p~(493p ~ + 4 8 4 ~ ) X ~ L "  + p*(4966x~L" + 9 2 3 x 4 f l  ' ' )  + 

+ 3( - 11273p * + 63544p2/z ~ + 624624~) f~  + 12p~(5333p ~ + 1 8 6 6 8 ~ ) x f (  - 

- 3p2(6333p ~ + 14612/~)x2f2"  + p 4 ( 8 1 0 x ~ f (  " + 413x~f~"")  = 3513.5  I I~aRX ~ . 

(ii) Plate  wi th  thickness proport ional  to width. 

(a) S ing le - func t ion  analysis.  

(42p ~ + 601.202/~ ~ + 3024 /~ ) f  + 3p~(02 + 12t ,~)Xf ' + 

+ 4p~(5402 - 153tz2)X2f " + 3104(SX3f  '' + X a f  ' ' )  = 85.995l~3RX.  

(b) T w o - f u n c t i o n  analysis.  

11(42p ~ + 601.2p~p7 ' + 3024~4)/1 + 3302(p ~ + 12 /~ )Xf l  ' + 44p2(5402 - 153/~)X~ft"  + 

+ 341p4(8Xaf~" + X4f~ "") + (230704 + 19285.2p~p, ~ + 9504/x~)f,z + 

+ pz(2013pz + 24156,az)Xf2 ' -  p~(1494pz + 1452p,~)X~f,~ " + p4(328XSfz"+ 71X4/~ ' ' )  

= 945 .945&3RX,  

13(507p 4 + 6085-202p, 2 + 9504~4)fl  - 39p~(49p 2 + 748/z~)Xfl ' + 

+ 78p~( 11 lp~ - Z42/zz)X2f~ " + 13 p~(X3f~ " + X~fx "") + 

+ (4317604 + 487203.6p2/z 2 + 1873872p,~)f2 + 3p~(3143p ~ q; 3 0 8 3 6 / ~ ) X f (  - 

- 12p~(1073p ~ + 3653/zz)XZf~," + p~(3288X~f (  " + 413Xaf~"") = 3513 .5  I ~ 3 R X .  
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3.3. Results. 

The variations of the maximum deflection and the maximum value of the yon Mises stress ~1 with 
a/b I are plotted in the figures listed below for a series of values of bl/b ~. The corresponding curves 
for rectangular plates which are also given in these figures have been obtained from results given 
by Timoshenko and Woinowsky-Krieger 2. 

Thickness 

Constant 

Proportional 
to width 

Boundary conditions 

Sides 

Clamped 
Clamped 

Simply-supported 
Simply-supported 

Clamped 
Clamped 

Simply-supported 
Simply-supported 

Ends 

Clamped 
Simply-supported 

Clamped 
Simply-supported 

Clamped 
Simply-supported 

Clamped 
Simply-supported 

Maximum % 
occurs on 

Sides 
Sides 

Wide end 
Centre-line e 

Sides 
Sides 

Narrow end 
Centre-line* 

Fig. 
No. 

2 
3 
4 
5 

* large bending stresses in the immediate vicinity of the obtuse corners are neglected. 

The following examples are plotted in more detail. The deflection w and the von Mises stress 
aj are plotted in each case along the centre-line of the plate. The yon Mises stress along the clamped 
sides and the error bending stress normal to the simply-supported sides are also plotted. 

Fig. 10. Comparison of specimen results of the two analyses. Sides and ends clamped, thickness 
constant, a/b 1 = 2,  bdb 1 = 0 . 4 .  

Fig. 11. Comparison of specimen results for long plates of constant and linearly varying thickness. 
Sides and ends clamped, a/b I = 4,  b2/b 1 = 0.4 .  

Fig. 12. Specimen results for simply-supported plates, a/b I = 2 ,  bJb 1 = 0 . 4 .  

3.4. Discussion of  Results. 

3.4.1. Comparison of  one-function and two-function analyses . - - I f  the results of the two- 
function analyses plotted in Figs. 2 to 9 are compared with the corresponding results of single- 
function analyses, the following observations can be made. 

(i) Def lec t ions . - -The  maximum deflection results are virtually indistinguishable except for the 
shortest plates where differences of up to 2~o occur. 

(ii) S t resses . - -When  the maximum yon Mises stress is not at the ends of the plate, the results of 
the two analyses converge as the length of the plate is increased. When a/b 1 is greater than 2 the 
difference in the results is less than 3 ~  for a plate of constant thickness with clamped sides and is 
less than 1 ~/o for all the other examples calculated. When the maximum von Mises stress is at either 
end of the plate, the results, which do not converge as the length of the plate is increased, differ by 
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up to 3}/o for plates of constant thickness and .~-zt~°//o for plates with thickness proportional to width. 
The two-function analyses can be used however on plates sufficiently long for the stress distribution 
at the ends under this loading to depend purely on the angle of taper and not on the length of the 

plate. 

3.4.2. Opt imum thickness var ia t ion . - - I f  a clamped plate such that a/b 1 = 4 and b~/b 1 = O. 4 

is designed to a maximum stress specification under uniform load, a weight saving of the order of 
149/o is obtained by using the optimum linear thickness variation rather than a constant thickness. 

This confirms the usefulness of the optimum thickness variation for a plate under uniform loading. 
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N O T A T I O N  

Suffices 1 and 2 indicate values at x = 0 and x = a respectively. 

Length and width of plate 

Plate thickness 

Cartesian co-ordinates 

Deflection 

Maximum value of w 

b2 
b 1 

a 

bl 

x 
= l + p -  

a 

2y 
bl 

Y 
X 

Young's  modulus 

Poisson's ratio (taken as 0.3 in computations) 

Flexural rigidity = Eta~12(1  - v ~) 

Normal  loading 

q = q o a ( X ) ~ ( O )  where  a and fi are dimensionless functions 

_ q0 (bzl~ 

Stresses 

Yon Mises stress 

Maximum value of cr t 

Bending and twisting moments  per unit  length 

Index such that D -- D 1 X  r 

Index such that ~ -- X ~ 

Unspecified function of X 
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~j 

Wj 

P j l~i 

ljk  I 
SJki J 

F,(X) 

A 

Ai, Bi 

T 

U 

V ~ 

V ~ 

NOTATI  ON--continued 

Known function of 0 

f +l d 0 
- 1  

Defined by equations (9) 

Defined by equations (10) 

Indices in complementary function in equation (14) 

Particular integral 

Defined by equation (13) 

Determinant of hjk terms 

Arbitrary constants in equations (14) 

Work done by normal loading 

Strain energy of bending 

Laplacian operator 

Biharmonic operator. 
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