R. & M. No. 3311

ĝ. :

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

N.P.L. Aerofoil Catalogue and Bibliography

By R. C. PANKHURST, of the Aerodynamics Division, N.P.L.

LONDON: HER MAJESTY'S STATIONERY OFFICE

1963 TEN SHILLINGS NET

N.P.L. Aerofoil Catalogue and Bibliography

By R. C. PANKHURST,

OF THE AERODYNAMICS DIVISION, N.P.L.

Reports and Memoranda No. 3311 March, 1962

Summary.

This report catalogues aerofoils which have been designed (or substantially modified) at the N.P.L., and which have been the subject of theoretical investigations, aircraft design studies or wind-tunnel tests. A full Bibliography is included.

This report catalogues aerofoils which have been designed (or substantially modified) at the N.P.L. and which have been the subject of theoretical investigations, aircraft design studies or wind-tunnel tests. Within these limits it is intended to be complete, except that it excludes a number of wing sections designed expressly to the requirements of aircraft firms. A full Bibliography is appended. Detailed numerical data have been collected together elsewhere*. A Numerical Index to the aerofoils is given on the last page.

The report is a revised version of an earlier paper[†], brought up to date by the addition of a number of aerofoils designed subsequently to the issue of that paper and by including R. & M. and other references for those papers in the Bibliography which have since been published in some form. For convenience, however, these papers are still identified in the text by their original A.R.C. serial numbers and their original dates, the published references (where available) being readily obtained from the Bibliography. The references in the text are followed by an indication of the nature of the material they contain, particularly whether the paper is concerned with theoretical design or experimental results. The abbreviations are as follows:

••	Compressed Air Tunnel
••	Ship Division, N.P.L.
	High Speed Tunnels‡
••	Theoretical results
••	4 ft Wind Tunnel
••	7 ft Wind Tunnel
	9 ft \times 7 ft Wind Tunnel
• •	13 ft \times 9 ft Wind Tunnel

* R. C. Pankhurst: N.P.L. Aerofoil Sections: Tabulated Details. NPL/Aero/211. July, 1951.

† R. C. Pankhurst: N.P.L. Aerofoil Catalogue and Bibliography. C.P. No. 81 (A.R.C. 14,157). July, 1951.

[‡] For a general survey of results from aerofoil tests in high-speed tunnels, reference may be made to R. & M. 2560. December, 1946. The arrangement of the lists of aerofoils follows broadly the successive stages in the development of the design theory:

- (1) 'Geometrical' design.
 - (a) Approximate equations to shapes already derived by conformal transformation (List 1).
 - (b) Approximate equations fitted to existing shapes with a view to calculating their velocity distributions by Goldstein's method (A.R.C. 5804 and 6156, and J. Ae. Sci. 1948) (also List 1).
 - (c) Aerofoils originally defined by algebraic formulae specially suited to the calculation of velocity distribution (List 2).
 - (d) Aerofoils defined by algebraic formulae which have been specially contrived to provide for variations in position of maximum thickness, nose radius, nose droop and centre-line camber (19,054) (Lists 11 and 12). Historically, these came much later than (a), (b) and (c).
- (2) 'Aerodynamic' design.
- This group comprises all aerofoils designed to have pre-assigned velocity distributions, specified either
 - (a) algebraically (Goldstein: 6225, 8548, J. Ae. Sci. 1948, etc.) (Lists 3 and 4a), or
 - (b) numerically (Thwaites: 8659 and 8942; Curtis: 12,154; Woods: 14,708) (Lists 5 and 10), or
 - (c) analytically as a function of the angular co-ordinate on the circle of transformation (Lighthill: 8597 and 8719; Glauert: 10,933. See also Williams: 12,999) (List 6).

This group includes aerofoils intended for use with boundary-layer control (Lists 7 to 9), a few of which have been designed for the production of lift independently of incidence (Thwaites: 10,294).

Notation.

Except where otherwise stated, the symbols used follow standard practice: x denotes chordwise distance, y distance normal to the chord, t maximum thickness, and ρ_L leading-edge radius, all in terms of the chord as unit length. Trailing-edge angle is designated τ . The few other symbols used are defined as they occur.

Acknowledgement.

Mr. H. H. Pearcey has collaborated in the preparation of Tables 11 and 12.

Existing Aerofoils to which Equations have been Fitted

These include approximations to P2040 (a 20 per cent thick Piercy aerofoil with its maximum thickness at 40 per cent chord from the leading edge), RAF 6, Clark Y, NACA 16 and a de Havilland high-speed propeller section.

NPL No.	Aerofoil	Thickness	Design C_L	References (A.R.C. Report numbers)
41	P2040	0.20	Symmetrical	<i>Aircraft Engineering</i> , Vol. 11, p. 151. 1939 (Theor.); 4800, 8718, 10,730, 11,084 and R. & M. 2058 (HST)
51	RAF 6 approx.	0.10	_	7780 (Theor.)
52		0.15		7780 (Theor.)
53	Clark Y approx.	0.06	_	6028 (Theor.); 9756 and R. & M. 2058 (HST)
54		0.07	_	6028 and 6897 (Theor.); 7308, 9756 and 11,191 (HST)
55		0.10		6028 (Theor.)
56		0.12		5804, 6028 and 6156 (Theor.)
57		0.15		6028 (Theor.); 11,191 (HST)
58		0.25	_	6028 (Theor.)
59, 60	de Havilland approx.	0.07		6132 and 6897 (Theor.)
61, 62	**	$0 \cdot 10$		6132 (Theor.)
63	NACA 16 approx.	0.12	0	5804 (Theor.)
64	11	0.07	0.3	6897 (Theor.) See 8863 (Theor.) for range of
65		0.07	0.5	6897 (Theor.) (thickness and camber
66		0.07	0.6	6897 (Theor.)
67	NACA 16 (approx.)	0.04	0.35	7308 and 9756 (HST)
68	propeller sections*	0.05	0.30	14,525 (HST)
69	· ·	0.06	0.22	9756 and 11,191 (HST)
70		0.06	0.55	10,551 (HST): no results available
71		0.06	0.88	10,551 (HST): no results available
72		0.065	0.30	14,525 (HST)
73		0.07	0.55	9756 and 11,191 (HST)
74		0.10	0.22	9756 and 11,084 (HST)
75		0.10	0.30	11,114, 13,238 and 14,525 (HST)
76		0.10	0.55	9756 and 11,084 (HST)
77		0.10	0.88	9756 and 11,084 (HST)
.78		0.15	$0 \cdot 22$	11,084 (HST)
79		0.15	0.55	11,084 (HST)
80		0.15	0.88	11,191 (HST)

* These 'NACA 16 propeller sections' comprise an approximation to the NACA 16 fairing, superposed on a logarithmic camber-line. In the notation used in the reports on these sections the third digit signifies the camber, and the fourth the thickness, according to the following arbitrary scheme:

Code	••	1	2	3	4	5	6
Design C_L		0.22	0.55	0.88	0.35		
Thickness (per cent)	• •	7	10	14	4	6	15

For instance, NACA 16/15 is cambered to a design C_L of 0.22 and is 6 per cent thick.

Note.—R. & M. 2058 = A.R.C. 6062 + 6528 + 7216 (HST; some CAT results are also included).

3

EC, EQ, ECH and EQH Aerofoils

The shapes of these aerofoils were actually defined by algebraic formulae^{*}. In each case the fairing (half-thickness) comprises an elliptic forward portion and a cubic or quartic rear portion which, in the case of ECH and EQH, is replaced by a hyperbolic curve very near the trailing edge. The numbers following the letters indicate the maximum thickness and its chordwise position, followed by the value and position of the maximum camber (if any). For instance, the aerofoil EC 1250/0640 comprises a fairing with an elliptic nose and cubic rear portion, with maximum thickness 12 per cent of the chord occurring at 50 per cent chord from the leading edge; this fairing is superposed on a camber-line with maximum camber 0.6 per cent, occurring at 40 per cent chord.

NPL No.	Aerofoil	References
101	EC 1240	4726, 5272, 5862, 6532, 7026, 7615, 8041, 8682, 11,084 and R. & M. 2058 (HST)
102	EC 1240/0640	4708 and 4713 (HST) [†] ; 5035 and 5255 (CAT); 5862, 8682, 11,084 and R. & M. 2058 (HST) [†]
103	EC 1240/0658	8682, 11,084 and R. & M. 2058 (HST)
104	EC 1250	4978 (CAT); 5622, 6130, 6146, 6378, 6662, 6999, 7067, 7176, 7278, 7308, 7448, 7800, 8395, 8682, 8866, 10,729, 11,084 and R. & M. 2058 (HST); 13,906 (Flight)
105	EC 1250 with concave control	11,933 and 12,284 (HST)
106	EC 1250 with wedge tail	10,551 (HST): no results available. Trailing-edge angle 10.8°
107	EC 1250/0640	10,551 (HST): no results available
108	EC 1250/1050	10,551 (HST): no results available
109	EC 1550	4978 (CAT); R. & M. 2058 (HST); 8725 (Derivative measurements)
116	EQ 1550, hollow ground	8725 (Derivative measurements)
117	EQ 1550/1050	4978 (CAT)
121	Е76СН 0747	7669 (Theor.)
122	E81CH 0748	7669 (Theor.)

* So also were the much later families of aerofoils of Lists 11 and 12.

† More precisely, EC 1240/05₈40.

Note.--R. & M. 2058 = A.R.C. 6062 + 6528 + 7216 (HST; some CAT results are also included).

NPL No.	Aerofoil			References
126	EQH 1240	•••	••	5804 (Theor.)
127	EQH 0950/1050		•••	5547 (CAT)
128	EQH 1250		•••	5804 (Theor.)
129	EQH 1250/0640	••		11,084 and R. & M. 2058 (HST)
130	EQH 1250/1050	••	••	5517† (CAT); 11,084 and R. & M. 2058 (HST)
131	EQH 1250/1550‡	••	•••	6676, 6785 and 6998 (13×9)
132	EQH 1250/4050	••	••	6156 (Theor.)
133	EQH 1260	••	••	5804 (Theor.); 5592 (Froude tank, 13×9 and 9×7)
134	EQH 1550	• •		8682, 11,084 and R. & M. 2058 (HST)
135	EQH 1550/1058			4978§ (CAT); 11,084 and R. & M. 2058 (HST)
136	EQH 2450	••	••	J. Ae. Sci. 1948 (Theor.)

|| There mis-named EQ 0950/1050.

† There mis-named EQ 1250/1050.

‡ More precisely, EQH 12*50/1550 (i.e., t = 0.118).

§ There mis-named EQ 1550/1058.

Note.--R. & M. 2058 = A.R.C. 6062 + 6528 + 7216 (HST; some CAT results are also included).

LIST 3

'Roof-top' Aerofoils and Simple Camber-lines designed Aerodynamically

These include the first aerofoils designed, by Goldstein's approximate method, to have prescribed velocity distributions.

(a) Symmetrical 'Roof-top' Aerofoils.

Ref. 6225 (Theor.)											
	Aerofoil A B C D E F G H										
	NPL	No.	141	142	143	144	145	146	147	148	
Ref.	J. Williams	8877	ç	748		7814	7	'814		13,446	J. Williams
•	(Theor.)	(Theor	.) (1	3×9)	(T	heor.)	(T	heor.)		(13 × 9)	(Theor.)††
		<u> </u>									
Aerofoil	8%	15%			18%	2	24%		33%‡‡	8%	
NPL No.	149	150			151	152			153	154	
See also NPL 282 (List 4)											

†† October, 1953.

11 Tested with distributed suction over the region of adverse gradient.

5

в

(86535)

(b) Camber-lines with g_i constant when $0 \le x \le X'$ and decreasing linearly thence to zero at the trailing edge*.

Report 8548 (Theor.) gives the relevant data for $X' = 0.25, 0.30, 0.35, \ldots, 0.95, 1$. These camber-lines, regarded as aerofoils of zero thickness, are referred to as follows:

 X'
 .
 0.25
 0.3
 0.35
 0.4
 0.45
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9
 0.95
 1

 NPL
 .
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176

The camber-lines of the following two 'roof-top' aerofoils are of this type:

Aerofoil NPL 177: 'Roof-top' 1442/1547† of Reports 8682, 9585, 11,190 and 13,531 (HST). Aerofoil NPL 178: R537–1515 of Report 10,620 (Theor.).

(c) Camber-lines for which g_i is constant (k) when $0 \le x \le X'_1$, then varies linearly to sk at X'_2 and then linearly again to zero at the trailing edge.

Ref. 8277 (Theor.). The following table numbers these camber-lines, regarded as aerofoils of zero thickness.

						S				
X'_1	X'_2	0.4	0.3	0.2	0.1	0	-0.1	-0.2	-0.3	-0.4
0.4	$\begin{array}{c} 0\cdot 8\\ 0\cdot 9\\ 1\cdot 0\end{array}$	180 189 198	181 190 199	182 191 200	183 192 201	184 193 202	185 194 203	186 195 204	187 196 205	188 197 206
0.5	$0.8 \\ 0.9 \\ 1.0$	207 216 225	208 217 226	209 218 227	210 219 228	211 220 229	212 221 230	213 222 231	214 223 232	215 224 233
0.6	$0.8 \\ 0.9 \\ 1.0$	234 243 252	235 244 253	236 245 254	237 246 255	238 247 256	239 248 257	240 249 258	241 250 259	242 251 260

The camber-line of the following 'roof-top' aerofoil is of this type:

Aerofoil NPL 261: Goldstein Reflex GR 1540/2037 of Reports 7209 and 11,084 (HST).

^{*} g_i denotes the first approximation to the super-velocity when $C_L = C_{L \text{ opt}}$, excluding the contribution due to the finite thickness of the aerofoil ($C_{L \text{ opt}}$ being the lift coefficient at which the velocity over the camber-line alone is finite at the leading edge).

[†] Designated 'H.S.4' at R.A.E. (Not to be confused with the HSA series of List 5.)

Modified 'Roof-top' Aerofoils

(a) MR series.

In the 'MR' series, the figures following indicate (a) X_q , the designed chordwise position of peak velocity at zero lift, (b) the upper limit of the C_L -range of favourable gradients on both surfaces, (c) the value of $C_{L \text{ opt}}$ (defining the camber), and (d) the aerofoil thickness. For example, MR 640–018 has the following properties: $X_q = 0.6$; upper limit of C_L -range = 0.40; $C_{L_{\text{opt}}} = 0$ (zero camber); 18 per cent thick.

NPL No.	Aerofoil			Reference
269	14.7% Goldstein	••		8140 (13×9)
270 271 272 273 274 275 276 277 278 279	MR 413-010 MR 424-015 MR 450-020 MR 513-010 MR 523-015 MR 525-015 MR 546-020 MR 613-010 MR 622-015 MR 645-021	· · · · · · · · · · · · · · ·	··· ·· ·· ·· ·· ··	8532 (Theor.)
280	14·7% Watson	•••	•••	8941 (Theor.)

(b) Geometrical modifications of basic 'roof-top' aerofoils.

281	1541a		13,039 (7 ft No. 2)
282	1541*		13,039 (7 ft No. 2) and 15,292 (9×7)
283	1541b	••	
284	1541c		>13,039 (7 ft No. 2)
285	1541d		
		. •	-
290	RAE 102 ⁺ , cusped		17,386
291	Cambered RAE 102†		15,456

* This was the basic ('Roof-top') section.

† For details of the RAE 102 aerofoil see 13,254.

Aerofoils designed by Approximate Method using Numerical Conjugation

'AN' signifies an aerofoil designed by approximate methods using numerical conjugation; 'NAN' indicates that the aerofoil also employs a new stock camber-line. The numbers following these letters have the same significance as for the 'MR' series. For instance, AN 420--109 has the following properties: $X_q = 0.4$; upper limit of C_L -range = 0.20; $C_{L \text{ opt}} = 0.1$; 9 per cent thick. Similarly, NAN 532-1415 has $X_q = 0.5$; upper limit of C_L -range = 0.32; $C_{L \text{ opt}} = 0.14$; 15 per cent thick. 'HSA' signifies 'high-speed aerofoil'.

NPL No.	Aero	ofoil			Reference
301 302 303	AN 414-011 AN 528-015 AN 420-109	 	••	••	8659 (Theor.) 8659 (Theor.) 8942 (Theor.)
304 305 306 308 309 310	HSA I HSA II HSA III HSA V* HSA VI* HSA VII	· · · · · · ·	• • • • • • • •	· · · · · · ·	 9076 (Theor.) 9076 (Theor.) 9076 (Theor.) 9809 (Theor.); 11,496 (4 ft No. 2); 11,560; 11,758 9809 (Theor.) B. Thwaites (Theor.) (1946; unpublished)
311 312 313 314 315 316 317 318 319	NAN 530–117 NAN 524–0412 NAN 532–1415 NAN 530–1413 NAN 540–1513 NAN 522–112 NAN 522–110 NAN 521–0411 NAN 545–1515	· · · · · · · · · · · · ·	· · · · · · · · · · ·	··· ·· ·· ··	} 10,620 (Theor.)
320	NPL 320	•••			12,154 (Theor.)
321	NPL 321		••		15,184 (13×9)
322	NPL 322		••	• •	Sleeve for 'Vampire' wing (Handley Page flight tests with strip suction [†])
323 324	NPL 323 NPL 324	•••	•••	•••	J. Williams (Theor.) (Unpublished) J. Williams (Theor.) (Unpublished)

* Designed for use with distributed suction over the nose.

† cf. 'Boundary Layer and Flow Control' (Ed. G. V. Lachmann), pp. 112 to 113. Pergamon Press, 1961.

NPL No.	Aerofoil			Reference
331 332 333 334 335 336 337	19.6% Symmetrical 13% Symmetrical 19.2% Symmetrical 14.1% Symmetrical 13% Symmetrical 15% Symmetrical 15% Symmetrical	••• •• •• •• ••	· · · · · · · · · · ·	 8597, Appendix I (Theor.) 8597, Appendix VI (Theor.). See also 8658 8597, Appendix VII (Theor.) 8597, Appendix X (Theor.) 13,003 (13×9) A. R. Curtis (Theor.) (Unpublished); 14,337 (Theor.) A. R. Curtis (Theor.) (Unpublished); 14,337 (Theor.)

Low-drag Aerofoils designed by Lighthill's Exact Method

LIST 7

Low-drag Slot-suction Aerofoils

(a) Designed by Goldstein's approximate method.

NPL No.	Section		References
351	16%, cambered		8877 (Theor.)
352	A preliminary design		6784 (Shape only)
353	16% symmetrical Griffith	••	6784, 7178 and 7463 (4 ft tunnel); 7561, 7464, 8054, 8055 and 9320 (13 × 9)
354	21% symmetrical Griffith	••	A. R. Curtis (Theor.) (Unpublished modification of NPL 355)
355	22% symmetrical Griffith		10,096 (HST)
356	30% symmetrical Griffith	•••	8864, 9810, 10,097, 10,630 and 11,599 (13×9); 11,610 (Theor.)
357	30% symmetrical, multi-slot		11,796, Aerofoil XIII (Theor.)
358	30%, cambered		J. Williams (Theor.) (Unpublished)
359	33% symmetrical, multi-slot		11,796, Aerofoil IX (Theor.)

(b) Designed by Lighthill's exact method.

361		8597, Appendix II (Theor.)
	(Modified Joukowski)	
362	34% symmetrical	8597, Appendix IV (Theor.)
363	40% symmetrical	8719, Fig. 1 (Theor.)
364	48% symmetrical	8597, Appendix V (Theor.)
365	31% symmetrical (GLAT III)*	10,933 (Theor.)
366	GLAT III with spread velocity	12,999 (Theor.)
	drop	
367	Stagnation-streamline modification	12,999 (Theor.)
	of GLAT III	

* 'GLAS' indicates an Aerofoil designed by Glauert using Lighthill's method, usually for use with suction at a Single slot; a 'GLAT' aerofoil employs Two slots. GLAS III is an exception to this rule, as it has a slot on both upper and lower surfaces.

NPL No.	Section	References
371 372 373 374 375 376	Bulrush I Bulrush II Bulrush III Bulrush IV Bulrush V Bulrush V Bulrush V Bulrush V	A. R. Curtis (Theor.) (Unpublished)
377	25% 'Lobster-pot'	M. B. Glauert (Theor.); 15,790 (Expt.)
379 380 381	30%, cambered 41%, cambered GLAS I*	8597, Appendix XI (Theor.) 8597, Appendix XIII (Theor.) 9180 (Theor.)
382 383 384	GLAS II GLAS III GLAS IV	9180, 10,933 and 11,610 ('Theor.); 10,854 and 11,797 (13×9); 11,269 (CAT) 9180 ('Theor.) 9180 (Theor.)
385	38%, cambered	12,999 (Theor.)
386	Sink-slot modification of GLAS II	12,999 (Theor.); Australian A.R.L. Notes 100 and 101 (Expt.)
387	Sink-slot modification of NPL 385	(Expl.) 12,999 (Theor.)

Nose-slot Suction Aerofoils

These are thin aerofoils designed for high maximum lift.

NPL No.	Section			References
401 402 403 404 405 406	11% symmetrical 5.4%, bi-convex 8.6%, sharp-nosed 8.6%, round-nosed 13%, cambered 14.2%, cambered	· · · · · · ·	· · · · · · · ·	 8597, Appendix VIII (Theor.) 8658 (Theor.) 8658 (Theor.); 10,506 (4 ft No. 2); 11,560 10,507 (4 ft. No. 2); 11,560 8658 (Theor.) 8658 (Theor.)
	8% symmetrical section	ns:		
$\begin{array}{c} 407\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414\\ 415\\ 416\\ 417\\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · ·	· · · · · · · · · · · · · · ·	> 12,144 (Theor.)

* 'GLAS' indicates an Aerofoil designed by Glauert using Lighthill's method, usually for use with suction at a Single slot; a 'GLAT' aerofoil employs Two slots. GLAS III is an exception to this rule, as it has a slot on both upper and lower surfaces.

NPL No.	Section					References		
	8% sectio	ons, car	nbered	:				
418	A2					٦ ا		
419	A5							
420	D2	••		••		>12,144 (Theor.)		
421	E1	• •	••	• •				
431	D2/1	••						
432	D2/2	••	•••			>13,090 (Theor.)		
433	D2/3	• •	••					
434	D2/4		••	••	••	13,090 (Theor.); 14,713 (4 ft No. 2)		

Aerofoils designed for obtaining Lift Independently of Incidence

Ref.: 10,294 (Theor.)

NPL No.	Section
451	34·23% (TFA III)*
452	20% TFA
453	14·65% (TFA V)
454	CVA I†
455	CVA II

LIST 10

Aerofoils designed to have Prescribed Velocity Distributions in Subsonic Compressible Flow (Woods)

Ref.: 14,708 (Theor.)

NPL No.	Section
461	Aerofoil I of 14,708
462	Aerofoil II of 14,708
463	Aerofoil III of 14,708
464	Aerofoil IV of 14,708
465	Aerofoil V of 14,708
467	Wedge-tail modification of NPL 462

* 'TFA' denotes 'Thwaites Flap Aerofoil'.

† 'CVA' denotes 'Constant-velocity Aerofoil'.

Geometric Families of Aerofoils with Varying Position of Maximum Thickness, Nose Radius, Nose Droop and Centre-line Camber (Tanner)

(a) Tunnel floor bumps: section shapes used, as half-aerofoils on the floor of a wind tunnel, for research on boundary-layer control at high subsonic speeds.

Ref.: 19,865 (HST)
$$y = (1-x)\{1 - (1-x)^n\}\tan\frac{\tau}{2}$$

where x is measured from the leading edge, and τ is the trailing-edge angle of the equivalent aerofoil (bump plus its image).

NPL No.	n	$ an rac{ au}{2}$	t
469 470	33	$0.127 \\ 0.169$	$\begin{array}{c} 0\cdot 12\\ 0\cdot 16\end{array}$

(t denotes the thickness for the equivalent aerofoil).

Note.—The aerofoil used in 17,564 (HST) was the same as NPL 469 from the leading edge up to x = 2/3.

(b) 10% thick basic shapes, defined by

 $y = \pm \alpha x (1 - x^n).$ Ref.: 19,054 (Theor.) NPL No. 471 472 473 474 475 476 477 478 479 $-\frac{3}{4}$ $-\frac{1}{2}$ $-\frac{1}{4}$ 0* $\frac{1}{2}$ $\mathbf{2}$ 3 6 20. п .

Note.— α is the surface slope at x = 0.

(c) Rounded-nose aerofoils, including section shapes used for 50° sweptback wing.

Ref.: 19,546 (HST) and 21,987 (HST)

$$y = \pm \left(\tan \frac{\tau}{2} \right) (1-x) \left[1 - (1-x)^3 \right] \tanh \sqrt{\left\{ 2 \left(\frac{x^2}{a^2} - 1 \right) \right\}}$$

where x and a are measured from the leading edge of the basic sharp-nosed section (NPL 481), and the unit of length is the chord of this same basic section. The chord of each of the derived aerofoils is (1-a) times that of the basic section.

* $n \to 0, \alpha \to \infty$.

NPL No.	481	482	483	484	485	486
Other	T1	T2	Т3	T4	T5	Т6
names*	D	Е			F	G
а	0	0.0080	0.0146	0.0274	0.0543	0.1400
$t \times 10^2$	8.00	8.07	8.12	8.23	8.46	9.30
$x_t \times 10^2$	37.0	36.5	$36 \cdot 0$	$35 \cdot 1$	33.3	$30 \cdot 2$
$ ho_L^{'} imes 10^2$	0	0.100	0.181	0.325	0.590	$1 \cdot 166$
τ^{L} (deg.)	9.670	9.670	9.670	9.670	9.670	9.670

Note.—*t*, x_t and ρ_L have been expressed in terms of the actual aerofoil chord (*c*), not the chord of the basic sharp-nosed section.

NPL 481 is the 8% thick version of NPL 477, but with x = 1 and x = 0 treated as leading edge and trailing edge respectively. If the leading edge is used as origin in the usual way, the equation to the section becomes

$$y = \pm (1-x)\{1-(1-x)^n\}\tan\frac{\tau}{2}.$$

NPL 481-486 form a series with increasing leading-edge radius.

NPL No.	481	482	485	486	487	488	489
Other	 T1	T2	Т5	Т6			
names*	D	E	F	G	С	В	A
$t imes 10^2$	$8 \cdot 00$	8.07	8.46	9.30	7.55	6.90	6.78
$(ho_L/c) imes 10^2$	0	$0 \cdot 10$	0.59	$1 \cdot 17$			
$(ho_L/c_D) imes 10^2$	0	$0 \cdot 10$	0.56	$1 \cdot 00$	0.38	0.38	$0 \cdot 20$
$-m/c_D$	0				0.06	0.16	0.18
$-n/c_D$	0		—		0.024	0.061	0.067

Note.—NPL 481, 487, 488 and 489 form a series with increasing extent of nose droop. NPL 481–486 are without droop. c_D denotes chord of basic sharp-nosed section (NPL 481); (-m, -n) is the position of the leading edge when drooped; and ρ_L here denotes nose radius before being made non-dimensional.

(d) Approximately 4% thick round-nosed section with small trailing-edge angle.

Ref.: 19,451

NPL 490 (see List 12). This is the basic shape from which were derived NPL 491 and 492, and to which NPL 500-504 also are related (List 12). The equation to NPL 490, in terms of actual co-ordinates (X, Y) (not referred to the chord (C) as unit length) was given in 19,451† in the form

$$Y = \pm (C-X) \left[1 - \{(C+s)^{-1}(C-X)\}^n\right] \tanh \sqrt{\left[2 \left\{ \left(\frac{X+s}{s}\right)^2 - 1 \right\} \right]} \tan \frac{\tau}{2}.$$

^{*} T denotes Tanner aerofoil; A to G follow the nomenclature of 21,987.

[†] Misprints in the equation as given in that paper have been corrected above.

NPL No.	Section	T.E. thickness	Reference
490*	3.83%; symmetrical	Zero	19,451, Equation (1) (Theor.)
491	4%; symmetrical	0.0022 <i>c</i>	19,451 (HST)
492	5.6%; symmetrical	0·0250c	†(HST)
495	2.67%; symmetrical	Zero	Scaled-down version of NPL 490.
497	3.83%; symmetrical	0·0175c	†(Theor.) Scaled-down version of NPL 492.
500	2.7%; symmetrical	Zero	†(Theor.) Effectively the basis of NPL 502–504
502	4%; symmetrical	0 · 0250 <i>c</i>	†(Theor.)
503	$3\frac{1}{2}$ % (approx.) with drooped leading- edge extension		Droop (and T.E. thickness) to be inter- mediate between that of NPL 502
504	3.2%, with drooped leading-edge extension	0·0198c	(zero) and that of NPL 504 (below) †(HST)

Aerofoils with Small Trailing-edge Angles, Thick Trailing Edges etc., to alleviate Wave Drag and Shock-induced Separation

* Defined in List 11(d).

† Holder, Pearcey and Nash: R. Ae. Soc. paper, February, 1962.

BIBLIOGRAPHY

The references are listed below in serial order of A.R.C. report numbers. The appropriate R. & M. or C.P. numbers are also quoted where available.

Author(s)	A.R.C. No.	R. & M No.*	Title, etc.
C. N. H. Lock and J. H. Preston			The New Type ⁺ of Aerofoil Section. Aircraft Engineering, Vol. 11, p. 151. 1939.
W. J. Duncan			Aerofoils with Many Parameters. Aircraft Engineering, Vol. 11, p. 383. 1939.
S. Goldstein, W. F. Hilton and C. F. Cowdrey	4708	2246	Tests of a New Aerofoil in the H.S.T. at the N.P.L. September, 1940.
S. Goldstein, W. F. Hilton and G. A. M. Hyde	4713		A Comparison of Drag Results on the Aerofoils EC 1240/0640 and NACA 0012. September, 1940.
Staff of H.S.T	4726	2246	Measurements of Force Coefficients on Aerofoil EC 1240 in the High Speed Tunnel at the N.P.L. September, 1940.
W. F. Hilton and G. A. M. Hyde	4800	2058	Tests of Piercy P 2040 Aerofoil in the High Speed Tunnel. November, 1940.
Staff of C.A.T	4978		Tests in the C.A.T., of Four Aerofoils having their Maximum Thickness at 50% of the Chord. February, 1941.
D. H. Williams and A. H. Bell	5035	_	Tests on the Aerofoil EC 1240/0640 in the C.A.T. March, 1941.
D. H. Williams and A. H. Bell	5255		Further Tests on the Aerofoil EC 1240/0640 in the C.A.T. August, 1941.
W. F. Hilton and A. E. Knowler	5272	—	Interim Report on Measurements on an Aerofoil with Elevator at High Speeds. August, 1941.
D. H. Williams and A. F. Brown	5517		Tests of the Aerofoil [‡] EQ 1250/1050, with and without Flap, in the C.A.T. December, 1941.
D. H. Williams and A. F. Brown	5547		Tests of the Aerofoil§ EQ 0950/1050, with and without Flap, in the C.A.T. December, 1941.

* A dash in this column indicates that the report concerned is not being published; no entry denotes that publication may be made later. 'C.P.' signifies publication in the Current Papers Series.

[†] N. A. V. Piercy, R. W. Piper and L. G. Whitehead: *Aircraft Engineering*, Vol. 10, p. 339. 1938; and N. A. V. Piercy, R. W. Piper and J. H. Preston: *Phil. Mag.* Vol. 24. pp. 425 and 1114. 1937.

‡ Actually EQH 1250/1050.

§ Actually EQH 0950/1050.

.

Author(s)	A.R.C. No.	R. & M No.	Title, etc.
A. Fage and W. S. Walker	5592	2165	Experiments on Laminar-flow Aerofoil EQH 1260 in the William Froude National Tank and the 13 ft \times 9 ft and the 9 ft \times 7 ft Wind-tunnels at the N.P.L. January, 1942.
J. A. Beavan and G. A. M. Hyde	5622	2067	Interim Report on the Rectangular H.S.T., including some Pitot Traverse Measurements of Drag of the Aerofoil EC 1250. February, 1942.
S. Goldstein	5804	C.P. 68	A Theory of Aerofoils of Small Thickness. Part I
A. E. Knowler and F. W. Pruden	5862	2211	Measurements on the Effect of Brake Flaps on an Aerofoil at High Speeds. June, 1942.
R. C. Pankhurst	6028	2130	Equations to a Clark Y Aerofoil Section. August, 1942.
R. C. Pankhurst	6029	1914	A Method for the Rapid Evaluation of Glauert's Expression for the Angle of Zero Lift. August, 1942.
W. F. Hilton	6062	2058	An Experimental Analysis of the Lift of 18 Aerofoils at High Speeds. August, 1942.
J. A. Beavan and G. A. M. Hyde	6130	2055	Compressibility Increase of Lift and Moment on EC 1250 for Low Speed C_L 0.17. September, 1942.
E. M. Love	6132		Equations to the de Havilland High Tip Speed Section. September, 1942.
J. A. Beavan and G. A. M. Hyde	6146	2056	Examples of Pressure Distribution at Compressibility Speeds on EC 1250. September, 1942.
S. Goldstein	6156	C.P. 69	A Theory of Aerofoils of Small Thickness. Part II- Velocity Distributions for Cambered Aerofoils. September, 1942.
S. Goldstein and E. J. Richards	6225	C.P. 70	A Theory of Aerofoils of Small Thickness. Part III- Approximate Designs of Symmetrical Aerofoils for Specified Pressure Distributions. October, 1942.
F. W. Pruden	6378	2211	Further Wind Tunnel Tests of Brake Flaps at High Speeds. December, 1942.
R. C. Pankhurst	6446	1914	A Method for the Rapid Evaluation of Glauert's Expression for the Moment at Zero Lift. January, 1943.
W. F. Hilton	6528	2058	An Experimental Analysis of the Moment of 17 Aerofoils at High Speeds. March, 1943.
W. F, Hilton and A. E. Knowler	6532	2227	Lift, Drag and Pitching Moment Coefficients on an EC 1240 Tailplane-elevator at High Speeds. March, 1943.

.

.

•

Author(s)	A.R.C. R. ど No. No.	M. Title, etc.
F. W. Pruden	6662 —	Tailplane Observations on a Model F9/40 at High Speeds. April, 1943.
E. J. Richards, W. S. Walker and R. J. Greening	6676 —	Tests on the Aerofoil $12*50/1550$ in the N.P.L. 13 ft \times 9 ft Wind Tunnel. April, 1943.
E. J. Richards and C. H. Burge	6784 2263	An Aerofoil Designed to give Laminar Flow over the Whole Surface with Boundary Layer Suction. June, 1943.
E. J. Richards	6785 —	Hinge Moments on the Low Drag Aerofoil EQH 12*50/1550. June, 1943.
E. J. Richards and M. J. Holmwood	6897 —	The Theoretical Velocity Distributions and Critical Mach Numbers for Three Aerofoil Sections used in Airscrew Design: Clark Y, de Havilland High Speed Sections and the NACA 16 Series. July, 1943.
E. J. Richards and J. R. Greening	6998 —	Balance Measurements on the Aerofoil EQH $12*50/1550$ With and Without Flap in the N.P.L. 13 ft \times 9 ft Wind Tunnel. August, 1943.
H. H. Pearcey	6999 2252	Profile Drag Measurements at Compressibility Speeds on Three Aerofoils having Spanwise Wires or Grooves. August, 1943.
W. F. Hilton and A. E. Knowler	7026 2227	Preliminary Note on Effect of Tailplane-elevator Gap at High Speeds. September, 1943.
J. A. Beavan	7067 2252	Note on Reynolds and Mach Number Effects on the Pressure Distribution on the Tail of EC 1250. September, 1943.
J. A. Beavan, G. A. M. Hyde and R. G. Fowler	7176 —	Advance Note on Pressure Measurements over a Wide Mach Number Range on an Aerofoil with 25% control: Lift, Moment and Hinge Moment Coeffi- cients. November, 1943.
C. H. Burge	7178 —	Lift and Pitching Moment on a Model Griffith Aerofoil with Flap. November, 1943.
W. F. Hilton, P. J. Wingham and R. G. Fowler	7209	High Speed Tunnel Tests of an Aerofoil with a Reflexed Trailing Edge, GR 1540/2037. November, 1943.
W. F. Hilton	7216 2058	The Drag of 8 Aerofoils at High Speeds. November, 1943.
H. H. Pearcey	7278 2252	Further Profile Drag Measurements at Compressibility Speeds for an Aerofoil with and without Spanwise Wires. December, 1943.
W. F. Hilton	7308 —	Preliminary Supersonic Tests of Three Aerofoils in the N.P.L. 1 ft Tunnel. December, 1943.

Author(s)	A.R.C. 1 No.	R. & M No.	I. Title, etc.
J. Caldwell and J. Y. G. Evans	7448		Notes on Wind Tunnel Measurements of Elevator Effectiveness at High Speeds (R.A.E. Comments on 7176). January, 1944.
E. J. Richards and W. S. Walker	7463	—	Control on a Griffith Aerofoil without Suction and with Slot at 0.75 and 0.79 Chord. February, 1944.
E. J. Richards, W. S. Walker and J. R. Greening	7464	2148	13 ft \times 9 ft Wind Tunnel Tests on a Griffith Aerofoil Part II—Effect of Concavity on Drag. February, 1944
E. J. Richards	7561	2148	Tests on a Griffith Aerofoil in the 13 ft × 9 ft Wind Tunnel. Part I—Wind Tunnel Technique and Interim Note on Slot Design. March, 1944.
F. W. Pruden	7615	—	Tests of an Aerofoil with a 40% Hinged Flap at Super- sonic Speed. April, 1944.
E. J. Richards	7669		A New High Speed Section Suitable for Airscrews. May, 1944.
R. C. Pankhurst	7780	2130	Equations to RAF 6 Aerofoil Section. June, 1944.
A. Fage and R. F. Sargent	7800	2106	An Air-injection Method of fixing Transition from Laminar to Turbulent Flow in a Boundary Layer. June, 1944.
H. C. Garner	7814	2133	The Development of Turbulent Boundary Layers. June, 1944.
W. F. Hilton and A. E. Knowler	8041	2227	Lift and Pitching Moment Measurements on an EC 1240 Tailplane Elevator at High Speeds, with Elevator Gap Sealed. September, 1944.
E. J. Richards and W. S. Walker	8054	2148	13 ft \times 9 ft Wind Tunnel Tests on a Griffith Aerofoil. Part III—The Effects of Wide Slots and of Premature Transition to Turbulence. September, 1944.
E. J. Richards and W. S. Walker	8055	2148	13 ft × 9 ft Wind Tunnel Tests on a Griffith Aerofoil. Part IV—Lift, Drag, Pitching Moments, and Velocity Distributions. September, 1944.
E. J. Richards and W. S. Walker	8140		Wind Tunnel Tests on an R Series Aerofoil. October, 1944.
E. J. Richards	8277		A Family of Camber Lines for Low Drag Aerofoils giving Arbitrary Pitching Moment Coefficients. December, 1944.
J. A. Beavan, R. G. Fowler and G. A. M. Hyde	8395	2065	Pressure and Wake Measurements up to Mach Number 0.85 on an EC 1250 Section with 25% Control- February, 1945.
B. Thwaites	8532	2292	A New Family of Low Drag Wings with Improved C_L -ranges. March, 1945.

4

.

.

Author(s)	A.R.C. R. No.	& M. No.	Title, etc.
S. Goldstein	8548 C	.P. 71	Approximate Two-dimensional Aerofoil Theory. Part IV—The Design of Centre Lines. March, 1945.
M. J. Lighthill	8597 2	2112	A New Method of Two-dimensional Aerodynamic Design. April, 1945.
M. J. Lighthill	8658 2	2162	A Theoretical Discussion of Wings with Leading Edge Suction. May, 1945.
B. Thwaites	8659	2166	A Method of Aerofoil Design. Part I—Symmetrical Aerofoils. May, 1945.
J. A. Beavan	8682	_	Note on Rise of Drag above the Critical Mach Number— Results in the N.P.L. High Speed Tunnels. May, 1945.
C. N. H. Lock and R. G. Fowler	8718		Yaw and Sweepback at High Mach Number. May, 1945.
M. J. Lighthill	8719 (2	2112)	Addenda to 8597, A New Method of Two-dimensional Aerodynamic Design. May, 1945.
J. B. Bratt and K. C. Wight	8725 2	2064	The Effect of Mean Incidence, Amplitude of Oscillation, Profile and Aspect Ratio on Pitching Moment Deriva- tives. June, 1945.
E. J. Richards	8863 2	2170	Theoretical Critical Mach Numbers for NACA 16 Series Aerofoils. July, 1945.
E. J. Richards, W. S. Walker and C. R. Taylor	8864 2	2149	Wind Tunnel Tests on a 30% Suction Wing (Replacing 8473). July, 1945.
D. W. Holder	8866 2	2079	Transition Indication in the N.P.L. 20 in. \times 8 in. High Speed Tunnel. July, 1945.
S. Goldstein and J. H. Preston	8877 C.	.P. 73	Approximate Two-dimensional Aerofoil Theory. Part VI—Aerofoils with Hinged Flaps. August, 1945.
E. J. Watson	8941	<u></u>	The Design of an Aerofoil for a High C_L Range. September, 1945.
B. Thwaites	8942 2	2167	A Method of Aerofoil Design. Part II—Cambered Aerofoils. September, 1945.
B. Thwaites	9076		On the Design of Aerofoil Sections for High Speed Aircraft. October, 1945.
M. B. Glauert	9180 2	2111	The Design of Suction Aerofoils with a Very Large C_L -range. November, 1945.
J. H. Preston, W. S. Walker and C. R. Taylor	9320 2	2108	The Effect on Drag of the Ejection of Air from Backward Facing Slots on a 16.2% Griffith Aerofoil. January, 1946.
H. H. Pearcey and J. A. Beavan	9585 2	2346	Force and Pressure Coefficients up to Mach Number 0.87 on the Goldstein Roof Top Section 1442/1547. April, 1946.

19[.]

Author(s)	A.R.C. No.	R. & M No.	Title, etc.
F. Cheers, W. S. Walker and C. R. Taylor	9748	2412	Two-dimensional Tests on a 15% Thick Symmetrical Roof-top Aerofoil with 20% Plain Flap in the N.P.L. 13 ft \times 9 ft Wind Tunnel. June, 1946.
W. F. Hilton	9756		Force Coefficients on Round-nosed Aerofoils at Super- sonic Speeds. June, 1946.
B. Thwaites	9809	2242	A Theoretical Discussion of High-lift Aerofoils with Leading-edge Porous Suction. July, 1946.
N. Gregory and W. S. Walker	9810	2287	Further Wind Tunnel Tests on a 30% Symmetrical Suction Aerofoil with a Movable Flap. July, 1946.
11. H. Pearcey and E. W. E. Rogers	10,096	2511	The Effect of Compressibility on the Performance of a Griffith Aerofoil. November, 1946.
N. Gregory, W. S. Walker and W. G. Raymer	10,097	2475	Wind Tunnel Tests on the 30% Symmetrical Griffith Aerofoil with Ejection of Air at the Slots. November, 1946.
D. W. Holder		2560	The High-Speed Laboratory of the Aerodynamics Division, N.P.L. A.R.C. Monograph. December, 1946.
B. Thwaites	10,294	2612	On the Design of Aerofoils for which the Lift is Independent of the Incidence. January, 1947.
F. Cheers, W. G. Raymer and O. Douglas	10,506	2355	Tests on a Lighthill Nose-suction Aerofoil in the N.P.L. 4 ft No. 2 Wind Tunnel. April, 1947.
F. Cheers and O. Douglas	10,507	2356	Tests on a Glauert Nose-suction Aerofoil in the N.P.L. 4 ft No. 2 Wind Tunnel. April, 1947.
J. A. Beavan and D. H. Williams	10,551		Aerofoil Research Programme at the N.P.L. April, 1947.
O. Douglas	10,620	2494	A Series of Low Drag Aerofoils Embodying a New Camber-line. May, 1947.
N. Gregory	10,630	2496	Note on Sir Geoffrey Taylor's Criterion for the Rate of Boundary-layer Suction at a Velocity Discontinuity. May, 1947.
J. A. Beavan and G. A. M. Hyde	10,729	2625	Pressure Distributions at High Speeds on EC 1250. July, 1947.
J. A. Beavan and N. Bumstead	10,730	2458	Tests on Yawed Aerofoils in the 20 in. \times 8 in. High Speed Tunnel. July, 1947.
M. B. Glauert, W. S. Walker and W. G. Raymer	10,854	2646	Wind Tunnel Tests on a Thick Suction Aerofoil with a Single Slot. September, 1947.
M. B. Glauert	10,933	2683	The Application of the Exact Method of Aerofoil Design. October, 1947.
J. A. Beavan, R. F. Sargent and P. M. Burrows	11,084	2678	Measurements of Maximum Lift on 19 Aerofoil Sections at High Mach Number. December, 1947.

20

.

Au	thor(s)		A.R.C. No.	. R. & No.	
E. W. E. Rogers	s and (C. Whit	e 11,114		Force and Pressure Measurements up to Mach Number 0.88 on a 10% thick Modified NACA 16 Series Propeller Section. December, 1947.
W. F. Hilton an	d R. C	5. Fowl	er 11,190	2692	Photographs of Shock Wave Movement. December, 1947.
R. J. North and	Р. М.	Burrov	vs 11,191	2678	Measurements of Maximum Lift on a Further 7 Aerofoil Sections at High Mach Number. January, 1948.
C. Salter, C.] R. Owen	J. W.	Miles	and 11,269	2540	Tests on a GLAS II Wing without Suction in the Compressed Air Tunnel. February, 1948.
S. Goldstein			—		Low-drag and Suction Aerofoils. J. Ae. Sci. Vol. 15. p. 189. April, 1948.
R. C. Pankhurst and A. N. Dev		G. Ray	rmer 11,496	2666	Wind Tunnel Tests of the Stalling Properties of an 8% Thick Symmetrical Section with Uniformly Distributed Nose Suction. June, 1948.
J. Williams	••	••	11,560	2693	A Comparison of the Stalling Properties of Some Thin Nose-suction Aerofoils. June, 1948.
N. Gregory, W. A. N. Devereu	. S. W x	Valker	and 11,599	2647	Wind Tunnel Tests on the 30% Symmetrical Griffith Aerofoil with Distributed Suction over the Nose. June, 1948.
N. Gregory	••	•••	11,610	2577	Further Observations on the Boundary Layer Theory of Suction Aerofoils. June, 1948.
R. C. Pankhurst	and N	J. Greg	ory 11,758	C.P. 82	2 Power Requirements for Distributed Suction. September, 1948.
N. Gregory and A	4. R. C	Curtis	11,796	C.P. 20	A Comparison of Three Thick, Symmetrical, Multi-slot Suction Aerofoils. October, 1948.
N. Gregory	•••		11,797	2646	Addendum to A.R.C. 10,854 (Tests on GLAS II). October, 1948.
R. A. Shaw	••		11,933	2436	Changes in Control Characteristics with Changes in Flow Pattern at High Subsonic Speeds: Tests on an EC 1250 Aerofoil with 25% Concave Flap. November, 1948.
J. Williams		•••	12,144	2693	A Theoretical Investigation on Thin Aerofoil Sections with Nose-slot Suction. February, 1949.
A. R. Curtis		•••	12,154	2665	Note on the Application of Thwaites' Numerical Method for the Design of Cambered Sections. February, 1949.
R. A. Shaw	•••		12,284	2436	Adhesion of Flow Beyond the Shock Stall on an EC 1250 Aerofoil with 25% Concave Control Flap. Further Tests with Turbulent Boundary Layer. Addendum to A.R.C. 11,933. April, 1949.

.

Author(s)	A.R.C. No.	R. ど M. No.	Title, etc.
J. Williams	12,999	C.P. 31	Some Improvements in the Design of Thick Suction Aerofoils. March, 1950.
R. W. Cumming, N. Gregory and W. S. Walker	13,003	2742	An Investigation of the Use of an Auxiliary Slot to Re-establish Laminar Flow on Low-drag Aerofoils. March, 1950.
L. W. Bryant, A. S. Halliday and A. S. Batson	13,039	2730	Two-dimensional Control Characteristics. March, 1950.
J. Williams and E. M. Love .	. 13,090	2693	Further Theoretical Investigations on Thin High-lift Aerofoils with Nose-slot Suction. April, 1950.
E. W. E. Rogers	. 13,238	2432	Observations on a Thin Cambered Aerofoil Beyond the Critical Mach Number. July, 1950.
R. C. Pankhurst and H. B. Squir	e 13 ,254	C.P. 80	Calculated Pressure Distributions for the RAE 100–104 Aerofoil Sections. March, 1950.
N. Gregory, R. C. Pankhurst an W. S. Walker	d 13,446	2788	Wind-tunnel Tests on the Prevention of Boundary-layer Separation by Distributed Suction at the Rear of a Thick Aerofoil. October, 1950.
H. H. Pearcey and M. E. Faber .	. 13,531	2849	Detailed Observations made at High Incidences and at High Subsonic Mach Numbers on Goldstein 1442/ 1547 Aerofoil. November, 1950.
T. Lawrence	. 13,906	2809	Control Effectiveness Tests at Transonic Speeds on an EC 1250 Section with 0.25 Chord Concave Control. January, 1951.
T. S. Keeble and P. B. Atkins			Tests of Williams GLAS II Profile Using a Two- dimensional, 3 ft Chord Model. Australian A.R.L. Aero Note 100. April, 1951.
P. B. Atkins and T. S. Keeble			The Effect of Excrescences on Transition; some Observations in the Boundary Layer on Williams GLAS II Profile. Australian A.R.L. Aero Note 101. May, 1951.
H. C. Garner	14,337	7 2847	Simple Evaluation of the Theoretical Lift Slope and Aerodynamic Centre of Symmetrical Aerofoils. October, 1951.
E. W. E. Rogers, R. F. Cash an C. J. Berry	nd 14,52	5	A Comparison of the Results obtained at Subsonic Speeds on Three Cambered Propeller Aerofoils of Different Thickness/Chord Ratios. January, 1952.
L. C. Woods	14,70	8 2845	Aerofoil Design in Two-dimensional Subsonic Com- pressible Flow. March, 1952.
J. Williams, R. C. Pankhurst a E. M Love	nd 14,71	3 2876	Wind-tunnel Tests on the NPL 434 Nose-slot Suction Aerofoil. March, 1952.
			22

22

Author(s) A.R.C No.	C. R. & M No.	I. Title, etc.
N. Gregory and W. S. Walker 15,184	2900	Wind-tunnel Tests on the NACA 63A009 Aerofoil with Distributed Suction over the Nose. September, 1952.
K. C. Wight 15,292	2934	Measurement of Two-dimensional Derivatives on a Wing-aileron-tab System with a 1541 Section Aerofoil. October, 1952.
H. C. Garner and A. S. Batson 15,456	2946	Measurement of Lift, Pitching Moment and Hinge Moment on a Two-dimensional Cambered Aerofoil to Assist the Estimation of Camber Derivatives. December, 1952.
D. M. Heughan 15,790		An Experimental Study of a Symmetrical Aerofoil with a Rear Suction Slot and a Retractable Flap. April, 1953.J.R. Ae. Soc., Vol. 57, p. 627. October, 1953.
A. S. Batson 17,386	C.P. 272	2 Measurement of Lift, Pitching Moment and Hinge Moment on a Two-dimensional Cusped RAE 102 Aerofoil. February, 1955.
A. Chinneck, G. A. Jones and 17,564 C. M. Tracy		An Interim Report on the use of Blowing to reduce the Fall in Control Effectiveness associated with Shock- induced Separation at Transonic Speeds. April, 1955.
L. H. Tanner 19,054	C.P. 358	Curves Suitable for Families of Aerofoils with Variable Maximum Thickness Position, Nose Radius and Nose Droop. February, 1957.
D. W. Holder and R. F. Cash 19,451	3100	Experiments with a Two-dimensional Aerofoil Designed to be Free from Turbulent Boundary-layer Separation at Small Angles of Incidence for all Mach Numbers. August, 1957.
L. H. Tanner 19,546	3131	The Design and Use of Interferometers in Aerodynamics. September, 1957.
R. A. Wallis and C. M. Stuart 19,865	C.P. 595	On the Control of Shock-induced Boundary-layer Separation with Discrete Air Jets. February 1958.
E. W. E. Rogers, C. J. Berry and 21,987 J. E. G. Townsend		A Study of the Effect of Leading-edge Modifications on the Flow over a 50° Sweptback Wing at Transonic Speeds. May, 1960.
D. W. Holder, H. H. Pearcey and — J. F. Nash	_	Some Aerodynamic Advantages of Thick Trailing Edges in High Speed Flight. Paper read to Royal Aeronautical Society. February, 1962.

,

Numerical Index to NPL Aerofoils

	N			List		
41;51-80	••		••			1
101–109; 1	16, 117;	121-1	122; 126-	-136	••	2
141–154	••	••	•••	••		3(a)
161-178		••	••	••	••	3(b)
180-261		••	••	••	••	3(c)
269285;2	90, 291	•••	••	••	••	4
301-306;3	08–324	••	••	••		5
331–337	••	••	••	••	••	6
351-359		••		••	••	7(a)
361-367; 3	71–377;	379–3	387	••		7(b)
401–421;4	31–434	••	••	••	••	8
451–455					• •	9
461-465;4	67			• •		10
469, 470		••		•••		11(a)
471-479						11(b)
481–489						11(c)
490		• •	••			11 (d)
490-492; 4	95, 497;	500,	502-504			12

(86535) Wt. 64/1857 K.5 2/63 Hw.

24

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)

- 1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (post 2s. 9d.) Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (post 2s. 3d.)
- 1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 80s. (post 2s. 6d.)
- Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. 905. (post 25. 9d.)

1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (post 3s.)
 Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (post 3s.)

- 1945 Vol. I. Aero and Hydrodynamics, Aerofoils. 130s. (post 3s. 6d.)
 - Vol. II. Aircraft, Airscrews, Controls. 1305. (post 3s. 6d.)
 - Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion. 130s. (post 3s, 3d.)

Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. 1305. (post 3s. 3d.)

1946 Vol. I. Accidents, Aerodynamics, Aerofoils and Hydrofoils. 168s. (post 3s. 9d.)

- Vol. II. Airscrews, Cabin Cooling, Chemical Hazards, Controls, Flames, Flutter, Helicopters, Instruments and Instrumentation, Interference, Jets, Miscellaneous, Parachutes. 168s. (post 3s. 3d.)
- Vol. III. Performance, Propulsion, Seaplanes, Stability, Structures, Wind Tunnels. 168s. (post 3s. 6d.)
- 1947 Vol. I. Aerodynamics, Aerofoils, Aircraft. 168s. (post 3s. 9d.)
 - Vol. II. Airscrews and Rotors, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Seaplanes, Stability, Structures, Take-off and Landing. 168s. (post 3s. 9d.)
- 1948 Vol. I. Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments, Propulsion, Seaplane, Stability, Structures, Wind Tunnels. 130s. (post 3s. 3d.)
 - Vol. II. Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments, Propulsion, Seaplane, Stability, Structures, Wind Tunnels. 1105. (post 3s. 3d.)

Special Volumes

- Vol. I. Aero and Hydrodynamics, Aerofoils, Controls, Flutter, Kites, Parachutes, Performance, Propulsion, Stability. 126s. (post 3s.)
- Vol. II. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Stability, Structures. 1475. (post 35.)
- Vol. III. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Kites, Miscellancous, Parachutes, Propulsion, Seaplanes, Stability, Structures, Test Equipment. 1895. (post 3s. 9d.)

Reviews of the Aeronautical Research Council

1939-48 3s. (post 6d.) 1949-54 5s. (post 5d.)

Index to all Reports and Memoranda published in the Annual Technical Reports 1909-1947 R. & M. 2600 (out of print)

Indexes to the Reports and Memoranda of the Aeronautical Research Council

Between Nos. 2351–2449	R. & M. No. 2450	2s. (post 3d.)	
Between Nos. 2451–2549	R. & M. No. 2550	2s. 6d. (post 3d.)	
Between Nos. 2551–2649	R. & M. No. 2650	2s. 6d. (post 3d.)	
Between Nos. 2651–2749	R. & M. No. 2750	2s. 6d. (post 3d.)	
Between Nos. 2751–2849	R. & M. No. 2850	2s. 6d. (post 3d.)	
Between Nos. 2851–2949	R. & M. No. 2950	3s. (post 3d.)	
Between Nos. 2951–3049	R. & M. No. 3050	3s. 6d. (post 3d.)	
Between Nos. 3051-3149	R. & M. No. 3150	3s. 6d. (post 3d.)	

HER MAJESTY'S STATIONERY OFFICE

from the addresses overleaf

© Crown copyright 1963

٥,

Printed and published by HER MAJESTY'S STATIONERY OFFICE

To be purchased from York House, Kingsway, London w.c.2 423 Oxford Street, London w.1 13A Castle Street, Edinburgh 2 109 St. Mary Street, Cardiff 39 King Street, Manchester 2 50 Fairfax Street, Bristol 1 35 Smallbrook, Ringway, Birmingham 5 80 Chichester Street, Belfast 1 or through any bookseller

Printed in England

R. & M. No. 3311

S.O. Code No. 23-3311

-