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Summary. The fundamental problem of structural design is the determination of structures of minimum 
weight which safely equilibrate a given system of external forces. The classical theorem of MichelI gave the 
basic requirements for such a structure. The first part of this paper analyses the geometrical layout of two- 
dimensional structures which satisfy these requirements, making use of the analogy with the theory of plane 
plastic flow. Expressions for the calculation of sizes and the total volume of the structural members are 
developed. Method of graphical construction of the structural layout is also given. 

In the second part, the analogy with a known solution of plastic flow is used to develop solutions for a 
cantilever under tip shear force and a beam under uniform bending moment. Comparisons with the conventional 
types of construction are made and the superiority of the Michell structures are demonstrated. 

PART I 

Michell Optimum Structures 

1. Introduction. The basic problem of structural design, as opposed to structural analysis, is the 
determination of structures of minimum weight, which equilibrate, with safety, a given system of 
external forces. The classical theorem in this subject is due to Michell (Ref. 1). Recent interest in 
Michell structures has stemmed from two sources. Cox (Ref. 2, 3) and Hemp (Ref. 4) have considered 
the application of Michell's results to 'elastic' design problems, while Drucker and Shield (Ref. 5) 
and Prager (Ref. 6) have developed and applied the corresponding results in the field of 'limit 
design'. These two problems are closely related mathematically and owe much to the techniques 
developed in the field of perfect plastic flow, accounts of which are given by, for example, Geiringer 
(Ref. 7), Hill (Ref. 8) and Prager (Ref. 9). The present paper makes much use of this analogy. 

2. Michell's Theorem. Consider the problem of designing a frame structure S, within a given 
region of space R, to equilibrate a given system of forces or to transmit their action to given surfaces 
of rigid support. Let us assume that there exists such a framework S ~ which satisfies the following 
conditions: 

(1) The stresses in all members are equal to + f, where f is the 'allowable stress' for tension 
and compression. 

Previously issued as College of Aeronautics Report No. 142--A.R.C. 22,596. 
(ssgm) 



(2) There exists a virtual deformation of the region R, with displacement vanishing on the 

surfaces of support and with strains along the members of S ~ equal to _+ e, where the sign 

agrees with that Of the end load carried by the particular member, and such that no linear 
strain in R exceeds e, which is a small positive number, in absolute value. 

Michell 's Theorem then states that the volume of the structure S e is less than or equal to that of 

any other framework S, which safely equilibrates the given forces. Proofs of this result are to be 
found in Refs. 1 and 4. 

One immediate consequence may be noted. I f  in a particular problem it is found possible to design 

a structure all of whose members are in tension, or alternatively compression, then the opt imum 

design has been achieved, since a uniform dilatation of space with linear strain e, or alternatively 

( - e ) ,  clearly satisfies condition (2) above. This special case will not be considered any further in 

this paper. 

, In general it is clear that the members of the optimum structure S e must lie along lines of principal 

strain in the virtual deformation, since, if this were not so, a direction could be found, at a point on a 

member, for which the direct strain had a magnitude greater than e, contrary to condition (2). 
Also a tension and compression member, which meet at a node, must be orthogonal, since they 
lie along principal directions with unequal principal strains e and ( - e). The  layout lines for members 
of S e are thus lines of principal strain in a strain field whose principal strains are _+ e. A study of this 
kind of strain field is thus a necessary pre-requisite for the construction of Michell opt imum 
frameworks. 

3. Analysis of the Virtual Deformation. Attention will be confined, for simplicity, to the special 
case of two-dimensional frameworks and those corresponding deformation patterns for which the 

principal strains are e and ( - e ) .  The lines of principal strain then form a plane net of orthogonal 

curves, which may be used to define, in at least a limited region of the plane, a right-handed curvilinear 
co-ordinate system (% fi) for which the line element ds is givei~ by 

ds 2 = A~da 2 + B°"dfi 2 (1) 

where A', B arepositive functions of ~, ft. Positive directions along the co-ordinate curves are taken 
as those for which ~ and fi are increasing and at any point in the plane these directions may be used 

to define components of virtual displacement (u, v) (see Fig. 1). The direct strain in the s-direction 

will be taken as (e) and that in the fi-direction as ( - e). The associated shear strain is zero, since these 

directions are principal directions. Finally the rotation at (~, fi) will be denoted by ~o. 

The relations between the displacement components and the strains and rotation are given for 

curvilinear co-ordinates by Love (Ref. 10). 

and 

1 Du v OA 

A ~o~ A B  Off 

1 0 v  u 9B 

B ~fi A B  ~ 

Using these results one obtains the equations: 

- -  e ,  (2) 

- e ,  (3)  

= 0, (4) 

1 , - 0  ~ ] 
A B  - = 20 . ( s )  



Further transformation is facilitated by the introduction of the angle 4 between the positive 
a-direction and a fixed reference direction, which may be taken as the x-axis of a right-handed 
orthogonal Cartesian system O(x, y )  (see Fig. 1). It may be shown as in Ref. 4, Appendix A that 

34 1 3A 04 1 OB 

Oo~ - B Off' Of - A Oo~ (6) 

BoNing equations ( 2 ) . . .  (5) for the derivatives of u, v and eliminating the derivatives of A, B 
by (6) gives 

0 4  0. 04 
Ou A e  + ---  - Bco + v (7) 
o~ = ¢ 'o~'  o,e N '  

Ov 0~ 
Of - B e -  u Off" (8) 

Ov o¢ 
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Elimination of u, v between (7) and (8) gives 

0 
0~ (co-2e4) = 0, 

and elimination of co gives 

~2¢ _ 0 .  0~0p 

0 
(co + 2e~b) = O, (9) 

op 

(lO) 

Equation (10) is the compatibility equation for the Michell virtual strain system. It expresses a 
geometrical restriction on the form of the layout lines, which is identical with that expressed by 
Hencky's Theorem for the slip-lines in plane plastic flow. The analogy with plastic flow is seen even 
more closely in equations (9), due to Prager (Ref. 6), which may be compared with the Hencky 
results as given for example in Hill (Ref. 8). 

4 .  Introduction of  Special  Co-ordinate Systems.  (A) Case 1. Consider first of all the curves 
where 04/0~ and 04/0 f do not vanish in the region of our co-ordinate system which is of interest to 
us. This means that in this region the co-ordinate curves have no inflexions. In this case it is 

convenient to choose the co-ordinates % f as numerically equal to the values of ~b on a fixed pair of 
co-ordinate curves (Fig. 2). Equation (10) then integrates as 

4 = a~ + bf (a, b = _+ 1), ( l l )  

(cf. Ref. 7), and the various cases are illustrated in the diagrams (a) to (d) of Fig. 2. A formula for co 
follows from (9), which gives 

co = 2 e ( a o , - b f )  + coo, (12) 

where co o is the value of co when ~ = /?  = 0. Equations for A, B follow from (6), giving 

OA ~B 
o f  - a B ,  o~ - h A ,  03)  

and hence, 

O~afi + abA O, 

O~B 
Oo~Of + abB O. 

. 

(14) 
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Finally, (7) and (8) give for u, v the equations 

Ou 3u ) 
~a av = A e  , 0/3 bv B~o , 

Ov Ov 
~-~ + au = A~o, ~ + bu = - B e ,  

(15) 

which may be integrated, since oJ is known by (12), as soon as A, B are determined. 

(B) Case 2. Consider next the case where 0~/3~ = 0 everywhere in the region under consideration. 
The  s-co-ordinate curves are then straight lines, which in general envelope an 'evolute'.  The  
/3-co-ordinate curves are then 'involutes' (Fig. 3). It is now convenient to choose a as the distance 
measured along the a-lines from a fixed involute (a = 0) and, in the case when the/3-curves have no 

inflexions, to take /3 as the angle between the corresponding a-lines and a fixed a-line (/3 = 0) 

(see Fig. 3). We now have 
A = 1, B = , + F ( / 3 ) ,  4 = / 3 ,  (16) 

where F(/3) is the distance from a =  0 to the evolute and ~b is measured from the line /3 = 0. 

Equations (9) give 
o~ = - 2e/3 + oJ 0 (17) 

and (7) and (8) simplify to 
3u _ 0u "~ 
00 e, 0/3 v - B~o, 

Ov _ Ov 
~o~ ~o, ~ + u = - B e ,  

where B, oJ are given by (16) and (17). These 

(C) Case 3. Finally, when 0¢/8c~ = 06/0/3 

co-ordinates with 
A - - t / =  

In this case oJ is constant by (9), or 

(18) 

can be readily integrated when F(/3) is known. 

= 0 we can take a, /3 as orthogonal Cartesian 

1. (19) 

(.O ~ # .  

gt = e-¢ ~ 4o0/3 + u o ,  ] 

J v = - e p + o J o O ~ + % .  

(20) 

(21) 

and (7), (8) give 

5. Construction of  Layouts  by Analy t ical  Method.  Michell layouts are thus determined in the 
first place by a specification of the functions A, B as in (19) or in (16), with F(/3) given a definite 
form, or as integrals of (13). The  corresponding function $ is also known in each case. Cartesian 
equations for the layout lines can then be determined by an integration of the relations 

1 3 x _  1 0 y  } 
cos$ - A 00 B 0/3' 

l a y _  l a x  
sin 6 = A 0a B 0/3' 

(22) 
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which, recalling equation (1), are easily recognised as the usual formulae for the direction cosines 
of the tangent lines to the co-ordinate curves. Equations (22) give 

f(a,//) 1 
x = (A d~ cos 4 - B d/3 sin 4), 

(a, p~ (23) 

y = j (Ad~sin~+ Bd/3cos~), 

which take their simplest form when integrated along layout lines c~ or/3 constant. 
Our outstanding problem is thus the determination of A, B in case (1) of Section 4. This requires 

the integration of (13), which leads to (14), or the integration of an equation of the form 

0ZH 
- -  + abH = O. (24) 
a~0/3 

This can be carried out by Riemann's Method. If the value of H and one of its derivatives say 
OH/&~ are given along a curve P (Fig. 4), then the other derivative OH/O~3 is also known on P and the 

value of H at a point P (~, ~7) is also given by 

H(P) = ½[H(A') + H(B')] + ½ G ~ -  H ~  d~ + B' 
+ V d/3 , ( 2S )  

where G is a Green's function given in our case by 

G = J0 [2 ~/{(c~- ~)(fl-  ~/)}] when ab = + 1, } (26)+ 

G = I 0 [2 ~/{(c~- ~)(/3- ~7)}] when ab = - 1, 

and the points B', A' are the intersections of I' with the ~- and/3-co-ordinate curves through P. 
If the boundary values of H are given along the co-ordinate curves through the origin O where 
=/3 = 0, the value of H at point P becomes simply 

f l J o [ 2  OH H(P) //(0)./o[2 ~/(ab~)] + V{ab(~-  ~)~/)] ~ d~ + 

f~ OH + oJo[2~/{ab~OT-fl)}] -~fl d/3. (27) 

It follows that if A, B are given respectively on a pair of intersecting co-ordinate curves, we can 
integrate (14) to obtain the value of A elsewhere. The value of B then follows from (13) and (23) 
then gives us the layout lines for the region OAPB of Fig. 4. 

6. Construction of Layouts by Graphical Method. Owing to the difficulty of carrying out the 
integrations in equations (23) and (25), it is not always easy to construct a layout analytically. 
Graphical methods are however available as an alternative. It was mentioned in Section 3 that the 
geometrical properties of the layout lines of the Michell framework are identical with those of the 
slip-lines in plane plastic flow. The technique of graphical construction of the slip-lines, which has 
been very well developed for the study of the theory of plasticity (Ref. 8 VI), can thus be employed 

for our purpose. 

"I J0 and I 0 are the Bessel and modified Bessel functions of zero order. 



The most convenient method, though perhaps not the most accurate, requires the knowledge of 
the angle ¢ only. Integrating equation (10) gives 

¢ = f(a) q- g(fi). (28) 

which means that the change of angle ¢ for a finite increment of a along any a-co-ordinate curve is 
independent of/9, and the change of 75 for a finite increment of/3 along any/3-co-ordinate curve is 
independent of a. Hence, between any two co-ordinate lines of one family, the co-ordinate lines of 
the other family turn through a constant angle (Fig. 5). This is known as Hencky's Theorem in 
plane plastic-flow theory and will also be called by that name in its present application. 

This property enables the layout to be drawn graphically when suitable boundary conditions are 
given. One of the simplest cases is when two intersecting layout lines, one belonging to each family, 
are known. 

Let the given lines OA and OB be used as the axes of a curvilinear co-ordinate system a and/3 
respectively (Fig. 6). A point (m, n) is defined by the a- and/9-co-ordinate lines through this point. 
The/9-tine intersects the a-axis at (m, 0) and the a-line intersects the fi-axis at (0, n). Then by 
Hencky's Theorem we have 

75(m, n) - ¢(0, n) = 75(m, 0) - ¢(0, 0). (29) 

The fixed reference axes O(x, y) may be chosen so that they are tangential to the a-,/3-axes at the 
origin O. In that case ¢(0, 0) = 0 and (29) is simplified into 

75(m, n) = 75(m, 0) + 75(0, n). (30) 

Since OA and OB are given, the angles 75(m, 0) and 75(0, n) are known. The angle 75(m, n) at any 
point in the region that is defined by OA and OB can therefore be calculated from (30). 

The layout lines can now be constructed approximately step by step, starting from the points 
(1, 0) and (0, 1). Point (1, 1) is located by drawing straight lines through these two end points, 
making angles with the reference directions equal to the average value of 75 at the end points of each 
line (Fig. 7). The point (2, 1) can next be located from lines drawn through the point (2, 0) and (1, 1) 
by the same method, and so on. The layout lines in the whole region defined by OA and OB can 
therefore be drawn. They are approximated by broken segments of straight lines. 

It may be seen that if we divide the two known curves OA and OB such that the change of angle 
A75 between the consecutive points (0, 0), (0, 1), (0, 2 ) . . .  (0, n) and (0, 0), (1, 0), (2, 0 ) . . .  (m, 0) is 
kept constant, the change of angle along any layout line at any intersection will also be constant and 
equal to A¢ by Hencky's Theorem (Fig. 8). This enables the whole layout to be drawn rapidly 
on a draughting machine without the necessity to calculate 75 at.every intersecting point. Furthermore, 
the configuration at every intersection is identical, an advantage which can be usefully exploited 
in the calculation of loads in the members of the layout. 

The case when other boundary conditions are given can be resolved if an analogy with a 
corresponding problem in plane plastic flow can be found. The method used for the construction of 
the slip-lines in such a problem can then be utilised for the layout lines. The details of various other 
boundary-value problems are given in Ref. 8. 

7. Calculation of Size of Structural Members. The framework which is determined by the 
Michell layouts of Sections 5, 6 must be considered as two families of closely spaced fibres lying 
along the a-, ~-co-ordinate curves, one set carrying a stress (+ f )  and the other ( - f ) ,  with 



perhaps concentrated members along isolated lines, for example along edges. Since the structural 

elements are continuously distributed, their cross-sectional areas are properly described by their 

equivalent thickness & and & in the a- and/3-directions respectively. Thus  across a width B d/3 

normal to the a-direction, there pass members whose total cross-sectional area is t 1 B d/3 and which 

transmit a total force f & B  d/3. Similarly, normal to the /3-direction, the force on the element of 

width A do is - f i2A do. 
T o  determine & and t2, we consider the equilibrium of our two-dimensional layout. Using the 

differential equation of equilibrium in curvilinear co-ordinates given in Ref. 10 we find, recalling (6), 

that 

0 ( & B ) + & A O ¢  ] @=0,  

0 (&A) - t l B  0¢ 

For the various co-ordinate systems considered in Section 4, we have the following cases. 

(A) Case 1. Here  equation (11) gives ¢ = a~ + b/3, and so if we write 

T~ = riB,  T 2 = &d  , 
equations (31).become 

from which we deduce 

(31) 

(32) 

0 T 1 = 0 T 2 
- -  + b T 2 0, - -  - a T  1 = 0, (33) 
Oo 0/3 

OoO~--fi + abT1 = 0, 
(34) 

O 2 T2 
0~3-~ + ab T 2 = O. 

These  are in the same form as (24) and their solution can be found in the form of equation (25) 

or (27). Since I'1, I'2, A and B are now known, & and t 2 can readily be found. 

(B) Case 2. If  0¢/3o = 0 and the co-ordinates are as chosen in Case 2 of Section 4, then 

A = 1, B = c~ + F(/3) and ¢ = /3 by equation (16). Equations (31) reduce to 

Or,, 0 
0/3  - O, G (BtO + t~ = O. (35) 

Differentiating and using (32) gives 

which can be integrated to give 

0 2 T 1 
3t2 - 0, - 0. (36) 
0/3 a a/3 

T 1 = ;~(c~) + X(fl), / (37) 
& - ) 

where ~ and X are arbitrary functions which must be determined to satisfy the boundary conditions 

at the edge of the region. 

(C) Case 3. Finally, if a, fi are taken as orthogonal co-ordinates with A = B = 1, 

0¢/3~ = 0¢/0fi = 0, then t: = tl(fi) and t 2 = t2@ ). Each fibre is straight and is of constant thickness 

along its length. These  thicknesses are again determined by the equilibrium conditions at  the 

boundary of the region. 



The equilibrium conditions at a boundary can be written using Fig. 9. Let F?,, F t be the components 
of external traction per unit length in the direction of the normal and tangent respectively, and T the 

end load in the edge member at the boundary, if any. Let also the angle between the co-curve and 

the tangent to the boundary be O, the radius of curvature of the boundary curve be p, and the arc 

length of a small element of the boundary curve be de. Then the components of T in the normal and 

tangential directions of the boundary are - Tip and OT/a~. The equilibrium of forces in the 
~-,/?-directions gives 

} f t  l sin O = F ~ - p  s i n 0 +  F t + ~ cos0 ,  

a e !  - c o s 0 .  

(38) 

These equations determine the values of t 1 and t 2 at the boundary, and may be used in appropriate 
cases to specify the arbitrary functions of the various integrals. 

The conception of a framework as two continuous sheets of fibres, although appropriate to the 

mathematical treatment, has little value in practical application. For one thing, the connection 

between the two sheets presents a formidable engineering problem. However, the graphical method 
of layout discussed in Section 6 readily suggests an approximation. We may replace.the two sheets 
of fibres in a curvilinear element A da x B dfi by two concentrated straight members along the 
mean a-, fi-lines. Thus the framework consists of two sets of members arranged along the layout 
lines as constructed in Section 6, one carrying a tensile stress (f) and the other a compressive 
stress ( - f ) ,  with pinned joints at the junctions. 

Since the members are to carry direct stresses only, loads on the boundary must be considered as 
applied at the joints. The sizes of the members can be calculated once the forces carried by them 
become known. Equilibrium considerations at the joints provide such information in statically- 
determinate cases. 

8. Calculation of Vohtme of Michell Structures. For a framework S * satisfying Michell's Theorem, 

if F i (i = 1 . . . .  n) are the external forces acting on the structure, and vi are the virtual displacements 
~b 

at their points of application, the virtual work of the external forces is ~ f i v i  . The virtual 
i=1 

deformation produces strains (+e) along all the members carrying a stress (+f ) ,  and ( - e )  

along all the members carrying a stress ( - f ) ,  and so the total change of strain energy in S* is 

2 ( fA)  (eL) = efY: A L  = efV*,  where the summation is taken over all the members of area A and 
length L, and V ~ is the total volume of the framework. By the Principal of Virtual Work, we have 

?b 

e f V  ~ = Y~ Fi~i, 
i=1 

o r  
n 

V ~ =  - ?~ /V~i. (39) 
f e i =  1 

The virtual displacements vi follow from u and v of equations (15), (18) or (21) for the various 
co-ordinate systems. The volume of the structure can then be calculated from (39). 

The knowledge of the volume of a Michell structure, when it can be found, is most valuable. 
It represents the ultimate structural efficiency. If for any reason the optimum structure cannot be 



used and another form of construction is substituted, the penalty involved is readily calculated by 
comparing the weight of the proposed construction with the Michelt structure. 

The approximate framework with concentrated members replacing the two sheets of fibres is 

strictly speaking one of such cases. The volume of the framework can be calculated by summing over 
all members once their size is known. This may be compared with the volume of (39). It may be 
expected that since the framework follows the exact framework in layout and differs only in the 
distribution of materials, the difference in weight between the two will be very small indeed. 

PART II 

Special Applications 

1. Development of the Solution for a Cantilever. Consider the three-force problem of Fig. 10. 
The points of application of the forces form an isosceles triangle CDC' with CD = C'D. The force 
F at D acts in a direction parallel to CC' and equal forces at C, C', directed along CD, C'D 
respectively, are in equilibrium with the force F. Our problem is to construct a Michell structure 

which equilibrates these forces. 
Concentrated forces can be dealt with in two ways in Michell layouts. The point of action of 

such a force can be made a singular point of the layout, with an infinite number of fibres passing 
through (Fig. 1 l a); or special members, with finite cross-sectional area, can be introduced along the 
two layout lines which intersect at this point of action (Fig. l lb) .  Let us apply the first of these 
methods to the points C, C' of Fig. 10 and assume, as the simplest solution, that the lines which 

meet at C, C' are straight lines. This gives us two fans of radial lines and concentric circles centred 
on C and C', which may be extended until they meet at O, the vertex of an isosceles right-angled 

triangle with hypotenuse CC' (Fig. 12). 
We now have a situation familiar in the plastic-flow theory. Two orthogonal layout lines OA, 

OB (Fig. 12) are now given and it is required to extend this layout into the region which contains 
the point D. This problem is solved in Ref. 8, VI.7 and the resulting layout, continued until two 

layout lines meet at D, is shown in Fig. 13. 
Introducing concentrated members along CD, C'D we can accommodate the concentrated force 

at D. The member CD will be in tension and the member C'D in compression. All the members 
which meet at C must therefore be in tension and all those which meet at C' in compression, in 
accordance with the general theory of Michell structures. The curved member AD is in tension 
and therefore requires the compressive forces in members through C', which meet it at right angles, 
to maintain the equilibrium. In the same way the member BD requires the tensile forces in the 
members through C. The circular members in the fans centred C and C' are clearly not required 
and so have been omitted from Fig. 13. 

The structure of Fig. 13 appears to be qualitatively satisfactory, but before it can be accepted a 
check must be made that sui~cable positive areas may be given to all its members. A similar situation 
arises in plasticity problems, where it is necessary to demonstrate that a consistent velocity distribution 
is possible (Ref. 8, VII.l). 

2. Layout Geometry. The layout lines for our cantilever structure can be taken as the co-ordinate 
curves of a curvilinear co-ordinate system (% fi). Referring to Fig. 14 we take the circular arc OA as 



the line [3 = 0 and define the values of a at points, such as A1, on OA, by the angle between the 
tangent at A t and that at O, which is taken as the x-axis of a right-handed Cartesian co-ordinate 

system O(x, y). Taking the direction O to A as positive and taking clock-wise rotations as defining 
positive angles, we see that the values of ~ on OA are all positive. The arc OB is taken as ~ = 0 and 

the value of/3 for a point such as 13x is then defined as the angle between the tangents at B 1 and O. 

The positive direction on ~ = 0 is taken as from O to B. Taking anti-clockwise rotations as positive 

we see that the values of/? on OB are also positive. The co-ordinates of a point P are then given by the 

value of a at the point A,, where a layout line through P meets OA, and by the value of/3 at B1, 

where the other layout line through P meets OB. 

Let us denote the angle between the tangent to the a-curve through P and the x-axis by qS. The 
co-ordinate system is then the same as that in Fig. 2c and Hencky's  Theorem {equation (10)} gives 

the relation 
¢ =  - ~ + / 3 ,  (40) 

which corresponds to (11) with a = - 1 and b = + 1. 

The arc lengths dsl, dsz of the a=,/3-curves are given by A dcq B d/? respectively. Since dc~, d/3 are 

now numerically equal to the change of angle along the respective co-ordinate curves, A, B are the 

radii of curvature of ~-,/?-curves. Equations (13), (14) for A and B become in this case 

and 

OA OB 
- B ,  - A ,  ( 4 1 )  

0,8 ~o~ 

a~ A O~ B 
po o"od '---a - A  = O, po o%~ - g = 0. (42) 

The boundary values are 

A _ 
OB 

- -  r o n  O A  (t3 = 0 ) ,  

B _ 
aA 
a/? - r o n  O B  ( ~  = 0 ) ,  1 

where r is the radius of the circles centred on C and C'. 

The solution for A is given by equation (27) with ab = - 1. We have, at a point P (~, ~1) 

f~ A(P) = rI0{25/(seW)} + oIo[2V'{~(V-5)}]rd5 

after transformation using the substitution ~ = 2 5/{~(~7-13)} in the integral. 

Similarly, 

B(P) = r i  o {2 ~/(~/)} + I 0 [2 ~/{(~: - ~)~7}] r da 0 

= r  i/o {2 V~($r/)} + N / ( ~ )  I1 {2 ~/($~)}]. 

(43) 
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Hence, at a point with current co-ordinates (%/?), the radii of curvature A, B are given by: 

L_ (44) 

B(c~ , /3 )= r  [I0{2 ~/(c~3)} + ~ / ( ~ ) I 1 { 2  ~/(~fi)}]. 

Equation (1) now gives the line element ds, which, together with the angle ~ from (40), give the 
intrinsic equation of the co-ordinate lines in parametric form. The Cartesian co-ordinates (x, y) 
are given by (23). If  the integration is performed along the c~-lines (/? = constant), starting from the 

arc OB, where ~ = 0, equations (23) become 

x -  x o = Acos~de~, 
o (45) 

Y - Y0 = A sin ~ do:, 
0 

where 

x 0 = - r ( 1 - c o s f i ) ,  / (46) 

Y0 = r sin/3. J 
It does not seem possible to get an analytical expression for x and y from (45). However,  values 

may be obtained by numerical integration, and the co-ordinate curves a, fi can then be plotted. 

The  pair of curves which intersect at point D furnish the boundary of the structure. 

3. Graphical Construction of the Layout. Following the general method discussed in Section 6, 

Part I, the layout lines can be constructed approximately on the basis of equation (40).It is particularly 

easy when the pair of given layout lines are circular arcs, as we have in the present case, since they 
can be conveniently divided into equiangular segments containing an angle A~ (Fig. 15). The  
layout lines are the continuation of the radial lines from the centres C and C'. It can be shown that 
each line turns through an angle ½AS on leaving the circular arc, and thereafter turns through an 
angle Aq5 at every intersection with the other family of lines. The  two sets of co-ordinate lines then 
form a quadrilateral mesh. Given three corners of a quadrilateral the fourth corner can always 

be located. The  two sets of lines can therefore be drawn step by step, starting at the three corner 
points 0, 1, and 1', and continuing until two lines meet at the loading point D as shown in Fig. 13. 
Needless to say, the smaller the angle AqS, the finer the mesh and the better the approximation will be. 

Examples of the layouts constructed by this method are shown in Figs. 16 to 18. Fig. 16 shows 
the layout defined by two right-angled circular arcs of equal radii and was drawn with an equiangular 
mesh of 5 °. All the other figures have 10 ° meshes. Fig. 17 shows the limiting angles which two circular 
arcs of equal radii may subtend. These angles are seen to be just  over 240 ° . Beyond this limit, 
the two systems of layout lines will overlap and will thus be unacceptable. There  is therefore a 
definite boundary associated with a given pair of circular arcs which limits the region of the structure. 
The  loading point D must clearly be situated inside this region. Figs. 18a to e show the layouts 
defined by right-angled circular arcs of different radii. The  last of them (18e) shows the case when 
one radius becomes zero and the corresponding arc degenerates into a point. 

4. Calculation of sizes of a symmetrical cantilever. Having constructed the layout, we can now 
calculate the sizes of the members  required to carry a load F applied at D (Fig. 13). To  start with, 
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two concentrated members along the co-ordinate lines passing through D will be needed. The loads 
in these members at the point D is + FI l l2 ,  since the members intersect the line of symmetry 
OD at 45 °. The fibres intersecting these members at right angles cannot alter the magnitude of these 
loads. Hence the sizes of these two members remain constant from point D to C and C', with areas 

equal to F/f~/2.  
All members radiating from C carry ~t tensile stress (f) and those from C' carry a compressive 

stress ( - f ) .  To find the equivalent thickness t~ and t~ of the continuously distributed fibres we 
use (34) and (35), with a = - 1 and b = + 1 for the chosen co-ordinate system. They give 

O T 1 = O T 2 
- -  + T= 0,  - -  + T, = 0, (47) 

and 

a2T1 T 1 = 0,  - - a  e T a _  T= = 0, (48) 
a~a5 a~o5 

where T 1 = t l B  and T~ = t~A as given in (32). 
The boundary conditions are given by the equilibriflm of the edge members. Thus on BD, we 

have by Fig. 19, 
F 

ft~ = A ~/ 2 

o r  

F 
At2 = T2 - f~ /2"  (49a) 

This equation can also be obtained from (38). The boundary curve coincides here with a a-curve, 
hence 0 = 0 and p = A. The components of boundary traction F t = F~ = 0 and T = F/~/2  = 

constant. 
Similarly, on AD we have 

F 
Btl  = T, = f v ,  2 . (49b) 

The equations (48) are of the same form as (24), with boundary conditions (49a) and (49b). 

Their solutions, by equations (25), give at the origin O (Fig. 20) 

TI(O ) f io{2 ~/(~)} _ - f ~  
= f ~  B 

_ F  I0{2 + I1{2 • 
f~/2  

and 

T~(O) = F i I  0{2 

The values of T 1 and T 2 at a point P(a, 
The co-ordinates of D then become (~:-a, 

TI(~' fi) = f~/2  I° [2 ~/{(~ - ~) 

T~(~, fi) = f~/2 I° [2 ~/{(~ - ~) 

d~ 

(50a) 

~¢/(~r~)} + ~V/(~)I1{2 ~/(~r/)}] . (50b) 

fi) can be obtained by making P the origin instead of O. 
-5) .  Hence from (50), 

(~-/~)}] + 2 ( ~ - - ~ ) I 1  [2 ~/{(~-~)(~-/3)}] I,  

(~-fi)}] + N / ( ~ _ f l )  I1 [2 ~/{(~- ~) (~-#)}] l . (51) 
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Therefore, at any point in the region of OABD, we can calculate T1, T~ by (51) and A, B by (44). 
The equivalent thicknesses are then given by (33). Since T1, T2, A and B are always positive, the 

same is true for t 1 and t~ and the solution is therefore acceptable. 
The values Offrt~@2/F in a region defined by two right-angled circular arcs are plotted in Fig. 21. 

The same figure can be used to find values offrtl~c/2/F by interchanging ~ and/5. The position of the 
points A and B in the figure will then be interchanged. 

The layout lines within the circular arc OB are radial lines from centre C and concentric arcs, 
forming a fan structure. Since there is no load on the edge of the fan, no material is required along 
the arcs. Each tensile element from the arc OB will continue radially towards the singular point C 
with an unchanged area of section. The same applies to the compression material in the fan C'OA. 

The cantilever structure therefore consists of two concentrated edge members CD and C'D of 
constant areas, a continuum of tensile material spreading from the singular point C to the edge AD, 

and a similar continuum of compression material in the region C'BD. The sizes of these structural 

elements have been determined. 

For the approximate framework with concentrated members replacing the continuous sheets, 

the sizes of the members are known once the loads they carry are calculated. These can be found 

by consideration of the equilibrium at every joint, starting from the loading point D. The structure 

is statically determinate, since it is built up by adding two members to every joint, starting from the 

tip D. It is also to be noticed that if the layout lines form an equiangular network, the configuration 

at every joint of one or other of two similar types is the same. The forces in the members can 

therefore be calculated by using the same formulae throughout the whole region. Furthermore, for a 
symmetrical layout with a load applied normal to the axis of symmetry, only one half of the structure 

needs to be considered. 
We consider only the top half of the structure, where the edge member BD is in tension. At 

point D, where the two members intersect the axis of symmetry at angles (}lr-½A~) (Fig. 22a), 
the forces in the members are + F/2 sin (¼rr- ½A~) (compared with + FI l l2  in the exact structure). 
The forces in the rest of the members can now be calculated from joint to joint, knowing always the 
tension T in the member nearest to D, and the compression C in the member nearest to the edge BD. 
There are two types of joints in the region according to their position. 

(a) For joints outside the arc OB, the geometry is shown in Fig. 22b. 
The unknown force in the tensile member is 

T' = TsecA~ + CtanA~, (52a) 

and in the compression member 

C' = CsecA~b + TtanA~.  (52b) 

(b) For joints on OB, the geometry is slightly different (Fig. 22c). 
The unknown forces are given by 

= T s e c ~  -~-~ + 2CsinA~, T' 

C' = C + T t a n - ~ .  (53) 

The joints on the edge BD have the same geometry, the only difference being that C = 0. 
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An example of the calculation is given in Fig. 23, where the forces in the members due to a unit  

load F at D are shown. T h e  structure is an equiangular layout, with A~ = 10 °, defined by two 

right-ang!ed circular arcs. T h e  forces on the edge member  from D to C now increase gradually 

instead of remaining constant as in the exact structure. 

5. Calculation of  Vir tual  Displacements and Volume. Equation (39) gives the volume V* of the 

Michell s tructure which is proportional to the virtual work of the external forces. In our cantilever 

there is only one force applied and we have to find the virtual displacement in the direction of this 

force. 

Equation (15) gives the components of the virtual displacement u, v in the direction of 

~-, /?-co-ordinate curves. For  the co-ordinate system chosen, we have a = - 1 and b = + 1. 

Hence the equations become 

Ou &t } 
0o~ + v = A e ,  O/? v = B~o, 

Ov Ov 
Oo~ u = Aeo, O/? + u = B e ,  

( 5 4 )  

where 
eo = - 2e(c~+/?) + co o (55) 

which follows from (12). 

Adding the equations (54) 

Ou &t 

o-;+ 

in pairs we arrive at the following results: 

= A e  - Boo, I 

(56) 

J Ov 9v 
0o~ + aft - Be + A~o , 

where A, B are functions of a, /? given by (44). 

We now change the variables and let 

= ~ + / ? ,  r = ~ - / ? .  (57) 

The  lines ~ = constant and r = constant, when drawn in the ~-, /?-plane, intersect the ~-, 

/?-co-ordinate lines at 45 °. These  lines can be regarded as a new set of co-ordinate lines (Fig. 24). 

The  origin of the ~-, r -co-ordinate system remains at O. Th e  positive a-axis lies in the first quadrant  

while the positive y-axis lies in the fourth quadrant of the ~-,/?-plane, thus forming a left-handed 
system. 

From (57) we have the inverse transformation 

and also 
= /? = ( 5 8 )  

&t &t &t 

O~ Oa + Or' 

Ou Ou Ou 

Off O~ aT' 

cgv cqv 

ao~' Off" 

(59) 

and similarly for 
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Equations (56) then become 

Ozt 
2 G = Ae  - B m ,  2 ~ = - Be + Aco, (60) 

where A and B are now to be expressed as functions of ~ and ~- by (44) and (58). These two equations 
can be integrated along the e-lines (~- = constant) starting from a boundary where u (or v) is given. 

For our cantilever structure, the centres of the circular fans C and C' can be regarded as fixed. 

The virtual deformation imposes a strain ( + e) on all tensile members and ( - e) on all compression 
members. Hence, on the arc OB at a radius r from the centre, the virtual displacement u in the 

direction of the a-lines is (er). Similarly v on OA is ( - e r ) ,  the negative sign indicates that the 

direction of the displacement is opposite to the positive direction of the ]3-lines. These are then the 

boundary conditions for (60). 
The  value of % in (55) is the rotation at the origin when o~ = fi = 0. At the origin of our co-ordinate 

system A = B = r, u = - v = er, and 3u/3~ = 3v/3o: = 0. Hence by (54) we have 

{o 0 = - e .  ( 6 1 )  

Substituting (44), (55), (58) and (61) into (60) gives 

° + 
+ (2ecr+e)r [ /-o{:k/(a2-'r2)} + 'X / \  ° _ " r / / ~ { ' V ' ( ° " -  ' 

- ( 2 e ¢ + e ) r I I o { 1 / ( a l - ' r l ) } +  J ( ~ )  11{2V/(~°--.~)} 1 . (62) 

Integration of (62) gives u, v at l i ly point P(~,/~) i12 tile structure. The details of tile integration are 

presented in Appendix A and the result gives 

u(~,/3) = er [(1 + 2004 {21/(~x,8)} +, 2,V/(o~/3)I~ {2V'(oq3)} ] , t 

J v(% fi) - er [(1 + 213)10 {2t/(~fi) } + 21/(afi)I 1 {2~/(afi)}]. 
(63) 

Let the co-ordinates of the loading point D be (c~ = if, fi = if), then 

u(D) = - v(D) = er [(1 + 2/,)10(2/, ) + 2Adl(21x)]. (64) 

The virtual displacement in the direction of the applied force F, which makes angles of ~r  and ~"  

with the =, fi co-ordinate curves at D, is 

9T 9T 
= u(D) cos ~ - v(D) sin ~ = u (D) l /2 .  

The volume of the structure then follows from (39), giving 

V~ = F~_ _ Fr~/2__ [(1 + 2ff)I0(2ff) + 2ffll(2ff) ] . 
de f 

(65) 

(66) 
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For the framework with concentrated members replacing the continuous sheets, the total volume 

V is the sum of the volumes of all the members, which are known once the loads are calculated and 

their length measured. It has been calculated for a number of symmetrical cantilever layouts, and 

the following table gives the results compared with those obtained by (66) for the 'exact' structure. 

(degrees) 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 

v~f 
{equation (66)} 

1.414 
2.053 
3.070 
4.632 
6.994 

Vf (for framework with 
Frr concentrated members) 

1.414 
2.056 
3.065 
4-634 
7-02 

10.53 
15.80 
23.61 
35.12 
52.04 
76.87 

113.20 

10-57 
15-89 
23-76 
35-39 
52-56 
77-80 

114-78 

In spite of the fact that a coarse network (A¢ = 10 °) has been used, the volume obtained by the 

approximate calculation is within 1.5% of that for the exact theory, even when the angle of the fans 

is as large as 110 ° . The closeness of the agreement is remarkable and the approximate method of 

analysis can therefore be considered as highly satisfactory. 

6. Comparison of the Weight of Michell Cantilever with that of other Types of Cantilever Structures. 
The volume of the Michell framework is plotted in the form of the non-dimensional quantity 

Vfd/Fl 2 against the ratio of l/d in Fig. 25. The distance d is the depth between the singular points 

CC' and 1 is the span of the cantilever from the root CC' to the loading point D. The length l has 

been measured directly from the layout drawings. 

In the same figure, the volumes of three other types of conventional cantilever structures having 

length l and depth d at the base are also plotted. All the allowable tensile and compressive stresses 
are assumed to be + f, and the load F is applied at a point D on the perpendicular bisector of CC'. 
The volumes are calculated as follows: 

(A) For the simple triangular structure consisting of a tie CD and a strut C'D (Fig. 26a), the 
volume is 

V =  2 F ( l  ~+¼d 2) 
f d ' 

hence 

( Vfd 2 1 + (67) 
FI ~ 411 ~ • 

(B) The simple webbed-beam (Fig. 26b) with parallel spars carrying end loads and a web carrying 
uniform pure shear is assumed to be fixed at C and C' so as to make it strictly comparable with the 
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Michell framework. A shear post is therefore necessary at each end. The allowable stress in the web 

is assumed to be f/2. The volumes of the items are 

spars 

web 

and shear posts 

FI 2 

2Fl 
Vw= f '  

Fd v =2× V. 

The total volume V = V I + V~ + V 8 and hence 

d d z Vfd 1 + + - - .  (68) 
Fl 2 - 2 7 212 

(C) For the Warren girder (Fig. 26c), the volume can be calculated from 

Vfd - 3"464 II .154 (~- + n) + 0.433 ] 
Fl ~ n 2 

(69) 

where n = number of joints outside the supports C and C'. The value 0-433 in the bracket gives the 

contribution of the link from the last joint of the structure to the loading point D at the centre. 
Strictly speaking, the Warren girder can only be built when I and d satisfy the relation l = 0. 577nd, 

where n is an integer. A continuous curve is nevertheless drawn through these points to represent 

the volume of this type of structure. 
The curves in Fig. 25 show the superiority of the Michell framework over the conventional type 

of structure, especially at large values of lid. 

7. Application to a Beam under Uniform Bending Moment. Another application of the layout has 

been suggested by H. L. Cox. The layout lines defined by two equal fans OCB and OC'A are 

continued until the tangents of the a-line CBE and the fi-line C'AE' are parallel to the axis of 

symmetry at the points E and E' (Fig. 27). The line joining E and E' is then tangential to the a-line 

CE' and the fi-line C'E and is perpendicular to the axis of symmetry. The layout is now joined to 

another which is its own image about the line EE'. Let the singular points of this image layout be 

F and F', the line CEF is then a continuous curve. The two lines C'E and F'E are both normal 

to CEF at E and form a cusp. The length of the layout from CC' and FF'  is governed by the angles 

of the fans. 
If a moment is now applied at each end in the form of a set of equal and opposite forces at the 

singular points C, C', and F, F', it can be carried by a structure placed along this double system of 
layout lines (Fig. 28). It is easy to see that the sets of lines from C and F are in tension and those 

from C' and F' are in compression. At the centre section EE', the moment produces a pair of equal 

and opposite forces at E and E' parallel to the line of symmetry OO'. Since EE' is a line of symmetry, 

our attention may be confined to one half of the structure from CC' to EEL If the distance between 

E and E' is d', then the forces at these points due to a moment M are + Mid'. The calculation of 
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sizes of members can now be started from these two corners in exactly the same manner as for the 

cantilever. The same kind of approximate framework with concentrated members can also be 
constructed. 

The weight of the beam can be estimated by using (39) for the volume and (63) for the virtual 
displacements u and v. The forces are applied in the same direction as u at E and ( - v) at E'. These 

two displacements are equal and opposite by symmetry. The volume of half of the structure is 
therefore 

v* 2Fu(E) 2Mu(E) 
7 ;  ' 

or in non-dimensional form 

V*f 2u(E) 
2 M  = d '  e (70) 

The quantity V*f/2M corresponds directly with W/2Pd in Fig. 4 of Ref. 3, where beams under 

pure bending were considered. This figure is reproduced in Fig. 29 with an additional curve which 

is calculated according to (70). The depth d' and length I used in the calculation are measured from 

the layout drawings and are therefore approximate. Comparison shows that for large values of l/d, 
our layout has an advantage over even the more efficient beams proposed in Ref. 3. 

In the calculation of the volume of half of the beam, we have assumed that the singular points 

C and C' are fixed, and the points E and E' are allowed to move. But in order to match the displace- 

ments of the two halves of the beam, E and E' must be brought back to rest. To do so we notice 

that when C and C' are fixed, the displacements of E and E' are anti-symmetrical. The vertical 

displacements of the two points are the same and in the same direction, while the horizontal 

displacements are equal and opposite. They can therefore be brought back to their original position 

by a rigid-body rotation about a point on the axis of symmetry OO', plus a rigid-body translation 

in the vertical direction. These rigid-body movements have no effect on the calculation of the volume. 
The Michell Theorem demands that the strain must not exceed (e) along any linear element in the 

region of the structure. This requirement is not fulfilled in the central region EGE'G' .  In fact it 

can be shown (Appendix B) that in the cusp formed by the lines C'GE and F'G'E, the strain along 
a linear element near the point E parallel to th horizontal line OO' is infinite. This region must 

therefore be excluded from the permissible region for the structural layout, and the two halves of the 
beam join together at the singular points E and E' only. This exclusion of the central region leaves 

open the question as to whether a lighter beam could not be constructed, if members were allowed 
to lie in it. 
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A, B 

a, b 

C 

d 

e 

f 

F 

G 

I 

J 

l 

M 

Y 

$ 

tl, t2 

T 

U, ~3 

V 

x, y 

a, fi 

4 

(Y, "i" 

NOTATION 

Lame's parameters, defined in equation (1) 

+ 1 or - 1 {equation (1i)} 

Compressive forces in members 

Depth of cantilever or beam at the supports 

Strain 

Stress 

External applied forces 

Green's function, defined in equation (26) 

Modified Bessel functions 

Bessel functions 

Span of cantilever or beam 

External applied moment 

Radius of circular arcs 

Distance along any line 

Equivalent thicknesses of sheets of elements 

tiB and t~A respectively as defined in equation (32) 

Tensile forces in members 

Virtual displacements in a, ~ directions 

Volume of structure 

Rectangular co-ordinates 

Curvilinear co-ordinates 

Angle between s-direction and x-direction 

Another set of variables defined in equation (57) 

Rotation 

Other symbols are defined in the text. 
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A P P E N D I X  A . . . . . . .  " :' " - . . . . . . . . . . .  :,." v . ,  

Calculation of Virtual Displacements for  the Michell Cantilever 

To find the virtual displacement u at a point P(~,/3) within the region ODB of Fig. 24, we integrate 
the first equation of (62) a l0nga  e - l inef rom a point Q on OB; whe re the  boundary condition u = er 
is given. Le t  the c~-,/3-co-ordinates of Q be (0, ~7), the e-, 7-co-ordinates of Q are then 07, --~/) by 
(57). Since P lies on the same e-line as Q, the value of ~ at P must  also be ( - 7 ) .  We notice also 
that on this line e > 7. The  first equation of (62) therefore becomes 

/ (e  + 7] 
. , - , ,  ' \ 3e /~ .=__~ l  , X / \ e -  ~ /  

o- -  ~ ~ ) } j  

e 

l i e  e - 7  Z ! { - V / ( ~ '  - z /2) } ]  . (A1) + 2 e r e  { V  (e'- '~')}. + V ( e ' -  7') 

Integrating along the e-line f r o m  Q to P, we have 

o"  e 

u ( P )  - u(Q) = er I o {-V/(o-2 - ~z ) }  + V ( e 2  _ .r/2 ) 11 { 1 , / ( o  "~ - r /2)}  + 

v t  -~7 ) 

and ¢ 

N o w  let 
. . . . .  [ 2 =  e 2 = ~ ,  - 

Then  
[ d [  = e d e  

when 

.(A,2) 

. . . . . . . . . .  : ...(A3) 

~ = ~ ,  [ = 0 ;  

= ~, ~ = ~ / ( ~ - ~ ) .  

The  terms fin (A2) give . : . . . . . .  

if" (r (~/(~2-'1% [I i ( [ )d  [ ~- 
,, V ( J -  7 ' )  & { V ( e ° ' -  ~ ' )}  a e  = ~ 0  [ : : " . . . . . .  ~ ' 

F -I ~(o.z_,~) 

= L ,1I°(0/o = I o { l / ( o a - . q 2 ) } - ,  1. 

eZo{-d(e *~- ~')},~,~ = ~!~2~"!' [±o(Od [ = LG(Oj  
~/ 0 . '  . 

= V ( e ' - ' ~ ' )  & { V ( e ' -  ~')}. fo, 
- -  d e  

/ 
.2i 

.'~ , ! 



( , '  
Substituting these into (A2) we have 

u(P) - u(Q) = er  [ -  1 + (1 + a -  w)l 0 %/(a ~ -- W2) + %/(a 2 _ ~/~)I 1 {%/(a2 _ ~7~)}]. 

But u(Q) = er ,  hence 

u(P) = er  [(1 + a -  ~)I 0 {%/(~2_ ~2)} + %/(a~_ ~)i1{%/(a~_ ~)}].  (A4) 

Now transforming back into ~-, fi-co-ordinates, we have e = ~ + f l ,  and along this e-line, 

z = - ~ = a - ft. Hence ~/(~-~72) = 2~/(afl). Substituting these into (A4) gives ~:, 

u(o~, f l )  = e r  [(1 + 2~)Io{2~/(~fi) } + 2 ~ / ( ~ f i ) I ~ { 2 ~ / ( ~ f i ) } ] .  (AS) 

Similarly, the virtual displacement v at a point P' in the region OAD (Fig. 24) can be found by a 
line integration of the second equation of (62) from a point Q' on OA on the same a-line. The 

a-, fi-co-ordinates of Q' are (~, 0) and so its a-, ~'-co-ordinates are (~:, ~:). The a-, ~--co-ordinates 
of P' are then (a, ~) where a > ~. The formulae of A1 to 4 are then applicable with u changed into 

v, ~/ into ~, and e .into ( - e ) .  The integration is now performed on a e-line with T = ~. The 
corresponding formula of (A5) is then 

v ( ~ ,  f l )  = - e r  [(1 + 2fl)I 0 {2 ~/(afl)} + 2 ~ / ( ~ f i ) I  1 {2 ~/(~fi)}]. (A6) 

Equations (A5) and (A6) give the values of u in the region BOD and v in AOD, resulting from a 

known u on OB and v on OA. The values of u in AOD and v in BOD can be obtained from (54) by 
integrating along the a- or ~-lines. The details of these integrations are omitted but when they are 

carried out, the resulting expressions for u and v are found to be identical with those give n in 

(AS) and (A6). These two formulae can therefore be applied to the whole region of the structure 

as given in (63). 

I t  is interesting to note that we can obtain u and v from the pair of equations {see  equation (54)}. 

0u 
~--~ + v = A e ,  

r 

~ v  
-~fl + u = - B e ,  ' '  

where A and B are known functions of a, ft. Differentiating and substituting from (41) we get . 

(A7) 
+" } ~o~---@fi - u = 2 B e ,  

a2v  

~---~fi - v = - 2 A e . 

These differential equations are second order and are of the same form as (24). They can "be 
integrated by Riemann's  method and the resulting expressions are identical with those given in 
(AS) and (A6). ' . : '  , 

i , , ,  

I , 
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APPENDIX B 

Strain in the Cusp GEG' of Fig. 27 

Let the axis of symmetry of the beam OO' be the horizontal axis of a Cartesian co-ordinate system 
O(H, V) and denote virtual displacements referred to these axes by u h and u v (Fig. 27). Let the angle 
from the H-axis to the tangent of the a-line be 0 (counter-clockwise being positive). Then 

0 = ¢ - ~ =  -a+fl-~. (BI) 

We will now try to find the strain along a linear element near the point E parallel to the H-axis 
in the cusp formed by the lines GE and G'E. To do so, we have to find the rate of change of the 

horizontal displacement Uh, and the rate of change of the horizontal length of the line element, along 
the B-line GE near the singular point E. 

When the structure is fixed at C and C', the virtual displacements u h and u v are 

(Uh) o = U COS 0 -- V sin 0, ] 
(BZ) 

J (uv) o = v cos 0 + u sin 0, 

where u and v are given by (63). 

In order to match the displacements of the two halves of the beam, the points E and E' must be 

brought back to rest by a rigid-body translation in the vertical direction and a rigid-body rotation 
about a point on OH. The centre of rotation can conveniently be chosen at the origin O. The actual 
displacements u h and u v can be written as 

u , ,  = ( u , , ) o -  c:v, ] 
(B3) 

J uv (Uv)o + C1H + C2. 

where C 1 is proportional to the rotation and C 2 the vertical translation, making u h and u, zero at 
point E. We find 

Hence 

C 1 = F(-,,)ol , 

LVJE 

c2 = - [(u o)0 + C1H]~. 

Using the first equation of (B3), we have, along the fi-line C'GE, 

@uh 8(U~)o @V ~ - ~ c~ ~ .  

The H-, V-co-ordinates are related to the x-, y-co-ordinates by 

1 (x+y),} 
H = ~  

1 v ~ ( y - x ) .  

av_ 1 (ay Ox) 
ap ~/2 ~ - ~  • 

(B4) 

(BS) 

(B6) 

(B7) 
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Now from (22), 
~ x  

3y BcQs¢,  - -  - 
a8 

hence 
~V 

a8 

where B is given in (44). 
Differentiating 

But 

B 
%/2 (cos 6~+ sin ¢), 

- - B sin ¢,  

the first of equation (B2) we ob t a in .  

3(zth) 0 _: O (u cos 0 -  v sin 0) 
a8 

= - -  V COS 0 - -  + u) s!n 0, 

~ v  

37 + u = - B e ,  and 

3u 
- -  - v = - B~o = Be(2o~+ 2 f l +  l )  38 

by equations (54), (55) and (61), hence 

3(uh)° = e B  [sin 0 + (2a + 28 + 1) cos 0]. 38 

(B8) 

(B9) 

(B10) 

(ml) 

At a point E, the tangent to the a-line is parallel to the H-axis. Hence 0 = 0 and ¢ = ~Tr, and 
equations (B9), (Bll)  give 

1)~. 
E 

Then by equations (B4) and ( B 5 ) ,  

(auh~ I(2c~ + 2fl+ 1) (ut~)°-I (B12) 

The  quantity in the square bracket is generally not zero. For example, when the co-ordinates of 
the point E are ~ = 60 ° and/3 = 105 ~, 2~ + 2fl + 1 = 6 . 7 6 .  It is also found by (B1), (B2) and 
(63) that 

(uT~)o = u = 21.48er. 

The  vertical distance V is measured f romthe  layout drawing and found to be 3.8r. Hence 

(2c~+28+ 1) (u~)o _ 6.76 - 21.48_ = 1 .10 ,  
e V  3 . 8  

Which shows that Ouh/08 at E as giverr by (B12) is generally finite. 

2 4  



Next let the horizontal distance from a point on the ]9-line C'GE to the vertical line EE' be e 
(Fig. 30). Near the point E, the change de due to a small change dfl is represented by the distance PQ. 

By simple geometry, we can see that approximately de = PE dfl, or de/dfi is of the order of PE. 
But PE = B dfi, where B is the radius of curvature, and is of small order when dfl is small. Hence 
near the point E, de/dfi  is of the same order as dfl. 

The fact that (de/dfi)E -+ 0 while (duj,/dfi) E is finite means that the strain along a horizontal line 

element becomes infinite in the cusp near the point E. This violates the Michell Theorem and the 

region must therefore be excluded from the region available for the structural layouts. 
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